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Abstract

Let A be a standard Borel space, and consider the sﬁ&) of A-valued
arrays indexed by all sizk-subsets oN. This paper concerns random measures
on such a space whose laws are invariant under the natuiah atpermutations
of N. The main result is a representation theorem for such ‘exgbeble’ random
measures, obtained using the classical representationethe for exchangeable
arrays due to de Finetti, Hoover, Aldous and Kallenberg.

After proving this representation, two applications of lexegeable random
measures are given. The first is a short new proof of the DdwSyslakov Repre-
sentation Theorem for exchangeable positive semi-defimétitices. The second is
in the formulation of a natural class of limit objects foru# mean-field spin glass
models, retaining more information than just the limitinga@®-de Finetti matrix
used in the study of the Sherrington-Kirkpatrick model.

Résune

Soit A un espace de Borel standard, et sﬁﬁ‘i(k) I'ensemble des tableaux a
valeur dansA indexés par les sous-ensembleNdée taillek. On s’intéresse aux
mesures aléatoires sur un tel espace dont la loi est imtangar 'action naturelle
des permutations d8. Le résultat principal est une représentation de ces regsu
aléatoires “échangeables”, obtenue a partir des &mdes de représentations clas-
siques de de Finetti, Hoover, Aldous et Kallenberg pour deleiux échangeables.

Aprés avoir prouvé cette représentation, on en donne& dpplications. La
premiere est une nouvelle courte preuve du théoremepdesentation de Dovbysh-
Sudakov pour des matrices définie semi-positive échdabggala seconde con-
cerne la formulation d’'une classe naturelle d'objets kmipour des modeles de
champs moyens dilués pour des verres de spins qui captige’piformation que
la seule matrice limite de Gram-de Finetti qui est notamnuéifisée dans I'étude
du modele de Sherrington-Kirkpatrick.
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1 Introduction

The theory of exchangeable arrays of random variables exdémgvork of Hoover[18B,
14], Aldous [1/2[ 3] and Kallenberg [15, 16], and amounts sigaificant generaliza-
tion of the classical de Finetti-Hewitt-Savage Theorem rohangeable sequences.
The heart of the theory is a collection of representatiomiths for general such
arrays, which then beget more specialized representatiuits such as the Dovbysh-
Sudakov Theorem for exchangeable PSD matrices.

This note will consider the related setting of random meason spaces of arrays,
where now the laws of those random measures are assumeidirivarder the relevant
group action. Intuitively, this introduces an ‘extra layg#rrandomness’. In order to
introduce these formally, lein] := {1,2,...,n} forn € N, let Sy = J,,~; S
be the group of all permutations &F which fix all but finitely many elements, and
consider a measurable actidn Sy ~ E on a standard Borel spaée In full, this is
a measurable function

T:SyxE—FE:(0,2)—T%

such that _
T —idg and T7'T%%z =T%%'x Vop,09,1.

As is standard, ifs € Pr £ ando € Sy thenT?u denotes the image measure of
underT™®.

Definition 1.1. If £ is a standard Borel space arffd: Sy ~ F is a measurable action,
then anexchangeable random measufeERM’) on (E,T) is a random variableu
taking values irPr F such that

law

pn =T u Yo € Sy;

that is,
w(A) 2 plz : T2 € A} Vo € Sy, A Cporel E.

These are essentially what ergodic theorists call ‘quactiefs’ [11, Chapter 8]. We
will study these for the group actions that underly the theafrexchangeable arrays.
Given a standard Borel spadeandk € N, the space ok-dimensional arrays valued
in Ais AN, whereN(®) denotes the set of siZesubsets oN. An element of such
a space of arrays will often be denoted (@y. )| or similarly. (In the following,
one could focus instead on arrays indexed by ordéragples, but we have chosen the
symmetric case as itis a little simpler and arises more dftapplications.) The group
Sy acts onAN" by permuting coordinates in the obvious manner:

T7((we)e|=k) = (To(e))|e|=k>

whereo(e) = {0 (i) : i € e}. Slightly more generally, our main results will also allow
Cartesian products of such actions over finitely many diffiék. Thus, our arrays will
usually be indexed by the famil§(=F) of subsets oN of size at most: for some fixed

k.



Examples. (1) If an exchangeable random measpren (E, T') is deterministic, then
its constant value must itself be invariant under the acfiomn casef = AN with
the action above, this meapsis almost surely the law of an exchangealkwalued,
N(®)-indexed array.

(2) On the other hand, if: is aT-invariant measure for any actidtd, T'), then
another way to obtain an exchangeable random measure fistoitet

M= 5X

whereX is a random element df with law 1, andd x is the Dirac mass aX .

(3) Incasek = AN* with the action above, example (2) fits into a more gen-
eral family as follows. The space of probability measures! is also standard Borel
with the Borel structure generated by evaluation of measareBorel sets. Suppose
(Xe)je|=k is an exchangeable array @r A)-valued random variables, and now let

n= ®)\e.

le|=F

This class of examples will feature again later. Such an gaim called arexchange-
able random product measure('ERPM’).

(4) ltis also easy to exhibit an ERM which is not ERPM. For examlgell =
(A, B) be a uniform random bipartition df (this is obviously exchangeable), and
having chosedl let i € Pr{0, 1}N(2) be the probability which has two atoms of mass
1 on the points

1AN(2) and lBN(z) .

(5) Lastly, given a measurable family of exchangeable randomsomes., in-

dexed by a parametek [0, 1), we may average over this parameter to obtain a mixture
of these exchangeable random measures:

1
H:/ pry dt.
0

This is clearly still exchangeable. <

The main result of this paper characterizes all ERMs on spafarrays. To moti-
vate it, we next recall the Representation Theorem for exgbable arrays themselves.
This requires some more notation.

First, for any setS we letP.S denote the power set 6.

Next, suppose thaBy, B, ..., B and A are standard Borel spaces. A Borel
function " "
f:BOXBfXBgC] X"'XBk:HBZ[k] —5 A
i<k

is middle-symmetric if

f (@, (@)iew) (Ta)acm@ - - 2w) = F (@ (@a@))ici) (To(@) ) ack)@ - > L))

forallo € S



Given standard Borel spacés, By, ..., By and Ay, Ay, ..., Ax, and middle-
symmetric Borel functions

fe[IBRY — A =01,k

j<i
we will write ffor the function

(%)
HBl[k] — HA[k : xe eClk] = (fI \((xa)aCB))ec[k]v

i<k i<k

which combines all of th¢;.

