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ABSTRACT
We propose a deep generative approach to sampling from a conditional distribution based on a uni!ed
formulation of conditional distribution and generalized nonparametric regression function using the noise-
outsourcing lemma. The proposed approach aims at learning a conditional generator, so that a random
sample from the target conditional distribution can be obtained by transforming a sample drawn from a
reference distribution. The conditional generator is estimated nonparametrically with neural networks by
matching appropriate joint distributions using the Kullback-Liebler divergence. An appealing aspect of our
method is that it allows either of or both the predictor and the response to be high-dimensional and can
handle both continuous and discrete type predictors and responses. We show that the proposed method is
consistent in the sense that the conditional generator converges in distribution to the underlying conditional
distribution under mild conditions. Our numerical experiments with simulated and benchmark image data
validate the proposed method and demonstrate that it outperforms several existing conditional density
estimation methods. Supplementary materials for this article are available online.
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1. Introduction

A fundamental problem in statistics and machine learning is
how to model the relationship between a response Y and a
predictor X. Such a model can be used for predicting the values
of Y based on the new observations of X and for assessing the
variation in Y for a given value of X. Regression models that
focus on estimating the conditional mean or median of the
response given the predictor have been widely used for such
purposes. However, in problems when the conditional distri-
bution is multimodal or asymmetrical, conditional mean and
median are no longer adequate for modeling the relationship
between Y and X. In general, to completely understand how the
response depends on the predictor, it becomes necessary to learn
the conditional distribution, which provides a full description of
the relationship between the response variable and the predictor.
Conditional distribution also plays a central role in many impor-
tant areas, including representation learning (Bengio, Courville,
and Vincent 2013), su!cient dimension reduction (Li 1991;
Cook 1998), graphical models (Bishop 2006), nonlinear inde-
pendent component analysis (Hyvärinen and Pajunen 1999),
among others.

In this article, we propose a nonparametric generative
approach to sampling from a conditional distribution. For con-
venience, we shall refer to the proposed method as the genera-
tive conditional distribution sampler (GCDS). For a given value
of the predictor X = x, GCDS aims at estimating a function
G(η, x) of η and x, where η is a random variable from a simple
reference distribution such as normal or uniform, such that

CONTACT Jian Huang jian-huang@uiowa.edu Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA 52242.
∗Xinyu Zhou and Yuling Jiao constributed equally to this work.

Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

G(η, x) follows the conditional distribution of Y given X = x.
Such a function is called a conditional generator. To sample from
the conditional distribution, we only need to calculate G(η, x)

a"er generating η from the reference distribution. Therefore, the
conditional generator G contains all the information about the
conditional distribution of Y given X. We estimate the condi-
tional generator G nonparametrically using neural networks. An
appealing feature of GCDS is that it is applicable to the settings
when either of or both X and Y are high-dimensional such as in
the problems of image data analysis.

There is an extensive literature on nonparametric condi-
tional density estimation. The prevailing approaches are based
on smoothing methods, including kernel smoothing and local
polynomials (Rosenblatt 1969; Scott 1992; Chen et al. 2001; Hall
and Yao 2005; Bott and Kohler 2017). Typically, the joint density
of (X, Y) and the marginal density of X are #rst estimated using
unconditional kernel density estimators. Then, the conditional
density estimator is obtained as the ratio of the estimated joint
density over the estimated marginal density. Another approach
is to transform the problem of estimating a conditional density
to a suitably formulated regression problem (Fan, Yao, and Tong
1996; Fan and Yim 2004) and use the method for nonparametric
regression for conditional density estimation. Nearest neighbors
method has also been used in estimating conditional density and
conditional quantiles through kernel smoothing (Bhattacharya
and Gangopadhyay 1990). Approaches based on expanding the
conditional density function in terms of certain basis functions
have also been developed (Sugiyama et al. 2010; Izbicki and Lee

© 2022 American Statistical Association
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2016). The method proposed by Izbicki et al. (2017) approxi-
mates the conditional density using orthogonal basis functions
and transform the problem of conditional density estimation
into a regression problem. A common feature of these methods
is that they seek to estimate the functional form of the condi-
tional density.

However, these existing conditional density estimation
methods do not work well for problems with high-dimensional
data. In particular, they su$er from the so-called curse of dimen-
sionality, that is, their performance deteriorates dramatically as
the dimensionality of the dependent variable or the response
variable becomes relatively large. Indeed, most conditional den-
sity estimators can only e$ectively handle up to a few predictors.
In addition, most of these methods focus on the case when the
response Y is a scalar variable and cannot handle the case of a
high-dimensional response vector.

The proposed approach is inspired by the recently devel-
oped generative adversarial networks (GAN) (Goodfellow et al.
2014). Instead of estimating the functional form of the con-
ditional density, GCDS is a generative learning approach that
seeks to estimate a conditional sampler. The basis of GCDS is
a uni#ed formulation of the conditional density estimation and
the generalized nonparametric regression based on the noise-
outsourcing lemma in probability theory (Kallenberg 2002;
Austin 2015). By this lemma, the problem of nonparametric
conditional density estimation is equivalent to a generalized
nonparametric regression problem. This equivalency implies
that, for any given X = x, we can estimate the conditional
generator G(η, x) so that a random sample from the conditional
distribution can be obtained based on this function using a
random sample η from a reference distribution, such as the uni-
form or the standard normal distribution. The estimation of the
conditional generator G is achieved through matching appro-
priate joint distributions using the Kullback-Liebler divergence
and its variational form. We take advantage of the abilities of
neural networks in approximating high-dimensional functions
and estimate G nonparametrically using deep neural networks.

