GLIVENKO-CANTELLI THEOREM
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= What is the meaning of the statement: "A random sample describes the
population?

= Can we explain it in probability theory terms?

» Answer is: "YES".

» And this is because of the famous Glivenko-Cantelli Theorem Sometimes

it is called Fundamental Theorem of Statistics.




Definition :

Let { X1, X5, ..., X,,} beani.i.d. sequence of random variables with distribu-

tion function F'(a) on R. Then the empirical distribution function, denoted
by F,, : R — [0, 1], is defined as:

1 — number of X, Xo,..., X, that are <a
Fn(a) = — Y lixi<ay = -
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Before we move to the theorem lets look at if we fixed one particular ag € R.
We want to know how far the blue curve from the red curve. What happens
to Fy(ag)?

By strong law of large number we can say that, F),(ag) — F(ag) a.s. for any
fixed ag € R. Because l{y,<q 1s a binomial random variable with probability
P = P(X; < ag) so if ag fixed then P is fixed. This is by the law of large

number converges to F'(ayg).




= Recall Uniform convergence

= Two functions converge uniformly if the distance over the whole space uniformly get smaller, so
the maximal distance between these two curves get close to zero.
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Glivenko-Cantelli Theorem

Let Xi,...,X, be iid random variables with cdf F'(a). Let F,(a) be the
empirical CDF induced by the sample

Empirical Cumluative Distribution

1 -
Fala) =5, 2Tz 2
Then
ne >
P (Sup |F.(a) — F(a)| > e) <8(n+1)exp (——) -
a€R 32 S 7
In particular, sup g |Fn(a) — F(a)| = 0 a.s. as n — oo. S
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As the sample size grows the empirical cdf reach the cdf of the real distribution

Few Remarks:

Observe, by the law of large number P(|F,(a)— F(a)| > €) — 0 for any fixed
ap but our problem we need to look at the expression P (sup,.g |F.(a) — F(a)| > ¢)




= Why it is difficult!

because R is uncountable set. Taking a supremum over a finite set is
easier! Because supremum of a finite set i1s a maximum.

P (max;—1, n |u| > €)
= P (|ui| > € or|uz| > € or, ..., |un| > €)
By the union bound property we know this is always bounded by < >~ | P (Ju;| > €)




= The trick of the proof:

» How could we achieve that ?




ECDF and theoretical CDF
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What would happen if we introduce another empirical distribution func-
tion for another sample. The green function called F’ induced by a ghost
sample.

Fn(x)




Assume we have a second sample X7, ..., X/, it has the same number of ele-

ments as first sample , completely independent from sample 1 and generated
from the same distribution.

Fn(x)




Ghost sample: is a sample we had in our mind but it does not really exist.
Our goal: 1s to prove that the blue curve converge to the red and what holds
for the blue will hold for the green because they both generated from the
same distribution.

If the blue curve and red curve are close then the green curve and red
curve will be also closed. Then we can bound the distance between the red
and blue by twice the distance between green and blue.

Fn(x)




= Now, If we want to look at the distances between the green and the blue curves
there are only finitely many distances between them and this is what we want to
achieve by introducing a ghost sample.
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» The proof consists of several key steps: Assume ne? > 2

e Stepl: symetrization by ghost sample. Assume X7, ..., X/ ~ F' Dentoe
by F! the empirical CDF induced by ghost sample.

1.0

Now.it is easy to prove:
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< 2P (sup |F(a) — F) (a)| > 6/2)
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This step called symetrization by ghost sample, because what we have
now is a term that does not depend on the true CDF instead it’s now
depends on two empirical CDF.




e Step 2 : split this last term into two terms,

Fu(a) = (@) = 123 (Ipxay — Lxrea) )

1=1

Let o4, ..., 0, be iid random variables,independent of X1, ..., X,,, X7, ..., X/,
with P (0; = 1) = P (0; = —1) = 1/2. Such random variables are called
Rademacher random variables.

Observe that the distribution of * is the same as the distribution of the
following,

1 n
=D oi(lxica = Tpxi<ay) (%)

=1

By the definition of X, ..., X,,, X1, ..., X! and oy, ..., 0,.