The tuple(fo, - .., fr) is referred to as akew-product tuple, and the associated
function f as a function oskew-product type; clearly the latter determines the former
uniquely.

Example.If & = 2, then a function of skew-product typ@ 1)7? — [0, 1) takes the
form

J?($C75€17$C279€12) = (fo(iﬂ), i (iC, xl)a f1(1'71'2)7 f2($,$€1,$2,5€12))-

<
Itis easily checked that ifandﬁ are functions of skew-product type for the saime
thensoigjo f. Interms of( fo, ..., fx) and(go, - . ., gx) this compaosition corresponds

to the skew-product tuple
hi((xa)ag[i]) = gi((f|a|((xb)bga))ag[i])a 1= 07 11 B k.
Slightly abusively, we will also Writg?for the related function

HBFU) — HAI?(” : (xe)\elgk = (f\€|(('ra)ag8))|e‘gka

i<k i<k
which also determinesfo, . . ., fx) uniquely.

Theorem 1.2(Representation Theorem for Exchangeable Arrays; The@raain [18])
Suppose thatly, A1, ..., Ay are standard Borel spaces and tl“(sze)mgk is an ex-
changeable random array of r.v.s with ea&h valued inA|.|. Then there are middle-
symmetric Borel functions

fi [0, )P — A i=0,1,... K,

such that

~

(Xer<r = (fiel(Uadace)) o<y F T ei<),

where(U.)|c|<k is an i.i.d. family ofU[0, 1)-r.v.s. O



The companion Equivalence Theorem, which addresses themqguoeness of the
representing functiomA, will be recalled later.

To produce a random measure, the idea will simply be to usetitig functionsf;
that depend on two sources of randomness, and then conditione of them.

Theorem A Suppose that is an ERM on4g x - - - x AEW. Then there are middle-
symmetric Borel functions

fi:(J0,1) x [0,1))Pl — A4,

such that . R
H‘() = P(f((Uea ‘/6)\6|§k) € ‘ (Ue)\e|§k)7

whereU, andV, fore C N, |e| < k are all i.i.d. ~ U[0,1). On the right-hand side,
this is a measure-valued random variable as a function of.th&(U. ) |c|<-

We will find that after some manipulation of the problem, Then A can be de-
duced from the Representation Theorem and Equivalencer@imsdor exchangeable
random arrays themselves.

The proof of Theorem A can be considerably simplified when 1, so we will first
prove that case separately. In that case, the structure gw&heorem A is essentially
a combination of examples (3) and (5) above. To see this, feemelate the result as
follows.

Given a standard Borel spagg let B([0, 1), Pr A) denote the space of Lebesgue-
a.e. equivalence classes of measurable funcfipn$ — Pr A. ThenB([0,1),Pr A)
has a natural measurable structure generated by the foatgio

e / o()/(t, B) dt

correspondingto alb € L>°[0, 1) and Borel subset8 C A. This measurable structure
is also standard Borel: for instance, if one realizZeas a Borel subset of a compact
metric space, then the above becomes the Borel structuredbpology of conver-
gence in probability o3 ([0, 1), Pr A), which is Polish.

Theorem B If i is an ERM onAY, then there is an exchangeable sequence of r.v.s
(X:)ien taking values inB([0, 1), Pr A) such that

Ie !
u()' / (R Ailt. ) dt.

ieN

So whenk = 1, every ERM is a mixture of ERPMs.

With the structure given by Theorem B, one may next apply th€idetti-Hewitt-
Savage Theorem to the sequengeo obtain a random measuseon B([0, 1), Pr A)
such that\; is obtained by first choosing and then choosing; i.i.d. with law~. We
write Samp(+y) for the ERM obtained by this procedure, and refetytas adirecting
random measurefor u.



After proving Theorems A and B, we offer a couple of applicasi of the case
k = 1. These applications can also be given higher-dimensiott@hsions using the
casest > 2, but those extensions seem less natural. The reader it i@sly in the
applications need not read the proof of the general casee&fEm A.

The first application is a new proof of the classical Dovbgaidakov Theorem:

Dovbysh-Sudakov Theorem Suppos€R;;); jen iS a random matrix which is a.s.
positive semi-definite, and is exchangeable in the sense tha
law
(Ro(iyoj))ig = (Rij)ij Vo € Sn.
Then there are a separable real Hilbert spagand an exchangeable sequeli€g a; )ien
of random variables valued ify x [0, c0) such that

law
(Rij)iy = (&, &) + 0i504)i,
whered;; is the Kronecker delta.

This first appeared in [9], and more complete accounts weengn [12] and[[21].
The proofs of Hestir and Panchenko start with the Aldousudo&epresentation The-
orem, which treat§R;;); ; as a general two-dimensional exchangeable array. They
then require several further steps to show that the PSD ggamimplies a simplifi-
cation of that general Aldous-Hoover representation inéoform promised above. On
the other hand, we will find that if one simply interpréf2;; ); ; as the covariance ma-
trix of an exchangeable random measure, then one can retduediovbysh-Sudakov
Theorem from Theorem B, which in turn does not require theoAkiHoover Theorem.

Our second application is to the study of certain mean-figid glass models, and
particularly Viana and Bray’s dilute version of the Shegtion-Kirkpatrick model[[25].
In the case of the original Sherrington-Kirkpatrick modedraat deal has now been
proven, much of it relying on the notions of ‘random overlaéstures’ and their di-
recting random Hilbert space measures: see, forinstaacehenko’s monograph[22].
The analogous theory for dilute models is less advancechismbte we will simply
sketch how the main conjecture of Replica Symmetry Brea&argbe formulated quite
neatly in terms of limits of exchangeable random measurasskating from the earlier
works [23] 20]. We will not recall most of the spin glass thebehind this conjecture,
but will refer the reader to those references for more bamkay.
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2 The replica trick

The key to Theorem A is the simple observation that the law cdralom measure
on some spac& can be equivalently described by the law of a random sequence
FE, obtained by first sampling and quenching that random meaaund then sampling



i.i.d. fromit. This idea is standard in the more generalisgtof representing quasi-
factors in ergodic theory[([11, Chapter 8]). In a sense, #nsabstract version of
the ‘replica trick’ from the statistical physics of spin g&es ([18]). In physics, the
phrase ‘replica trick’ usually refers to the calculationtioé sequence of moments of
the (random) partition function of a random Gibbs measutéchvis then fed into an
ansatz for guessing more about the law of the partition fancsuch as the expected
free energy. This resembles our ‘replica trick’ insofar amputing a moment of the
random partition function amounts to computing the pantitiunction for the law of
several i.i.d. samples from the random Gibbs measure.

