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Summary. Detecting change-points in data is challenging because of the range of possi-
ble types of change and types of behaviour of data when there is no change. Statistically
efficient methods for detecting a change will depend on both of these features, and it can
be difficult for a practitioner to develop an appropriate detection method for their applica-
tion of interest. We show how to automatically generate new offline detection methods
based on training a neural network. Our approach is motivated by many existing tests for
the presence of a change-point being representable by a simple neural network, and thus
a neural network trained with sufficient data should have performance at least as good
as these methods. We present theory that quantifies the error rate for such an approach,
and how it depends on the amount of training data. Empirical results show that, even
with limited training data, its performance is competitive with the standard CUSUM-based
classifier for detecting a change in mean when the noise is independent and Gaussian,
and can substantially outperform it in the presence of auto-correlated or heavy-tailed noise.
Our method also shows strong results in detecting and localising changes in activity based
on accelerometer data.

Keywords: Automatic statistician; Classification; Likelihood-free inference; Neu-
ral networks; Structural breaks; Supervised learning

1. Introduction

Detecting change-points in data sequences is of interest in many application areas such
as bioinformatics (Picard et al., 2005), climatology (Reeves et al., 2007), signal process-
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ing (Haynes et al., 2017) and neuroscience (Oh et al., 2005). In this work, we are primarily
concerned with the problem of offline change-point detection, where the entire data is avail-
able to the analyst beforehand. Over the past few decades, various methodologies have
been extensively studied in this area, see Killick et al. (2012); Jandhyala et al. (2013);
Fryzlewicz (2014, 2023); Wang and Samworth (2018); Truong et al. (2020) and references
therein. Most research on change-point detection has concentrated on detecting and local-
ising different types of change, e.g. change in mean (Killick et al., 2012; Fryzlewicz, 2014),
variance (Gao et al., 2019; Li et al., 2015), median (Fryzlewicz, 2021) or slope (Baranowski
et al., 2019; Fearnhead et al., 2019), amongst many others.

Many change-point detection methods are based upon modelling data when there is
no change and when there is a single change, and then constructing an appropriate test
statistic to detect the presence of a change (e.g. James et al., 1987; Fearnhead and Rigaill,
2020). The form of a good test statistic will vary with our modelling assumptions and
the type of change we wish to detect. This can lead to difficulties in practice. As we use
new models, it is unlikely that there will be a change-point detection method specifically
designed for our modelling assumptions. Furthermore, developing an appropriate method
under a complex model may be challenging, while in some applications an appropriate
model for the data may be unclear but we may have substantial historical data that shows
what patterns of data to expect when there is, or is not, a change.

In these scenarios, currently a practitioner would need to choose the existing change
detection method which seems the most appropriate for the type of data they have and
the type of change they wish to detect. To obtain reliable performance, they would then
need to adapt its implementation, for example tuning the choice of threshold for detecting
a change. Often, this would involve applying the method to simulated or historical data.

To address the challenge of automatically developing new change detection methods,
this paper is motivated by the question: Can we construct new test statistics for detecting
a change based only on having labelled examples of change-points? We show that this is
indeed possible by training a neural network to classify whether or not a data set has a
change of interest. This turns change-point detection in a supervised learning problem.

A key motivation for our approach are results that show many common test statistics
for detecting changes, such as the CUSUM test for detecting a change in mean, can be
represented by simple neural networks. This means that with sufficient training data,
the classifier learnt by such a neural network will give performance at least as good as
classifiers corresponding to these standard tests. In scenarios where a standard test, such
as CUSUM, is being applied but its modelling assumptions do not hold, we can expect
the classifier learnt by the neural network to outperform it.

There has been increasing recent interest in whether ideas from machine learning,
and methods for classification, can be used for change-point detection. Within computer
science and engineering, these include a number of methods designed for and that show
promise on specific applications (e.g. Ahmadzadeh, 2018; De Ryck et al., 2021; Gupta
et al., 2022). Within statistics, Londschien et al. (2022) and Lee et al. (2023) consider
training a classifier as a way to estimate the likelihood-ratio statistic for a change. However
these methods train the classifier in an un-supervised way on the data being analysed,
using the idea that a classifier would more easily distinguish between two segments of
data if they are separated by a change-point. Chang et al. (2019) use simulated data to
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help tune a kernel-based change detection method. Methods that use historical, labelled
data have been used to train the tuning parameters of change-point algorithms (e.g.
Hocking et al., 2015; Liehrmann et al., 2021). Also, neural networks have been employed
to construct similarity scores of new observations to learned pre-change distributions for
online change-point detection (Lee et al., 2023). However, we are unaware of any previous
work using historical, labelled data to develop offline change-point methods. As such, and
for simplicity, we focus on the most fundamental aspect, namely the problem of detecting
a single change. Detecting and localising multiple changes is considered in Section 6 when
analysing activity data. We remark that by viewing the change-point detection problem as
a classification instead of a testing problem, we aim to control the overall misclassification
error rate instead of handling the Type I and Type II errors separately. In practice,
asymmetric treatment of the two error types can be achieved by suitably re-weighting
misclassification in the two directions in the training loss function.

