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Abstract

This paper quantitatively characterizes the approximation power of deep feed-

forward neural networks (FNNs) in terms of the number of neurons. It is shown

by construction that ReLU FNNs with width O(max{d⌊N1/d⌋, N +1}) and depthO(L) can approximate an arbitrary Hölder continuous function of order α ∈ (0,1]
on [0,1]d with a nearly tight approximation rate O(√dN−2α/dL−2α/d) measured

in Lp-norm for any N,L ∈ N+ and p ∈ [1,∞]. More generally for an arbitrary

continuous function f on [0,1]d with a modulus of continuity ωf(⋅), the construc-

tive approximation rate is O(√dωf(N−2/dL−2/d)). We also extend our analy-

sis to f on irregular domains or those localized in an ε-neighborhood of a dM-

dimensional smooth manifold M ⊆ [0,1]d with dM ≪ d. Especially, in the

case of an essentially low-dimensional domain, we show an approximation rateO(ωf( ε
1−δ

√
d
dδ
+ ε) + √

dωf( √

d
(1−δ)

√

dδ
N−2/dδL−2/dδ)) for ReLU FNNs to approxi-

mate f in the ε-neighborhood, where dδ = O(dM ln(d/δ)
δ2

) for any δ ∈ (0,1) as a

relative error for a projection to approximate an isometry when projectingM to

a dδ-dimensional domain.

Key words. Deep ReLU Neural Networks, Hölder Continuity, Modulus of Continuity,

Approximation Theory, Low-Dimensional Manifold, Parallel Computing.

1 Introduction

The approximation theory of neural networks has been an active research topic in the

past few decades. Previously, as a special kind of ridge function approximation, shallow

neural networks with one hidden layer and various activation functions (e.g., wavelets

pursuits [10,45], adaptive splines [19,54], radial basis functions [8,18,25,52,64], sigmoid

functions [7,13–15,29,37,38,41,44]) were widely discussed and admit good approximation

properties, e.g., the universal approximation property [16, 29, 30], lessening the curse
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of dimensionality [4, 21, 22], and providing attractive approximation rate in nonlinear

approximation [10,18,19,25,45,54,64].

The introduction of deep networks with more than one hidden layers has made sig-

nificant impacts in many fields in computer science and engineering including computer

vision [35] and natural language processing [1]. New scientific computing tools based on

deep networks have also emerged and facilitated large-scale and high-dimensional prob-

lems that were impractical previously [20,24]. The design of deep ReLU FNNs is the key

of such a revolution. These breakthroughs have stimulated broad research topics from

different points of views to study the power of deep ReLU FNNs, e.g. in terms of combi-

natorics [50], topology [6], Vapnik-Chervonenkis (VC) dimension [5,27,57], fat-shattering

dimension [2,34], information theory [53], classical approximation theory [4,16,30,61,66],

optimization [32,33,51] etc.

Particularly in approximation theory, non-quantitative and asymptotic approx-

imation rates of ReLU FNNs have been proposed for various types of functions. For

example, smooth functions [23,39,43,65], piecewise smooth functions [53], band-limited

functions [49], continuous functions [66], solutions to partial differential equations [31].

However, to the best of our knowledge, existing theories [17,23,39,43,47,49,53,62,65,66]

can only provide implicit formulas in the sense that the approximation error contains

an unknown prefactor, or work only for sufficiently large N and L larger than some

unknown numbers. For example, [66] estimated an approximation rate c(d)L−2α/d via a

narrow and deep ReLU FNN, where c(d) is an unknown number depending on d, and

L is required to be larger than a sufficiently large unknown number L . For another

example, given an approximation error ε, [53] proved the existence of a ReLU FNN with

a constant but still unknown number of layers approximating a Cβ function within the

target error. These works can be divided into two cases: 1) FNNs with varying width

and only one hidden layer [18,25,40,64] (visualized by the region in in Figure 1); 2)

FNNs with a fixed width of O(d) and a varying depth larger than an unknown number

L [43, 66] (represented by the region in in Figure 1).

As far as we know, the first quantitative and non-asymptotic approximation

rate of deep ReLU FNNs was obtained in [61]. Specifically, [61] identified an explicit

formulas of the approximation rate

⎧⎪⎪⎨⎪⎪⎩

2λN−2α, when L ≥ 2 and d = 1,

2(2
√
d)αλN−2α/d, when L ≥ 3 and d ≥ 2,

(1.1)

for ReLU FNNs with an arbitrary width N ∈ N+ and a fixed depth L ∈ N+ to approximate

a Hölder continuous function f of order α with a Hölder constant λ (visualized in the

region shown by in Figure 1). The approximation rate O(N−2α/d) is tight in terms

of N and increasing L cannot improve the approximation rate in N . The success of deep

FNNs in a broad range of applications has motivated a well-known conjecture that the

depth L has an important role in improving the approximation power of deep FNNs.

In particular, a very important question in practice would be, given an arbitrary L

and N , what is the explicit formula to characterize the approximation error so as to see

whether the network is large enough to meet the accuracy requirement. Due to the highly
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nonlinear structure of deep FNNs, it is still a challenging open problem to characterize

N and L simultaneously in the approximation rate.

To answer the question just above, we establish the first framework that is able to

quantify the approximation power of deep ReLU FNNs essentially with arbitrary width

N and depth L, achieving a nearly optimal approximation rate, 19
√
dωf(N−2/dL−2/d),

for continuous functions f ∈ C([0,1]d). Our result is based on new analysis techniques

merely based on the structure of FNNs and a modified bit extraction technique inspired

by [5], instead of designing FNNs to approximate traditional approximation basis like

polynomials and splines as in the existing literature [26,39,43,47,48,53,55,56,59,62,65,

66]. The approximation rate obtained here admits an explicit formula to compute the

prefactor when ωf(⋅) is known. For example, in the case of Hölder continuous functions of

order α with a Hölder constant λ (denoted as the class Bλ(Cα([0,1]d))), ωf(r) ≤ λrα for

r ≥ 0, resulting in the approximation rate 19
√
dλN−2α/dL−2α/d as mentioned previously.

As a consequence, existing works for the function class C([0,1]d) are special cases of our

result (see Figure 1 for a comparison).

1 2 3 L depthL

O(d)

widthN

O
(N
−

1/
d
)

O(L−2/d)O
(N
−

2/
d
) O(N−2/dL−2/d)

Figure 1: A summary of existing and our new results on the approximation rate of ReLU

FNNs for continuous functions. Existing results [18, 25, 40, 43, 61, 64, 66] are applicable

in the areas in , , and ; our new result is suitable for almost all areas when

L ≥ 2.

Our key contributions can be summarized as follows.

1. Upper bound: We provide a quantitative and non-asymptotic approximation rate

19
√
dωf(N−2/dL−2/d) in terms of width O(N) and depth O(L) for functions in

C([0,1]d) in Theorem 1.1.

2. Lower bound: Through the nearly tight VC-dimension bounds of ReLU FNNs [27],

we show that the approximation rate 19
√
dωf(N−2α/dL−2α/d) in terms of N and L

is nearly optimal for Bλ(Cα([0,1]d)) in Theorem 2.3.

3. The approximation rate in terms of the width and depth in this paper is more

generic and useful than the one characterized by the number of nonzero parameters

denoted as W in the literature. First, the characterization in terms of width and

depth implies the one in terms of W , while it is not true the other way around.

Second, our theory can provide practical guidance for choosing network sizes in

realistic applications while theories in terms of W cannot tell how large a network
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should be to guarantee a target accuracy, since there are too many networks of

different sizes sharing the same number of parameters but with different accuracies.

4. Finally, three aspects of neural networks in practice are discussed: 1) neural net-

work approximation in a high-dimensional irregular domain; 2) neural network

approximation in the case of a low-dimensional data structure; 3) the optimal

ReLU FNN in parallel computation.

Our main result, Theorem 1.1 below, shows that ReLU FNNs with width O(N)
and depth O(L) can approximate f with an approximation rate 19

√
dωf(N−2/dL−2/d),

where ωf(⋅) is the modulus of continuity of f defined via

ωf(r) ∶= sup{∣f(x) − f(y)∣ ∶ x,y ∈ [0,1]d, ∥x − y∥2 ≤ r}, for any r ≥ 0.

Theorem 1.1. Given f ∈ C([0,1]d), for any L ∈ N+, N ∈ N+, and p ∈ [1,∞], there exists

a function φ implemented by a ReLU FNN with width C1 max{d⌊N1/d⌋, N +1} and depth

12L +C2 such that

∥f − φ∥Lp([0,1]d) ≤ 19
√
dωf(N−2/dL−2/d),

where C1 = 12 and C2 = 14 if p ∈ [1,∞); C1 = 3d+3 and C2 = 14 + 2d if p =∞.

When Theorem 1.1 is applied to f ∈ Bλ(Cα([0,1]d)), the approximation rate is

19
√
dλN−2α/dL−2α/d, because ωf(r) ≤ λrα for any r ≥ 0. An immediate question following

the constructive approximation is how much we can improve the approximation rate. In

fact, the approximation rate of f ∈ Bλ(Cα([0,1]d)) is asymptotically tight based on

VC-dimension as we shall see later.

In most real applications of neural networks, though the target function f is defined

in a high-dimensional domain, e.g., [0,1]d, where d could be tens of thousands or even

millions, only the approximation error of f in a neighborhood of a dM-dimensional

manifold M with dM ≪ d is concerned. Hence, we extend Theorem 1.1 to the case

when the domain of f is localized in an ε-neighborhood of a compact dM-dimensional

Riemannian submanifold M ⊆ [0,1]d having condition number 1/τ , volume V , and

geodesic covering regularity R. The ε-neighborhood is defined as

Mε ∶= {x ∈ [0,1]d ∶ inf{∥x − y∥2 ∶ y ∈M} ≤ ε}, for ε ∈ (0,1). (1.2)

Let dδ = O (dM ln(dVRτ−1δ−1)
δ2 ) = O(dM ln(d/δ)

δ2
) be an integer for any δ ∈ (0,1) such that

dM ≤ dδ ≤ d. We show an approximation rate

2ωf( 2ε
1−δ

√
d
dδ
+ 2ε) + 19

√
dωf( 2

√

d
(1−δ)

√

dδ
N−2/dδL−2/dδ)

for ReLU FNNs to pointwisely approximate f on Mε. The key ideas of the proof is the

application of Theorem 3.1 in [3], which provides a nearly isometric projection A ∈ Rdδ×d

that maps points in M ⊆ [0,1]d to a dδ-dimensional domain with

(1 − δ)∣x1 −x2∣ ≤ ∣Ax1 −Ax2∣ ≤ (1 + δ)∣x1 −x2∣, for any x1,x2 ∈M,
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and the application of Theorem 1.1 in this paper, which constructs the desired ReLU

FNN with a size depending on dδ instead of d to lessen the curse of dimensionality.

When δ is closer to 1, dδ is closer to dM but the isometric property of the projection is

weakened; when δ is closer to 0, the isometric property becomes better but dδ could be

larger than d, in which case we can simply enforce dδ = d and choose the identity map

as the projection. Hence, δ ∈ (0,1) is a parameter to make a balance between isometry

and dimension reduction.

Theorem 1.2. Let f be a continuous function on [0,1]d and M ⊆ [0,1]d be a com-

pact dM-dimensional Riemannian submanifold. For any N ∈ N+, L ∈ N+, ε ∈ (0,1),

and δ ∈ (0,1), there exists a function φ implemented by a ReLU FNN with width

3dδ+3 max{dδ⌊N1/dδ⌋, N + 1} and depth 12L + 14 + 2dδ such that

∣f(x) − φ(x)∣ ≤ 2ωf( 2ε
1−δ

√
d
dδ
+ 2ε) + 19

√
dωf( 2

√

d
(1−δ)

√

dδ
N−2/dδL−2/dδ), (1.3)

for any x ∈Mε, where Mε is defined in Equation (1.2)

The approximation rate of deep neural networks for functions defined precisely on

low-dimensional smooth manifolds has been studied in [60] for C2 functions and in [9,11]

for Lipschitz continuous functions. Considering that it might be more reasonable to

assume data located in a small neighborhood of low-dimensional smooth manifold in

real applications, we introduce the ε-neighborhood of the manifold M in Theorem 1.2.

In general, existing results are again asymptotic and they cannot be applied to estimate

the approximation accuracy of a ReLU FNN with arbitrarily given width N and depth L,

since there is no explicit formula without unknown constants to specify the exact error

bound. For example, [9] provides an approximation rate c1 (NL)−c2/dδ with unknown

constants (e.g., c1 and c2) and requires NL greater than an unknown large number. The

demand of an explicit error estimation motivates Theorem 1.2 in this paper. When data

are concentrating aroundM, ε is very small and the dominant term of the approximation

error in (1.3) is 19
√
dωf( 2

√

d
(1−δ)

√

dδ
N−2/dδL−2/dδ) implying that the approximation via deep

ReLU FNNs can lessen the curse of dimensionality.

The analysis above provides a general guide for selecting the width and depth of

ReLU FNNs to approximate continuous functions, especially when the computation is

conducted with parallel computing, which is usually the case in real applications [12,58].

As we shall see later, when the approximation accuracy and the parallel computing

efficiency are considered together, very deep FNNs become less attractive than those

with O(1) depth.