Before we proceed, first observe that, since any standarel Bpace is isomor-
phic to a Borel subset of a compact metric space, we may repecspacesl, ...,
Ay, with such enveloping compact spaces in Theorems A and B, aadsime these
spaces are themselves compact. We will make this assunthptiomghout the proofs
of those theorems, although some non-compact exampleseadlppear later in the
applications.

Proposition 2.1(Replica trick) If uisan ERM orf[l.gk A?I(“ , then there are auxiliary

standard Borel spaced, 41, ..., A and an exchangeable arraj., X)|<x Of
random variables such that

e each(Y., X.) takes values ind .| x A, and

e one has 1
p(-) = P((Xe) o<k € | (Ye)jel<k)-

Proof. After enlarging the background probability space if neaggsve may couple
the random variablg with a doubly-indexed family of random variables

((Xie)ieneent=ors (Xe)een=m ), 1)
all taking values in one of thd;s, as follows:
o first, sample the random measuyrétself;

e then, choose the sub-familieX. ) |c|<k, (X1,c)je|<kr (X2,e)e|<k: - - - INdependently
with law p.

In notation, this coupling is defined by

P((Xe)|e\§k € da, (Xl,e)|e\§k € da, (X2,6)|e\§k €day, ... ’,u)

Having done this, letd; := A} and letY, := (Xj.)jen € A for eache €
N(=F), The exchangeability ofc implies that the joint distribution of the familyl(1)
is invariant under applying elements 68§ to the indexing sets, and hence that the
procesgY., X<k is €xchangeable.



On the other hand, since we assume edcls compact, so i$], . AZN“) , and now
the Law or Large Numbers shows that in the above process @rtada.s. convergence
of empirical measures

1 N
N Z 5(Xn,e)\e\§k — ""
n=1

in the vague topology oRr [ ], ., AlN(” .
Therefore in the process

((Ye)jel < (Xe)je<hs 1)

the family of r.v.s(Y.)| <, determineu a.s., whereas conditionally g the family
(Y2)|e|<x becomes independent frofiX, )| <. This implies that

P((Xe)jel<k € | (Ye)ej<k) = P((Xe)jei<k € - [ 1) = p(-)  ass,

as required. O

3 Proofs in one dimension

3.1 Some preliminaries

We will repeatedly need the following standard tool from swe&-theoretic probabil-
ity. See, for instance, the slightly-stronger Theorem &n1[d7].

Lemma 3.1 (Noise-Outsourcing Lemma)Suppose thatl and B are standard Borel
spaces and thatX,Y") is an (A x B)-valued r.v. Then, possibly after enlarging the
background probability space, there are a {¥.~ U[0, 1) coupled withX andY and

a Borel functionf : A x [0,1) — Y such thatJ is independent fronX and

(X,Y)=(X, f(X,U)) as.
(]

Of course, the functiorf in this lemma is highly non-unique. The degenerate case
in which X is deterministic is still important: it reduces to the afiserthat for any
standard Borel probability spa¢®, v) there is a Borel functiorf : [0,1) — B such
that f(U) ~ v whenU ~ U[0, 1).

Finally, let us recall the full de Finetti-Hewitt-Savageéldrem for the caske = 1,
which is rather stronger than just the cése 1 of TheoreniIP. The following is the
combination of Proposition 1.4 and Corollaries 1.5 and 4. [48].

Theorem 3.2. Supposéd is a compact metric space ari, ),, is an exchangeable
sequence aofi-valued r.v.s. Then the sequence of empirical distribion

N
1
Wy = N Zéxn ePrA

n=1

converges a.s. to @r A)-valued r.v.1¥ which has the following properties:



(i) Wisa.s. afunction ofX,,).,
(i) W generates the taif-algebra of(X,,),, up tou-negligible sets;
(iii) the rv.s X, are conditionally i.i.d. giveiV;

(iv) if Z is any other r.v. on the same probability space such that
(Z, X1, Xa,...) 2 (Z, X010y, Xo(2)s---) Vo € S,

thenZ is conditionally independent fro@Y,,),, overW. O

3.2 Proofs in one dimension

Proof of Theorem A in one dimensioBupposg: is an ERM onA™ and let(Y,,, X, ),
be a process as given by Proposifiod 2.1.

We next apply Theorein 3.2 twice: first to the sequefiég,,, to obtain a r.v.W
taking values int := Pr A4; and secondly t¢Y,,, X, )., to obtain ar.v.Z taking values
in F:= Pr(A x A). From their definitions as limits of empirical distribut@iV is
almost surely a function af. On the other hand, property (iv) of Theoréml3.2 gives
thatZ is conditionally independent froifY,, ),, overW.