The method we develop has parallels with likelihood-free inference methods (Gourier-
oux et al., 1993; Beaumont, 2019) in that one application of our work is to use the ability to
simulate from a model so as to circumvent the need to analytically calculate likelihoods.
However, the approach we take is very different from standard likelihood-free methods
which tend to use simulation to estimate the likelihood function itself. By comparison,
we directly target learning a function of the data that can discriminate between instances
that do or do not contain a change (though see Gutmann et al., 2018, for likelihood-free
methods based on re-casting the likelihood as a classification problem).

We now briefly introduce our notation. For any n ∈ Z+, we define [n] := {1, . . . , n}.
We take all vectors to be column vectors unless otherwise stated. Let 1n be the all-one
vector of length n. Let 1{·} represent the indicator function. The vertical symbol | · |
represents the absolute value or cardinality of · depending on the context. For vector
x = (x1, . . . , xn)

⊤, we define its p-norm as ∥x∥p :=
(∑n

i=1 |xi|p
)1/p

, p ≥ 1; when p =∞,
define ∥x∥∞ := maxi |xi|. All proofs, as well as additional simulations and real data
analyses appear in the supplement.

2. Neural networks

The initial focus of our work is on the binary classification problem for whether a change-
point exists in a given time series. We will work with multilayer neural networks with
Rectified Linear Unit (ReLU) activation functions and binary output. The multilayer
neural network consists of an input layer, hidden layers and an output layer, and can be
represented by a directed acyclic graph, see Figure 1. Let L ∈ Z+ represent the number of
hidden layers and m = (m1, . . . ,mL)

⊤ the vector of the hidden layers widths, i.e. mi is the
number of nodes in the ith hidden layer. For a neural network with L hidden layers we use
the convention that m0 = n and mL+1 = 1. For any bias vector b = (b1, b2, . . . , br)

⊤ ∈ Rr,
define the shifted activation function σb : Rr → Rr:

σb((y1, . . . , yr)
⊤) = (σ(y1 − b1), . . . , σ(yr − br))⊤,

where σ(x) = max(x, 0) is the ReLU activation function. The neural network can be
mathematically represented by the composite function h : Rn → {0, 1} as

h(x) := σ∗λWLσbL
WL−1σbL−1

· · ·W1σb1
W0x, (1)
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Fig. 1. A neural network with 2 hidden layers and width vector m = (4, 4).

where σ∗λ(x) = 1{x > λ}, λ > 0 and Wℓ ∈ Rmℓ+1×mℓ for ℓ ∈ {0, . . . , L} represent the
weight matrices. We define the function class HL,m to be the class of functions h(x) with
L hidden layers and width vector m.

The output layer in (1) employs the shifted heaviside function σ∗λ(x), which is used for
binary classification as the final activation function. This choice is guided by the fact that
we use the 0-1 loss, which focuses on the percentage of samples assigned to the correct
class, a natural performance criterion for binary classification. Besides its wide adoption
in machine learning practice, another advantage of using the 0-1 loss is that it is possible
to utilise the theory of the Vapnik–Chervonenkis (VC) dimension (see, e.g. Shalev-Shwartz
and Ben-David, 2014, Definition 6.5) to bound the generalisation error of a binary classifier
equipped with this loss; indeed, this is the approach we take in this work. The relevant
results regarding the VC dimension of neural network classifiers are e.g. in Bartlett et al.
(2019). As in Schmidt-Hieber (2020), we work with the exact minimiser of the empirical
risk. In both binary or multiclass classification, it is possible to work with other losses
which make it computationally easier to minimise the corresponding risk, see e.g. Bos
and Schmidt-Hieber (2022), who use a version of the cross-entropy loss. However, loss
functions different from the 0-1 loss make it impossible to use VC-dimension arguments
to control the generalisation error, and more involved arguments, such as those using the
covering number (Bos and Schmidt-Hieber, 2022) need to be used instead. We do not
pursue these generalisations in the current work.

