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Abstract

Let A be a standard Borel space, and consider the spaceA
N(k)

of A-valued
arrays indexed by all size-k subsets ofN. This paper concerns random measures
on such a space whose laws are invariant under the natural action of permutations
of N. The main result is a representation theorem for such ‘exchangeable’ random
measures, obtained using the classical representation theorems for exchangeable
arrays due to de Finetti, Hoover, Aldous and Kallenberg.

After proving this representation, two applications of exchangeable random
measures are given. The first is a short new proof of the Dovbysh-Sudakov Repre-
sentation Theorem for exchangeable positive semi-definitematrices. The second is
in the formulation of a natural class of limit objects for dilute mean-field spin glass
models, retaining more information than just the limiting Gram-de Finetti matrix
used in the study of the Sherrington-Kirkpatrick model.

Résuḿe

Soit A un espace de Borel standard, et soitA
N(k)

l’ensemble des tableaux à
valeur dansA indexés par les sous-ensembles deN de taillek. On s’intéresse aux
mesures aléatoires sur un tel espace dont la loi est invariante par l’action naturelle
des permutations deN. Le résultat principal est une représentation de ces mesures
aléatoires “échangeables”, obtenue à partir des théorèmes de représentations clas-
siques de de Finetti, Hoover, Aldous et Kallenberg pour des tableaux échangeables.

Après avoir prouvé cette représentation, on en donne deux applications. La
première est une nouvelle courte preuve du théorème de représentation de Dovbysh-
Sudakov pour des matrices définie semi-positive échangeables. La seconde con-
cerne la formulation d’une classe naturelle d’objets limites pour des modèles de
champs moyens dilués pour des verres de spins qui capture plus d’information que
la seule matrice limite de Gram-de Finetti qui est notammentutilisée dans l’étude
du modèle de Sherrington-Kirkpatrick.

∗Research partially supported by a research fellowship fromthe Clay Mathematics Institute
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1 Introduction

The theory of exchangeable arrays of random variables emerged in work of Hoover [13,
14], Aldous [1, 2, 3] and Kallenberg [15, 16], and amounts to asignificant generaliza-
tion of the classical de Finetti-Hewitt-Savage Theorem on exchangeable sequences.
The heart of the theory is a collection of representation theorems for general such
arrays, which then beget more specialized representation results such as the Dovbysh-
Sudakov Theorem for exchangeable PSD matrices.

This note will consider the related setting of random measures on spaces of arrays,
where now the laws of those random measures are assumed invariant under the relevant
group action. Intuitively, this introduces an ‘extra layerof randomness’. In order to
introduce these formally, let[n] := {1, 2, . . . , n} for n ∈ N, let SN =

⋃
n≥1 S[n]

be the group of all permutations ofN which fix all but finitely many elements, and
consider a measurable actionT : SN y E on a standard Borel spaceE. In full, this is
a measurable function

T : SN × E −→ E : (σ, x) 7→ T σx

such that
T idN = idE and T σ1T σ2x = T σ2σ1x ∀σ1, σ2, x.

As is standard, ifµ ∈ PrE andσ ∈ SN thenT σ
∗ µ denotes the image measure ofµ

underT σ.

Definition 1.1. If E is a standard Borel space andT : SN y E is a measurable action,
then anexchangeable random measure(‘ERM’) on (E, T ) is a random variableµ
taking values inPrE such that

µ
law
= T σ

∗ µ ∀σ ∈ SN;

that is,

µ(A)
law
= µ{x : T σx ∈ A} ∀σ ∈ SN, A ⊆Borel E.

These are essentially what ergodic theorists call ‘quasi-factors’ [11, Chapter 8]. We
will study these for the group actions that underly the theory of exchangeable arrays.
Given a standard Borel spaceA andk ∈ N, the space ofk-dimensional arrays valued
in A is AN(k)

, whereN(k) denotes the set of size-k subsets ofN. An element of such
a space of arrays will often be denoted by(xe)|e|=k or similarly. (In the following,
one could focus instead on arrays indexed by orderedk-tuples, but we have chosen the
symmetric case as it is a little simpler and arises more oftenin applications.) The group
SN acts onAN(k)

by permuting coordinates in the obvious manner:

T σ((xe)|e|=k) = (xσ(e))|e|=k,

whereσ(e) = {σ(i) : i ∈ e}. Slightly more generally, our main results will also allow
Cartesian products of such actions over finitely many differentk. Thus, our arrays will
usually be indexed by the familyN(≤k) of subsets ofN of size at mostk for some fixed
k.
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Examples. (1) If an exchangeable random measureµ on(E, T ) is deterministic, then
its constant value must itself be invariant under the actionT . In caseE = AN(k)

with
the action above, this meansµ is almost surely the law of an exchangeableA-valued,
N(k)-indexed array.