Now pick ann € N. By Lemmad 3.1, there is a Borel functigh : £ x F x A x
[0,1) — A such that

(Wa Z7 YnaXn) lgv (VV, Za anfl(Wa Z7 anvn))a

where(V,,),, are i.i.d.~ U[0, 1) and are independent fro(#, Z,Y,,). Moreover, this
samef; works for everyn, by exchangeability. It follows that in fact

(VV7 Za (Y’Vh Xn)neN) 127\/ (Wa 27 (Yna fl (VV7 Z, Yna Vn))nEN)7 (2)

because both sides have the same marginals for individuald both sides are condi-
tionally i.i.d. over(W, Z), so all finite-dimensional marginals agree.
Next, another appeal to Lemrhal3.1 gives a Borel functionE x [0,1) — F
such that
(W, 2) ™= (W, g(W, V)

with a new independeff ~ U[0, 1). This implies that
(W, Z, (Ya)uew) "= (W, g(W, V), (Y)nen).

becaus¢ is conditionally independent frofY;, ),, overW, so again all finite-dimensional
marginals agree. Combining this wiffl (2) gives

law
(Wa 27 (Yna Xn)nEN) = (VV7 g(VV, V)7 (Yna f2(VV7 Yna Va Vn))nEN)7

where
f2(wa Y, v, U/) = fl (’U}, g(w7 U)7 Y, vl)‘



It follows that
P((Xn)n € [ (Yn)n) = P((fQ(Wa Yo, V,Va))n € - | (Yn)n)

Finally, we may apply de Finetti's Theorem again, this timéY,,),,, to obtain Borel
functionsh; : [0,1) — E andhy : [0,1)? — A such that

(W, (Ya)nen) 2 (ha(U), (h2(U, Un))nen),

whereU and(U,, ), arei.i.d.~ U[0,1) r.v.s, independent of everything else. Letting
f(ua ’LL/, v, U/) = fQ(hl (’LL), h?(ua ’LL/), v, U/)7

substituting for(W, (Y;,),,) in the above gives

law
P(Xn)n € | (Ya)n) = P((f(U.Un, V. Va))u € - | U, (Un)u),
as required. O
Proof of Theorem BBy the Law of Iterated Conditional Expectation, the repregae

tion obtained above may be re-written as

) E(P(WUU V.V €U (U) V) | U, (Ua)a)

- E(®P(f(U,Un,V,Vn)€~\U,Un,V)‘U,(Un)n)
neN

_ /01 (®)\n(t, -)) dt,

where
An(t, ) :=P(f(U, U, t, V) € -|U,U,).

As functions of(U, U,,) for eachn, these form an exchangeable sequence of r.v.s taking
values inB([0, 1), Pr A), so the proof is complete. O

3.3 Relation to row-column exchangeability

A relative of exchangeability for a two-dimensional randamay (X; ,,) (i n)en? 1S
row-column exchangeability, which asserts that

(Xa'(i),r(n))i,n 12"/ (Xi,n)i,n VO’,T € SN-

Sinces andT may be chosen separately, this is a rather stronger symuthetnyordi-
nary two-dimensional exchangeability. Here, too, theeerspresentation theorem due
to Aldous and Hoover, and also a version in arbitrary dinmmsidue to Kallenberg,
who calls such arrays ‘separately exchangeable’.

10



Theorem 3.3(Corollary 7.23 in[[18]) If (X, )i is an A-valued row-column ex-
changeable array then there is a Borel function1)* — A such that

law
(Xi7n)i7n = (f(Za U’ia V’n.a Wi,n))i,na
whereZ, U, fori € N, V,, forn € NandW, , for (i,n) € N*arei.i.d.~ U[0,1). O

An alternative proof of Theorem B can be given via Theofem 3e begins
with the construction of the two-dimensional random artay ,,); », as in the proof
of Propositiol 2.1 (where the setshave become singletons. Since this array is
row-column exchangeable, the Representation Theorers give

law
(Xiﬂl)iﬂl = (f(Ua Ui7 Vna Wi,n))i,n
for some Borel directing functioyf : [0,1)* — A, whereU, U; fori € N, V,, for
n € NandW; , fori,n € Nareiid.~ U[0,1). One can now read off a directing
random measure(U) on B([0,1), Pr A), a function ofU ~ UJ0, 1), in the following
two steps:

o first, for each fixed/ andU’ one obtains an elemeit{U, U’) € B([0,1),Pr A)
according to

AU U, ) =Pw (f(UU L, W) €-), W ~T[0,1);

e secondy(U) is the distribution of\(U, U’) whereU’ ~ U[0, 1).

On the other hand, a couple of simple applications of the &@stsourcing Lemma
show that any directing random measygren B([0, 1), Pr A) can be represented this
way, so this gives a bijective correspondence

{directing random measures &[0, 1), Pr A) up to equivalence
<+ {directing functiong0, 1)* — A up to equivalencg

where ‘up to equivalence’ refers to the possibility thafetiént directing random mea-
sures or directing functions may give rise to the same roluroo exchangeable array.
This approach is the basis of the paper [20], to be discussed It is quick, but at
the expense of assuming Theorfend 3.3.
On the other hand, our approach to Theorem B does not use ahgryeability
theory in dimensions greater than one. Moreover, one cagrgevhe idea above to
give a fairly quick proof of Theoreiln 3.3 using Theorem B.

Proof of Theorer 313 from Theorem Birst let(X; ,,)in = ((Xi.n)i)n. thought of as
an exchangeable sequencef-valued r.v.s. By the de Finetti-Hewitt-Savage The-
orem applied to the exchangeability 4n its law is a mixture of product measures;
equivalently, there is &Pr AN)-valued r.v.u such that

law((Xin)i)n) = E(L®Y).

11



On the other hand, for aryy € Sy the exchangeability in gives
E(u®) = 1aw((Xin)i)n) = law((Xoi),n)i)n) = E(T7 p)*Y),

whereT? : AN — AN is the corresponding coordinate-permuting transformay
the unigueness of the de Finetti-Hewitt-Savage decormiposthis implies

law

u =T pn Vo€ Sy,

sopu is an ERM. Therefore Theorem B gives

law ((Xin)i)n) = E(/ol R At -)dt) &N
€N

for some exchangeable random sequéigg; taking values inB([0,1), Pr A).
Next, applying the de Finetti-Hewitt-Savage Theorem togbguencél;); itself
gives a Borel functior” : [0,1)? — B([0, 1), Pr A) such that the above becomes

! ®N
law ((Xin)i)n) = szu.»n(/o Q F(Z,Ust, ) dt)
€N
= EZv(Ui)iv(Vn)n ® F(Z? Ui7Vn?')? (3)
(i,n)EN?

whereZ, U, for i € NandV,, forn € Narei.i.d.~ U[0, 1), and in the second equality
we have simply changed notation frodj)‘- dt'to‘Ey, "
Finally, by Lemmd=311 there is a Borel functign [0,1)* — A such that

P(f(z,U,V,W)e -|Z,UV)=F(ZUYV,.) as.

whenZ, U, V, W are i.i.d. ~ U[0, 1), and now the right-hand side dfl(3) becomes
law((f(U, Ui, Vi, Wi n)i)n), @s required. O

4 Proof in higher dimensions

Not all parts of Theorerih 3.2 generalize to higher-dimeraianrays, and instead we
must make a more careful argument using the Equivalenceréhéd. 1 below.