3. CUSUM-based classifier and its generalisations are neural networks

3.1. Change in mean
We initially consider the case of a single change-point with an unknown location τ ∈ [n−1],
n ≥ 2, in the model

X = µ+ ξ,

µ = (µL1{i ≤ τ}+ µR1{i > τ})i∈[n] ∈ Rn,

where µL, µR are the unknown signal values before and after the change-point; ξ ∼
Nn(0, In). The CUSUM test is widely used to detect mean changes in univariate data.
For the observation x, the CUSUM transformation C : Rn → Rn−1 is defined as C(x) :=
(v⊤

1 x, . . . , v
⊤
n−1x)

⊤, where vi :=
(√

n−i
in 1⊤i ,−

√
i

(n−i)n1
⊤
n−i

)⊤ for i ∈ [n − 1]. Here, for
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each i ∈ [n− 1], (v⊤
i x)

2 is the log likelihood-ratio statistic for testing a change at time i
against the null of no change (e.g. Baranowski et al., 2019). For a given threshold λ > 0,
the classical CUSUM test for a change in the mean of the data is defined as

hCUSUM
λ (x) = 1{∥C(x)∥∞ > λ}.

The following lemma shows that hCUSUM
λ (x) can be represented as a neural network.

Lemma 3.1. For any λ > 0, we have hCUSUM
λ (x) ∈ H1,2n−2.

The fact that the widely-used CUSUM statistic can be viewed as a simple neural
network has far-reaching consequences: this means that given enough training data, a
neural network architecture that permits the CUSUM-based classifier as its special case
cannot do worse than CUSUM in classifying change-point versus no-change-point signals.
This serves as the main motivation for our work, and a prelude to our next results.

3.2. Beyond the mean change model
We can generalise the simple change in mean model to allow for different types of change
or for non-independent noise. In this section, we consider change-point models that can
be expressed as a change in regression problem, where the model for data given a change
at τ is of the form

X = Zβ + cτϕ+ Γξ, (2)
where for some p ≥ 1, Z is an n × p matrix of covariates for the model with no change,
cτ is an n× 1 vector of covariates specific to the change at τ , and the parameters β and
ϕ are, respectively, a p× 1 vector and a scalar. The noise is defined in terms of an n× n
matrix Γ and an n× 1 vector of independent standard normal random variables, ξ.

For example, the change in mean problem has p = 1, with Z a column vector of ones,
and cτ being a vector whose first τ entries are zeros, and the remaining entries are ones. In
this formulation β is the pre-change mean, and ϕ is the size of the change. The change in
slope problem (Fearnhead et al., 2019) has p = 2 with the columns of Z being a vector of
ones, and a vector whose ith entry is i; and cτ has ith entry that is max{0, i− τ}. In this
formulation β defines the pre-change linear mean, and ϕ the size of the change in slope.
Choosing Γ to be proportional to the identity matrix gives a model with independent,
identically distributed noise; but other choices would allow for auto-correlation.

The following result is a generalisation of Lemma 3.1, which shows that the likelihood-
ratio test for (2), viewed as a classifier, can be represented by our neural network.

Lemma 3.2. Consider the change-point model (2) with a possible change at τ ∈ [n−1].
Assume further that Γ is invertible. Then there is an h∗ ∈ H1,2n−2 equivalent to the
likelihood-ratio test for testing ϕ = 0 against ϕ ̸= 0.

Importantly, this result shows that for this much wider class of change-point models, we
can replicate the likelihood-ratio-based classifier for change using a simple neural network.

Other types of changes can be handled by suitably pre-transforming the data. For
instance, squaring the input data would be helpful in detecting changes in the variance and
if the data followed an AR(1) structure, then changes in autocorrelation could be handled
by including transformations of the original input of the form (xtxt+1)t=1,...,n−1. On the
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other hand, even if such transformations are not supplied as the input, a neural network of
suitable depth is able to approximate these transformations and consequently successfully
detect the change (Schmidt-Hieber, 2020, Lemma A.2). This is illustrated in Figure S3 of
the supplementary material, where we compare the performance of neural network based
classifiers of various depths constructed with and without using the transformed data as
inputs.

4. Generalisation error of neural network change-point classifiers

In Section 3, we showed that CUSUM and generalised CUSUM could be represented by
a neural network. Therefore, with a large enough amount of training data, a trained
neural network classifier that included CUSUM, or generalised CUSUM, as a special case,
would perform no worse than it on unseen data. In this section, we provide generalisation
bounds for a neural network classifier for the change-in-mean problem, given a finite
amount of training data. En route to this main result, stated in Theorem 4.3, we provide
generalisation bounds for the CUSUM-based classifier, in which the threshold has been
chosen on a finite training data set.