The approximation theories in this paper assume that the target function f is fully

accessible, making it possible to estimate the approximation error and identify an asymp-

totically optimal ReLU FNN with a given budget of neurons to minimize the approx-

imation error. In real applications, usually only a limited number of possibly noisy

observations of f is available, resulting in a regression problem in statistics. In the latter

case, the problem is usually formulated in a stochastic setting with randomly generated

noisy observations and the regression error contains mainly two components: bias and

variance. The bias is the difference of the expectation of an estimated function and its
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ground truth f . The approximation theories in this paper play an important role in

characterizing the power of neural networks when they are applied to solve regression

problems by providing a lower bound of the regression bias.

The rest of this paper is organized as follows. We first prove Theorem 1.1 and show

its optimality in Section 2 when assuming Theorem 2.1 is true. Next, Theorem 2.1 is

proved in Section 3. In Section 4, three aspects of neural networks in practice will be

discussed: 1) neural network approximation in a high-dimensional irregular domain; 2)

neural network approximation in the case of a low-dimensional data structure; 3) the

optimal ReLU FNN in parallel computation. Finally, Section 5 concludes this paper

with a short discussion.

2 Approximation of continuous functions

In this section, we prove Theorem 1.1 and discuss its optimality when assume The-

orem 2.1 is true. Notations throughout the proof will be summarized in Section 2.1.

2.1 Notations

Let us summarize all basic notations used in this paper as follows.

• Matrices are denoted by bold uppercase letters. For instance, A ∈ Rm×n is a real

matrix of size m × n, and AT denotes the transpose of A. Vectors are denoted

as bold lowercase letters. For example, v =
⎡⎢⎢⎢⎢⎣

v1
⋮
vd

⎤⎥⎥⎥⎥⎦
= [v1,⋯, vd]T ∈ Rd is a column

vector with v(i) = vi being the i-th element. Besides, “[” and “]” are used to

partition matrices (vectors) into blocks, e.g., A = [A11 A12
A21 A22

].

• For any p ∈ [1,∞), the p-norm of a vector x = [x1, x2,⋯, xd]T ∈ Rd is defined by

∥x∥p ∶= (∣x1∣p + ∣x2∣p +⋯ + ∣xd∣p)
1/p
.

• Let µ(⋅) be the Lebesgue measure.

• Let 1S be the characteristic function on a set S, i.e., 1S is equal to 1 on S and 0

outside of S.

• The set difference of two sets A and B is denoted by A/B ∶= {x ∶ x ∈ A, x ∉ B}.

• For any ξ ∈ R, let ⌊ξ⌋ ∶= max{i ∶ i ≤ ξ, i ∈ Z} and ⌈ξ⌉ ∶= min{i ∶ i ≥ ξ, i ∈ Z}.

• Assume n ∈ Nd, then f(n) = O(g(n)) means that there exists positive C indepen-

dent of n, f , and g such that f(n) ≤ Cg(n) when all entries of n go to +∞.
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• Let σ ∶ R→ R denote the rectified linear unit (ReLU), i.e. σ(x) = max{0, x}. With

the abuse of notations, we define σ ∶ Rd → Rd as σ(x) =
⎡⎢⎢⎢⎢⎢⎣

max{0, x1}
⋮

max{0, xd}

⎤⎥⎥⎥⎥⎥⎦
for any

x = [x1,⋯, xd]T ∈ Rd.

• Given K ∈ N+ and δ ∈ (0, 1
K ), define a trifling region Ω([0,1]d,K, δ) of [0,1]d as

Ω([0,1]d,K, δ) ∶=
d

⋃
i=1

{x = [x1, x2,⋯, xd]T ∈ [0,1]d ∶ xi ∈ ∪K−1
k=1 ( kK − δ, kK )}. (2.1)

In particular, Ω([0,1]d,K, δ) = ∅ if K = 1. See Figure 2 for two examples of trifling

regions.

0.0 0.2 0.4 0.6 0.8 1.0

δ δ δ δ

Ω([0, 1]d, K, δ) for K = 5, d = 1

(a)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Ω([0, 1]d, K, δ) for K = 4, d = 2

(b)

Figure 2: Two examples of trifling regions. (a) K = 5, d = 1. (b) K = 4, d = 2.

• Let Cα([0,1]d) be the set containing all Hölder continuous functions on [0,1]d of or-

der α ∈ (0,1]. In particular, the λ-ball in Cα([0,1]d) is denoted by Bλ(Cα([0,1]d))
for any λ > 0.

• We will useNN to denote a function implemented by a ReLU FNN for short and use

Python-type notations to specify a class of functions implemented by ReLU FNNs

with several conditions, e.g., NN (c1; c2; ⋯; cm) is a set of functions implemented

by ReLU FNNs satisfying m conditions given by {ci}1≤i≤m, each of which may

specify the number of inputs (#input), the number of outputs (#output), the

total number of neurons in all hidden layers (#neuron), the number of hidden

layers (depth), the total number of parameters (#parameter), and the width in

each hidden layer (widthvec), the maximum width of all hidden layers (width),

etc. For example, if φ ∈ NN (#input = 2; widthvec = [100,100]; #output = 1),
then φ is a functions satisfies

– φ maps from R2 to R.

– φ can be implemented by a ReLU FNN with two hidden layers and the number

of nodes in each hidden layer is 100.

• [n]L is short for [n,n,⋯, n] ∈ NL. For example,

NN (#input = d; widthvec = [100,100]) = NN (#input = d; widthvec = [100]2).
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• For a function φ ∈ NN (#input = d; widthvec = [N1,N2,⋯,NL]; #output = 1), if

we set N0 = d and NL+1 = 1, then the architecture of the network implementing φ

can be briefly described as follows:

x = h̃0
W0, b0 h1

σÐ→ h̃1 ⋯ WL−1, bL−1 hL
σÐ→ h̃L WL, bL hL+1 = φ(x),

where Wi ∈ RNi+1×Ni and bi ∈ RNi+1 are the weight matrix and the bias vector in

the i-th (affine) linear transform Li in φ, respectively, i.e.,

hi+1 =Wi ⋅ h̃i + bi =∶ Li(h̃i), for i = 0,1,⋯, L,

and

h̃i = σ(hi), for i = 1, . . . , L.

In particular, φ can be represented in a form of function compositions as follows

φ = LL ○ σ ○LL−1 ○ σ ○ ⋯ ○ σ ○L1 ○ σ ○L0,

which has been illustrated in Figure 3.

(x1, x2)

x1

x2

h1

h1,1

h1,2

h1,3

h1,4

h̃1

h̃1,1

h̃1,2

h̃1,3

h̃1,4

h2

h2,1

h2,2

h2,3

h2,4

h2,5

h̃2

h̃2,1

h̃2,2

h̃2,3

h̃2,4

h̃2,5

φ(x1, x2)

φ(x1, x2)

W0, b0 W1, b1 W2, b2ReLU (σ) ReLU (σ)

σ

σ

σ

σ

σ

σ

σ

σ

σ

Figure 3: An example of a ReLU network with width 5 and depth 2.

• The expression “an FNN with width N and depth L” means

– The maximum width of this FNN for all hidden layers is no more than N .

– The number of hidden layers of this FNN is no more than L.

• For θ ∈ [0,1), suppose its binary representation is θ = ∑∞

`=1 θ`2
−` with θ` ∈ {0,1}, we

introduce a special notation bin0.θ1θ2⋯θL to denote the L-term binary represen-

tation of θ, i.e., bin0.θ1θ2⋯θL ∶= ∑L
`=1 θ`2

−`.

2.2 Proof of Theorem 1.1

We essentially construct piecewise constant functions to approximate continuous

functions in the proof. However, it is impossible to construct a piecewise constant func-

tion via ReLU FNNs due to the continuity of ReLU FNNs. Thus, we introduce the

trifling region Ω([0,1]d,K, δ), defined in Equation (2.1), and use ReLU FNNs to im-

plement piecewise constant functions outside of the trifling region. To prove Theorem

1.1, we first establish a theorem showing how to construct ReLU FNNs to pointwisely

approximate continuous functions except for the trifling region.
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Theorem 2.1. Given f ∈ C([0,1]d), for any L ∈ N+ and N ∈ N+, there exists a function

φ implemented by a ReLU FNN with width max{4d⌊N1/d⌋ + 3d, 12N + 8} and depth

12L + 14 such that ∥φ∥L∞(Rd) ≤ ∣f(0)∣ + ωf(
√
d) and

∣f(x) − φ(x)∣ ≤ 18
√
dωf(N−2/dL−2/d), for any x ∈ [0,1]d/Ω([0,1]d,K, δ),

where K = ⌊N1/d⌋2⌊L2/d⌋ and δ is an arbitrary number in (0, 1
3K ].

With Theorem 2.1 that will be proved in Section 3, we can easily prove Theorem

1.1 for the case p ∈ [1,∞). In the early version of this paper, which focuses on contin-

uous functions as target functions, we only considered the case p ∈ [1,∞) since it was

challenging to control the approximation error in the trifling region. Later in [42] when

we considered smooth functions as target functions, we invented a technique that can

handle the error in the trifling region as in the lemma below. Therefore, we are now able

to control the approximation error for p =∞. The results in this paper are for continuous

functions, to which the results in [42] are not applicable; the results in [42] characterize

how the smoothness of target functions helps to enhance the approximation capacity of

ReLU FNNs, which is not addressed in this paper. It is interesting to point out that the

approximation rate O(N−2/dL−2/d) for continuous functions in this paper is even better

than the rate O(( N
lnN )−2/d( L

lnL)−2/d) for functions in C1([0,1]d) in [42].

Lemma 2.2 (Theorem 2.1 of [42]). Given ε > 0, N,L,K ∈ N+, and δ ∈ (0, 1
3K ], assume

f ∈ C([0,1]d) and φ̃ can be implemented by a ReLU FNN with width N and depth L. If

∣f(x) − φ̃(x)∣ ≤ ε, for any x ∈ [0,1]d/Ω([0,1]d,K, δ),

then there exists a function φ implemented by a new ReLU FNN with width 3d(N + 4)
and depth L + 2d such that

∣f(x) − φ(x)∣ ≤ ε + d ⋅ ωf(δ), for any x ∈ [0,1]d.

Now we are ready to prove Theorem 1.1 by assuming Theorem 2.1 is true, which

will be proved later in Section 3.2.

Proof of Theorem 1.1. Let us first consider the case p ∈ [1,∞). We may assume f is

not a constant function since it is a trivial case. Then ωf(r) > 0 for any r > 0. Set

K = ⌊N1/d⌋2⌊L2/d⌋ and choose a small δ ∈ (0, 1
3K ] such that

Kdδ(2∣f(0)∣ + 2ωf(
√
d))p = ⌊N1/d⌋2⌊L2/d⌋dδ(2∣f(0)∣ + 2ωf(

√
d))p

≤ (ωf(N−2/dL−2/d))p.

By Theorem 2.1, there exists a function φ implemented by a ReLU FNN with width

max{4d⌊N1/d⌋ + 3d, 12N + 8} ≤ 12 max{d⌊N1/d⌋, N + 1}

and depth 12L + 14 such that ∥φ∥L∞(Rd) ≤ ∣f(0)∣ + ωf(
√
d) and

∣f(x) − φ(x)∣ ≤ 18
√
dωf(N−2/dL−2/d), for any x ∈ [0,1]d/Ω([0,1]d,K, δ),
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It follows from µ(Ω([0,1]d,K, δ)) ≤Kdδ and ∥f∥L∞([0,1]d) ≤ ∣f(0)∣ + ωf(
√
d) that

∥f − φ∥p
Lp([0,1]d)

= ∫
Ω([0,1]d,K,δ)

∣f(x) − φ(x)∣pdx + ∫
[0,1]d/Ω([0,1]d,K,δ)

∣f(x) − φ(x)∣pdx

≤Kdδ(2∣f(0)∣ + 2ωf(
√
d))p + (18

√
dωf(N−2/dL−2/d))p

≤ (ωf(N−2/dL−2/d))p + (18
√
dωf(N−2/dL−2/d))p

≤ (19
√
dωf(N−2/dL−2/d))p.

Hence, ∥f − φ∥Lp([0,1]d) ≤ 19
√
dωf(N−2/dL−2/d).

Next, let us discuss the case p = ∞. Set K = ⌊N1/d⌋2⌊L2/d⌋ and choose a small

δ ∈ (0, 1
3K ] such that

d ⋅ ωf(δ) ≤ ωf(N−2/dL−2/d).
By Theorem 2.1, there exists a function φ̃ implemented by a ReLU FNN with width

max{4d⌊N1/d⌋ + 3d, 12N + 8} and depth 12L + 14 such that

∣f(x) − φ̃(x)∣ ≤ 18
√
dωf(N−2/dL−2/d) ∶= ε, for x ∈ [0,1]d/Ω([0,1]d,K, δ),

By Lemma 2.2, there exists a function φ implemented by a ReLU FNN with width

3d(max{4d⌊N1/d⌋ + 3d, 12N + 8} + 4) ≤ 3d+3 max{d⌊N1/d⌋, N + 1}

and depth 12L + 14 + 2d such that

∣f(x) − φ(x)∣ ≤ ε + d ⋅ ωf(δ) ≤ 19
√
dωf(N−2/dL−2/d), for any x ∈ [0,1]d.

So we finish the proof.

