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Abstract

We propose a new framework for estimating generative models via an adversar-
ial process, in which we simultaneously train two models: a generative model G
that captures the data distribution, and a discriminative model D that estimates
the probability that a sample came from the training data rather than G. The train-
ing procedure for G is to maximize the probability of D making a mistake. This
framework corresponds to a minimax two-player game. In the space of arbitrary
functions G and D, a unique solution exists, with G recovering the training data
distribution and D equal to 1

2 everywhere. In the case where G and D are defined
by multilayer perceptrons, the entire system can be trained with backpropagation.
There is no need for any Markov chains or unrolled approximate inference net-
works during either training or generation of samples. Experiments demonstrate
the potential of the framework through qualitative and quantitative evaluation of
the generated samples.

1 Introduction

The promise of deep learning is to discover rich, hierarchical models [2] that represent probability
distributions over the kinds of data encountered in artificial intelligence applications, such as natural
images, audio waveforms containing speech, and symbols in natural language corpora. So far, the
most striking successes in deep learning have involved discriminative models, usually those that
map a high-dimensional, rich sensory input to a class label [14, 22]. These striking successes have
primarily been based on the backpropagation and dropout algorithms, using piecewise linear units
[19, 9, 10] which have a particularly well-behaved gradient . Deep generative models have had less
of an impact, due to the difficulty of approximating many intractable probabilistic computations that
arise in maximum likelihood estimation and related strategies, and due to difficulty of leveraging
the benefits of piecewise linear units in the generative context. We propose a new generative model
estimation procedure that sidesteps these difficulties. 1

In the proposed adversarial nets framework, the generative model is pitted against an adversary: a
discriminative model that learns to determine whether a sample is from the model distribution or the
data distribution. The generative model can be thought of as analogous to a team of counterfeiters,
trying to produce fake currency and use it without detection, while the discriminative model is
analogous to the police, trying to detect the counterfeit currency. Competition in this game drives
both teams to improve their methods until the counterfeits are indistiguishable from the genuine
articles.
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This framework can yield specific training algorithms for many kinds of model and optimization
algorithm. In this article, we explore the special case when the generative model generates samples
by passing random noise through a multilayer perceptron, and the discriminative model is also a
multilayer perceptron. We refer to this special case as adversarial nets. In this case, we can train
both models using only the highly successful backpropagation and dropout algorithms [17] and
sample from the generative model using only forward propagation. No approximate inference or
Markov chains are necessary.

2 Related work

An alternative to directed graphical models with latent variables are undirected graphical models
with latent variables, such as restricted Boltzmann machines (RBMs) [27, 16], deep Boltzmann
machines (DBMs) [26] and their numerous variants. The interactions within such models are
represented as the product of unnormalized potential functions, normalized by a global summa-
tion/integration over all states of the random variables. This quantity (the partition function) and
its gradient are intractable for all but the most trivial instances, although they can be estimated by
Markov chain Monte Carlo (MCMC) methods. Mixing poses a significant problem for learning
algorithms that rely on MCMC [3, 5].

Deep belief networks (DBNs) [16] are hybrid models containing a single undirected layer and sev-
eral directed layers. While a fast approximate layer-wise training criterion exists, DBNs incur the
computational difficulties associated with both undirected and directed models.

Alternative criteria that do not approximate or bound the log-likelihood have also been proposed,
such as score matching [18] and noise-contrastive estimation (NCE) [13]. Both of these require the
learned probability density to be analytically specified up to a normalization constant. Note that
in many interesting generative models with several layers of latent variables (such as DBNs and
DBMs), it is not even possible to derive a tractable unnormalized probability density. Some models
such as denoising auto-encoders [30] and contractive autoencoders have learning rules very similar
to score matching applied to RBMs. In NCE, as in this work, a discriminative training criterion is
employed to fit a generative model. However, rather than fitting a separate discriminative model, the
generative model itself is used to discriminate generated data from samples a fixed noise distribution.
Because NCE uses a fixed noise distribution, learning slows dramatically after the model has learned
even an approximately correct distribution over a small subset of the observed variables.

Finally, some techniques do not involve defining a probability distribution explicitly, but rather train
a generative machine to draw samples from the desired distribution. This approach has the advantage
that such machines can be designed to be trained by back-propagation. Prominent recent work in this
area includes the generative stochastic network (GSN) framework [5], which extends generalized
denoising auto-encoders [4]: both can be seen as defining a parameterized Markov chain, i.e., one
learns the parameters of a machine that performs one step of a generative Markov chain. Compared
to GSNs, the adversarial nets framework does not require a Markov chain for sampling. Because
adversarial nets do not require feedback loops during generation, they are better able to leverage
piecewise linear units [19, 9, 10], which improve the performance of backpropagation but have
problems with unbounded activation when used ina feedback loop. More recent examples of training
a generative machine by back-propagating into it include recent work on auto-encoding variational
Bayes [20] and stochastic backpropagation [24].