4.1 Some more preliminaries

The Equivalence Theorem characterizes when two functimastdhe same process in
the setting of Theorem1.2. Its formulation needs the folhgwotion. LetC = [0,1)"
andD = [0,1)® for somer, s € N. Then a skew-product tuplg, . .., fx) in which

eachf; : ngi ct1l” s D for eachi gives rise to a skew-product-type function
f: CPIF — DPIE which is a map between Euclidean cubes. We will write that th

12



skew-product tuple ikebesgue-measure-preserving forall ¢ = 0,1,..., %k and all
(Ta)agp) € CPEN, one has

U~UC) = fi((xa)a;ct[i]aU)NU(D)'

This implies, in particular, thay?pushes Lebesgue measure®@il*! to Lebesgue mea-
sure onDP* (although these cubes have different dimensions#fs). However, the
assertion that the skew-product tuple is Lebesgue-megsaserving can be strictly
stronger than this, in case the functigfysare not all injective.

The Equivalence Theorem is as follows.

Theorem 4.1(Equivalence Theorem for directing functions; Theoren87218]). If

FF 0, D)PH 5 A4gx - x AL’“J(” x --- x Ay, are functions of skew-product type

such that law
(f\e|((Ua)a§€))\e|§k = (f‘/el((Ua)aQE))‘dgka

then there are function§, G’ : [0,1)PF —; [0,1)P[¥] of skew-product type, whose
skew-product tuples are Lebesgue-measure-preservinigwaich make the following
diagram commute:

[0, 1)PI¥ [0,1)P

In connection with this theorem, we will also need the folliogv‘factorization’
result.

Corollary 4.2. LetUcpy = (Ue)ecpi and Vepy be independent uniform r.v.s valued
in [0, )P, If
G :[0,1)P* — [0, 1)7

is a function of skew-product type whose skew-product tigpleebesgue-measure-
preserving, then there is another function

H:([0,1) x [0,1))PF — [0,1)7*

of skew-product type, whose skew-product tuple is Lebesgasure-preserving, and
such that
Ucw) = G(H(Ucp, Vo)) a.s.

Another way to express this is that the maps in the followiragychm come from
Lebesgue-measure-preserving skew-product tuples ancoarsnute:
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where
H((Ieaye)eg[k]) = (xe)eg[k]

is the obvious projection.

Geometrically, the intuition here is th&tis ‘almost onto’ (since its image measure
is Lebesgue), and that as a result one can represent it asdjeetppn mapll after
using H to ‘straighten out the fibres’.

Proof. Let G be defined by the skew-product tuglgy, . .., Gi). We must construct
the skew-product tupl€éH,, ..., Hy) that definesd. In terms of these tuples, our
requirement is that

Gi((H\e|((Ua, Va)age))eg[i]) = U[i] as. Vi=0,1,...,k. (4)
Wheni = 0 this simplifies to
Go(Ho(Uo, Vo)) =U, a.s.
We can obtain such aH, from the Noise-Outsourcing LemrhaB.1 as follows. gt
be aU|0, 1)-r.v. and letX, := G (Zy), so thisis alse- U[0, 1). Applying Lemma3.L
to the pair(Xy, Zy) gives a Borel functiorf : [0,1) x [0,1) — [0, 1) such that
(Xo,Zo) = (Xo,Ho(Xo,}/o)) a.s.

for someY; ~ UJ[0, 1) independent fronk . SinceX, = Go(Zy), applyingG) to the
second coordinates here gives

Xo = Go(Ho(Xo, Yb)) a.s.
The general case now follows by induction dnSuppose that > 1, let Y, for
e G [ andZ, for e C [i] be iid. ~ U[0,1); define X, := G|, |((Za)ace) for
all e C [i]; and assume thdt,, ..., H;—; have already been constructed such that
Ze := H¢|((Xa,Ya)ace) for eache G [i]. Applying Lemmd 3.1 again gives a Borel
functionH; : ([0,1) x [0,1))”l) — [0,1) and a r.v.Y}; ~ U[0, 1) such that

(Xe)ecqs (Ye)eg[i],z[i]) = ((Xe)ecri (3@)8;[1-]7Hi((Xe)egi], (Ye)ecii))

and as before this is equivalent to the desired equality (4). O
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4.2 Completion of the proof
We need the following enhancement of Proposifioh 2.1.

Lemma 4.3. If p is an ERM on[[,_,. AZN“’), then there is an exchangeable array
(Ue, Xe)je|<k Such that -

o (Ue)je|<k areii.d. ~ U0, 1),
e eachX, takes valuesini|,

e and one has 1
p(-) = P((Xe)ej<k € - | (Ue)jej<k)-

Proof. Let (Y., X.)|¢<x be the process given by Propositlon|2.1, with eéich X.)
taking values inZM x Aje|. By the Representation Theoréml1.2 applied}o) <y,

~ RO
there is a functiory : [0, 1)7" — [T, AM™ of skew-product type such that

(Ye)je|<k 1 J?((Ue)\qgk)’

where(U. ) ¢|<x is ani.i.d.~ U0, 1) array.
Now consider the coupling., X.)c<» Whose law is the relatively independent

~

product over the conditioY? ) cj<x = f((Ue)e|<k):

P((Ue)e € du, (X.)e € da)
=P((Ue)e € du) - P((Xe)e € da|(Ye)e = f(u)) (5)

This is exchangeable and has the three desired properties.eXdchangeability
follows because both factors on the right-hand sid€]of (&)rarariant under the action
of Sy on the indexing set, by the exchangeability i, ). and (Y, X.).. The first
two of the properties listed are obvious, and the third feidrom Propositioh 2]1
because the above relative product formula gives