2.3 Optimality of Theorem 1.1

This section will show that the approximation rate in Theorem 1.1 is nearly tight

and there is no room to improve for the function class Bλ(Cα([0,1]d)). Theorem 2.3

below shows that the approximation rate O(ωf(N−(2/d+ρ)L−(2/d+ρ))) for any ρ > 0 is

unachievable, implying the approximation rate in Theorem 1.1 is nearly tight for the

function class Bλ(Cα([0,1]d)).
Theorem 2.3. Given any ρ > 0 and C > 0, there exists f ∈ Bλ(Cα([0,1]d)) such that,

for any J0 > 0, there exist N,L ∈ N with NL ≥ J0 satisfying

inf
φ∈NN (#input=d; width≤N ; depth≤L)

∥φ − f∥L∞([0,1]d) ≥ CλN−(2α/d+ρ)L−(2α/d+ρ).

In fact, we can show a stronger result than Theorem 2.3. Under the same con-

ditions as in Theorem 2.3, for any H ∈ [0,1]d with µ(H) ≤ 2−(d+K
d
+1)K−d, where K =

⌊(NL)2/d+ρ/(2α)⌋, it can be proved that

inf
φ∈NN (#input=d; width≤N ; depth≤L)

∥φ − f∥L∞([0,1]d/H)
≥ CλN−(2α/d+ρ)L−(2α/d+ρ). (2.2)

We will prove (2.2) by contradiction, then Theorem 2.3 holds as a consequence. Assuming

Equation (2.2) is false, we have the following claim.
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Claim 2.4. There exist ρ > 0 and C > 0 such that given any f ∈ Bλ(Cα([0,1]d)),

there exists J0 = J0(ρ,C, f) > 0 such that, for any N,L ∈ N with NL ≥ J0, there exist

φ ∈ NN (#input = d; width ≤ N ; depth ≤ L) and H ∈ [0,1]d with µ(H) ≤ 2−(d+K
d
+1)K−d,

where K = ⌊(NL)2/d+ρ/(2α)⌋, satisfying

∥f − φ∥L∞([0,1]d/H)
≤ CλN−(2α/d+ρ)L−(2α/d+ρ).

Now let us disprove this claim to show Theorem 2.3 and Equation (2.2) are true.

Disproof of Claim 2.4. Without the loss of generality, we assume λ = 1; in the case of

λ ≠ 1, the proof is similar. We will disprove Claim 2.4 using the VC dimension. Recall

that the VC dimension of a class of functions is defined as the cardinality of the largest

set of points that this class of functions can shatter. Denote the VC dimension of a

function set F by VCDim(F ). By [27] and the fact

NN (width ≤ N ; depth ≤ L) ⊆ NN (#parameter ≤ (LN + d + 2)(N + 1)),

there exists C1 > 0 such that

VCDim(NN (#input = d; width ≤ N ; depth ≤ L))
≤ C1(LN + d + 2)(N + 1)L ln ((LN + d + 2)(N + 1))
=∶ bu(N,L).

(2.3)

Then we will use Claim 2.4 to estimate a lower bound of

VCDim(NN (#input = d; width ≤ N ; depth ≤ L)), (2.4)

and this lower bound is asymptotically larger than bu(N,L), which leads to a contradic-

tion.

More precisely, we will construct {fχ ∶ χ ∈ B} ⊆ B1(Cα([0,1]d)), which can shat-

ter b`(N,L) ∶= Kd points, where B is a set defined later. Then by Claim 2.4, there

exists {φχ ∶ χ ∈ B} such that this set can shatter b`(N,L) points. Finally, b`(N,L) =
Kd = ⌊(NL)2/d+ρ/(2α)⌋d is asymptotically larger than bu(N,L) = C1(LN + d + 2)(N +
1)L ln ((LN + d + 2)(N + 1)), which leads to a contradiction. More details can be found

below.

Step 1∶ Construct {fχ ∶ χ ∈ B} ⊆ B1(Cα([0,1]d)) that scatters b`(N,L) points.

Divide [0,1]d into Kd non-overlapping sub-cubes {Qβ}β as follows:

Qβ ∶= {x = [x1, x2,⋯, xd]T ∈ [0,1]d ∶ xi ∈ [βi−1
K , βiK ], i = 1,2,⋯, d},

for any index vector β = [β1, β2,⋯, βd]T ∈ {1,2,⋯,K}d.
Let Q(x0, η) ⊆ [0,1]d be a hypercube, whose center and sidelength are x0 and η,

respectively. Then we define a function ζQ on [0,1]d corresponding to Q = Q(x0, η) ⊆
[0,1]d such that:

• ζQ(x0) = (η/2)α/2;
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• ζQ(x) = 0 for any x ∉ Q/∂Q, where ∂Q is the boundary of Q;

• ζQ is linear on the line that connects x0 and x, for any x ∈ ∂Q.

Define

B ∶= {χ ∶ χ is a map from {1,2,⋯,K}d to {−1,1}}.

For each χ ∈ B, we define

fχ(x) ∶= ∑
β∈{1,2,⋯,K}d

χ(β)ζQβ
(x),

where ζQβ
(x) is the associated function introduced just above. It is easy to check that

{fχ ∶ χ ∈ B} ⊆ B1(Cα([0,1]d)) can shatter b`(N,L) =Kd points.

Step 2∶ Construct {φχ ∶ χ ∈ B} that scatters b`(N,L) points.

By Claim 2.4, there exist ρ > 0 and C2 > 0 such that, for any fχ ∈ {fχ ∶ χ ∈ B} there

exists Jχ > 0 such that for all N,L ∈ N with NL ≥ Jχ, there exist φχ ∈ NN (#input =
d; width ≤ N ; depth ≤ L) and Hχ with µ(Hχ) ≤ 2−(d+K

d
+1)K−d such that

∣fχ(x) − φχ(x)∣ ≤ C2(NL)−α(2/d+ρ/α), for any x ∈ [0,1]d/Hχ.

Set H = ∪χ∈BHχ and J1 = maxχ∈B Jχ. Then it holds that

µ(H) ≤ 2K
d

2−(d+K
d
+1)K−d = (2K)−d/2. (2.5)

It follows that for all χ ∈ B and N,L ∈ N with NL ≥ J1, we have

∣fχ(x) − φχ(x)∣ ≤ C2(NL)−α(2/d+ρ/α), for any x ∈ [0,1]d/H. (2.6)

For each index vector β ∈ {1,2,⋯,K}d and any x ∈ 1
2Qβ, where 1

2Qβ denotes the

cube whose sidelength is half of that of Qβ sharing the same center of Qβ, since Qβ has

a sidelength 1
K = ⌊(NL)2/d+ρ/(2α)⌋−1, we have

∣fχ(x)∣ = ∣ζQβ
(x)∣ ≥ ∣ζQβ

(xQβ
)∣/2 = ( 1

2K
)α /4 = 1

22+α ⌊(NL)2/d+ρ/(2α)⌋−α, (2.7)

where xQβ
is the center of Qβ. For fixed d, α, and ρ, there exists J2 > 0 large enough

such that, for any N,L ∈ N with NL ≥ J2, we have

1
22+α ⌊(NL)2/d+ρ/(2α)⌋−α > C2(NL)−α(2/d+ρ/α). (2.8)

By Equation (2.5), for any β ∈ {1,2,⋯,K}d, we have

µ(H) ≤ (2K)−d/2 < (2K)−d = µ(1
2Qβ),

which means (1
2Qβ) ∩ ([0,1]d/H) is not empty. Therefore, there exists xβ ∈ (1

2Qβ) ∩
([0,1]d/H) for each β ∈ {1,2,⋯,K}d such that

∣fχ(xβ)∣ ≥ 1
22+α ⌊(NL)2/d+ρ/(2α)⌋−α > C2(NL)−α(2/d+ρ/α) ≥ ∣fχ(xβ) − φχ(xβ)∣,
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for any N,L ∈ N with NL ≥ J0 = max{J1, J2}, where the first, the second, and the

last inequalities come from (2.7), (2.8), and (2.6), respectively. In other words, for any

χ ∈ B and β ∈ {1,2,⋯,K}d, fχ(xβ) and φχ(xβ) have the same sign. Then {φχ ∶ χ ∈ B}
shatters {xβ ∶ β ∈ {1,2,⋯,K}d} since {fχ ∶ χ ∈ B} shatters {xβ ∶ β ∈ {1,2,⋯,K}d} as

discussed in Step 1. Hence,

VCDim({φχ ∶ χ ∈ B}) ≥Kd = b`(N,L), (2.9)

for any N,L ∈ N with NL ≥ J0,

Step 3∶ Contradiction.

By Equation (2.3) and (2.9), for any N,L ∈ N with NL ≥ J0, we have

b`(N,L) ≤ VCDim({φχ ∶ χ ∈ B})
≤ VCDim(NN (#input = d; width ≤ N ; depth ≤ L)) ≤ bu(N,L),

implying that

⌊(NL)2/d+ρ/(2α)⌋d ≤ C1(LN + d + 2)(N + 1)L ln ((LN + d + 2)(N + 1)),

which is a contradiction for sufficiently large N,L ∈ N. So we finish the proof.

By Theorem 2.3, for any ρ > 0, the approximation rate cannot be better than

O(N−(2α/d+ρ)L−(2/α+ρ)), if we use FNNs in NN (#input = d; width ≤ N ; depth ≤ L) to

approximate functions in Bλ(Cα([0,1]d)). By a similar argument, we can show that the

approximation rate cannot be O(N−2α/dL−(2/α+ρ)) nor O(N−(2α/d+ρ)L−2α/d). Hence, the

approximation rate in Theorem 1.1 is nearly tight.

3 Proof of Theorem 2.1

In this section, we will prove Theorem 2.1. We first present the key ideas in Section

3.1. Based on two propositions in Section 3.1, the detailed proof is presented in Section

3.2. Finally, the proofs of two propositions in Section 3.1 can be found in Section 3.3

and 3.4.

3.1 Key ideas of proving Theorem 2.1

We will show that an almost piecewise constant function φ implemented by a ReLU

FNN is enough to achieve the desired approximation rate in Theorem 1.1. Given an

arbitrary f ∈ C([0,1]d), we introduce a piecewise constant function fp ≈ f serving as an

intermediate approximant in our construction in the sense that

f ≈ fp on [0,1]d, and fp ≈ φ on [0,1]d/Ω([0,1]d,K, δ).

The approximation in f ≈ fp is a simple and standard technique in constructive approxi-

mation. For example, given arbitrary N and L, uniformly partition [0,1]d into O(N2L2)
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Figure 4: An illustration of f , fp, φ, xβ, Qβ, and the trifling region Ω([0,1]d,K, δ) in the

one-dimensional case for β ∈ {0,1,⋯,K −1}d, where K = N2L2 and d = 1 with N = 2 and

L = 2. f is the target function; fp is the piecewise constant function approximating f ; φ

is a function, implemented by a ReLU FNN, approximating f ; and xβ is a representative

of Qβ. The measure of the trifling region Ω([0,1]d,K, δ) can be arbitrarily small as we

shall see in the proof of Theorem 1.1.

pieces and define fp using this partition. Then the approximation error of fp ≈ f scales

like O(N−2/dL−2/d). We will address the approximation in fp ≈ φ with the same error

scaling and a limited budget of the FNN size, e.g., O(NL) neurons, based on the fact

that fp can be approximately implemented by a ReLU FNN in [0,1]d/Ω([0,1]d,K, δ),
where Ω([0,1]d,K, δ) is the trifling region near the discontinuous locations of fp with an

arbitrarily small Lebesgue measure (see Figure 4 for an illustration). The introduction

of the trifling region is to ease the construction of a deep ReLU FNN to implement the

desired φ, which is a piecewise linear and continuous function, to approximate the dis-

continuous function fp by removing the difficulty near discontinuous points, essentially

smoothing fp by restricting the approximation domain in [0,1]d/Ω([0,1]d,K, δ).
Now let us discuss the detailed steps of construction. First, divide [0,1]d into a union

of important regions {Qβ}β and the trifling region Ω([0,1]d,K, δ), where each Qβ is

associated with a representative xβ ∈ Qβ such that f(xβ) = fp(xβ) for each index vector

β ∈ {0,1, . . . ,K − 1}d, where K = O(N2/dL2/d) is the partition number per dimension

(see Figure 6 for examples for d = 1 and d = 2). Next, we design a vector function

Φ1(x) constructed via Φ1(x) = [φ1(x1), φ1(x2),⋯, φ1(xd)]
T

to project the whole cube

Qβ to a d-dimensional index β for each β, where each one-dimensional function φ1 is

a step function implemented by a ReLU FNN. The final step is to solve a point fitting

problem. To be precise, we construct a function φ2 implemented by a ReLU FNN to

map β approximately to fp(xβ) = f(xβ). Then φ2 ○Φ1(x) = φ2(β) ≈ fp(xβ) = f(xβ)
for any x ∈ Qβ and each β, implying φ ∶= φ2 ○ Φ1 ≈ fp ≈ f on [0,1]d/Ω([0,1]d,K, δ).
We would like to point out that we only need to care about the values of φ2 at a set

of points {0,1,⋯,K − 1}d in the construction of φ2 according to our design φ = φ2 ○Φ1

as illustrated in Figure 5. Therefore, it is unnecessary to care about the values of φ2

sampled outside the set {0,1,⋯,K − 1}d, which is a key point to ease the design of a

ReLU FNN to implement φ2 as we shall see later.