There are several advantages of GCDS over the classical
methods for conditional density estimation. First, there is no
restriction on the dimensionality of the response variable, while
the classical methods typically only consider the case of a scalar
response variable. Indeed, our methods allow either of or both
the predictor and the response to be high-dimensional. Second,
GCDS can handle both continuous- and discrete-type predic-
tors and responses. Third, since our method learns a generative
function for the underlying conditional distribution based on a
simple reference distribution, it is easy to obtain estimates of the
summary measures of the underlying conditional distribution,
including the conditional moments and quantiles by Monte
Carlo. In comparison, it is cumbersome to do so based on
the traditional conditional density estimation methods, since it
involves numerical integrations that are di!cult to implement
in high-dimensional settings. Fourth, we demonstrate that the
proposed method works for complex and high-dimensional
data problems such as image generation and reconstruction.
The traditional conditional density estimation methods are not
able to deal with such problems. Finally, we show that GCDS
is consistent in the sense that the samples it generates converge
weakly to the underlying target conditional distribution. To the

best of our knowledge, such a result is the #rst of its kind in the
context of deep generative learning.

In the remainder of this article, we #rst describe a generative
representation of conditional distribution based on the noise-
outsourcing lemma, and explain that sampling from a condi-
tional distribution can be achieved by using a conditional gen-
erator. This provides the theoretical foundation for the distribu-
tion matching method proposed in Section 3. The distribution
matching is carried out by using the variational form of the f -
divergence, which includes the Kullback-Liebler divergence as
a special case. In Section 4, we establish the consistency of the
conditional generator in the sense that the joint distribution
of X and generated sample converges to the joint distribution
of (X, Y). In Section 5, we conduct extensive simulation stud-
ies to evaluate the #nite sample performance of the proposed
method and illustrate its application to an image generation and
reconstruction problems using benchmark image data. Con-
cluding remarks are given in Section 6. Additional numerical
experiment results and technical details are provided in the
supplementary material.

2. Generative Representation of Conditional
Distribution

Consider a pair of random vectors (X, Y) ∈ X × Y , where X
is a vector of predictors and Y is a vector of response variables
or labels. For regression problems, we have Y ⊆ Rq with
q ≥ 1; for classi#cation problems, Y is a set of #nite many
labels. We assume X ⊆ Rd with d ≥ 1. The predictor X can
contain both continuous and categorical components. Suppose
(X, Y) ∼ PX,Y with marginal distributions X ∼ PX and Y ∼ PY .
Denote the conditional distribution of Y given X by PY|X . For
a given value x of X, we also write the conditional distribution
as PY|X=x. Let η be a random vector independent of X with a
known distribution Pη. For example, we can take Pη to be the
standard multivariate normal N(0, Im) for a given m ≥ 1. We
note that m does not need to be the same as q, the dimension
of Y .

Our goal is to #nd a function G : Rm × X '→ Y such that
the conditional distribution of G(η, X) given X = x is the same
as the conditional distribution of Y given X = x. Since η is
independent of X, it is equivalent to #nding a G such that

G(η, x) ∼ PY|X=x, x ∈ X , (1)
Thus to sample from the conditional distribution PY|X=x, we can
#rst sample an η ∼ Pη, then calculate G(η, x). The resulting
value G(η, x) is a sample from PY|X=x.

Does such a function G exist? The existence of G is guaran-
teed by the noise-outsourcing lemma from probability theory
under minimal conditions (Kallenberg 2002, theor. 5.10 ; Austin
2015, lem. 3.1).

Lemma 2.1. (Noise-outsourcing lemma). Let (X, Y) be a ran-
dom pair taking values in X × Y with joint distribution PX,Y .
Suppose Y is a standard Borel space. Then there exist a random
vector η ∼ Pη = N(0, Im) for any given m ≥ 1 and a
Borel-measurable function G : Rm × X → Y such that η is
independent of X and

(X, Y) = (X, G(η, X)) almost surely. (2)
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Because η and X are independent, any G satisfying (2) also
satis#es (1), that is, G(·, x) is a conditional generator for PY|X=x.
In the original noise-outsourcing lemma, the distribution Pη is
a uniform distribution on [0, 1]. In Lemma 2.1, Pη is taken to be
N(0, Im) with m ≥ 1. This is more convenient in applying GCDS
when it is better to use a random vector in stead of a random
scalar as the noise source. In the supplementary material, we
show that we can indeed take Pη to be N(0, Im) based on the
original noise-outsourcing lemma. The value of m should be
chosen on a case-by-case basis in practice.

Lemma 2.1 provides a uni#ed view of conditional distribu-
tion estimation and (generalized) nonparametric regression. To
see this, it is informative to reverse the order of (1) and write it
as

Y|X = x ∼ G(η, x), x ∈ X . (3)

This expression shows that the problem of #nding G is similar
to that of estimating a generalized regression function nonpara-
metrically by matching the conditional distributions. Therefore,
G can also be considered a generalized regression function.
The standard formulation of nonparametric regression with an
additive error is a special case of (3). Indeed, if we assume
G(η, x) = G0(x) + η with E(η|X) = 0, then (3) leads to
the standard nonparametric regression model E(Y|X = x) =
G0(x).

Sampling from a conditional distribution generally cannot
be done by simply using the existing methods for sampling
from an unconditional distribution. This can be explained as
follows. For any given x, the problem is to #nd a function Gx(η)

such that Gx(η) ∼ PY|X=x, where we use x as the subscript
of G to indicate that the form of G depends on x. If X is a
discrete random variable and only takes the values in a #nite
set, then we can simply #nd the function Gx for each x using
the existing generative methods such as GAN (Goodfellow et al.
2014). However, this is not feasible if X is a continuous-type
random variable. In general, the methods for generating samples
from an unconditional distribution cannot be directly applied to
#nd a function of η for generating samples from the conditional
distribution PY|X .