We write P (n, τ, µL, µR) for the distribution of the multivariate normal random vector
X ∼ Nn(µ, In) where µ := (µL1{i ≤ τ}+ µR1{i > τ})i∈[n]. Define η := τ/n. Lemma 4.1
and Corollary 4.1 control the misclassification error of the CUSUM-based classifier.

Lemma 4.1. Fix ε ∈ (0, 1). Suppose X ∼ P (n, τ, µL, µR) for some τ ∈ Z+ and
µL, µR ∈ R.

(a) If µL = µR, then P
{
∥C(X)∥∞ >

√
2 log(n/ε)

}
≤ ε.

(b) If |µL − µR|
√
η(1− η) >

√
8 log(n/ε)/n, then P

{
∥C(X)∥∞ ≤

√
2 log(n/ε)

}
≤ ε.

For any B > 0, define

Θ(B) :=
{
(τ, µL, µR) ∈ [n− 1]× R× R : |µL − µR|

√
τ(n− τ)/n ∈ {0} ∪ (B,∞)

}
.

Here, |µL − µR|
√
τ(n− τ)/n = |µL − µR|

√
η(1− η) can be interpreted as the signal-

to-noise ratio of the mean change problem. Thus, Θ(B) is the parameter space of data
distributions where there is either no change, or a single change-point in mean whose
signal-to-noise ratio is at least B. The following corollary controls the misclassification
risk of a CUSUM statistics-based classifier:

Corollary 4.1. Fix B > 0. Let π0 be any prior distribution on Θ(B), then draw
(τ, µL, µR) ∼ π0 and X ∼ P (n, τ, µL, µR), and define Y = 1{µL ̸= µR}. For λ = B

√
n/2,

the classifier hCUSUM
λ satisfies

P(hCUSUM
λ (X) ̸= Y ) ≤ ne−nB2/8.

Theorem 4.2 below, which is based on Corollary 4.1, Bartlett et al. (2019, Theorem 7)
and Mohri et al. (2012, Corollary 3.4), shows that the empirical risk minimiser in the neural
network class H1,2n−2 has good generalisation properties over the class of change-point
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problems parameterised by Θ(B). Given training data (X(1), Y (1)), . . . , (X(N), Y (N)) and
any h : Rn → {0, 1}, we define the empirical risk of h as

LN (h) :=
1

N

N∑
i=1

1{Y (i) ̸= h(X(i))}.

Theorem 4.2. Fix B > 0 and let π0 be any prior distribution on Θ(B). We draw
(τ, µL, µR) ∼ π0, X ∼ P (n, τ, µL, µR), and set Y = 1{µL ̸= µR}. Suppose that the train-
ing data D :=

(
(X(1), Y (1)), . . . , (X(N), Y (N))

)
consist of independent copies of (X, Y )

and hERM := argminh∈H1,2n−2
LN (h) is the empirical risk minimiser. There exists a uni-

versal constant C > 0 such that for any δ ∈ (0, 1), (3) holds with probability 1− δ.

P(hERM(X) ̸= Y | D) ≤ ne−nB2/8 + C

√
n2 log(n) log(N) + log(1/δ)

N
. (3)

The theoretical results derived for the neural network-based classifier, here and below, all
rely on the fact that the training and test data are drawn from the same distribution.
However, we observe that in practice, even when the training and test sets have different
error distributions, neural network-based classifiers still provide accurate results on the
test set; see our discussion of Figure 2 in Section 5 for more details. The misclassification
error in (3) is bounded by two terms. The first term represents the misclassification error of
CUSUM-based classifier, see Corollary 4.1, and the second term depends on the complexity
of the neural network class measured in its VC dimension. Theorem 4.2 suggests that for
training sample size N ≫ n2 log n, a well-trained single-hidden-layer neural network with
2n − 2 hidden nodes would have comparable performance to that of the CUSUM-based
classifier. However, as we will see in Section 5, in practice, a much smaller training sample
size N is needed for the neural network to be competitive in the change-point detection
task. This is because the 2n− 2 hidden layer nodes in the neural network representation
of hCUSUM

λ encode the components of the CUSUM transformation (±v⊤
t x : t ∈ [n − 1]),

which are highly correlated.
By suitably pruning the hidden layer nodes, we can show that a single-hidden-layer

neural network with O(log n) hidden nodes is able to represent a modified version of the
CUSUM-based classifier with essentially the same misclassification error. More precisely,
let Q := ⌊log2(n/2)⌋ and write T0 := {2q : 0 ≤ q ≤ Q} ∪ {n − 2q : 0 ≤ q ≤ Q}. We can
then define

hCUSUM∗
λ∗ (X) = 1

{
max
t∈T0

|v⊤
t X| > λ∗

}
.