Finally, we discuss how to implement Φ1 and φ2 by deep ReLU FNNs with width
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Φ1(x)=βÔ⇒
for x∈Qβ

A set of
d-dimensional indices:
β ∈ {0,1,⋯,K − 1}d

φ2(β)≈f(xβ)Ô⇒ A set of function values
at representatives:{f(xβ) ∶ β ∈ {0,1,⋯,K − 1}d}

Figure 5: An illustration of the desired function φ = φ2 ○ Φ1. Note that φ ≈ f on

[0,1]d/Ω([0,1]d,K, δ), since φ(x) = φ2 ○Φ1(x) = φ2(β) ≈ f(xβ) for any x ∈ Qβ and each

β ∈ {0,1,⋯,K − 1}d.

O(N) and depth O(L) using two propositions as we shall prove in Section 3.3 and 3.4

later. We first construct a ReLU FNN with desired width and depth by Proposition 3.1

to implement a one-dimensional step function φ1. Then Φ1 can be attained via defining

Φ1(x) = [φ1(x1), φ1(x2),⋯, φ1(xd)]
T
, for any x = [x1, x2,⋯, xd]T ∈ Rd.

Proposition 3.1. For any N,L, d ∈ N+ and δ ∈ (0, 1
3K ] with K = ⌊N1/d⌋2⌊L2/d⌋, there

exists a one-dimensional function φ implemented by a ReLU FNN with width 4⌊N1/d⌋+3

and depth 4L + 5 such that

φ(x) = k, if x ∈ [ kK , k+1
K − δ ⋅ 1{k≤K−2}] for k = 0,1,⋯,K − 1.

The construction of φ2 is a direct result of Proposition 3.2 below, the proof of which

relies on the bit extraction technique in [5].

Proposition 3.2. Given any ε > 0 and arbitrary N,L,J ∈ N+ with J ≤ N2L2, assume

{yj ≥ 0 ∶ j = 0,1,⋯, J − 1} is a sample set with ∣yj − yj−1∣ ≤ ε for j = 1,2,⋯, J − 1. Then

there exists φ ∈ NN (#input = 1; width ≤ 12N + 8; depth ≤ 4L + 9; #output = 1) such

that

(i) ∣φ(j) − yj ∣ ≤ ε for j = 0,1,⋯, J − 1;

(ii) 0 ≤ φ(x) ≤ max{yj ∶ j = 0,1,⋯, J − 1} for any x ∈ R.

With the above propositions ready, let us prove Theorem 2.1 in Section 3.2. We

further assume that ωf(r) > 0 for any r > 0, excluding a simple case when f is a constant

function.

3.2 Proof of Theorem 2.1

We essentially construct an almost piecewise constant function implemented by a

ReLU FNN with O(NL) neurons to approximate f . We may f is not a constant since

it is a trivial case. Then ωf(r) > 0 for any r > 0. It is clear that ∣f(x) − f(0)∣ ≤ ωf(
√
d)

for any x ∈ [0,1]d. Define f̃ = f − f(0) + ωf(
√
d), then 0 ≤ f̃(x) ≤ 2ωf(

√
d) for any

x ∈ [0,1]d. Let M = N2L, K = ⌊N1/d⌋2⌊L2/d⌋, and δ be an arbitrary number in (0, 1
3K ].

The proof can be divided into four steps as follows:
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1. Divide [0,1]d into a union of sub-cubes {Qβ}β∈{0,1,⋯,K−1}d and the trifling region

Ω([0,1]d,K, δ), and denote xβ as the vertex of Qβ with minimum ∥ ⋅ ∥1 norm;

2. Construct a sub-network to implement a vector function Φ1 projecting the whole

cube Qβ to the d-dimensional index β for each β, i.e., Φ1(x) = β for all x ∈ Qβ;

3. Construct a sub-network to implement a function φ2 mapping the index β approx-

imately to f̃(xβ). This core step can be further divided into three sub-steps:

3.1. Construct a sub-network to implement ψ1 bijectively mapping the index set

{0,1,⋯,K − 1}d to an auxiliary set A1 ⊆ { j
2Kd ∶ j = 0,1,⋯,2Kd} defined later

(see Figure 7 for an illustration);

3.2. Determine a continuous piecewise linear function g with a set of breakpoints

A1 ∪A2 ∪ {1} satisfying: 1) assign the values of g at breakpoints in A1 based

on {f̃(xβ)}β, i.e., g ○ψ1(β) = f̃(xβ); 2) assign the values of g at breakpoints

in A2 ∪ {1} to reduce the variation of g for applying Proposition 3.2;

3.3. Apply Proposition 3.2 to construct a sub-network to implement a function ψ2

approximating g well on A1 ∪A2 ∪ {1}. Then the desired function φ2 is given

by φ2 = ψ2 ○ ψ1 satisfying φ2(β) = ψ2 ○ ψ1(β) ≈ g ○ ψ1(β) = f̃(xβ);

4. Construct the final target network to implement the desired function φ such that

φ(x) = φ2 ○Φ1(x) + f(0) − ωf(
√
d) ≈ f̃(xβ) + f(0) − ωf(

√
d) = f(xβ) for x ∈ Qβ.

The details of these steps can be found below.

Step 1∶ Divide [0,1]d into {Qβ}β∈{0,1,⋯,K−1}d and Ω([0,1]d,K, δ).
Define xβ ∶= β/K and

Qβ ∶= {x = [x1,⋯, xd]T ∈ [0,1]d ∶ xi ∈ [βiK ,
βi+1
K − δ ⋅ 1{βi≤K−2}], i = 1,⋯, d}

for each d-dimensional index β = [β1,⋯, βd]T ∈ {0,1,⋯,K−1}d. Recall that Ω([0,1]d,K, δ)
is the trifling region defined in Equation (2.1). Apparently, xβ is the vertex of Qβ with

minimum ∥ ⋅ ∥1 norm and

[0,1]d = ( ∪β∈{0,1,⋯,K−1}d Qβ) ∪Ω([0,1]d,K, δ),

see Figure 6 for illustrations.

Step 2∶ Construct Φ1 mapping x ∈ Qβ to β.

By Proposition 3.1, there exists φ1 ∈ NN (width ≤ 4⌊N1/d⌋ + 3; depth ≤ 4L + 5) such

that

φ1(x) = k, if x ∈ [ kK , k+1
K − δ ⋅ 1{k≤K−2}] for k = 0,1,⋯,K − 1.

It follows that φ1(xi) = βi if x = [x1, x2,⋯, xd]T ∈ Qβ for each β = [β1, β2,⋯, βd]T .

By defining

Φ1(x) ∶= [φ1(x1), φ1(x2),⋯, φ1(xd)]
T
, for any x = [x1, x2,⋯, xd]T ∈ Rd,
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Figure 6: Illustrations of Ω([0,1]d,K, δ), Qβ, and xβ for β ∈ {0,1,⋯,K − 1}d. (a) K = 5

and d = 1. (b) K = 4 and d = 2.

we have Φ1(x) = β if x ∈ Qβ for β ∈ {0,1,⋯,K − 1}d.

Step 3∶ Construct φ2 mapping β approximately to f̃(xβ).
The construction of the sub-network implementing φ2 is essentially based on Propo-

sition 3.2. To meet the requirements of applying Proposition 3.2, we first define two

auxiliary set A1 and A2 as

A1 ∶= { i
Kd−1 + k

2Kd ∶ i = 0,1,⋯,Kd−1−1 and k = 0,1,⋯,K − 1}

and

A2 ∶= { i
Kd−1 + K+k

2Kd ∶ i = 0,1,⋯,Kd−1−1 and k = 0,1,⋯,K − 1}.
Clearly, A1 ∪A2 ∪ {1} = { j

2Kd ∶ j = 0,1,⋯,2Kd} and A1 ∩A2 = ∅. See Figure 6 for an

illustration of A1 and A2. Next, we further divide this step into three sub-steps.

Step 3.1∶ Construct ψ1 bijectively mapping {0,1,⋯,K − 1}d to A1.

Inspired by the binary representation, we define

ψ1(x) ∶= xd
2Kd +

d−1

∑
i=1

xi
Ki , for any x = [x1, x2,⋯, xd]T ∈ Rd. (3.1)

Then ψ1 is a linear function bijectively mapping the index set {0,1,⋯,K − 1}d to

{ βd
2Kd +

d−1

∑
i=1

βi
Ki ∶ β ∈ {0,1,⋯,K − 1}d}

= { i
Kd−1 + k

2Kd ∶ i = 0,1,⋯,Kd−1−1 and k = 0,1,⋯,K − 1} = A1.

Step 3.2∶ Construct g to satisfy g ○ ψ1(β) = f̃(xβ) and to meet the requirements of

applying Proposition 3.2.

Let g ∶ [0,1]→ R be a continuous piecewise linear function with a set of breakpoints

{ j
2Kd ∶ j = 0,1,⋯,2Kd} = A1 ∪A2 ∪ {1} and the values of g at these breakpoints satisfy

the following properties:
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Figure 7: An illustration of A1, A2, {1}, and g for d = 2 and K = 4.

• The values of g at the breakpoints in A1 are set as

g(ψ1(β)) = f̃(xβ), for any β ∈ {0,1,⋯,K − 1}d; (3.2)

• At the breakpoint 1, let g(1) = f̃(1), where 1 = [1,1,⋯,1]T ∈ Rd;

• The values of g at the breakpoints in A2 are assigned to reduce the variation of g,

which is a requirement of applying Proposition 3.2. Note that

{ i
Kd−1 − K+1

2Kd ,
i

Kd−1} ⊆ A1 ∪ {1}, for i = 1,2,⋯,Kd−1,

implying the values of g at i
Kd−1−K+1

2Kd and i
Kd−1 have been assigned for i = 1,2,⋯,Kd−1.

Thus, the values of g at the breakpoints in A2 can be successfully assigned by

letting g linear on each interval [ i
Kd−1 − K+1

2Kd ,
i

Kd−1 ] for i = 1,2,⋯,Kd−1, since

A2 ⊆ ∪K
d−1

i=1 [ i
Kd−1 − K+1

2Kd ,
i

Kd−1 ].

Apparently, such a function g exists (see Figure 7 for an example) and satisfies

∣g( j
2Kd ) − g( j−1

2Kd )∣ ≤ max{ωf( 1
K ), ωf(

√
d)/K} ≤ ωf(

√

d
K ), for j = 1,2,⋯,2Kd,

and

0 ≤ g( j
2Kd ) ≤ 2ωf(

√
d), for j = 0,1,⋯,2Kd.

Step 3.3∶ Construct ψ2 approximating g well on A1 ∪A2 ∪ {1}.

Since 2Kd = 2(⌊N1/d⌋2⌊L2/d⌋)d ≤ 2(N2L2) ≤ N2L̃2, where L̃ = 2L, by Proposition 3.2

(set yj = g( j
2K2 ) and ε = ωf(

√

d
K ) > 0 therein), there exists ψ̃2 ∈ NN (#input = 1; width ≤

12N + 8; depth ≤ 4L̃ + 9) = NN (#input = 1; width ≤ 12N + 8; depth ≤ 8L + 9) such that

∣ψ̃2(j) − g( j
2Kd )∣ ≤ ωf(

√

d
K ), for j = 0,1,⋯,2Kd − 1,

and

0 ≤ ψ̃2(x) ≤ max{g( j
2Kd ) ∶ j = 0,1,⋯,2Kd − 1} ≤ 2ωf(

√
d), for any x ∈ R.

By defining ψ2(x) ∶= ψ̃2(2Kdx) for any x ∈ R, we have ψ2 ∈ NN (#input = 1; width ≤
12N + 8; depth ≤ 8L + 9),

0 ≤ ψ2(x) = ψ̃2(2Kdx) ≤ 2ωf(
√
d), for any x ∈ R, (3.3)

18



and

∣ψ2( j
2Kd ) − g( j

2Kd )∣ = ∣ψ̃2(j) − g( j
2Kd )∣ ≤ ωf(

√

d
K ), for j = 0,1,⋯,2Kd − 1. (3.4)

Let us end Step 3 by defining the desired function φ2 as φ2 ∶= ψ2 ○ψ1. Note that ψ1 ∶
Rd → R is a linear function and ψ2 ∈ NN (#input = 1; width ≤ 12N + 8; depth ≤ 8L + 9).
Thus, φ2 ∈ NN (#input = d; width ≤ 12N + 8; depth ≤ 8L + 9). By Equation (3.2) and

(3.4), we have

∣φ2(β) − f̃(xβ)∣ = ∣ψ2(ψ1(β)) − g(ψ1(β))∣ ≤ ωf(
√

d
K ), (3.5)

for any β ∈ {0,1,⋯,K − 1}d. Equation (3.3) and φ2 = ψ2 ○ ψ1 implies

0 ≤ φ2(x) ≤ 2ωf(
√
d), for any x ∈ Rd. (3.6)

Step 4∶ Construct the final network to implement the desired function φ.

Define φ ∶= φ2 ○Φ1 + f(0) − ωf(
√
d). Since φ1 ∈ NN (width ≤ 4⌊N1/d⌋ + 3; depth ≤

4L+5]), we have Φ1 ∈ NN (#input = d; width ≤ 4d⌊N1/d⌋+3d; depth ≤ 4L+5; #output =
d). Note that φ2 ∈ NN (#input = d; width ≤ 12N + 8; depth ≤ 8L + 9). Thus, φ =
φ2 ○Φ1 + f(0) − ωf(

√
d) is in

NN (width ≤ max{4d⌊N1/d⌋ + 3d,12N + 8}; depth ≤ (4L + 5) + (8L + 9) = 12L + 14).