To get around this di!culty, we note that matching the
conditional distribution of G(η, x) with PY|x for a given x ∈ X is
equivalent to matching the joint distribution of (X, G(η, X)) and
the joint distribution of (X, Y), if the same marginal distribution
of X is involved. This can be easily seen as follows. Let T =
G(η, X). Then PT|X = PY|X if and only if PT|XPX = PY|XPX
on the support of (X, Y), that is, PX,T = PX,Y . We summarize
this simple but key observation in the following lemma.

Lemma 2.2. Suppose that η is independent of X. Then G(η, x) ∼
PY|X=x, x ∈ X if and only if

(X, G(η, X)) ∼ (X, Y). (4)

Because of (4), we refer to G as a conditional generator, since
given X = x, G(η, x) ∼ PY|X=x. Lemma 2.2 shows that #nding a
G such that (1) holds amounts to #nding a G such that the joint
distribution of (X, G(η, X)) is the same as that of (X, Y).

It is clear that the conditional generator satisfying (4) con-
tains all the information about the conditional distribution of

Y given X. For example, consider the conditional expectation
g(x) = E(Y|X = x) and the conditional variance v(x) =
var(Y|X = x). By (4), we have g(x) = Eη∼Pη G(η, x) and
v(x) = varη[G(x, η)]. Therefore, we can calculate g and v based
on G. Although it is di!cult to calculate these functions exactly,
it is easy to approximate them via Monte Carlo. Speci#cally, let
η1, . . . , ηJ be a random sample generated from Pη, then we can
approximate g(x) and v(x) by

g̃(x) = 1
J

J∑

j=1
G(ηj, x) and ṽ(x) = 1

J

J∑

j=1
[G(ηj, x) − g̃(x)]2.

(5)
Since it is easy and inexpensive to generate random samples
from Pη, for any given x we can easily accurately approximate
the summary measures such as moments and quantiles of the
conditional distribution PY|X=x based on {G(ηj, x), j = 1, . . . , J}
for a su!ciently large J.

3. Distribution Matching Estimation

3.1. Adversarial Generative Networks

The generative adversarial networks (GAN) (Goodfellow et al.
2014) is an approach to learning a high-dimensional (uncondi-
tional) distribution. It is formulated as a minimax adversarial
game between two players, a generator G and a discriminator D.
The discriminator D is parameterized using a neural network
that serves as a witness to distinguish between a sample Y from
the data distribution and a sample from the generative model.
The generator G(η) maps samples η from the reference distri-
bution Pη to the data distribution. The generator G is trained to
maximally confuse the discriminator into believing that samples
it generates come from the data distribution. Formally, GAN
solves the minimax optimization problem

min
G

max
D

EY∼Pdata log D(Y) + Eη∼Pη log[1 − D(G(η))]. (6)

Conditional generative adversarial networks (cGAN) (Mirza
and Osindero 2014) estimate the distribution of the images con-
ditioning on some auxiliary information, especially class labels.
Similar to GAN, it solves a two-player minimax game using an
objective function with the same form as (6). See equation (2) in
Mirza and Osindero (2014). cGAN performs the conditioning
by feeding the class label information into the neural networks
for the discriminator and the generator as additional input layer.
However, cGAN does not work well for data generation with
continuous conditions.

3.2. f -Divergence and Its Variational Form

While the minimax formulation has an attractive intuitive inter-
pretation as a two-player game between the generator and the
discriminator, it is helpful to understand it as the dual form of
the primal problem of minimizing the Jensen-Shannon diver-
gence between the data distribution and the distribution of the
generator (Goodfellow et al. 2014). By considering a general
discrepancy measure between two distributions such as the f -
divergence, one can formulate a class of generative learning
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methods including GAN as a special case (Nowozin, Cseke, and
Tomioka 2016).

By Lemma 2.2, we can estimate G by matching the distri-
bution of (X, G(η, X)) with the distribution of (X, Y). For this
purpose, we #rst describe the f -divergence and its variational
form. Let P and Q be two probability distributions on Rd.
Let p and q be the density functions of P and Q with respect
to a common dominant measure, respectively. Suppose Q is
absolutely continuous with respect to P. The f -divergence (Ali
and Silvey 1966) of Q with respect to P is de#ned by

Df (q‖p) =
∫

f
(q(z)

p(z)

)
p(z)dz, (7)

where f : R+ → R is a convex function with f (1) = 0 and is
strictly convex at x = 1. A basic property of the f -divergence
following from Jensen’s inequality is that Df (q‖p) ≥ 0 for every
q, p and Df (q‖p) = 0 if and only if q = p.

The Kullback–Leibler (KL) divergence is an important spe-
cial case with f (x) = x log x, which has a simple expression

DKL(q‖p) =
∫ q(z)

p(z) log
(q(z)

p(z)

)
p(z)dz

=
∫

log
(q(z)

p(z)

)
q(z)dz. (8)

Let r = q/p be the density ratio of the densities q and p. It is
convenient to express the KL divergence as

DKL(q‖p) =
∫

log
(q(z)

p(z)

)
q(z)dz = EZ∼q[log r(Z)].

A useful representation of the f -divergence is its variational
form. We will use it to construct an objective function for
training the conditional generator G. The variational form is
based on the Fenchel conjugate of f (Rockafellar 1970), de#ned
as f ∗(t) = supx∈R{tx − f (x)}, t ∈ R. Then the f -divergence
has the following variational formulation (Keziou 2003; Nguyen,
Wainwright, and Jordan 2010).

Lemma 3.1. Let D be a class of measurable functions D : Rd →
R. Suppose f is a di$erentiable convex function. Then

Df (q‖p) ≥ sup
D∈D

[EZ∼qD(Z) − EW∼pf ∗(D(W))], (9)

where the equality holds if and only if f ′(q/p) ∈ D and the
supremum is attained at D∗ = f ′(q/p).

Commonly used divergence measures, including the KL
divergence, the Jensen-Shannon (JS) divergence and the χ2-
divergence, can be considered special cases of f -divergence. We
give a proof of Lemma 3.1 and the expressions of the conjugate
functions and variational forms of these divergence measures in
the online supplementary material.