~

P((Xe)e €da|(Ue)e = u) = P((Xe)e € da | (Ye)e = f(u)),

and we conditioned on the equality.). = f((Ue)e). O

Proof of Theorem A. Let the procesgU., X.)|. <, be as in the preceding corol-
lary. Applying Theoreni 1]2 to this whole process gives fiongg : [0,1)PF —
[0,1)P* andh : [0,1)Pk) — [Li<k Agk]m of skew-product type such that

(Ue)et<tr (Xediej<t) = (GUUD e1<r)s AU e <k)) (6)

where againU;) ¢ < are i.i.d.~ U[0, 1).
For the first coordinates, this reads



Since both input and output are i.i.dI[0, 1) arrays, we may apply the Equivalence
Theoreni 411 to this equality of laws: it gives functiaiisG” : [0, 1)7Fl —; [0, 1)P[¥]

of skew-product type whose skew-product tuples are Lelesgeasure-preserving
and which make the following diagram commute:

[0,1)7"

[0,1)PIk,

(Note that this seems almost unnecessary, Sjralecady sends Lebesgue measure on
[0,1)P¥ to itself. However, we will need the structure of Lebsgueamee-preserving
skew-product tuples, which need not follow in casis not injective: see the remarks
immediately preceding Theordm4.1.)

Now applying Corollary 41 t6, one obtains a functiofl : ([0, 1)x[0,1))"* —
[0, 1)PI¥] of skew-product type, given by a Lebesgue-measure-priegeskew-product
tuple, and such that the above commutative diagram can hegenal to

([0,1) x [0,1))P ——~[0,1)PI
> [0,1)PI¥
[

]
X
G
g
0,1)P!

Let (V)| /< be another collection of i.i.dJ[0, 1)-r.v.sindependentfrorU. ) |c <,
and Ietf:: h oG’ o H. Then the above diagram implies that:

¢ on the one hand,
Ue)jei<k = G(G'(H((Ue, Ve)jej<k))) - s,
e and on the otheG’ (H ((Ue, Ve)|¢|<k)) is an i.i.d. array olU[0, 1)-r.v.s, and so
@(UD) e1<1): AU el<)
2 (GG (H(Ue, Vo) ey <)), B(G (H((Ue, Ve)jeg<a)-
Combining [6) with these two facts now gives
(U, Xzt = (GG H(Ue, Vo)yei<i)), MG (H(Ue, Vo) <)) o <

(U< F(Ue, Vo) e<1)
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and conditioning both sides of this ¢0. )| <. gives

~

P((Xe)jel<k € - [ (Ue)je|<i) = P(f((Ues Ve)jej<k) € - [ (Ue)jel<k),
as required. O

5 Relation to Dovbysh-Sudakov Theorem
Proof of Dovbysh-Sudakov Theoreifhe trick to this is the standard one-to-one cor-
respondence

{PSD(N x N)-matriceg +» {Gaussian measures &'}

in which a Gaussian measure is identified with its variarmedance matrix. (This is
elementary for finite PSD matrices, and then the infinite éalbews by the Daniell-
Kolmogorov Theorem: see [17, Theorem 6.14].) Because Gausseasures are
uniquely determined by their variance-covariance madritteis correspondence inter-
twines the two permutations actionsf so from(R;;); ; we may construct an ERM
w1 onRY which is almost surely Gaussian, and such that

Rij :/ ZiT; H(d(xn)nEN) a.s.
RN
Now Theorem B gives a representation
1
0 [ @t e
(U]

with (A;); drawn from some exchangeable sequence taking valuBg[in 1), PrR).
Substituting this above gives

1
Ry 2 / / 22 \i(t, dz) dt
0 R

and
1
Rij ‘T/O (/R:c)\i(t,d:c))(/R:c)\j(t,da:)) dt wheni # ;.
Letting
573 = L2([Oa 1)7dt)a
gi(t) Z‘/R.”L')\l(t,dw)
and

a; = /01 (/R:102 Ai(t,dx) — (/R:C)\i(t,d:v))2) dt,

this is the desired representation.
(Note that¢; must be in$) a.s. because

/Ol&(t)th—/Ol (/RxAi(t,dx))zdtg /Ol/Ra?Ai(t,dx)dt v B

which is finite a.s.) O
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6 Limiting behaviour of the Viana-Bray model

Our second, and much more tentative, application for ERM® ithe study of the
Viana-Bray (‘VB’) model [25]. This is the basic ‘dilute’ meafield spin glass model.
On the configuration spade-1, 1}?, it is given by the random Hamiltonian

M
Hy(o) = Z Jk0iy, O s (7
k=1

where:

e M is a Poisson r.v. with mean/N (the thermodynamic limit is be taken with
fixed);

® i1, j1, 2, jo, ...are indices fromN] chosen uniformly and independently at
random;

e andJy, Jo, ...are i.i.d. symmetri®R-valued r.v.s with some given distribution,
often taken to be uniform:1.

(There are many essentially equivalent variants of thisehdalit this popular version
will do here.) From a quenched choice (that is, a fixed sangifld)e random function
Hy, the objects of interest are the resulting Gibbs measure

.rlrh = s expl( =B ()

the partition function

Zn(B) =Y exp(—BHN(0))
and the expected specific free energy

Fy(B) = Elog Zn(8), ®
where the expectation is over the random functtén. We will sometimes drop the
subscript 5" or * N in the sequel.

This is a relative of the older Sherrington-Kirkpatrick K$ model [19], in which
all pairs of spingj interact according to independentrandom coefficiggts- N(0,1/N).
The rigorous study of the SK model has become quite advangedént years; we will
not credit all of the important contributions, but refer tieader to the books [24, 22]
and the many references given there. By contrast, most grepef the VB model
remain conjectural.

A key tool in the study of the SK model is the use of random messan Hilbert
space as a kind of ‘limit object’ for the random Gibbs measutey asN — oc.
Viewing ﬁ{—l, 1}V asasubsetdf), v5 v isitself arandom Hilbert space measure,
and the appropriate notion of convergence is convergendistinbution of the Gram-
de Finetti matrices obtained by sampling. Having taken & limthis sense, a limit
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object in the form of a random measure on Hilbert space isigeahby the Dovbysh-
Sudakov Theorem. This use of exchangeability and limit ¢lsjeriginates in works
of Arguin [4] and Arguin and Aizenman [5], with a precedentlire study of classical
mean-field models in the work [l10] of Fannes, Spohn and Vesbdtiis explained in
more detail in[[22].