Now let us estimate the approximation error. Note that f = f̃ + f(0)−ωf(
√
d). By

Equation (3.5), for any x ∈ Qβ and β ∈ {0,1,⋯,K − 1}d, we have

∣f(x) − φ(x)∣ = ∣f̃(x) − φ2(Φ1(x))∣ = ∣f̃(x) − φ2(β)∣
≤ ∣f̃(x) − f̃(xβ)∣ + ∣f̃(xβ) − φ2(β)∣
≤ ωf(

√

d
K ) + ωf(

√

d
K ) ≤ 2ωf(8

√
dN−2/dL−2/d),

where the last inequality comes from the fact K = ⌊N1/d⌋2⌊L2/d⌋ ≥ N2/dL2/d
8 for any N,L ∈

N+. Recall the fact ωf(nr) ≤ nωf(r) for any n ∈ N+ and r ∈ [0,∞). Therefore, for any

x ∈ ∪β∈{0,1,⋯,K−1}dQβ=[0,1]d/Ω([0,1]d,K, δ), we have

∣f(x) − φ(x)∣ ≤ 2ωf(8
√
dN−2/dL−2/d) ≤ 2⌈8

√
d⌉ωf(N−2/dL−2/d)

≤ 18
√
dωf(N−2/dL−2/d).

It remains to show the upper bound of φ. By Equation (3.6) and φ = φ2○Φ1+f(0)−
ωf(

√
d), it holds that ∥φ∥L∞(Rd) ≤ ∣f(0)∣ + ωf(

√
d). Thus, we finish the proof.

3.3 Proof of Proposition 3.1

Lemma 3.3. For any N1,N2 ∈ N+, given N1(N2 + 1) + 1 samples (xi, yi) ∈ R2 with

x0 < x1 < ⋯ < xN1(N2+1) and yi ≥ 0 for i = 0,1,⋯,N1(N2+1), there exists φ ∈ NN (#input =
1; widthvec = [2N1,2N2 + 1]; #output = 1) satisfying the following conditions.
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(i) φ(xi) = yi for i = 0,1,⋯,N1(N2 + 1);

(ii) φ is linear on each interval [xi−1, xi] for i ∉ {(N2 + 1)j ∶ j = 1,2,⋯,N1}.

In fact, Lemma 3.3 is a part of Lemma 2.2 in [61]. For the purpose of being self-

contained, we present it as follows.

Lemma (Lemma 2.2 of [61]). For any m,n ∈ N+, given any m(n+1)+1 samples (xi, yi) ∈
R2 with x0 < x1 < x2 < ⋯ < xm(n+1) and yi ≥ 0 for i = 0,1,⋯,m(n + 1), there exists

φ ∈ NN (#input = 1; widthvec = [2m,2n + 1]; #output = 1) satisfying the following

conditions.

(i) φ(xi) = yi for i = 0,1,⋯,m(n + 1);

(ii) φ is linear on each interval [xi−1, xi] for i ∉ {(n + 1)j ∶ j = 1,2,⋯,m};

(iii) sup
x∈[x0, xm(n+1)]

∣φ(x)∣ ≤ 3 max
i∈{0,1,⋯,m(n+1)}

yi
n

∏
k=1

(1 + max{xj(n+1)+n−xj(n+1)+k−1∶j=0,1,⋯,m−1}

min{xj(n+1)+k−xj(n+1)+k−1∶j=0,1,⋯,m−1} ).

Lemma 3.4. Given any N,L, d ∈ N+, it holds that

NN (#input = d; widthvec = [N,NL]; #output = 1)
⊆ NN (#input = d; width ≤ 2N + 2; depth ≤ L + 1; #output = 1).

Proof. The key idea to prove Proposition 3.4 is to re-assemble O(L) sub-FNNs in the

shallower FNN in the left of Figure 8 to form a deeper one with width O(N) and depth

O(L) on the right of Figure 8.

g

·
··

h1

h2

hL

Ô⇒

0 2 4 6

−1

0

1

g

h1

g

h2

g

h3

g

h4

g

· · ·

· · ·

· · ·
Figure 8: An illustration of the main idea to prove Lemma 3.4.

For any φ ∈ NN (#input = d; widthvec = [N,NL]; #output = 1), φ can be imple-

mented by a ReLU FNN described as

x
W0, b0

σ g
W1, b1

σ h
W2, b2 φ(x),

where g and h are the output of the first hidden layer and the second hidden layer,

respectively. Note that

g = σ(W0 ⋅x + b0), h = σ(W1 ⋅ g + b1), and φ(x) =W2 ⋅h + b2.
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We can evenly divide h ∈ RNL×1, b1 ∈ RNL×1, W1 ∈ RNL×N , and W2 ∈ R1×NL into L parts

as follows:

h =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1

h2

⋮
hL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1,1

b1,2

⋮
b1,L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, W1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1,1

W1,2

⋮
W1,L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and W2 = [W2,1,W2,2,⋯,W2,L], where h` ∈ RN×1, b1,` ∈ RN×1, W1,` ∈ RN×N , and W2,` ∈
R1×N for ` = 1,2,⋯, L. Then, for ` = 1,2,⋯, L, we have

h` = σ(W1,` ⋅ g + b1,`) and φ(x) =W2 ⋅h + b2 =
L

∑
j=1

W2,j ⋅hj + b2. (3.7)

Define

s0 ∶= 0, and s` ∶=
`

∑
j=1

W2,j ⋅hj, for ` = 1,2,⋯, L.

Then φ(x) =W2 ⋅h + b2 = sL + b2 and

s` = s`−1 +W2,` ⋅h`, for ` = 1,2,⋯, L. (3.8)

Hence, it is easy to check that φ can also be implemented by the deep network shown

in Figure 9. It is clear that the network has the architecture of Figure 9 is with width

x g

h1

g

σ(s1)

σ(−s1)

h2

g

σ(s2)

σ(−s2)

h3

g

· · ·

σ(sL−1)

σ(−sL−1)

hL

g

sL + b2 = φ(x)

Figure 9: A illustration of the desired network based on Equation (3.7) and (3.8), and

the fact x = σ(x)−σ(−x) for any x ∈ R. We omit the activation function (σ) if the input

is non-negative.

2N + 2 and depth L + 1. So, we finish the proof.

With Lemma 3.3 and 3.4 in hand, we are ready to present the detailed proof of

Proposition 3.1.

Proof of Proposition 3.1. We divide the proof into two cases: d = 1 and d ≥ 2.

Case 1∶ d = 1.

In this case, K = ⌊N1/d⌋2⌊L2/d⌋ = N2L2. Denote M = N2L and consider the sample

set

{(1,M − 1), (2,0)} ∪ {(mM ,m) ∶m = 0,1,⋯,M − 1} ∪ {(m+1
M − δ,m) ∶m = 0,1,⋯,M − 2}.
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Its size is 2M + 1 = N ⋅ ((2NL− 1)+ 1)+ 1. By Lemma 3.3 (set N1 = N and N2 = 2NL− 1

therein), there exists φ1 ∈ NN (widthvec = [2N,2(2NL − 1) + 1]) = NN (widthvec =
[2N,4NL − 1]) such that

• φ1(M−1
M ) = φ1(1) =M − 1 and φ1(mM ) = φ1(m+1

M − δ) =m for m = 0,1,⋯,M − 2;

• φ1 is linear on [M−1
M ,1] and each interval [mM , m+1

M − δ] for m = 0,1,⋯,M − 2.

Then

φ1(x) =m, if x ∈ [mM , m+1
M − δ ⋅ 1{m≤M−2}], for m = 0,1,⋯,M − 1. (3.9)

Now consider the another sample set

{( 1
M , L − 1), (2,0)} ∪ {( `

ML , `) ∶ ` = 0,1,⋯, L − 1} ∪ {( `+1
ML − δ, `) ∶ ` = 0,1,⋯, L − 2}.

Its size is 2L+1 = 1 ⋅((2L−1)+1)+1. By Lemma 3.3 (set N1 = 1 and N2 = 2L−1 therein),

there exists φ2 ∈ NN (widthvec = [2,2(2L − 1) + 1]) = NN (widthvec = [2,4L − 1]) such

that

• φ2(L−1
ML) = φ2( 1

M ) = L − 1 and φ2( `
ML) = φ2( `+1

ML − δ) = ` for ` = 0,1,⋯, L − 2;

• φ2 is linear on [L−1
ML ,

1
M ] and each interval [ `

ML ,
`+1
ML − δ] for ` = 0,1,⋯, L − 2.

It follows that, for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1,

φ2(x − m
M ) = `, for x ∈ [mL+`ML ,

mL+`+1
ML − δ ⋅ 1{`≤L−2}]. (3.10)

The fact K = ML implies each k ∈ {0,1,⋯,K − 1} can be unique represented by

k = mL + ` for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1. Then the desired function φ can

be implemented by a ReLU FNN shown in Figure 10. Clearly,

φ(x) = k, if x ∈ [ kK , kK − δ ⋅ 1{k≤K−2}] for k ∈ {0,1,⋯,K − 1}.

By Lemma 3.4, φ1 ∈ NN (widthvec = [2N,4NL−1]) ⊆ NN (width ≤ 4N+2; depth ≤ 2L+1)
and φ2 ∈ NN (widthvec = [2,4L − 1]) ⊆ NN (width ≤ 6; depth ≤ 2L + 1), implying

φ ∈ NN (width ≤ max{4N +2+1,6+1} = 4N +3; depth ≤ (2L+1)+2+(2L+1)+1 = 4L+5).
So we finish the proof for the case d = 1.

x

φ1(x) = m

x

m

x− m
M

m

φ2(x− m
M ) = `

mL+ ` = k =: φ(x)
φ1

φ2

Figure 10: An illustration of the ReLU FNN implementing φ based on Equation (3.9)

and (3.10) with x ∈ [ kK , kK − δ ⋅ 1{k≤K−2}] = [mL+`ML ,
mL+`+1
ML − δ ⋅ 1{m≤M−2 or `≤L−2}], where

k =mL+` for m = 0,1,⋯,M −1 and ` = 0,1,⋯, L−1. “φ1” and “φ2” near “Ð→” represent

the respective ReLU FNN implementing itself. We omit the activation function ReLU if

the input of a neuron is non-negative.
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Case 2∶ d ≥ 2.

Now we consider the case when d ≥ 2. Consider the sample set

{(1,K − 1), (2,0)} ∪ {( kK , k) ∶ k = 0,1,⋯,K − 1} ∪ {(k+1
K − δ, k) ∶ k = 0,1,⋯,K − 2},

whose size is 2K +1 = ⌊N1/d⌋((2⌊N1/d⌋⌊L2/d⌋−1)+1)+1. By Lemma 3.3 (set N1 = ⌊N1/d⌋
and N2 = 2⌊N1/d⌋⌊L2/d⌋ − 1 therein), there exists φ in

NN (widthvec = [2⌊N1/d⌋,2(2⌊N1/d⌋⌊L2/d⌋ − 1) + 1])
⊆ NN (widthvec = [2⌊N1/d⌋,4⌊N1/d⌋⌊L2/d⌋ − 1])

such that

• φ(K−1
K ) = φ(1) =K − 1, and φ( kK ) = φ(k+1

K − δ) = k for k = 0,1,⋯,K − 2;

• φ is linear on [K−1
K ,1] and each interval [ kK , k+1

K − δ] for k = 0,1,⋯,K − 2.

Then

φ(x) = k, if x ∈ [ kK , k+1
K − δ ⋅ 1{k≤K−2}] for k = 0,1,⋯,K − 1.

By Lemma 3.4,

φ ∈ NN (widthvec = [2⌊N1/d⌋,4⌊N1/d⌋⌊L2/d⌋ − 1])
⊆ NN (width ≤ 4⌊N1/d⌋ + 2; depth ≤ 2⌊L2/d⌋ + 1)
⊆ NN (width ≤ 4⌊N1/d⌋ + 3; depth ≤ 4L + 5).

which means we finish the proof for the case d ≥ 2.

3.4 Proof of Proposition 3.2

The proof of Proposition 3.2 is based on the bit extraction technique in [5, 27]. In

fact, we modify this technique to extract the sum of many bits rather than one bit and

this modification can be summarized in Lemma 3.5 and 3.6 below.

Lemma 3.5. For any L ∈ N+, there exists a function φ in

NN (#input = 2; width ≤ 7; depth ≤ 2L + 1; #output = 1)

such that, for any θ1, θ2,⋯, θL ∈ {0,1}, we have

φ(bin0.θ1θ2⋯θL, `) =
`

∑
j=1

θj, for ` = 1,2,⋯, L.

Proof. Given θ1, θ2,⋯, θL ∈ {0,1}, define

ξj ∶= bin0.θjθj+1⋯θL, for j = 1,2,⋯, L

and

T (x) ∶= {1, x ≥ 0,

0, x < 0.
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Then we have

θj = T (ξj − 1/2), for j = 1,2,⋯, L,

and

ξj+1 = 2ξj − θj, for j = 1,2,⋯, L − 1.

I would like to point out that, by above two iteration equations, we can iteratively get

ξ1, θ1, ξ2, θ2,⋯, ξL, θL when ξ1 is given. Based on this iteration idea, the rest proof can be

divided into three steps.

Step 1∶ Simplify the iteration equations.