3.3. Distribution Matching Estimation via f -Divergence

We now apply Lemmas 2.2 and 3.1 to construct the objec-
tive function for estimating the conditional generator G.
Let pX,G(η,X) and pX,Y be the densities of (X, G(η, X)) and
(X, Y), respectively. At the population level, we seek to #nd
a conditional generator G∗ that minimizes the f -divergence
Df (pX,G(η,X)‖pX,Y).

Lemma 3.2. A function G∗ : Rm × X → Y is a minimizer of
the f -divergence Df (pX,G(η,X)‖pX,Y),

G∗ ∈ argminGDf (pX,G(η,X)‖pX,Y) (10)

if and only if pX,G∗(η,X) = pX,Y , that is, (X, G∗(η, X)) ∼ (X, Y).

This lemma is a direct consequence of the properties of the
f -divergence. Let

r(z) = pX,G(η,X)(z)
pX,Y(z) , z ∈ Rd × Rq. (11)

be the density ratio of pX,G(η,X) over pX,Y . We only focus on the
KL divergence below. By (8), we have

DKL(pX,G(η,X)‖pX,Y) = E(X,η)∼pXpη [log r(X, G(η, X))].

Our goal is to minimize an empirical version of
DKL(pX,G(η,X)‖pX,Y) with respect to G. The minimizer will
serve as an estimator of G. The KL divergence depends on the
unknown density functions pX,G(η,X) and pX,Y only through the
density ratio r or the log-density ratio. Denote the log-density
ratio by D = log r. To estimate G, we will also need to estimate
D. We note that estimating density ratio is usually easier than
estimating individual densities separately. The log-density ratio
D can be intuitively interpreted as a discriminator that quanti#es
the di$erence between the distributions of (X, G(η, X)) and
(X, Y).

Therefore, in our problem, the loss function determined
by the log-density ratio D needs to be estimated along with
the parameter of interest G. For this purpose, we consider the
variational form of the KL divergence. The dual of f (x) = x log x
is f ∗(t) = exp(t − 1) (Nguyen, Wainwright, and Jordan 2010).
By Lemma 3.1, we can write the variational representation of the
KL-divergence as

DKL(pX,G(η,X)‖pX,Y)

= sup
D

{E(X,η)∼PXPη [D(X, G(η, X))]

−E(X,Y)∼PX,Y [exp(D(X, Y) − 1)]}
= sup

D
{E(X,η)∼PXPη [D(X, G(η, X))]

−E(X,Y)∼PX,Y [exp(D(X, Y))]} + 1, (12)

where the second equality follows by change of variables from
D − 1 to D in the supremum operation. For the purpose of
estimating G by minimizing the KL divergence, we can ignore
the constant 1 in (12). So we consider the criterion

L(G, D) = E(X,η)∼PXPη [D(X, G(η, X))]
−E(X,Y)∼PX,Y [exp(D(X, Y))]. (13)

The variational form is convenient since it is easy to obtain its
empirical version when random samples are available. Then at
the population level, the target conditional generator G∗ and
the target discriminator D∗ are characterized by the minimax
problem

(G∗, D∗) = argminGargminDL(G, D). (14)
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Suppose that {(Xi, Yi), i = 1, . . . , n} are iid PX,Y and {ηi, i =
1, . . . , n} are independently generated from Pη. We consider the
following empirical version of L(G, D):

L̂(G, D) = 1
n

n∑

i=1
D(Xi, G(ηi, Xi)) − 1

n

n∑

i=1
exp(D(Xi, Yi)).

(15)
We estimate G nonparametrically using feedforward neu-

ral networks (FNN) (Goodfellow, Bengio, and Courville 2016)
based on the objective function L̂(G, D) in (15). We use two
FNNs: the conditional generator network Gθ with parameter θ
for estimating G and the second network Dφ with parameter φ
for estimating the discriminator D. For any function f (x) : X →
Rd, denote ‖f ‖∞ = supx∈X ‖f (x)‖, where ‖ · ‖ is the Euclidean
norm.

• The generator network Gθ : let G ≡ GH,W ,S ,B be the set
of ReLU neural networks Gθ : Rm × Rd → Rq with
parameter θ , depth H, width W , size S , and ‖Gθ‖∞ ≤ B.
Here the depth H refers to the number of hidden layers, so
the network has H + 1 layers in total. A (H + 1)-vector
(w0, w1, . . . , wH) speci#es the width of each layer, where
w0 = d is the dimension of the input data and wH = q is the
dimension of the output. The width W = max{w1, . . . , wH}
is the maximum width of the hidden layers. The size S =∑H

i=0[wi × (wi + 1)] is the total number of parameters in
the network. For multilayer perceptrons with equal-width
hidden layers except the output layer, we have S = W(m +
1) + (W2 + W)(H − 1) + W + q.

• The discriminator network Dφ : Similarly, denote D ≡
DH̃,W̃ ,S̃ ,B̃ as the set of ReLU neural networks Dφ : Rd ×
Rq → R, with parameter φ, depth H̃, width W̃ , size S̃ , and
‖Dφ‖∞ ≤ B̃.

Then θ and φ are estimated by solving the empirical version of
the minimax problem (14), that is,

(θ̂ , φ̂) = argminθ argmaxφL̂(Gθ , Dφ). (16)

The estimated conditional generator is Ĝ = G
θ̂

and the esti-
mated discriminator is D̂ = D

φ̂
. It is natural to compute (θ̂ , φ̂)

by alternately minimizing L(θ , φ) with respect to θ #xing φ and
maximizing L(θ , φ) with respect to φ #xing θ . We provide the
implementation details in Section 5.