By the same argument as in Lemma 3.1, we can show that hCUSUM∗
λ∗ ∈ H1,4⌊log2(n)⌋ for any

λ∗ > 0. The following Theorem shows that high classification accuracy can be achieved
under a weaker training sample size condition compared to Theorem 4.2.

Theorem 4.3. Fix B > 0 and let the training data D be generated as in Theorem 4.2.
Let hERM := argminh∈HL,m

LN (h) be the empirical risk minimiser for a neural network
with L ≥ 1 layers and m = (m1, . . . ,mL)

⊤ hidden layer widths. If m1 ≥ 4⌊log2(n)⌋ and
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mrmr+1 = O(n log n) for all r ∈ [L − 1], then there exists a universal constant C > 0
such that for any δ ∈ (0, 1), (4) holds with probability 1− δ.

P(hERM(X) ̸= Y | D) ≤ 2⌊log2(n)⌋e−nB2/24+C

√
L2n log2(Ln) log(N) + log(1/δ)

N
. (4)

Theorem 4.3 generalises the single hidden layer neural network representation in The-
orem 4.2 to multiple hidden layers. In practice, multiple hidden layers help keep the
misclassification error rate low even when N is small, see the numerical study in Sec-
tion 5. Theorems 4.2 and 4.3 are examples of how to derive generalisation errors of a
neural network-based classifier in the change-point detection task. The same workflow
can be employed in other types of changes, provided that suitable representation results
of likelihood-based tests in terms of neural networks (e.g. Lemma 3.2) can be obtained.
In a general result of this type, the generalisation error of the neural network will again
be bounded by a sum of the error of the likelihood-based classifier together with a term
originating from the VC-dimension bound of the complexity of the neural network archi-
tecture.

We further remark that for simplicity of discussion, we have focused our attention
on data models where the noise vector ξ = X − EX has independent and identically
distributed normal components. However, since CUSUM-based tests are available for
temporally correlated or sub-Weibull data, with suitably adjusted test threshold values,
the above theoretical results readily generalise to such settings. See Theorems S4 and S6
in the online supplementary material for more details.

5. Numerical study

We now investigate empirically our approach of learning a change-point detection method
by training a neural network. Motivated by the results from the previous section we will
fit a neural network with a single layer and consider how varying the number of hidden
layers and the amount of training data affects performance. We will compare to a test
based on the CUSUM statistic, both for scenarios where the noise is independent and
Gaussian, and for scenarios where there is auto-correlation or heavy-tailed noise. The
CUSUM test can be sensitive to the choice of threshold, particularly when we do not have
independent Gaussian noise, so we tune its threshold based on training data.

When training the neural network, we first standardise the data onto [0, 1], i.e. x̃i =
((xij−xmin

i )/(xmax
i −xmin

i ))j∈[n] where xmax
i := maxj xij , x

min
i := minj xij . This makes the

neural network procedure invariant to either adding a constant to the data or scaling the
data by a constant, which are natural properties to require. We train the neural network
by minimising the cross-entropy loss on the training data. We run training for 200 epochs
with a batch size of 32 and a learning rate of 0.001 using the Adam optimiser (Kingma
and Ba, 2015). These hyperparameters are chosen based on a training dataset with cross-
validation, more details can be found in Section 2 of the supplementary material.

We generate our data as follows. Given a sequence of length n, we draw τ ∼ Unif{2, . . . , n−
2}, set µL = 0 and draw µR|τ ∼ Unif([−1.5b,−0.5b]∪[0.5b, 1.5b]), where b :=

√
8n log(20n)
τ(n−τ)

is chosen in line with Lemma 4.1 to ensure a good range of signal-to-noise ratios. We then
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generate x1 = (µL1{t≤τ}+µR1{t>τ}+εt)t∈[n], with the noise (εt)t∈[n] following an AR(1)
model with possibly time-varying autocorrelation εt|ρt = ξ1 for t = 1 and ρtεt−1 + ξt for
t ≥ 2, where (ξt)t∈[n] are independent, possibly heavy-tailed noise. The autocorrelations
ρt and innovations ξt are from one of the three scenarios:

S1: n = 100, N ∈ {100, 200, . . . , 700}, ρt ∈ {0, 0.7} and ξt ∼ N(0, 1).
S2: n = 100, N ∈ {100, 200, . . . , 1000}, ρt ∼ Unif([0, 1]) and ξt ∼ N(0, 2).
S3: n = 100, N ∈ {100, 200, . . . , 1000}, ρt = 0 and ξt ∼ Cauchy(0, 0.3).