Note that T (x) = σ(x/δ+1)−σ(x/δ) for any x ∉ (−δ,0). By setting δ = 1/2−∑L
j=2 2−j =

2−L, we have ξj − 1/2 ∉ (−δ,0) for all j, implying

θj = T (ξj − 1/2) = σ((ξj − 1/2)/δ + 1) − σ((ξj − 1/2)/δ)
= σ(L(ξj) + 1) − σ(L(ξj)),

(3.11)

for j = 1,2,⋯, L, where L is the linear map given by L(x) = (x − 1/2)/δ. It follows that,

for j = 1,2,⋯, L − 1,

ξj+1 = 2ξj − θj = 2ξj − σ(L(ξj) + 1) + σ(L(ξj)). (3.12)

Step 2∶ Design a ReLU FNN to output ∑`
j=1 θj.

It is easy to design a ReLU FNN to output θ1, θ2,⋯, θL by Equation (3.11) and

(3.12) when using ξ1 = bin0.θ1θ2⋯θL as the input. However, it is highly non-trivial to

construct a ReLU FNN to output ∑`
j=1 θj with another input `, since many operations

like multiplication and comparison are not allowed in designing ReLU FNNs.

Now let us establish a formula to represent ∑`
j=1 θj in a form of a ReLU FNN as

follows:

The fact that x1x2 = σ(x1 + x2 − 1) for any x1, x2 ∈ {0,1} implies

`

∑
j=1

θj =
L

∑
j=1

θjT (` − j) =
L

∑
j=1

σ(θj + T (` − j) − 1)

=
L

∑
j=1

σ(θj + σ(` − j + 1) − σ(` − j) − 1),

for ` = 1,2,⋯, L, where the last equality comes from the fact T (n) = σ(n + 1) − σ(n) for

any integer n.

To simplify the notations, we define

z`,j ∶= σ(θj + σ(` − j + 1) − σ(` − j) − 1), (3.13)

for ` = 1,2,⋯, L and j = 1,2,⋯, L. Then,

`

∑
j=1

θj =
L

∑
j=1

z`,j, for ` = 1,2,⋯, L. (3.14)
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σ
(
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(
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ξ3

σ
(
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)

σ
(
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)

∑1
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σ(3− `)

· · ·
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ξL

θL−1
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σ(`− (L− 1) + 1)

σ(`− (L− 1))

σ((L− 1)− `)

ξL

σ
(
L(ξL) + 1

)

σ
(
L(ξL)

)

∑L−2
j=1 z`,j

z`,L−1

σ(`− L)

σ(L− `)

θL

∑L−1
j=1 z`,j

σ(`− L+ 1)

σ(`− L)

∑L−1
j=1 z`,j

z`,L

∑L
j=1 z`,j =

∑`
j=1 θj =: φ(ξ1, `)· · ·

2L− 2 2L− 1 2L 2L + 1 Output

Figure 11: A illustration of the target ReLU FNN implementing φ to output ∑L
j=1 zj,` =

∑`
j=1 θj = φ(ξ1, `) given the input (ξ1, `) = (bin0.θ1θ2⋯θL, `) for ` ∈ {1,2,⋯, L} and

θ1, θ2,⋯, θL ∈ {0,1}. The construction is mainly based on Equation (3.11), (3.12), (3.13),

and (3.14). The numbers above the architecture indicate the order of hidden layers. It

builds a whole iteration step for every two layers. We output both σ(` − j) and σ(j − `)
in the hidden layers for j = 1,2,⋯, L because of the fact x = σ(x) − σ(−x) for any x ∈ R.

We omit the activation function (σ) if the input of a neuron is non-negative. Note that

all parameters of this network are essentially determined by Equation (3.11) and (3.12),

which are valid no matter what θ1, θ2,⋯, θL ∈ {0,1} are. Thus, the desired function φ

implemented by this network is independent of θ1, θ2,⋯, θL ∈ {0,1}.
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With Equation (3.11), (3.12), (3.13), and (3.14) in hand, it is easy to construct a

function φ implemented by a ReLU FNN with the desired width and depth outputting

∑`
j=1 θj = ∑L

j=1 z`,j given the input (ξ1, `) = (bin0.θ1θ2⋯θL, `) for ` ∈ {1,2,⋯, L} and

θ1, θ2,⋯, θL ∈ {0,1}. The details of construction are shown in Figure 11. Clearly, the

network in Figure 11 is with width 7 and depth 2L + 1, which implies

φ ∈ NN (#input = 2; width ≤ 7; depth ≤ 2L + 1; #output = 1).

So we finish the proof.

Next, we introduce Lemma 3.6 as an advanced version of Lemma 3.5.

Lemma 3.6. For any N,L ∈ N+, any θm,` ∈ {0,1} for m = 0,1,⋯,M−1 and ` = 0,1,⋯, L−
1, where M = N2L, there exists a function φ implemented by a ReLU FNN with width

4N + 3 and depth 3L + 3 such that

φ(m,`) =
`

∑
j=0

θm,j, for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1.

Proof. Define

ym ∶= bin0.θm,0θm,1⋯θm,L−1, for m = 0,1,⋯,M − 1.

Consider the sample set {(m,ym) ∶m = 0,1,⋯,M}, whose cardinality is M+1 = N((NL−
1) + 1) + 1. By Lemma 3.3 (set N1 = N and N2 = NL − 1 therein), there exists

φ1 ∈ NN (#input = 1; widthvec = [2N,2(NL − 1) + 1])
= NN (#input = 1; widthvec = [2N,2NL − 1])

such that

φ1(m) = ym, for m = 0,1,⋯,M − 1.

By Lemma 3.5, there exists

φ2 ∈ NN (#input = 2; width ≤ 7; depth ≤ 2L + 1)

such that, for any ξ1, ξ2,⋯, ξL ∈ {0,1}, we have

φ2(bin0.ξ1ξ2⋯ξL, `) =
`

∑
j=1

ξj, for ` = 1,2,⋯, L.

It follows that, for any ξ0, ξ1,⋯, ξL−1 ∈ {0,1}, we have

φ2(bin0.ξ0ξ1⋯ξL−1, ` + 1) =
`

∑
j=0

ξj, for ` = 0,1,⋯, L − 1.

Thus, for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1, we have

φ2(φ1(m), ` + 1) = φ2(ym, ` + 1) = φ2(0.θm,0θm,1⋯θm,L−1, ` + 1) =
`

∑
j=0

θm,j.

Hence, the desired function function φ can be implemented by the network shown

in Figure 12. By Lemma 3.4, φ1 ∈ NN (widthvec = [2N,2NL − 1]) ⊆ NN (width ≤ 4N +
2; depth ≤ L+1), implying the network in Figure 12 is with width max{(4N +2)+1,7} =
4N + 3 and depth (2L + 1) + 1 + (L + 1) = 3L + 3. So we finish the proof.
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m

`

φ1(m)

`+ 1

φ2
(
φ1(m), `+ 1

)
=
∑`

j=0 θm,j =: φ(m, `)

φ1
φ2

Figure 12: A illustration of the network implementing the desired function φ. “φ1” and

“φ2” near “Ð→” represent the respective ReLU FNN implementing itself. We omit the

activation function ReLU if the input of a neuron is non-negative.

Next, we apply Lemma 3.6 to prove Lemma 3.7 below, which is a key intermediate

conclusion to prove Proposition 3.2.

Lemma 3.7. For any ε > 0, L,N ∈ N+, denote M = N2L and assume {ym,` ≥ 0 ∶ m =
0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1} is a sample set with

∣ym,` − ym,`−1∣ ≤ ε, for m = 0,1,⋯,M − 1 and ` = 1,2,⋯, L − 1.

Then there exists φ ∈ NN (#input = 2; width ≤ 12N + 8; depth ≤ 3L + 6) such that

(i) ∣φ(m,`) − ym,`∣ ≤ ε, for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1;

(ii) 0 ≤ φ(x1, x2) ≤ max{ym,` ∶m = 0,1,⋯,M−1 and ` = 0,1,⋯, L−1}, for any x1, x2 ∈ R.

Proof. Define

am,` ∶= ⌊ym,`/ε⌋, for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1.

We will construct a function implemented by a ReLU FNN to map the index (m,`) to

am,`ε for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1.

Define bm,0 ∶= 0 and bm,` ∶= am,` − am,`−1 for m = 0,1,⋯,M − 1 and ` = 1,⋯, L − 1.

Since ∣ym,` − ym,`−1∣ ≤ ε for all m and `, we have bm,` ∈ {−1,0,1}. Hence, there exist cm,`
and dm,` ∈ {0,1} such that bm,` = cm,` − dm,`, which implies

am,` = am,0 +
`

∑
j=1

(am,j − am,j−1) = am,0 +
`

∑
j=1

bm,j = am,0 +
`

∑
j=0

bm,j

= am,0 +
`

∑
j=0

cm,j −
`

∑
j=0

dm,j.

for m = 0,1,⋯,M − 1 and ` = 1,⋯, L − 1.

For the sample set {(m,am,0) ∶m = 0,1,⋯,M − 1} ∪ {(M,0)}, whose size is M + 1 =
N ⋅ ((NL− 1)+ 1)+ 1, by Lemma 3.3 (set N1 = N and N2 = NL− 1 therein), there exists

ψ1 ∈ NN (widthvec = [2N,2(NL − 1) + 1]) = NN (widthvec = [2N,2NL − 1]) such that

ψ1(m) = am,0, for m = 0,1,⋯,M − 1.

By Lemma 3.6, there exist ψ2, ψ3 ∈ NN (width ≤ 4N + 3; depth ≤ 3L + 3) such that

ψ2(m,`) =
`

∑
j=0

cm,j and ψ3(m,`) =
`

∑
j=0

dm,j,
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for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1. Hence, it holds that

am,` = am,0 +
`

∑
j=0

cm,j −
`

∑
j=0

dm,j = ψ1(m) + ψ2(m,`) − ψ3(m,`), (3.15)

for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1.

Define

ymax ∶= max{ym,` ∶m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1}.

Then the desired function can be implemented by two sub-networks shown in Figure 13.

m

`

ψ1(m)

ψ2(m, `)

ψ3(m, `)

εam,` =: φ1(m, `)

ψ1

ψ2

ψ3

(a) φ1

x σ(x)

σ
(
σ(x) + ymax

)

σ
(
− σ(x)− ymax

)

σ
(
σ(x)− ymax

)

σ
(
− σ(x) + ymax

)

min
{
σ(x), ymax

}
=: φ2(x)

(b) φ2

Figure 13: Illustrations of two sub-networks implementing the desired function

φ = φ2 ○ φ1 based Equation (3.15) and the fact min{x1, x2} = x1+x2−∣x1−x2∣
2 =

σ(x1+x2)−σ(−x1−x2)−σ(x1−x2)−σ(−x1+x2)
2 . ymax is given by max{ym,` ∶m = 0,1,⋯,M − 1 and ` =

0,1,⋯, L − 1}. “ψ1”,“ψ2”, and “ψ3” near “Ð→” represent the respective ReLU FNN

implementing itself. We omit the activation function ReLU if the input of a neuron is

non-negative.

By Lemma 3.4, ψ1 ∈ NN (#input = 1; widthvec = [2N,2NL − 1]) ⊆ NN (#input =
1; width ≤ 4N +2; depth ≤ L+1). Note that ψ2, ψ3 ∈ NN (width ≤ 4N +3; depth ≤ 3L+3).
Thus, φ1 ∈ NN (width ≤ (4N + 2) + 2(4N + 3) = 12N + 8; depth ≤ (3L + 3) + 1 = 3L + 4)
as shown in Figure 13. And it is clear that φ2 ∈ NN (width ≤ 4; depth ≤ 2), implying

φ = φ2 ○ φ1 ∈ NN (width ≤ 12N + 8; depth ≤ (3L + 4) + 2 = 3L + 6).
Clearly, 0 ≤ φ(x1, x2) ≤ ymax for any x1, x2 ∈ R, since φ(x1, x2) = φ2 ○ φ1(x1, x2) =

max{σ(φ1(x1, x2)), ymax}.

Note that 0 ≤ εam,` = ε⌊ym,`/ε⌋ ≤ ymax. Then we have φ(m,`) = φ2 ○ φ1(m,`) =
φ2(εam,`) = max{σ(εam,`), ymax} = εam,`. Therefore,

∣φ(m,`) − ym,`∣ = ∣am,`ε − ym,`∣ = ∣⌊ym,`/ε⌋ε − ym,`∣ ≤ ε,

for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1. Hence, we finish the proof.

Finally, we apply Lemma 3.7 to prove Proposition 3.2.

Proof of Proposition 3.2. Let M = N2L, then we may assume J =ML since we can set

yJ−1 = yJ = yJ+1 = ⋯ = yML−1 if J <ML.

For the sample set

{(mL,m) ∶m = 0,1,⋯,M} ∪ {(mL +L − 1,m) ∶m = 0,1,⋯,M − 1},
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whose size is 2M + 1 = N ⋅ ((2NL − 1) + 1) + 1, by Lemma 3.3 (set N1 = N and N2 =
NL − 1 therein), there exist φ1 ∈ NN (#input = 1; widthvec = [2N,2(2NL − 1) + 1]) =
NN (#input = 1; widthvec = [2N,4NL − 1]) such that

• φ1(ML) =M and φ1(mL) = φ1(mL +L − 1) =m for m = 0,1,⋯,M − 1;

• φ1 is linear on each interval [mL,mL +L − 1] for m = 0,1,⋯,M − 1.

It follows that

φ1(j) =m, and j −Lφ1(j) = `, where j =mL + `, (3.16)

for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1.