The key point for this use of random Hilbert-space measusrésait the main prop-
erties of the SK model, such as the free energy, really depelydon the covariances
among the random variabld$(o), and hence on this Hilbert space structure. This
is no longer true for the VB model, so a more refined tool is ededOne possi-
bility has been explored in_[20], and before that physicéstd mathematicians had
already worked with the related notion of ‘multi-overlapusttures’ (see, e.g/ [7] 8],
and alsol[23], although the latter does not use that termgy)!

Here we will simply propose exchangeable random measuradady intuitive
equivalent formalism, and compare it with two predecesfors the literature: the
weighting schemes used by Panchenko and Talagrandlin [&8Fanchenko’s use of
directing functions in[[20]. After introducing our notioifi 'timit object’, we will give a
fairly brisk summary of the translations between these fisms; the calculations are
all routine. We will restrict attention to the Viana-Bray o as above for simplicity,
but the discussion could easily be extended to a more getiasal of dilute models, as
in [23,[20].

6.1 Basicidea

If vg,n is as above, then it defines an ERMby sampling: first quench the random
measureys v; then select samples (called ‘replicas’, o2, ...€ {-1,1}" i.i.d.
~ ~n; and finally use these to defipeas a mixture of delta masses:

1 N
= N;&a;,ag,_.)- 9

Identifying =1 with the extreme points oPr{—1,1}, this is clearly a mixture of
ERPMs of the kind considered previously. 1Setmp(+ys n) be the law ofp.

It now makes sense to say that y sampling convergedo some random prob-
ability measurey; on B([0,1), Pr{—1,1}) if Samp(vs ) converges tamp(v)
for the vague topology oRr(Pr{—1, 1}"). This last space is compact, and the laws
of exchangeable random measures clearly comprise a futhspace which is closed
for the vague topology (since invariance under any givertioaaus transformation of
{—1,1}"is a closed property). Therefore one can always at leastsatigequential
limits of (Samp(+s,~))~, and now Theorem B promises the existence of semthat
represents the limiting ERM (although it is unique only ugtpivalence).

This idea generalizes the more classical use of Gram-détiHinatrices and their
limits recalled above. Starting from the SK model, the asged Gram-de Finetti ma-
trix is obtained by sampling and then quenching the Gibbssmnea and then sampling
from that Gibbs measure a sequence of statds-in 1}V and computing their inner
products as elements é§', normalized byN (that is, their ‘overlaps’). Comparing
with the random measune in (9), this Gram-de Finetti matrix may be recovered as
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simply the (random) matrix of covariances of the differeabinates in{—1, 1}
under this (random) measure.

6.2 Comparison with weighting schemes and directing functins

In [23] the authors do not introduce a notion of limits as startthe random measures
vs,n, but they do formulate their most general results (SectiofitBat paper) in terms
of some data that they call a ‘weighting scheme’. This cdssit

e asequence dk-valued r.v.g X});, and a family((X;”)x)..; of i.i.d. copies of
this sequence indexed By, j) € N?;

e and, independently of these [@ 1]-valued random sequence of weigkits )
suchthad, v, = 1.

These data appear in an upper-bound formula for the freeyemenich will be
recalled below. They can be encapsulated in a certain digeindom measure on
B([0,1),Pr{—1,1}) as follows. First, identifying elements ®r{—1,1} with their
expectations gives

B([0,1),Pr{-1,1}) = B([0,1),[-1,1)).

Now let®(z) := e*/(e® + e~ *). Applying Lemmad 3.1, we may find a sequerige)
in B([0,1),[—1,1]) such that

@(X))e 2 (fe(U)r whenU ~ U[0,1). (10)

To finish, lety be the atomic random measure

Y= kagfka (11)

k>1

so the randomness &fis derived from the random choice of the weights

Clearly one could find many other ways to convert a weighticigese into an
ERM, but this translation is appropriate because it givesdbrrect correspondence
between upper-bound formulae for the free energy to belezthélow.

On the other hand, ir_[20] Panchenko does introduce a fanfilymit objects,
closely related to our use of limiting ERMs. Given the randBibbs measures v
on{-1,1}", he draws independent replicas, o2, ...from it and then considers the
joint distribution of the wholé N x co)-indexed{—1, 1}-valued random array

(Uﬁ)lgngz\r, £>1-

Whereas we used these replicas to form an empirical meaich v& an ERM,
Panchenko chooses an arbitrary extension of this to a tmeusional infinite random
array. LettingN — oo, if one considers a subsequence of 4hefor which these
joint distributions converge, then in the limit one obtamsandom{—1, 1}-valued
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array which is row-column exchangeable. Applying Theokef) gis array has the
same law as
(U(Uv U’n.a ‘/Z7 Wnl))

n,l>1

for some measurable functien: [0,1)* — {—1,1}, whereU, U,, forn > 1, V, for
¢>1andW,, forn,¢ > 1arei.id.~ U0, 1).

Panchenko then usesitself as his limit object for the sequen¢gs n)n. The
equivalence between this formalism and the use of direatimglom measures on
B([0,1),Pr{—1,1}) is just the equivalence between our Theorem B and Thelordm 3.3
described in Subsection 8.3 above.

6.3 Formula for the limiting free energy

A central result of[[20] is a formula for the asymptotic exmetfree energy of models
such ad[([7) in terms of a functional of the directing funcsiortroduced above: see |20,
Theorem 2]. For the VB model itself the result is as follows.