4. Weak Convergence of Conditional Sampler

In this section, we provide su!cient conditions under which
(X, Ĝn(η, X)) converges in distribution to (X, Y). This implies
that for given X = x with pX(x) > 0, the conditional distri-
bution of Ĝn(η, x) given X = x converges to the conditional
distribution of Y given X = x. We focus on the case when X and
Y are continuous-type random vectors. We establish a slightly
stronger result by showing that the total variation norm

‖pX,Ĝ(η,X) − pX,Y‖L1 =
∫

X×Y
|pX,Ĝ(η,X)(x, y) − pX,Y(x, y)|dxdy

converges to zero.

Let L(G, D) be de#ned in (13). For any measurable function
G : Rm × Rd '→ Rq, de#ne

L(G) = sup
D

L(G, D). (17)

For a #xed G, let pXG be the joint density of (X, G(η, X)).
Lemma 3.1 implies that the optimal D is D∗(z) =
log(pXG(z)/pXY(z)) = log r(z). Thus the optimal discriminator
is the log-likelihood ratio serving as a critic of the resemblance
between pXY and pXG. Substituting this expression into
(17) yields L(G) = E(X,η)∼PXPη [log r(X, G(η, X))]. Let
G∗ ∈ argminGL(G). We have P(X,G∗(X,η)) = PX,Y by
Lemmas 3.1 and 3.2.

We assume the following conditions.

(A1)The target conditional generator G∗ : Rm × X → Y is
continuous with ‖G∗‖∞ ≤ C0 for some constant 0 < C0 <

∞.
(A2)For any G ∈ G ≡ GD,W ,S ,B , rG(z) = pX,G(η,X)(z)/pX,Y(z) :

X × Y → R is continuous and 0 < C1 ≤ rG(z) ≤ C2 for
some constants 0 < C1 ≤ C2 < ∞.

We also make the following assumptions on the network
parameters of the conditional generator Gθ and the discrimi-
nator Dφ .

(N1) The network parameters of G satis#es

HW → ∞ and BSH log(S) log n
n → 0, as n → ∞.

(N2) The network parameters of D satis#es

H̃W̃ → ∞ and B̃S̃H̃ log(S̃) log n
n → 0, as n → ∞.

Theorem 4.1. Suppose that Assumptions (A1) and (A2) hold. If
the network parameters of G and D satis#es the speci#cations
(N1) and (N2), then

E(Xi,Yi,ηi,)n
i=1

‖pX,Ĝθ (η,X) − pX,Y‖2
L1 → 0, as n → ∞. (18)

A direct corollary of Theorem 4.1 is the following conver-
gence result in terms of the conditional density functions.

Corollary 4.1. Suppose that the assumptions (A1) and (A2) hold
and the network parameters of G and D satis#es the speci#ca-
tions (N1) and (N2). Then

EX∼PX

[∫

Y

∣∣∣pĜθ (η,X)(y|X) − pY|X(y|X)
∣∣∣ dy

]
→P 0, as n → ∞.

Theorem 4.1 and Corollary 4.1 provide strong theoretical
support for the proposed method under mild conditions. They
are proved using the empirical process method (Bartlett and
Mendelson 2002; Bartlett et al. 2019) and the recent results
on approximating smooth functions by deep neural networks
(Shen, Yang, and Zhang 2020). The main challenge of the proof
is that the objective function is a minimax process indexed
by two classes of neural networks. Details are given in the
supplementary material.
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Conditions (A1) and (A2) are mild regularity conditions that
are o"en assumed in nonparametric estimation problems. Con-
ditions (N1) and (N2) concern the depths, widths and sizes of
the generator and the discriminator networks. These conditions
require that the size of the network increases with the sample
size, the product of the depth and the width increases with the
sample size. We note that the conditions are %exible with respect
to the network architecture. In particular, they allow either the
depth or the width remain #xed. For example, we can have a
deep network with #xed width or a wide network with #xed
depth. A restriction of the conditions is that they require the
network size to be smaller than the sample size. This restriction
stems from the use of empirical process theory (Van der Vaart
and Wellner 1996; Bartlett and Mendelson 2002; Bartlett et al.
2019) to control the stochastic error of the estimated generator
and discriminator.

In nonparametric regression, there has been much recent
work on convergence analysis of nonparametric estimators
using deep neural networks. Two types of assumptions on the
underlying model have been used in the analysis. The #rst
type of assumptions postulates that the regression function has
a compositional structure so that the intrinsic dimension of
the function is lower than the ambient dimension (Bauer and
Kohler 2019; Kohler and Langer 2020; Schmidt-Hieber 2020;
Shen et al. 2021a). The second type assumes that the distribution
of X is supported on a lower-dimensional manifold (Chen et al.
2019; Nakada and Imaizumi 2019; Jiao et al. 2021; Shen et al.
2021b). These works also require the size of the neural network
used in the nonparametric regression to be smaller than the
sample size to ensure the consistency of the estimators.

In the current problem of sampling from conditional distri-
butions, convergence analysis is substantially more di!cult than
that in nonparametric regression. The main reason is that in the
current setting, optimization is a minimax problem that leads
to an estimated nonparametric loss function, that is, there is a
second neural network involved for estimating the discrimina-
tor in the dual form of KL divergence, in addition to the neural
network for estimating the conditional generator. In compari-
son, nonparametric regression with a given loss function such as
least-square loss only has a single neural network for estimating
the regression function.

We now give a high-level description of the proof for Theo-
rem 4.1, the details are provided in the supplementary material.
Lemma 3.2 implies that L(G∗) = 0. For notational simplicity,
write Ĝ = Ĝθ . By Pinsker’s inequality (Tsybakov 2008), we have

‖pX,Ĝ(η,X) − pX,Y)‖2
L1 ≤ 2(L(Ĝ) − L(G∗)). (19)

So it su!ces to show that the right side in (19) converges to zero
in expectation. By the de#nition of L(G), we can write the excess
risk as

L(Ĝ) − L(G∗) = sup
D

L(Ĝ, D) − sup
D

L(G∗, D).