Note that any number j in {0,1, . . . , J − 1} can be uniquely indexed as j = mL + `
for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L− 1. So we can denote yj = ymL+` as ym,`. Then by

Lemma 3.7, there exists φ2 ∈ NN (width ≤ 12N + 8; depth ≤ 3L + 6) such that

∣φ2(m,`) − ym,`∣ ≤ ε, for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1, (3.17)

and

0 ≤ φ2(x1, x2) ≤ ymax, for any x1, x2 ∈ R, (3.18)

where ymax ∶= max{ym,` ∶ m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1} = max{yj ∶ j =
0,1,⋯,ML − 1}.

j

φ1(j)

j

φ1(j)

j − Lφ1(j)

φ(j) := φ2
(
φ1(j), j − Lφ1(j)

)
= φ2(m, `) = φ(j) ≈ ym,` = yj

φ1
φ2

Figure 14: A illustration of the ReLU FNN implementing the desired function φ based

Equation (3.16). The index j ∈ {0,1,⋯,ML − 1} is unique represented by j =mL + ` for

m = 0,1,⋯,M −1 and ` = 0,1,⋯, L−1. “φ1” and “φ2” near “Ð→” represent the respective

ReLU FNN implementing itself. We omit the activation function ReLU if the input of a

neuron is non-negative.

Note that φ1 ∈ NN (#input = 1; widthvec = [2N,4NL − 1]) ⊆ NN (#input =
1; width ≤ 8N + 2; depth ≤ L + 1) by Lemma 3.4 and φ2 ∈ NN (width ≤ 12N + 8; depth ≤
3L+ 6). So φ ∈ NN (width ≤ 12N + 8; depth ≤ (L+ 1)+ 2+ (3L+ 6) = 4L+ 9) as shown in

Figure 14.

Equation (3.18) implies

0 ≤ φ(x) ≤ ymax, for any x ∈ R,

since φ is given by φ(x) = φ2(φ1(x), x −Lφ1(x)).

Represent j ∈ {0,1,⋯,ML−1} via j =mL+` form = 0,1,⋯,M−1 and ` = 0,1,⋯, L−1,

then we have, by Equation (3.17),

∣φ(j) − yj ∣ = ∣φ2(φ1(j), j −Lφ1(j)) − yj ∣ = ∣φ2(m,`) − ym,`∣ ≤ ε.

So we finish the proof.

29



We would like to remark that the key idea in the proof of Proposition 3.2 is the bit

extraction technique in Lemma 3.5, which allows us to store L bits in a binary number

bin0.θ1θ2⋯θL and extract each bit θi. The extraction operator can be efficiently carried

out via a deep ReLU neural network demonstrating the power of depth.

4 Neural networks approximation and evaluation in

practice

This section is concerned with neural networks approximation and evaluation in

practice, e.g., approximating functions defined on irregular domains or domains with a

low-dimensional structure, and neural network computation in parallel computing. In

the practical training of FNNs, the approximation rate in this paper can only be observed

if the global minimizers of neural network optimization can be identified. Since there is

no existing optimization algorithm guaranteeing a global minimizer, it is challenging to

observe the proved approximation rate currently. Developing optimization algorithms

for global minimizers is another interesting research topic as a future work.

4.1 Approximation on irregular domain

In this section, we consider approximating continuous functions defined on irregular

domains by deep ReLU FNNs. The construction is through extending the target function

to a cubic domain, applying Theorem 1.1, and finally restricting the constructed FNN

back to the irregular domain.

Given any uniformly continuous and real-valued function f defined on a metric space

S with a metric dS(⋅, ⋅), we define the (optimal) modulus of continuity of f on a subset

E ⊆ S as

ωEf (r) ∶= sup{∣f(x1) − f(x2)∣ ∶, dS(x1,x2) ≤ r, x1,x2 ∈ E}, for any r ≥ 0.

For the purpose of consistency and simplicity, ωf(⋅) is short of ω
[0,1]d

f (⋅).
First, let us present two lemmas for (approximately) extending (almost) continuous

functions on E to (almost) continuous functions on S. These lemmas are similar to

the well-known results for extending Lipschitz or differentiable functions in [46,63]. We

generalize these results to a broader class of functions required in the proof of Theorem

4.3.

Lemma 4.1 (Approximate Extension of Almost-Continuous Functions). Assume S is a

metric space with a metric dS(⋅, ⋅) and ω ∶ [0,∞)→ [0,∞) is an increasing function with

ω(r1 + r2) ≤ ω(r1) + ω(r2), for any r1, r2 ∈ [0,∞). (4.1)

Let f be a real-valued function defined on a subset E ⊆ S and satisfy

∣f(x1) − f(x2)∣ ≤ ω(dS(x1,x2) +∆), for any x1,x2 ∈ E, (4.2)
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where ∆ is a positive constant independent of f . Then there exists a function g defined

on S such that

0 ≤ f(x) − g(x) ≤ ω(∆), for any x ∈ E
and

∣g(x1) − g(x2)∣ ≤ ω(dS(x1,x2)), for any x1,x2 ∈ S.

In Lemma 4.1, g is an approximate extension of f defined on E to a new domain S

with an approximation error ω(∆). In a special case when ∆ = 0 and ω(0) = 0, g is an

exact extension of f .

Proof of Lemma 4.1. Define

g(x) ∶= sup
z∈E

(f(z) − ω(dS(z,x) +∆)).

By Equation (4.2), we have f(x1) − ω(dS(x1,x2) + ∆) ≤ f(x2) for any x1,x2 ∈ E. It

holds that g(x) ≤ f(x) for any x ∈ E. Together with

g(x) = sup
z∈E

(f(z) − ω(dS(z,x) +∆)) ≥ f(x) − ω(dS(x,x) +∆) = f(x) − ω(∆),

for any x ∈ E, it follows that 0 ≤ f(x) − g(x) ≤ ω(∆) for any x ∈ E. By Equation (4.1)

and the fact

sup
z∈E

f1(z) − sup
z∈E

f2(z) ≤ sup
z∈E

(f1(z) − f2(z)), for any functions f1, f2,

we have

g(x1) − g(x2) = sup
z∈E

(f(z) − ω(dS(z,x1))) − sup
z∈E

(f(z) − ω(dS(z,x2)))

≤ sup
z∈E

(ω(dS(z,x1)) − ω(dS(z,x2)))

≤ sup
z∈E

ω(dS(z,x1) − dS(z,x2))

≤ sup
z∈E

ω(dS(x1,x2)) = ω(dS(x1,x2)),

for any x1,x2 ∈ S. Similarly, we have g(x2) − g(x1) ≤ ω(dS(x1,x2)), which implies

∣g(x1) − g(x2)∣ ≤ ω(dS(x1,x2)).

So we finish the proof.

Next, we introduce a lemma below for extending continuous functions defined on

E ⊆ S to continuous functions defined on S preserving the modulus of continuity.

Lemma 4.2 (Extension of Continuous Functions). Suppose f is a uniformly continuous

function defined on a subset E ⊆ S, where S is a metric space with a metric dS(⋅, ⋅), then

there exists a uniformly continuous function g on S such that f(x) = g(x) for x ∈ E and

ωEf (r) = ωSg (r) for any r ≥ 0.
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Proof. By the application of Lemma 4.1 with ω(r) = ωEf (r) for r ≥ 0 and ∆ = 0, we know

that there exists g ∶ S → R such that

0 ≤ f(x) − g(x) ≤ ωEf (∆) = 0, for any x ∈ E,

and

∣g(x1) − g(x2)∣ ≤ ωEf (dS(x1,x2)), for any x1,x2 ∈ S.

The equation above and the uniform continuity of f imply that g is uniformly continuous.

It also follows that

f(x) = g(x), for any x ∈ E, and ωSg (r) ≤ ωEf (r), for any r ≥ 0,

since ωSg (⋅) is the optimal modulus of continuity of g. Note that ωEf (⋅) is the optimal

moduls of continuity of f and

∣f(x1) − f(x2)∣ = ∣g(x1) − g(x2)∣ ≤ ωSg (dS(x1,x2)), for any x1,x2 ∈ E.

Hence, ωEf (r) ≤ ωSg (r) for all r ≥ 0, which implies ωEf (r) = ωSg (r) since we have proved

that ωSg (r) ≤ ωEf (r) for all r ≥ 0. So we finish the proof.

Now we are ready to introduce and prove the main theorem of this section, which

extends Theorem 1.1 to an irregular domain as follows.

Theorem 4.3. Let f be a uniformly continuous function defined on E ⊆ [−R,R]d. For

arbitrary L ∈ N+ and N ∈ N+, there exists a function φ implemented by a ReLU FNN

with width 3d+3 max{d⌊N1/d⌋, N + 1} and depth 12L + 14 + 2d such that

∥f − φ∥L∞(E) ≤ 19
√
dωEf (2RN−2/dL−2/d).

Proof. By Lemma 4.2, f can be extended to Rd such that

ωRd
f (r) = ωEf (r), for any r ≥ 0.

Define

f̃(x) ∶= f(2Rx −R), for any x ∈ Rd.

It follows that

ωRd
f̃

(r) = ωRd
f (2Rr) = ωEf (2Rr), for any r ≥ 0. (4.3)

By Theorem 1.1, there exists a function φ̃ implemented by a ReLU FNN with width

3d+3 max{d⌊N1/d⌋, N + 1} and depth 12L + 14 + 2d such that

∥f̃ − φ̃∥L∞([0,1]d) ≤ 19
√
dω

[0,1]d

f̃
(N−2/dL−2/d) ≤ 19

√
dωRd

f̃
(N−2/dL−2/d).

Define

φ(x) ∶= φ̃( 1
2Rx + 1

2), for any x ∈ Rd.

Then, by Equation (4.3), for any x ∈ E ⊆ [−R,R]d, we have

∣f(x) − φ(x)∣ = ∣f̃( 1
2Rx + 1

2) − φ̃( 1
2Rx + 1

2)∣ ≤ ∥f̃ − φ̃∥L∞([0,1]d)

≤ 19
√
dωRd

f̃
(N−2/dL−2/d) = 19

√
dωEf (2RN−2/dL−2/d),

which implies

∥f − φ∥L∞(E) ≤ 19
√
dωEf (2RN−2/dL−2/d).

So we finish the proof.
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4.2 Approximation in a neighborhood of a low-dimensional man-

ifold

In this section, we study neural network approximation of functions defined in a

neighborhood of a low-dimensional manifold and prove Theorem 1.2 in this setting. Let

us first introduce Theorem 4.4 which is required to prove Theorem 1.2.

Theorem 4.4 (Theorem 3.1 of [3]). Let M be a compact dM-dimensional Riemannian

submanifold of Rd having condition number 1/τ , volume V , and geodesic covering reg-

ularity R. Fix δ ∈ (0,1) and γ ∈ (0,1). Let A =
√

d
dδ

Φ, where Φ ∈ Rdδ×d is a random

orthoprojector with

dδ = O (dM ln(dVRτ−1δ−1) ln(1/γ)
δ2 ) .

If dδ ≤ d, then with probability at least 1 − γ, the following statement holds: For every

x1,x2 ∈M,

(1 − δ)∣x1 −x2∣ ≤ ∣Ax1 −Ax2∣ ≤ (1 + δ)∣x1 −x2∣.

Theorem 4.4 shows the existence of a linear projector A ∈ Rdδ×d that maps a low-

dimensional manifold in a high-dimensional space to a low-dimensional space nearly

preserving distance. With this projection A available, we can prove Theorem 1.2 via

constructing a ReLU FNN defined in the low-dimensional space using Theorem 4.3 and

hence the curse of dimensionality is lessened. The ideas of the proof are summarized in

the following Table 1.

In Table 1 and the detailed proof later, we introduce a new notation SL(E) for any

compact set E ⊆ Rd as the “smallest” element of E. Specifically, SL(E) is defined as the

unique point in ∩dk=1Ek, where

Ek ∶= {x ∈ Ek−1 ∶ xk = sk}, sk ∶= inf {xk ∶ [x1, x2,⋯, xd]T ∈ Ek−1}, for k = 1,2,⋯, d,

and E0 = E. The compactness of E ensures that ∩dk=1Ek is in fact one point belong-

ing to E. The introduction of SL(⋅) uniquely formulates a low-dimensional function f̃

representing a high-dimensional function f defined on Mε by

f̃(y) ∶= f(xy), where xy = SL({x ∈Mε ∶Ax = y}), for any y ∈A(Mε) ⊆ Rdδ .

As we shall see later, such a definition of f̃ is reasonable because {x ∈Mε ∶ Ax = y}
is contained in a small ball of radius O(ε) for any y ∈ A(Mε). There are many other

alternative ways to define SL(⋅) as long as the definition ensures that SL(E) contains

only one element. For example, SL(E) can be defined as any arbitrary point in E. For

another example, y ∈A(M) cannot guarantee xy = SL({x ∈Mε ∶Ax = y}) ∈M in the

current definition, but in practice we can choose SL({x ∈M ∶Ax = y}) as xy to ensure

that xy ∈M, which might be beneficial for potential applications.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. By Theorem 4.4, there exists a matrix A ∈ Rdδ×d such that

AAT = d
dδ
Idδ , (4.4)
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Table 1: Main steps of the proof of Theorem 1.2. Step 1: dimension reduction via the

nearly isometric projection operator A provided by Theorem 4.4 to obtain an “equiva-

lent” function f̃ of f in a low-dimensional domain using xy = SL ({x ∈Mε ∶Ax = y}).
Step 2: construct a ReLU FNN to implement φ̃ ≈ f̃ by Theorem 4.3. Step 3: define a

ReLU FNN to implement φ in the original high-dimensional domain via the projection

A. Step 4: verify that the approximation error of φ ≈ f satisfies our requirement.

f(x) for x ∈Mε ⊆ [0,1]d
Step 4≈ φ(x) ∶= φ̃(Ax) for x ∈Mε ⊆ [0,1]d

Step 1
ØÚÚÙ
xy = SL({x ∈Mε ∶Ax = y}) Step 3

ØÚÚÙ
y =Ax

f̃(y) ∶= f(xy) for y ∈A(Mε) ⊆ Rdδ
Step 2≈ φ̃(y) for y ∈A(Mε) ⊆ Rdδ

where Idδ is an identity matrix of size dδ × dδ, and

(1 − δ)∣x1 −x2∣ ≤ ∣Ax1 −Ax2∣ ≤ (1 + δ)∣x1 −x2∣, for any x1,x2 ∈M. (4.5)

Given any y ∈ A(Mε), then {x ∈ Mε ∶ Ax = y} is a nonzero compact set. Let

xy = SL({x ∈Mε ∶Ax = y}), then we define f̃ on A(Mε) as f̃(y) = f(xy).
For any y1,y2 ∈A(Mε), let xi = SL({x ∈Mε ∶Ax = yi}), then xi ∈Mε for i = 1,2.