3 Adversarial nets

The adversarial modeling framework is most straightforward to apply when the models are both
multilayer perceptrons. To learn the generator’s distribution pg over data x, we define a prior on
input noise variables pz(z), then represent a mapping to data space as G(z; θg), where G is a
differentiable function represented by a multilayer perceptron with parameters θg . We also define a
second multilayer perceptron D(x; θd) that outputs a single scalar. D(x) represents the probability
that x came from the data rather than pg . We train D to maximize the probability of assigning the
correct label to both training examples and samples fromG. We simultaneously trainG to minimize
log(1−D(G(z))):
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In other words,D andG play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 − D(G(z))) saturates. Rather than training G to minimize
log(1−D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics ofG andD but provides much stronger gradients early in learning.
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Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D∗(x) =

pdata(x)
pdata(x)+pg(x)

. (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2
.

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ∼ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.
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Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do
• Sample minibatch of m noise samples {z(1), . . . ,z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:

∇θd
1

m

m∑
i=1

[
logD

(
x(i)

)
+ log

(
1−D

(
G
(
z(i)
)))]

.

end for
• Sample minibatch of m noise samples {z(1), . . . ,z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:

∇θg
1

m

m∑
i=1

log
(
1−D

(
G
(
z(i)
)))

.

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

D∗G(x) =
pdata(x)

pdata(x) + pg(x)
(2)

Proof. The training criterion for the discriminator D, given any generator G, is to maximize the
quantity V (G,D)

V (G,D) =

∫
x

pdata(x) log(D(x))dx+

∫
z

pz(z) log(1−D(g(z)))dz

=

∫
x

pdata(x) log(D(x)) + pg(x) log(1−D(x))dx (3)

For any (a, b) ∈ R2 \ {0, 0}, the function y → a log(y) + b log(1 − y) achieves its maximum in
[0, 1] at a

a+b . The discriminator does not need to be defined outside of Supp(pdata) ∪ Supp(pg),
concluding the proof.

Note that the training objective for D can be interpreted as maximizing the log-likelihood for es-
timating the conditional probability P (Y = y|x), where Y indicates whether x comes from pdata
(with y = 1) or from pg (with y = 0). The minimax game in Eq. 1 can now be reformulated as:

C(G) =max
D

V (G,D)

=Ex∼pdata [logD
∗
G(x)] + Ez∼pz [log(1−D∗G(G(z)))] (4)

=Ex∼pdata [logD
∗
G(x)] + Ex∼pg [log(1−D∗G(x))]

=Ex∼pdata

[
log

pdata(x)

Pdata(x) + pg(x)

]
+ Ex∼pg

[
log

pg(x)

pdata(x) + pg(x)

]
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Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if and only if
pg = pdata. At that point, C(G) achieves the value − log 4.

Proof. For pg = pdata, D∗G(x) =
1
2 , (consider Eq. 2). Hence, by inspecting Eq. 4 atD∗G(x) =

1
2 , we

find C(G) = log 1
2 + log 1

2 = − log 4. To see that this is the best possible value of C(G), reached
only for pg = pdata, observe that

Ex∼pdata [− log 2] + Ex∼pg [− log 2] = − log 4

and that by subtracting this expression from C(G) = V (D∗G, G), we obtain:

C(G) = − log(4) +KL

(
pdata

∥∥∥∥pdata + pg
2

)
+KL

(
pg

∥∥∥∥pdata + pg
2

)
(5)

where KL is the Kullback–Leibler divergence. We recognize in the previous expression the Jensen–
Shannon divergence between the model’s distribution and the data generating process:

C(G) = − log(4) + 2 · JSD (pdata ‖pg ) (6)

Since the Jensen–Shannon divergence between two distributions is always non-negative and zero
only when they are equal, we have shown that C∗ = − log(4) is the global minimum of C(G) and
that the only solution is pg = pdata, i.e., the generative model perfectly replicating the data generating
process.

4.2 Convergence of Algorithm 1

Proposition 2. IfG andD have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and pg is updated so as to improve the criterion

Ex∼pdata [logD
∗
G(x)] + Ex∼pg [log(1−D∗G(x))]

then pg converges to pdata

Proof. Consider V (G,D) = U(pg, D) as a function of pg as done in the above criterion. Note
that U(pg, D) is convex in pg . The subderivatives of a supremum of convex functions include the
derivative of the function at the point where the maximum is attained. In other words, if f(x) =
supα∈A fα(x) and fα(x) is convex in x for every α, then ∂fβ(x) ∈ ∂f if β = arg supα∈A fα(x).
This is equivalent to computing a gradient descent update for pg at the optimal D given the cor-
responding G. supD U(pg, D) is convex in pg with a unique global optima as proven in Thm 1,
therefore with sufficiently small updates of pg , pg converges to px, concluding the proof.

In practice, adversarial nets represent a limited family of pg distributions via the function G(z; θg),
and we optimize θg rather than pg itself. Using a multilayer perceptron to define G introduces
multiple critical points in parameter space. However, the excellent performance of multilayer per-
ceptrons in practice suggests that they are a reasonable model to use despite their lack of theoretical
guarantees.