Now we have from symmetrization lemma

<2 (suplFifa) — Fi(o)] > ¢/2)
this is the same as,

acR
= 2P (sup > €/ 2)
acR

< 2P( SUP|EZUZ Lix,<ay)| > €/4)+2P( Sup|—Z:cfZ lixr<ay)| > €/4)
acR acR

Zaz ]l{X <a} — Il{\ <a})

n
=1




Now what we have achieved is we divided this complicated probability
into two probabilities and these two terms are exactly the same except
we have in the first term X; and the second X!. Since both X;, X]

come from the same distribution, so instead of having this two terms
we can write it as 4 times the first probability

= sup |— (1 > €/4
aeﬂglnzg X< }| 6/ )

observe, we have an expression here that contains only empirical dis-
tribution function with finitely many steps.




e Step 3: exploit finite structure. For this step we fix Xq,....,X,, , and
fixing here means conditioning on Xy, ..., X,,. Conditioning intuitively
means we fix into a particular value, so we want to look at the proba-
bility that something happens conditioning on the fact that X's take
certain values.

e note that the vector the random variables 1¢x, <a. ..., 1{x, <4} for fixed
a can have at most n + 1.
Thus conditioned on X7y, ..., X,,, the supremum is just a maximum over
at most n + 1 random variables.




To compute the following probability we have,

€
| .l > =1 X1, .., X,
(iléﬂ%n ZU asap | > 71X )

By applying union bound we obtain

1 n
— O'Z']L <a
 oraree

where the sup is outside of the probability. As we notice the only
random variable here is g;. The next step is to find an exponential
bound for the RHS.

acR

S(n+1)supP( >2|X1,---;Xn)




e Step 4: Hoeffding’s inequality for Rademacher variables:
With X, ..., X, fixed, we left with Rademacher random variables,) ;" ; 0;1{x,<q
is a sum of n independent zero mean random variables between [-1,1].

Thus, by Hoeffding’s inequality lemma for Rademacher variables we

have,
1 n
P (5 > oil(x,<a)

i=1
2
<2exp (—T;—Z) :

Now we combine things together from all steps to achieved GC theorem.

€
> — | Xq,.... X,
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Glivenko-Cantelli proof™

Since F),(a) and F! (a) are piecewise constant functions, thus | F,,(a)—F(a) |
has at most (2n + 1) different values when —oo < a < oc.
Step 2: Turn infinite many "Sup” to finite many "Max”, corresponding to

values.

2P ( sup | F,(a) —F!(a) |> E) = 2P ( - max  |F,(a) - F,(a)| > g) :

—o0<a<oo 2 =740y agn+1
2n+1 ¢
=2P E, (a;) — F' (a;)] > =

(U| (a;) = F}, (as) 2)

€ .
<2 Z P (|Fn (a;) — F! (a;)| > 5) (By union bound)




Step 3: Hoeffding’s Inequality Suppose Y7*, ..., Y, " are independent with
EY> = 0( Mean 0) and ¢; < Y} < d;(bounded) then,

—2y2

V>0, PY+YS+...+Y | >n) <2exia(di—e)
Let
then we have
and £ (Y;*) = 0. Thus Hoeffding’s Inequality can be applied to | F}, (a;) —
F} (a;) |, with n = §
2n+1

2 Z P('-Fn (tz) — FT,L (al)| > %) < (8n+4)e%€2

— 0 asn — oo




Generalizations

Many generalizations are possible.

1. The random variables X, X5,---, X, need only be independent; and
do not have to be identically distributed. The limiting distribution is then
F,(a) =1/n>" Fi(a). (The limit is always obtained by replace the random
variables by the expectations)

2. The constant 1/n may be replaced by other constants or a sequence of n
constants: c¢i1,co,--- ,¢,. The result will be

n 62 ]
P su 11X <al—cFila)] >e| < (8n+4)ex {— — X
(—oo<ap<oo ZZ:; | [ ] (@ ) ( ) exp 8 Zi:l 1/622

3. The limit do not have to be distribution functions. Any bounded non
random function will do. In particular a sub-distrbution function.

n
sup E C;
a

=1

Iix,<a.5,=1] — Ui(a) ’

where Uz(a) — EI[Xiga,éizl]-