A key step in the proof is the following decomposition of the
excess risk. For any Ḡ ∈ G, we decompose the right-hand side
in (19) as follows:

L(Ĝ) − L(G∗) = sup
D

L(Ĝ, D) − sup
D∈D

L(Ĝ, D)

+ sup
D∈D

L(Ĝ, D) − sup
D∈D

L̂(Ĝ, D) (20)

+ sup
D∈D

L̂(Ĝ, D) − sup
D∈D

L̂(Ḡ, D) (21)

+ sup
D∈D

L̂(Ḡ, D) − sup
D∈D

L(Ḡ, D) (22)

+ sup
D∈D

L(Ḡ, D) − sup
D

L(Ḡ, D) (23)

+ sup
D

L(Ḡ, D) − sup
D

L(G∗, D).

Since the terms in (21) and (23) are nonpositive, and the terms in
(20) and (22) are smaller than supD∈D,G∈G |L(G, D)−L̂(G, D)|,
we have

L(Ĝ) − L(G∗) ≤ sup
D

L(Ĝ, D) − sup
D∈D

L(Ĝ, D)

+2 sup
D∈D,G∈G

|L(G, D) − L̂(G, D)|

+ sup
D

L(Ḡ, D) − sup
D

L(G∗, D).

Note that Ḡ is arbitrary. By taking in#mum with respect to Ḡ
over G on both sides of the above display, we obtain

L(Ĝ) − L(G∗) ≤ #1 + #2 + #3, (24)

where

#1 = sup
D

L(Ĝ, D) − sup
D∈D

L(Ĝ, D),

#2 = 2 sup
G∈G,D∈D

|L(G, D) − L̂(G, D)|,

#3 = inf
Ḡ∈G

[L(Ḡ) − L(G∗)].

The #rst and the third terms #1 and #3 are the approximation
errors and the second term #2 is the statistical error. In the
supplementary material, we derive (24) and show that these
error terms converge to zero.

5. Implementation

We describe the implementation of GCDS. For training the
generator Gθ and the discriminator Dφ , we use the recti#ed
linear unit (ReLU) as the activation function in Gθ and Dφ . We
train the discriminator and the generator iteratively by updating
θ and φ alternately as follows:

(a) Fix θ , update the discriminator by ascending the stochastic
gradient of the loss (15) with respect to φ.

(b) Fix φ, update the generator by descending the stochastic
gradient of the loss (15) with respect to θ .

The training process is described below.

Algorithm: Training GCDS
Input: (a) Pairs {(Xi, Yi), i = 1, . . . , n}; (b) Samples {η}n

i=1
from Pη

Output: Conditional generator G
θ̂

and discriminator D
θ̂

While not converged do
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• Compute Ỹi = Gθ (ηi, Xi), i = 1, 2, . . . , n. Let S1 =
{(Xi, Zi, Vi) = (Xi, Yi, 1), i = 1, . . . , n} and S2 =
{(Xi, Zi, Vi) = (Xi−n, Ỹi, −1), i = n + 1, . . . , 2n}.

• Randomly select B/2 samples from S1 and another B/2 sam-
ples from S2. Denote the subscripts of the selected samples
by {bi : i = 1, . . . , B}.

• Update Dφ by ascending its stochastic gradient:

∇φ

{ 1
B

B∑

i=1
[Dφ(Xbi , Zbi )1{Vbi =−1} − exp(Dφ(Xbi , Zbi ))1{Vbi =1}]

}
.

• Randomly select B samples from {(Xi, Yi), i = 1, . . . , n}.
Denote the subscripts of the selected samples by {bi : i =
1, . . . , B}

• Update Gθ by descending its stochastic gradient:

∇θ

{
1
B

B∑

i=1
Dφ(Xbi , Gθ (ηbi , Xbi))

}

.

End while
We implement the GCDS algorithm in TensorFlow (Abadi

et al. 2016).

6. Numerical Experiments

In this section, we carry out numerical experiments to assess
the performance of GCDS. We use both simulated and real
datasets in the experiments. In addition to the results reported
in this section, additional numerical results are given in the
online supplementary material, including results from experi-
ments evaluating how the performance of GCDS depends on
the network architecture, the dimension m of the noise vector η

and the sample size n.

6.1. Simulation Studies

We conduct simulation studies to evaluate the #nite sample
performance of GCDS. We also compare it with several existing
conditional density estimation methods, including the near-
est neighbor kernel conditional density estimation (NNKCDE;
Dalmasso et al. 2020), the conditional kernel density estimation
(CKDE, implemented in the R package np, Hall, Racine, and
Li 2004), and the basis expansion method FlexCode (Izbicki
et al. 2017). We implement GCDS in TensorFlow (Abadi et al.
2016) and use the stochastic gradient descent algorithm Adam
(Kingma and Ba 2015) in training the neural networks. We use
the conditional distributions based on the following models in
the simulation studies.

1. (M1). A nonlinear model with an additive error term:
Y = X2

1 + exp(X2 + X3/3) + sin(X4 + X5) + ε, ε ∼ N(0, 1).
2. (M2). A model with an additive error term whose variance

depends on the predictors: Y = X2
1 + exp((X2 + X3/3)) +

X4 − X5 + (0.5 + X2
2/2 + X2

5/2) × ε, ε ∼ N(0, 1).
3. (M3). A model with a multiplicative non-Gassisan error

term:
Y = (5 + X2

1/3 + X2
2 + X2

3 + X4 + X5) ∗ exp(0.5 × ε), where
ε ∼ I{U<0.5} × N(−2, 1) + I{U>0.5} × N(2, 1) with U ∼
Uniform(0, 1), X ∈ R30.