The above procedure is then repeated N/2 times to generate independent sequences
x1, . . . ,xN/2 with a single change, and the associated labels are (y1, . . . , yN/2)

⊤ = 1N/2.
We then repeat the process another N/2 times with µR = µL to generate sequences with-
out changes xN/2+1, . . . ,xN with (yN/2+1, . . . , yN )⊤ = 0N/2. The data with and without
change (xi, yi)i∈[N ] are combined and randomly shuffled to form the training data. The
test data are generated in a similar way, with a sample size Ntest = 30000 and the slight
modification that µR|τ ∼ Unif([−1.75b,−0.25b]∪[0.25b, 1.75b]) when a change occurs. We
note that the test data is drawn from the same distribution as the training set, though
potentially having changes with signal-to-noise ratios outside the range covered by the
training set. We have also conducted robustness studies to investigate the effect of train-
ing the neural networks on scenario S1 with ρt = 0 and test on S1 with ρt = 0.7, S2 or S3.
Qualitatively similar results to Figure 2 have been obtained in this misspecified setting
(see Figure S2 of the online supplementary material). We compare the performance of the
CUSUM-based classifier with the threshold cross-validated on the training data with neu-
ral networks from four function classes: H1,m(1) ,H1,m(2) , H5,m(1)15

and H10,m(1)110
where

m(1) = 4⌊log2(n)⌋ and m(2) = 2n − 2 respectively (cf. Theorem 4.3 and Lemma 3.1).
Figure 2 shows the test misclassification error rate (MER) of the four procedures in the
three scenarios S1, S2 and S3. We observe that when data are generated with indepen-
dent Gaussian noise (Figure 2(a)), the trained neural networks with m(1) and m(2) single
hidden layer nodes attain very similar test MER compared to the CUSUM-based clas-
sifier. This is in line with our Theorem 4.3. More interestingly, when noise has either
autocorrelation (Figure 2(b, c)) or heavy-tailed distribution (Figure 2(d)), trained neural
networks with (L,m): (1,m(1)), (1,m(2)), (5,m(1)15) and (10,m(1)110) outperform the
CUSUM-based classifier, even after we have optimised the threshold choice of the latter.
In addition, as shown in Figure S1 in the online supplement, when the first two layers of
the network are set to carry out truncation, which can be seen as a composition of two
ReLU operations, the resulting neural network outperforms the Wilcoxon statistics-based
classifier (Dehling et al., 2015), which is a standard benchmark for change-point detection
in the presence of heavy-tailed noise. Furthermore, from Figure 2, we see that increasing
L can significantly reduce the average MER when N ≤ 200. Theoretically, as the number
of layers L increases, the neural network is better able to approximate the optimal decision
boundary, but it becomes increasingly difficult to train the weights due to issues such as
vanishing gradients (He et al., 2016). A combination of these considerations leads us to
develop deep neural network architecture with residual connections for detecting multiple
changes and multiple change types in Section 6.
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Fig. 2. Plot of the test set MER, computed on a test set of size Ntest = 30000, against training
sample size N for detecting the existence of a change-point on data series of length n = 100.
We compare the performance of the CUSUM test and neural networks from four function
classes: H1,m(1) ,H1,m(2) , H5,m(1)15

and H10,m(1)110
where m(1) = 4⌊log2(n)⌋ and m(2) = 2n − 2

respectively under scenarios S1, S2 and S3 described in Section 5.

6. Detecting multiple changes and multiple change types – case study

From the previous section, we see that single and multiple hidden layer neural networks can
represent CUSUM or generalised CUSUM tests and may perform better than likelihood-
based test statistics when the model is misspecified. This prompted us to seek a general
network architecture that can detect, and even classify, multiple types of change. Moti-
vated by the similarities between signal processing and image recognition, we employed
a deep convolutional neural network (CNN) (Yamashita et al., 2018) to learn the various
features of multiple change-types. However, stacking more CNN layers cannot guarantee a
better network because of vanishing gradients in training (He et al., 2016). Therefore, we
adopted the residual block structure (He et al., 2016) for our neural network architecture.
After experimenting with various architectures with different numbers of residual blocks
and fully connected layers on synthetic data, we arrived at a network architecture with
21 residual blocks followed by a number of fully connected layers. Figure S5 of the online
supplement shows an overview of the architecture of the final general-purpose deep neural
network for change-point detection. The precise architecture and training methodology
of this network N̂N can be found in Section 3 of the supplement.

