Computer Analysis of Data and Models: Diary

 

Week 1

I        Contents

 

1.            Introduction

2.            Statistical MetaModels        Toll Booth EG;

                            Morocco TB Data;    Vaso Constriction Data

 

II       Classical Methods

 

3.            Random Variables

4.            Fitting Parametric Distributions to Random Samples; Input Modelling

                             Normal Var Generator;     Gamma Var Generator

5a.          Maximum Likelihood Estimation

                   Likelihood Examples;     Nelder Mead Method;   NelderMeadDemo.  

 

Lab 1     Study the Normal Var Generator/Gamma Var Generator examples.

                   Remind yourself of the terms pdf, cdf, inverse cdf.

                   How do the generators work?

 

              Study the likelihood examples.

                   What form does the likelihood take for the toll booth data and the

                   Morocco data? What is the difference?

                   [If you have time: What form does it take for the Vaso constriction data?]

 

               Study the Nelder Mead Method.   Study the Nelder Mead Demo:

                   try different starting points, different objective functions..

 

Homework

              Study the vaso constriction model (VasoConstrictionFit) and the form

              the likelihood takes in this case.

---------------------------------------------------------------------------------------------------

Week 2

5b.          Maximum Likelihood Estimation Continued

                   GammaFitTollboothData and RegressionFitMorocco  Gamma MLE

6.            Accuracy of MLEs     Gamma MLE;    Regression Fit Morocco

 

III          Computer Intensive Methods

 

7.            Empirical Distribution Functions

8.            Basic Bootstrap Method      Bootstrap Median

 

Lab 2

              Study how the likelihood is set up in the GammaFitTollboothData

               and RegressionFitMorocco  spreadsheets (see Worksheet 1)

             

              Modify the RegressionFitMorocco example to analyse the

              Traffic Queue data (see Worksheet 2).

              Analyse the Cortisol Assay data (Worksheet 3).

 

Homework

               Read the notes on EDF’s and study the Basic Bootstrap Method.

---------------------------------------------------------------------------------------------------

 

Week 3

9.            Evaluating the Distribution of MLEs by Bootstrapping Gamma Bootstrap

10.          Comparing Samples Using the Basic Bootstrap Law and Kelton EG

11.          The Parametric Bootstrap ParametricBS-GammaEG

 

Lab 3

              Study how confidence intervals are calculated using bootstrapping.

                   Investigate the use of bootstrapping in the Toll Booth and

                   Morocco data examples.

                   Test out bootstrapping in the Traffic Queue and Cortisol Assay

                   examples (Worksheet 2 and Worksheet 3).

 

Homework

              Read the Assignment Notes, and consider how the likelihood needs

              to be set up for the problem.

             

---------------------------------------------------------------------------------------------------

Week 4

12           Goodness of Fit Testing

  12.1       Classical Goodness of Fit

  12.2.      Bootstrapping a GOF statistic

                                      Gamma Fit Toll Booth Data; Normal Fit Toll Booth Data  

13          Comparison of Different Models; Model Selection

                                      Cement Data

14          Final Comments

 

Lab 4

              Study the way goodness of fit is carried out using bootstrapping.

                   Run the spreadsheets that fit the gamma model and the normal model

                   to the toll booth data, and compare the fits using bootstrapping.

 

              Study the Cement data ANOVA example.

                   Modify the cement data spreadsheet to analyse the Tyre Data

                   (see Worksheet 4).

 

              Ask any questions you may have about the Assignment.