4. (M4). A mixture of two normal distributions:
Y = I{U<0.5}N(−X1, 0.252) + I{U>0.5}N(X1, 0.252), where
U ∼ Uniform(0, 1).

In each of the models above, the covariate vector X is generated
from standard multivariate normal distribution.

The neural networks used in the simulations are speci#ed
as follows. For models (M1)-(M3), the generator network has 1
hidden layer with width 50, and the discriminator has 2 hidden
layers with widths (50, 25); for models (M4), the generator
network has 2 hidden layers with widths (40, 15), and the
discriminator has 2 hidden layers with widths (50, 25). For the
values of m, the dimension of the noise random vector η, we set
m = 3 for models (M1)-(M3), and m = 4 for model (M4).

For the conditional density estimation method NNKCDE,
the tuning parameters are chosen using cross-validation. The
bandwidth of the conditional kernel density estimator CKDE
is chosen by the rule-of-thumb using the standard formula
hj = 1.06σjn−1/(2∗K+J) where σj is a measure of spread of
the jth continuous variable de#ned as min(SD, IQR/1.349), n
the number of observations, K the order of the kernel, and J
the number of continuous variables. The basis expansion based
method FlexCode uses Fourier basis. The maximum number of
bases is 40 and the actual number of bases is selected using cross-
validation.

We calculate the mean squared error (MSE) of the estimated
conditional mean E(Y|X) and the estimated conditional stan-
dard deviation SD(Y|X). We use a test dataset {x1, . . . , xk} of
size k = 2000 . The MSE of the estimated conditional mean
is MSE(mean) = (1/k)

∑k
i=1[Ê(Y|X = xi) − E(Y|X = xi)]2.

For GCDS, the estimate of E(Y|X = x) is based on (5) using
Monte Carlo. For other methods, the estimate is calculated
by numerical integration Ê(Y|x) =

∫
yf (y|x)dy using 1000

subdivisions. Similarly, the MSE of the estimated conditional
standard deviation is MSE(sd) = (1/k)

∑k
i=1[ ˆSD(Y|X = xi) −

SD(Y|X = xi)]2.
For GCDS, we #rst generate J samples {ηj : j = 1, . . . , J} from

the reference distribution Pη and calculate conditional samples
{Ĝ(ηj, xi), j = 1, . . . , J}. We take J = 10, 000. The estimated con-
ditional standard deviation is calculated as the sample standard
deviation of the conditional samples. The estimated conditional
standard deviation of other methods are computed by numerical
integration ˆSD(Y|xi) =

√∫
[y − Ê(Y|xi)]2f (y|xi)dy using 1000

subdivisions.

Table 1. Mean squared error (MSE) of the estimated conditional mean, the esti-
mated standard deviation and the corresponding simulation standard errors (in
parentheses).

GCDS NNKCDE CKDE FlexCode

M1 Mean 0.259(0.015) 1.367(0.010) 0.491(0.024) 0.610(0.008)
SD 0.022(0.004) 0.258(0.004) 0.233(0.005) 0.170(0.007)

M2 Mean 0.312(0.017) 4.668(0.046) 1.707(0.060) 2.408(0.063)
SD 0.247(0.012) 0.793(0.008) 0.857(0.017) 2.384(0.602)

M3 Mean 3.377(0.196) 4.926(0.080) 39.084(0.929) 9.015(0.341)
SD 2.082(0.126) 8.131(0.235) 15.70(0.488) 11.53(1.140)

M4 Mean 0.016(0.003) 0.004(0.001) 0.063(0.002) 0.006(0.002)
SD 0.027(0.005) 0.131(0.001) 0.076(0.001) 0.046(0.001)

NOTE: The smallest MSEs are in bold font.
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Figure 1. Comparison of density estimation in models (M1) to (M4). The conditional density function corresponding to GCDS is estimated using the samples generated
from GCDS with kernel smoothing.

We repeat the simulations 10 times. The average MSEs and
simulation standard errors are summarized in Table 1. We
see that, comparing with CKDE and FlexCode and NNKCED,
GCDS has the smallest MSEs for estimating conditional mean
and conditional SD in most cases.

In Figure 1, we display the estimated conditional density
functions for a randomly generated value of X. The true
conditional distributions of Y|X for models (M1) to (M4)
are: (M1), N(2.19, 1); (M2), N(4.75, 0.962); (M3): the mix-
ture of half 7.42 × log-normal(−1, 0.52) and half 7.42 ×
log-normal(1, 0.52); (M4): the mixture of half N(−2.09, 0.252)
and half N(2.09, 0.252). The conditional density function cor-
responding to GCDS is estimated based the samples generated
based on GCDS using kernel smoothing. This plot shows that
GCDS yields better conditional density estimates than CKDE,
NNCDE and FlexCode.

6.2. The Abalone Dataset

The abalone dataset is available at UCI machine learning repos-
itory (Dua and Gra$ 2017). It contains the number of rings of
abalone and other physical measurements. The age of abalone
is determined by cutting the shell through the cone, staining it,
and counting the number of rings through a microscope, a time-
consuming process. Other measurements, which are easier to
obtain, are used to predict the number of rings that determines
the age. This dataset contains 9 variables. They are sex, length,
diameter, height, whole weight, shucked weight, viscera weight,
shell weight, and rings. Except for the categorical variable sex, all
the other variables are continuous. The variable sex codes three
groups: female, male and infant, since the gender of an infant
abalone is not known. The sample size is 4177. We use 90% of
the data for training and 10% of the data as the testing set. The
neural networks used in the analysis are speci#ed as follows: the

generator network is a fully connected network with 2 hidden
layers with widths 50 and 20; the discriminator networks is a
fully connected network with 2 hidden layers with widths 50
and 25. The dimension of the noise vector of the noise vector
is set to be m = 5.