Theorem 6.1(Free energy formula)As N — oo, the expected specific free energy
from (8) satisfies
lim Fy =inf P(0),

N—o0c0

where foro : [0,1)* — {—1,1} we have

K1
P(o) :=log2 + EM logE@ ( cosh 8 Z Jio(W, U, V;, Xl))

i=1

Ko
—EM 1og E(Q)(expBZJiU(VV, U,V;, X))o (W, U,V Xf)),

y Vg 7
=1
where:

e all the rv.sW, U, V4, Vo, ..., V/, V4, ..., X1, Xo, ..., X}, X}, ...arei.id.
NU[Ovl)v

e K is an independent Poisson r.v. of mean
e K5 is anindependent Poisson r.v. of mean

¢ and the coefficientd; are chosen independently from the same distribution as
before,

and where
E( = expectation oveW, K1, Ky, (V;), (V/); and(J;);

and
E(?) = expectation ove/, (X;); and(X!);.
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If 4 is the random directing measure &{[0, 1), Pr{—1, 1}) that corresponds to
o, then the above formula may easily be recast in termg dfis

K, K
o2 +Eloz [ 30 TLAV e (cohB Y i) 2(a)

€1, €K =+1i=1

K2 K2
~Elog / > Irweteh v mh (expB Y Jisiel) v(af),
B €1 ....5K2::|:1 i=1 =1
s'l,....,s’Kz =+1

where
B = B([0,1),Pr{-1,1}),

and whereE is now the expectation over all the random datd<;, K», (V;):, (V/);
and(JZ)Z

Another elementary (but tedious) calculation shows thdeuathe correspondenée{11)
this coincides with the upper-bound expression that agped23]: the right-hand side
of inequality (3.3) in that paper. It is for the sake of thisccdation that one uses the
function® to definef;, in (10).

Remark.In [20] Panchenko also shows that the quantity above is urgddhif one

instead takes the infimum only over those directing fundighat satisfy an analog
of the Aizenman-Contucci stability under cavity dynamidsis modification could
also easily be formulated in terms of random directing fioms, but we omit it for the
sake of brevity. <

6.4 The analog of ultrametricity

After the general formalism of Section 3 0f [23], Sectionsd & of that paper propose
a special class of weighting scheme objects that corresfmotite physicists’ notion
of ‘replica-symmetry breaking’, and conjecture that thgse the correct expression
for the limiting free energy. Following the prescriptionfstioe preceding subsections,
we can translate this conjecture into a proposal for a clblasiting random directing
measures which adapt the classical Parisi ultrametricisatz [22] to the setting of
dilute models. As before, the necessary calculations arplsibut tedious, so we omit
the details. Some discussion along these lines is giverOf¢2 the SK model, rather
than for dilute models.

The key objects seem to be the following. Supposethita discrete rooted tree
with all leaves at a fixed finite distance from the root. (Th&cdssion that follows can
certainly be extended to more general trees, but we omittbrat.) Letx be the root
anddT the set of leaves. Also, |&t be the Boreb-algebra of0, 1). We formulate the
following on [0, 1), but it clearly makes sense on any probability space.

Definition 6.2. A branching filtration on ([0, 1), &, Leb) indexed byT is a family of
o-subalgebragX:;).cr such that

o t <t =¥ C Xy,

22



e for anyty,...,t,, theo-algebra¥,, is conditionally independent frotg,, v
<oV X, overX, wheres = (tg At1) V ((o Ata) V -+ -V (tg At ), the closest
vertex ofT" to ¢o which is a common ancestor §f and some othet;.

By analogy with ordinary filtrations, the branching filtrati iscompleteif every; is
complete for Lebesgue measure.

Given a branching filtration = (3;):c7, a branchingale adapted t& is a
family of integrableR-valued functiong f;):cr on [0, 1) such that

e f;isX;-measurable;
o t <t/ = fi = E(fr|%).

Observe thatin this case every root-leaf pathvs - - - v4 gives a martingaléf., fu,, ..., fu.)
adapted to the filtration>., ., , ..., >,,); we call the branchingal®omogeneous
if every root-leaf path gives a martingale with the sameritistion.

Sometimes we refer to the whole collectiofi, >, ):cr as a branchingale.

Remark.Of course, stochastic processes indexed by trees havetoe@ddbefore, but
I have not been able to find a reference for precisely thionotiluch of the literature
concerns tree-indexed Markov processes, &g in [6], but btiege why the r.v.$, that
we will use should have the Markov property. <

Definition 6.3. A subsetY” C B([0,1),[—1,1]) is hierarchically distributedif it
equals{f, : v € 9T} for somehomogeneoubranchingale(f;, X;);cr. The min-
imal depth off" in such a representation is tlepthof the sefy”.

Now a simple calculation shows that under the corresporal€fi), the special
weighting schemes used to formulate thatep replica-symmetry breaking bound
in [23, Section 5] correspond to random measuyesghich are a.s. supported on hier-
archically distributed sets of deptt and with the weights given by a Derrida-Ruelle
probability cascade that follows the indexing tree.

To be more specific, in their work they consider r.Xgsindexed by the leaves
of a treeT of depthr and infinite branching, and specify their joint distribuitiby
constructing a larger family of random variables
o 1 (2 (r—1) (r) )

(0, Mty - Mgty iyt

indexed by all downwards paths from the rooflinwhere:

* nt(f.)..tr = X;, foreach leat, € 0T,

e for a shorter pathyts---t,,0 < s <r —1, the r.v.nt(fzz,,,ts takes values in the
space

Pr(Pr(---Pr(R))),
—_————

T—S8
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e and foreachty---t, withs < r —1, the r-V-Slh(ftt.l.).tst indexed by all the chil-

drent of ¢, are chosen independently frot;ﬁfzz,,,ts, and similarly the random
variables at all further children along distinct ancesliraés are conditionally
independent.

Such a structure arises from a homogeneous branchifgale, );cr for which0 <
fit < 1 as. as follows. Letr;(rfl) be the conditional distribution ob~* o f;,

tytr—1

on Y, _, for any childt, of t._;, where®(z) = e*/(e” + e~ ") as before, and the
condition0 < f;, < 1 ensures that this composition is defined a.s.. Novmt({]reifzfz

be the conditional distribution oﬁf’i)q on¥;, _,,and so on. These are then related
to the functionsf; themselves in thaf;_ is obtained fromyt(f,),,ts by applying® and

then taking barycentres— s times. If one starts instead from the r.xyt(é,),,ts as above,
another simple (but lengthy) iterated appeal to Lerimh 3otlyces a homogeneous
branchingale that gives rise to it.

Thus, the natural analog of the Parisi ultrametricity andat the Viana-Bray
model seems to be that in the infimum of Theoifen 6.1, if one fibates the right-
hand side in terms of directing random measures, it is endogtonsider direct-
ing random measures that are a.s. supported on hieralghiistributed subsets of
B([0,1),Pr{-1,1}).
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