We demonstrate the power of our general purpose change-point detection network in a
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Table 1. Test classification accuracy of oracle likelihood-ratio based method
(LRoracle), adaptive likelihood ratio method (LRadapt) and our residual neural
network (ResNet) classifier for setups with weak and strong signal-to-noise
ratios (SNR). Data are generated as a mixture of no change-point in mean
or variance (Class 1), change in mean only (Class 2), change in variance
only (Class 3), no-change in a non-zero slope (Class 4), change in slope only
(Class 5). We report the true positive rate of each class and the accuracy in
the last row.

Weak SNR Strong SNR
LRoracle LRadapt ResNet LRoracle LRadapt ResNet

Class 1 0.9787 0.9457 0.8062 0.9787 0.9341 0.9651
Class 2 0.8443 0.8164 0.8882 1.0000 0.7784 0.9860
Class 3 0.8350 0.8291 0.8585 0.9902 0.9902 0.9705
Class 4 0.9960 0.9453 0.8826 0.9980 0.9372 0.9312
Class 5 0.8729 0.8604 0.8353 0.9958 0.9917 0.9147

Accuracy 0.9056 0.8796 0.8660 0.9924 0.9260 0.9672

numerical study. We train the network on N = 10000 instances of data sequences gener-
ated from a mixture of no change-point in mean or variance, change in mean only, change
in variance only, no-change in a non-zero slope and change in slope only, and compare its
classification performance on a test set of size 2500 against that of oracle likelihood-based
classifiers (where we pre-specify whether we are testing for change in mean, variance or
slope) and adaptive likelihood-based classifiers (where we combine likelihood based tests
using the Bayesian Information Criterion). Details of the data-generating mechanism and
classifiers can be found in Section 2 of the supplementary material. The classification
accuracy of the three approaches in weak and strong signal-to-noise ratio settings are
reported in Table 1. We see that the neural network-based approach achieves similar
classification accuracy as adaptive likelihood based method for weak SNR and higher
classification accuracy than the adaptive likelihood based method for strong SNR. We
would not expect the neural network to outperform the oracle likelihood-based classifiers
as it has no knowledge of the exact change-type of each time series.

We now consider an application to detecting different types of change. The HASC
(Human Activity Sensing Consortium) project data contain motion sensor measurements
during a sequence of human activities, including “stay”, “walk”, “jog”, “skip”, “stair up”
and “stair down”. Complex changes in sensor signals occur during transition from one
activity to the next (see Figure 3). We have 28 labels in HASC data, see Figure S6 of
the supplement. To agree with the dimension of the output, we drop two dense layers
“Dense(10)” and “Dense(20)” in Figure S5. The resulting network can be effectively
applied for change-point detection in sensory signals of human activities, and can achieve
high accuracy in change-point classification tasks (Figure S8 of supplementary material).

Finally, we remark that our neural network-based change-point detector can be utilised
to detect multiple change-points. Algorithm 1 outlines a general scheme for turning a
change-point classifier into a location estimator, where we employ an idea similar to that
of MOSUM (Eichinger and Kirch, 2018) and repeatedly apply a classifier ψ to data from
a sliding window of size n. Here, we require ψ applied to each data segment X∗

[i,i+n) to

http://hasc.jp/hc2011/index-en.html
http://hasc.jp/hc2011/index-en.html


12 Jie Li et al.

output both the class label Li = 0 or 1 if no change or a change is predicted and the
corresponding probability pi of having a change. In our particular example, for each data
segment X∗

[i,i+n) of length n = 700, we define ψ(X∗
[i,i+n)) = 0 if N̂N(X∗

[i,i+n)) predicts a
class label in {0, 4, 8, 12, 16, 22} (see Figure S6 in supplementary material) and 1 otherwise.
The thresholding parameter γ ∈ Z+ is chosen to be 1/2. Figure 4 illustrates the result of

Algorithm 1: Algorithm for change-point localisation
Input: new data x∗

1, . . . ,x
∗
n∗ ∈ Rd, a trained classifier ψ : Rd×n → {0, 1}, γ > 0.

1 Form X∗
[i,i+n) := (x∗

i , . . . ,xi+n−1) and compute Li ← ψ(X∗
[i,i+n)) for all

i = 1, . . . , n∗ − n+ 1;
2 Compute L̄i ← n−1

∑i
j=i−n+1 Lj for i = n, . . . , n∗ − n+ 1;

3 Let {[s1, e1], . . . , [sν̂ , eν̂ ]} be the set of all maximal segments such that L̄i ≥ γ for all
i ∈ [sr, er], r ∈ [ν̂] ;

4 Compute τ̂r ← argmaxi∈[sr,er] L̄i for all r ∈ [ν̂];
Output: Estimated change-points τ̂1, . . . , τ̂ν̂

multiple change-point detection in HASC data which provides evidence that the trained
neural network can detect both the multiple change-types and multiple change-points.