We take rings as the response Y ∈ R and the other mea-
surements as the covariate vector X ∈ R9. Figure 2 shows the
estimated conditional density based on the training dataset for
3 groups: female, male and infant, at the value of the group
means of the remaining covariates. We see that the values of
rings of the infant group are smaller than those of the female
and male groups. The female abalones tend to have slightly
higher numbers of rings than male abalones. In addition, the
conditional distributions are skewed to the right for all the three
groups.

To examine the prediction performance of the estimated
conditional density, we construct the 90% prediction interval
for the number of rings of each abalone in the testing set. The
prediction intervals are shown in Figure 3. The actual number
of rings is plotted as a solid dot. The actual coverage for all 418
cases in the testing set is 89.71%, close to the nominal level of
90%. The numbers of rings that are not covered by the prediction
intervals are the largest ones in each group.

6.3. MNIST Handwritten Digits

We now illustrate the application of GCDS to high-dimensional
data problems and demonstrate that it can easily handle the
models when either of both of X and Y are high-dimensional.
The data example we use is the MNIST handwritten dig-
its dataset (LeCun, Cortes, and Burges 2010), which contains
60,000 images for training and 10,000 images for testing. The
images are stored in 28 × 28 matrices with gray color intensity
from 0 to 1. Each image is paired with a label in {0, 1 . . . , 9}. We
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Figure 2. Estimated conditional densities for the female, male, and infant groups in the abalone dataset. Each line represents the kernel conditional density estimation
based on the samples generated using GCDS given the group average values of the covariates.

Figure 3. The prediction intervals for the testing set. All 418 abalones in the testing set are divided into three groups, (a) male, (b) female, and (c) infant.

use GCDS to perform two tasks: generating images from labels
and reconstructing the missing part of an image.

Generating images from labels. We generate images of hand-
written digits given the label. In this problem, the predictor X is a
categorical variable representing the ten digits: {0, 1, . . . , 9} and
the response Y represents 28 × 28 images. We use one-hot vec-
tors in R10 to represent these ten categories. So the dimension of
X is 10 and the dimension of Y is 28 × 28 = 784. The response
Y ∈ [0, 1]28×28 is a matrix representing the intensity values.
For the discriminator D, we use a convolutional neural network
(CNN) with 3 convolution layers with 128, 256, and 256 #lters to
extract the features of the image and then concatenate with the
label information (repeated 10 times to match the dimension
of the features). The concatenated information is sent to a fully
connected layer and then to the output layer. For the generator
G, we concatenate the label information with random noise of
dimension 100. Then it is fed to a CNN with 3 deconvolution
layers with 256, 128, and 1 #lters.

Figure 4 shows the real images (le" panel) and generated
images (right panel). We see that the generated images are sim-
ilar to the real images and it is hard to distinguish the generated
ones from the real images. Also, there are some di$erences in
the generated images, re%ecting the random variations in the
generating process.

Reconstructing missing part of an image. We now illustrate
using GCDS to reconstruct an image when part of the image

is missing with the MNIST dataset. Suppose we only observe
1/4, 1/2, or 3/4 of an image and would like to reconstruct
the missing part of the image. For this problem, let X be the
observed part of the image and let Y be the missing part of
the image. Our goal is to reconstruct Y based on X. For the
discriminator, we use two convolutional networks to process
X and Y separately. The #lters are then concatenated together
and fed into another convolution layer and fully connected
layer before output. For the generator, X is processed by a fully
connected layer followed by 3 deconvolution layers.

In Figure 5, three plots from le" to right corresponds to the
situations when 1/4, 1/2, and 3/4 of an image are given. In each
subplot, the #rst column contains the true images in the testing
set. The gray boxes show the given areas. Each row contains
six reconstructions of the image. The digits “0,” “1,” and “7”
are easy to reconstruct. Even when only 1/4 of their images are
given, GCDS can correctly reconstruct them. The other digits
are more di!cult. If only 1/4 of their images are given, then it
is impossible to reconstruct them. However, as the given area
increases from 1/4 to 1/2 and then 3/4 of the images, GCDS is
able to reconstruct the images correctly, and the reconstructed
images become less variable and more similar to the true image.
For example, for the digit “2,” if only the le" lower 1/4 of the
image is given, the reconstructed images tend to be incorrect;
the reconstruction is only successful when 3/4 of the image is
given.
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Figure 4. MNIST dataset: real images (left panel) and generated images given the labels (right panel).

Figure 5. Reconstructed images given partial image in MNIST dataset. The !rst column in each panel consists of the true images, the other columns give the constructed
images. In the left panel, the left lower 1/4 of the image is given; in the middle panel, the left 1/2 of the image is given; in the right panel, 3/4 of the image is given.

7. Conclusion

In this article, we propose GCDS, a generative approach to sam-
pling from a conditional distribution. We provide theoretical
support for GCDS by showing that the conditional generator
converge in distribution to the underlying target conditional
distribution under mild conditions. Our numerical experiments
demonstrate that it works well in a variety of situations from the
standard nonparametric conditional density estimation prob-
lems to more complex image data problems.

Several questions deserve further investigation. First, it
would be interesting to derive the convergence rate of the
sampling distribution that strengthens the consistency result in

Theorem 4.1 and provide conditions under which the number of
coe!cients in the deep neural network is allowed to be greater
than the sample size. Second, while the conditional generator
provides all the information of the conditional distribution, it
is still useful to obtain an estimate of the functional form of
the conditional density. How to obtain a good estimator of the
conditional density function in the present framework is an
open question, especially when the dimension of (X, Y) is high.
Finally, as a proof of concept we demonstrated that GCDS yields
reasonable results for some simple image analysis tasks with the
MNIST dataset. It would be interesting to apply GCDS to more
complex image analysis problems. We intend to study these
problems in the future.
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Supplementary Material

Additional numerical experiment results and technical details are provided
in the online supplementary material.
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