By the definition of Mε, there exist x̃1, x̃2 ∈M such that ∣x̃i − xi∣ ≤ ε for i = 1,2. It

follows that

∣f̃(y1)−f̃(y2)∣ = ∣f(x1)−f(x2)∣ ≤ ωf(∣x1−x2∣) ≤ ωf(∣x̃1−x̃2∣+2ε) ≤ ωf( 1
1−δ ∣Ax̃1−Ax̃2∣+2ε),

where the last inequality comes from Equation (4.5). By the triangular inequality, we

have

∣f̃(y1) − f̃(y2)∣ ≤ ωf( 1
1−δ ∣Ax1 −Ax2∣ + 1

1−δ ∣Ax1 −Ax̃1∣ + 1
1−δ ∣Ax2 −Ax̃2∣ + 2ε)

≤ ωf( 1
1−δ ∣Ax1 −Ax2∣ + 2ε

1−δ

√
d
dδ
+ 2ε)

≤ ωf( 1
1−δ ∣y1 − y2∣ + 2ε

1−δ

√
d
dδ
+ 2ε).

Set ω(r) = ωf( 1
1−δr) for any r ≥ 0 and ∆ = 2ε

√
d
dδ
+ 2ε(1 − δ), then

∣f̃(y1) − f̃(y2)∣ ≤ ω(∣y1 − y2∣ +∆), for any y1,y2 ∈A(Mε) ⊆ Rdδ .

By Lemma 4.1, there exists g̃ defined on Rdδ such that

∣g̃(y) − f̃(y)∣ ≤ ω(∆) = ωf( 2ε
1−δ

√
d
dδ
+ 2ε), for any y ∈A(Mε), (4.6)

and

∣g̃(y1) − g̃(y2)∣ ≤ ω(∣y1 − y2∣) = ωf( 1
1−δ ∣y1 − y2∣), for any y1,y2 ∈ Rdδ .

It follows that

ωRdδ
g̃ (r) ≤ ωf( r

1−δ), for any r ≥ 0. (4.7)
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By Equation (4.4) and the definition of Mε in Equation (1.2), it is easy to check

that

A(Mε) ⊆A([0,1]d) ⊆ [−
√

d
dδ
,
√

d
dδ
]dδ .

By the application of Theorem 4.3 with E = [−
√

d
dδ
,
√

d
dδ
]dδ , there exists a function

φ̃ implemented by a ReLU FNN with width 3dδ+3 max{dδ⌊N1/dδ⌋, N + 1} and depth

12L + 14 + 2dδ such that

∥g̃ − φ̃∥L∞(E) ≤ 19
√
dωEg̃ (2

√
d
dδ
N−2/dδL−2/dδ). (4.8)

Define φ ∶= φ̃ ○A, i.e., φ(x) ∶= φ̃(Ax) for any x ∈ Rd. Then φ is also a ReLU FNN

with width 3dδ+3 max{dδ⌊N1/dδ⌋, N + 1} and depth 12L + 14 + 2dδ.

For any x ∈Mε, set y =Ax and xy = SL({z ∈ Rd ∶Az = y}), there exist x̃, x̃y ∈M
such that ∣x̃ −x∣ ≤ ε and ∣x̃y −xy ∣ ≤ ε. It follows from Equation (4.5) that

∣x −xy ∣ ≤ ∣x̃ − x̃y ∣ + 2ε ≤ 1
1−δ ∣Ax̃ −Ax̃y ∣ + 2ε

≤ 1
1−δ

(∣Ax̃ −Ax∣ + ∣Ax −Axy ∣ + ∣Axy −Ax̃y ∣) + 2ε

= 1
1−δ

(∣Ax̃ −Ax∣ + ∣Axy −Ax̃y ∣) + 2ε ≤ 2ε
1−δ

√
d
dδ
+ 2ε.

(4.9)

In fact, the above equation implies that {x ∈Mε ∶ Ax = y} is contained in a small ball

of radius O(ε) for y ∈A(Mε) as we mentioned previously.

Together with Equation (4.6), (4.7), (4.8), and (4.9), we have, for any x ∈Mε,

∣f(x) − φ(x)∣ ≤ ∣f(x) − f(xy)∣ + ∣f(xy) − φ(x)∣

≤ ωf( 2ε
1−δ

√
d
dδ
+ 2ε) + ∣f̃(y) − φ̃(y)∣

≤ ωf( 2ε
1−δ

√
d
dδ
+ 2ε) + ∣f̃(y) − g̃(y)∣ + ∣g̃(y) − φ̃(y)∣

≤ ωf( 2ε
1−δ

√
d
dδ
+ 2ε) + ωf( 2ε

1−δ

√
d
dδ
+ 2ε) + 19

√
dωEg̃ (2

√
d
dδ
N−2/dδL−2/dδ)

≤ 2ωf( 2ε
1−δ

√
d
dδ
+ 2ε) + 19

√
dωf( 2

√

d
(1−δ)

√

dδ
N−2/dδL−2/dδ).

Hence, we have finished the proof of this theorem.

It is worth emphasizing that the approximation error

O(ωf(O(ε)) + ωf(O(N−2/dδL−2/dδ)))

in Theorem 1.2 is equal to O(ωf(O(N−2/dδL−2/dδ))) when ε = O(N−2/dδL−2/dδ).
The application of Theorem 4.4 and the proof of Theorem 1.2 in fact inspire an

efficient two-step algorithm for high-dimensional learning problems: in the first step,

high-dimensional data are projected to a low-dimensional space via a random projection;

in the second step, a deep learning algorithm is applied to learn from the low-dimensional

data. By Theorem 4.4 and 1.2, the deep learning algorithm in the low-dimensional space

can still provide good results with a high probability.
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4.3 Optimal ReLU FNN structure in parallel computing

In this section, we show how to select the best ReLU FNN to approximate functions

in Bλ(Cα([0,1]d)) on a d-dimensional cube, if the approximation error ε and the number

of parallel computing cores (processors) p are given. We choose the best ReLU FNN by

minimizing the time complexity in each training iteration. The analysis in this section

is valid up to a constant prefactor.

Assume φθ ∈ NN (#input = d; widthvec = [N]L; #output = 1), N,L ∈ N+, where θ is

the vector including all parameters of φθ. By the basic knowledge of parallel computing

(see [36] for more details), we have the following Table 2.

Table 2: Time complexity of one training iteration for an FNN of width N and depth L.

Number of cores p
Time Complexity

Evaluating φθ(x) Evaluating ∂φθ(x)
∂θ

p ∈ [1,N] O(N2L/p) O(N2L/p)
p ∈ (N,N2] O(L(N2/p + ln p

N )) O(L(N2/p + ln p
N ))

p ∈ (N2,∞) O(L lnN) O(L lnN)

For the sake of simplicity, we assume that the training batch size is O(1). Denote

the time complexity of each training iteration as T (n,L), then

T (N,L) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

O(N2L/p), p ∈ [1,N],
O(L(N2/p + ln p

N )), p ∈ (N,N2],
O(L lnN), p ∈ (N2,∞).

Theorem 1.1 and 2.3 imply that the approximation error ε is essentiallyO((NL)−2α/d).
Hence, we can get the optimal size of ReLU FNNs via the optimization problem below:

(Nopt, Lopt) = arg min
N, L

T (N,L)

subject to

⎧⎪⎪⎨⎪⎪⎩

ε = O((NL)−2α/d),

N,L, p ∈ N+.

(4.10)

To simplify the discussion, we have the following assumptions:

• Dropping the notation O(⋅) sometimes while assuming asymptotic analysis with

the abuse of notations.

• N , L, and p are allowed to be real numbers.

• We denote ε = (NL)−2α/d since the approximation rate O((NL)−2α/d) is both at-

tainable and nearly optimal.
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With ε = (NL)−2α/d, we have

T (N,L) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

N2L/p p ∈ [1,N],
L(N2/p + ln p

N ), p ∈ (N,N2],
L(1 + lnN), p ∈ [N2,∞),

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Nε−d/(2α)/p, N ∈ [p,∞),
Nε−d/(2α)/p + 1

N ε
−d/(2α) ln p

N , N ∈ [√p, p),
1+lnN
N ε−d/(2α), N ∈ [1,√p).

(4.11)

Then we get T (N,L) = O(T (N,L)). Therefore, the optimization problem in Equation

(4.10) can be simplified to

(Nopt, Lopt) = arg min
N, L

T (N,L)

subject to

⎧⎪⎪⎨⎪⎪⎩

ε = (NL)−2α/d,

N,L, p ∈ [1,∞).

(4.12)

By Equation (4.11), T (N,L) is independent of L on the condition that ε = (NL)−2α/d.

Therefore, we may denote T (N,L) by T (N). Now we consider two cases: the case

p = O(1) and the case p≫ O(1).

Case 1∶ The case p = O(1).
It is clear that T (N) is increasing in N when N ∈ [p,∞) by Equation (4.11).

Together with p = O(1), then O(√p) = O(p) = O(1). Therefore, Nopt = O(1) and

Lopt = O(ε−d/(2α)). Note that we regard d as a constant (O(1)) in above analysis, Nopt

should be O(d) in fact.

Case 2∶ The case p≫ O(1).
Since ε = (NL)−2α/d, we have N ≤ ε−d/(2α). We only need to consider the monotonic-

ity of T (N) on [1, ε−d/(2α)]. Together with Equation (4.11), this case can be divided into

two sub-cases: the sub-case
√
p ≤ ε−d/(2α) and the sub-case

√
p > ε−d/(2α).

Case 2.1∶ The sub-case
√
p > ε−d/(2α).

√
p > ε−d/(2α) implies [1, ε−d/(2α)] ⊆ [1,√p]. Hence, T (N) is decreasing in N on

[1, ε−d/(2α)]. It follows that Nopt = O(ε−d/(2α)) and that Lopt = O(1).

Case 2.2∶ The sub-case
√
p ≤ ε−d/(2α).

For this sub-case, Nopt and Nopt are hard to estimate. However, we can give a

rough range of Nopt. Since T (N) is decreasing in N on [1,√p] and increasing in N on

[p,∞), the minimum of T (N) is achieved on [√p, p]. Hence, Nopt ∈ [O(√p),O(p)] ∩
[O(√p),O(ε−d/(2α))] and Lopt = O(ε−d/(2α)/Nopt).

5 Conclusion and future work

This paper aims at a quantitative and optimal approximation rate of ReLU FNNs

in terms of both width and depth simultaneously to approximate continuous functions.
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It was shown that ReLU FNNs with width O(N) and depth O(L) can approximate

an arbitrary continuous function on a d-dimensional cube with an approximation rate

19
√
dωf(N−2/dL−2/d). In particular, when f is a Hölder continuous function of order α

with a Hölder constant λ, the approximation rate is 19
√
dλN−2α/dL−2α/d and it is nearly

asymptotically tight. We also extended our analysis to the case when the domain of

f is irregular and showed the same approximation rate. In practical applications, it is

usually believed that real data are sampled from an ε-neighborhood of a dM-dimensional

smooth manifoldM ⊆ [0,1]d with dM ≪ d. In the case of an essentially low-dimensional

domain, we show an approximation rate

2ωf( 2ε
1−δ

√
d
dδ
+ 2ε) + 19

√
dωf( 2

√

d
(1−δ)

√

dδ
N−2/dδL−2/dδ)

for ReLU FNNs to approximate f in the ε-neighborhood, dδ = O(dM ln(d/δ)
δ2

) for any given

δ ∈ (0,1).
Besides, we studied how to select the best ReLU FNN to approximate continuous

function in parallel computing. In particular, ReLU FNNs with depth O(1) are the best

choices if the number of parallel computing cores p is sufficiently large. ReLU FNNs

with width O(d) are best choices if p = O(1). The width of best ReLU FNNs is between

O(√p) and O(p) if p is moderate.

We would like to remark that our analysis was based on the fully connected feed-

forward neural networks and the ReLU activation function. It would be very interesting

to generalize our conclusions to neural networks with other types of architectures (e.g.,

convolutional neural networks) and activation functions (e.g., tanh and sigmoid func-

tions). Besides, if identity maps are allowed in the construction of neural networks as in

the residual networks [28], the size of FNNs in our construction can be further optimized.

Finally, the proposed analysis could be generalized to other function spaces with explicit

formulas to characterize the approximation error. These will be left as future work.
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