−2
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Fig. 3. The sequence of accelerometer data in x, y and z axes. From left to right, there are
4 activities: “stair down”, “stay”, “stair up” and “walk”, their change-points are 990, 1691, 2733
respectively marked by black solid lines. The grey rectangles represent the group of “no-change”
with labels: “stair down”, “stair up” and “walk”; The red rectangles represent the group of “one-
change” with labels: “stair down→stay”, “stay→stair up” and “stair up→walk”.

7. Discussion

Reliable testing for change-points and estimating their locations, especially in the presence
of multiple change-points, other heterogeneities or untidy data, is typically a difficult
problem for the applied statistician: they need to understand what type of change is
sought, be able to characterise it mathematically, find a satisfactory stochastic model for
the data, formulate the appropriate statistic, and fine-tune its parameters. This makes
for a long workflow, with scope for errors at its every stage.
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Fig. 4. Change-point detection in HASC data. The red vertical lines represent the underlying
change-points, the blue vertical lines represent the estimated change-points. More details on
multiple change-point detection can be found in Section 3 of supplementary material.

In this paper, we showed how a carefully constructed statistical learning framework
could automatically take over some of those tasks, and perform many of them ‘in one go’
when provided with examples of labelled data. This turned the change-point detection
problem into a supervised learning problem, and meant that the task of learning the
appropriate test statistic and fine-tuning its parameters was left to the ‘machine’ rather
than the human user.

The crucial question was that of choosing an appropriate statistical learning frame-
work. The key factor behind our choice of neural networks was the discovery that the
traditionally-used likelihood-ratio-based change-point detection statistics could be viewed
as simple neural networks, which (together with bounds on generalisation errors beyond
the training set) enabled us to formulate and prove the corresponding learning theory.
However, there are a plethora of other excellent predictive frameworks, such as XGBoost,
LightGBM or Random Forests (Chen and Guestrin, 2016; Ke et al., 2017; Breiman, 2001)
and it would be of interest to establish whether and why they could or could not provide
a viable alternative to neural nets here. Furthermore, if we view the neural network as
emulating the likelihood-ratio test statistic, in that it will create test statistics for each
possible location of a change and then amalgamate these into a single classifier, then we
know that test statistics for nearby changes will often be similar. This suggests that
imposing some smoothness on the weights of the neural network may be beneficial.

A further challenge is to develop methods that can adapt easily to input data of
different sizes, without having to train a different neural network for each input size. For
changes in the structure of the mean of the data, it may be possible to use ideas from
functional data analysis so that we pre-process the data, with some form of smoothing or
imputation, to produce input data of the correct length.

If historical labelled examples of change-points, perhaps provided by subject-matter
experts (who are not necessarily statisticians) are not available, one question of interest
is whether simulation can be used to obtain such labelled examples artificially, based on
(say) a single dataset of interest. Such simulated examples would need to come in two
flavours: one batch ‘likely containing no change-points’ and the other containing some
artificially induced ones. How to simulate reliably in this way is an important problem,
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which this paper does not solve. Indeed, we can envisage situations in which simulating
in this way may be easier than solving the original unsupervised change-point problem
involving the single dataset at hand, with the bulk of the difficulty left to the ‘machine’
at the learning stage when provided with the simulated data.

For situations where there is no historical data, but there are statistical models, one
can obtain training data by simulation from the model. In this case, training a neural
network to detect a change has similarities with likelihood-free inference methods in that
it replaces analytic calculations associated with a model by the ability to simulate from
the model. It is of interest whether ideas from that area of statistics can be used here.

The main focus of our work was on testing for a single offline change-point, and we
treated location estimation and extensions to multiple-change scenarios only superficially,
via the heuristics of testing-based estimation in Section 6. Similar extensions can be
made to the online setting once the neural network is trained, by retaining the final
n observations in an online stream in memory and applying our change-point classifier
sequentially. One question of interest is whether and how these heuristics can be made
more rigorous: equipped with an offline classifier only, how can we translate the theoretical
guarantee of this offline classifier to that of the corresponding location estimator or online
detection procedure? In addition to this approach, how else can a neural network, however
complex, be trained to estimate locations or detect change-points sequentially? In our
view, these questions merit further work.

Availability of data and computer code

The data underlying this article are available in http://hasc.jp/hc2011/index-en.html.
The computer code and algorithm are available in GitHub repository: AutoCPD.
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