5 Experiments

We trained adversarial nets an a range of datasets including MNIST[23], the Toronto Face Database
(TFD) [28], and CIFAR-10 [21]. The generator nets used a mixture of rectifier linear activations [19,
9] and sigmoid activations, while the discriminator net used maxout [10] activations. Dropout [17]
was applied in training the discriminator net. While our theoretical framework permits the use of
dropout and other noise at intermediate layers of the generator, we used noise as the input to only
the bottommost layer of the generator network.

We estimate probability of the test set data under pg by fitting a Gaussian Parzen window to the
samples generated with G and reporting the log-likelihood under this distribution. The σ parameter
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Model MNIST TFD
DBN [3] 138± 2 1909± 66

Stacked CAE [3] 121± 1.6 2110± 50
Deep GSN [6] 214± 1.1 1890± 29

Adversarial nets 225± 2 2057± 26

Table 1: Parzen window-based log-likelihood estimates. The reported numbers on MNIST are the mean log-
likelihood of samples on test set, with the standard error of the mean computed across examples. On TFD, we
computed the standard error across folds of the dataset, with a different σ chosen using the validation set of
each fold. On TFD, σ was cross validated on each fold and mean log-likelihood on each fold were computed.
For MNIST we compare against other models of the real-valued (rather than binary) version of dataset.

of the Gaussians was obtained by cross validation on the validation set. This procedure was intro-
duced in Breuleux et al. [8] and used for various generative models for which the exact likelihood
is not tractable [25, 3, 5]. Results are reported in Table 1. This method of estimating the likelihood
has somewhat high variance and does not perform well in high dimensional spaces but it is the best
method available to our knowledge. Advances in generative models that can sample but not estimate
likelihood directly motivate further research into how to evaluate such models.

In Figures 2 and 3 we show samples drawn from the generator net after training. While we make no
claim that these samples are better than samples generated by existing methods, we believe that these
samples are at least competitive with the better generative models in the literature and highlight the
potential of the adversarial framework.

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)
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Figure 3: Digits obtained by linearly interpolating between coordinates in z space of the full model.

Deep directed
graphical models

Deep undirected
graphical models

Generative
autoencoders Adversarial models

Training Inference needed
during training.

Inference needed
during training.
MCMC needed to
approximate
partition function
gradient.

Enforced tradeoff
between mixing
and power of
reconstruction
generation

Synchronizing the
discriminator with
the generator.
Helvetica.

Inference
Learned
approximate
inference

Variational
inference

MCMC-based
inference

Learned
approximate
inference

Sampling No difficulties Requires Markov
chain

Requires Markov
chain No difficulties

Evaluating p(x)
Intractable, may be
approximated with
AIS

Intractable, may be
approximated with
AIS

Not explicitly
represented, may be
approximated with
Parzen density
estimation

Not explicitly
represented, may be
approximated with
Parzen density
estimation

Model design
Nearly all models
incur extreme
difficulty

Careful design
needed to ensure
multiple properties

Any differentiable
function is
theoretically
permitted

Any differentiable
function is
theoretically
permitted

Table 2: Challenges in generative modeling: a summary of the difficulties encountered by different approaches
to deep generative modeling for each of the major operations involving a model.

6 Advantages and disadvantages

This new framework comes with advantages and disadvantages relative to previous modeling frame-
works. The disadvantages are primarily that there is no explicit representation of pg(x), and that D
must be synchronized well with G during training (in particular, G must not be trained too much
without updatingD, in order to avoid “the Helvetica scenario” in whichG collapses too many values
of z to the same value of x to have enough diversity to model pdata), much as the negative chains of a
Boltzmann machine must be kept up to date between learning steps. The advantages are that Markov
chains are never needed, only backprop is used to obtain gradients, no inference is needed during
learning, and a wide variety of functions can be incorporated into the model. Table 2 summarizes
the comparison of generative adversarial nets with other generative modeling approaches.

The aforementioned advantages are primarily computational. Adversarial models may also gain
some statistical advantage from the generator network not being updated directly with data exam-
ples, but only with gradients flowing through the discriminator. This means that components of the
input are not copied directly into the generator’s parameters. Another advantage of adversarial net-
works is that they can represent very sharp, even degenerate distributions, while methods based on
Markov chains require that the distribution be somewhat blurry in order for the chains to be able to
mix between modes.

7 Conclusions and future work

This framework admits many straightforward extensions:

1. A conditional generative model p(x | c) can be obtained by adding c as input to both G and D.
2. Learned approximate inference can be performed by training an auxiliary network to predict z

given x. This is similar to the inference net trained by the wake-sleep algorithm [15] but with
the advantage that the inference net may be trained for a fixed generator net after the generator
net has finished training.
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3. One can approximately model all conditionals p(xS | x 6S) where S is a subset of the indices
of x by training a family of conditional models that share parameters. Essentially, one can use
adversarial nets to implement a stochastic extension of the deterministic MP-DBM [11].

4. Semi-supervised learning: features from the discriminator or inference net could improve perfor-
mance of classifiers when limited labeled data is available.

5. Efficiency improvements: training could be accelerated greatly by divising better methods for
coordinating G and D or determining better distributions to sample z from during training.

This paper has demonstrated the viability of the adversarial modeling framework, suggesting that
these research directions could prove useful.
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