(2) On the other hand, ifµ is aT -invariant measure for any action(E, T ), then
another way to obtain an exchangeable random measure from itis to let

µ := δX

whereX is a random element ofE with law µ, andδX is the Dirac mass atX .
(3) In caseE = AN(k)

with the action above, example (2) fits into a more gen-
eral family as follows. The space of probability measuresPrA is also standard Borel
with the Borel structure generated by evaluation of measures on Borel sets. Suppose
(λe)|e|=k is an exchangeable array of(PrA)-valued random variables, and now let

µ =
⊗

|e|=k

λe.

This class of examples will feature again later. Such an example is called anexchange-
able random product measure(‘ERPM’).

(4) It is also easy to exhibit an ERM which is not ERPM. For example, letΠ =
(A,B) be a uniform random bipartition ofN (this is obviously exchangeable), and
having chosenΠ letµ ∈ Pr{0, 1}N

(2)

be the probability which has two atoms of mass
1
2 on the points

1
AN

(2) and 1
BN

(2) .

(5) Lastly, given a measurable family of exchangeable random measuresµt in-
dexed by a parametert ∈ [0, 1), we may average over this parameter to obtain a mixture
of these exchangeable random measures:

µ =

∫ 1

0

µt dt.

This is clearly still exchangeable. ⊳

The main result of this paper characterizes all ERMs on spaces of arrays. To moti-
vate it, we next recall the Representation Theorem for exchangeable arrays themselves.
This requires some more notation.

First, for any setS we letPS denote the power set ofS.
Next, suppose thatB0, B1, . . . , Bk andA are standard Borel spaces. A Borel

function
f : B0 ×Bk

1 ×B
[k](2)

2 × · · · ×Bk =
∏

i≤k

B
[k](i)

i −→ A

is middle-symmetric if

f
(
x, (xi)i∈[k], (xa)a∈[k](2) , . . . , x[k]

)
= f

(
x, (xσ(i))i∈[k], (xσ(a))a∈[k](2) , . . . , x[k]

)

for all σ ∈ S[k].
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Given standard Borel spacesB0, B1, . . . , Bk andA0, A1, . . . , Ak, and middle-
symmetric Borel functions

fi :
∏

j≤i

B
[i](j)

j −→ Ai, i = 0, 1, . . . , k,

we will write f̂ for the function

∏

i≤k

B
[k](i)

i −→
∏

i≤k

A
[k](i)

i : (xe)e⊆[k] 7→
(
f|e|((xa)a⊆e)

)
e⊆[k]

,

which combines all of thefi.
The tuple(f0, . . . , fk) is referred to as askew-product tuple, and the associated

functionf̂ as a function ofskew-product type; clearly the latter determines the former
uniquely.

Example.If k = 2, then a function of skew-product type[0, 1)P[2] −→ [0, 1) takes the
form

f̂(x, x1, x2, x12) = (f0(x), f1(x, x1), f1(x, x2), f2(x, x1, x2, x12)).

⊳

It is easily checked that if̂f andĝ are functions of skew-product type for the samek,
then so iŝg ◦ f̂ . In terms of(f0, . . . , fk) and(g0, . . . , gk) this composition corresponds
to the skew-product tuple

hi((xa)a⊆[i]) := gi
((
f|a|((xb)b⊆a)

)
a⊆[i]

)
, i = 0, 1, . . . , k.

Slightly abusively, we will also writêf for the related function

∏

i≤k

BN(i)

i −→
∏

i≤k

AN(i)

i : (xe)|e|≤k 7→
(
f|e|((xa)a⊆e)

)
|e|≤k

,

which also determines(f0, . . . , fk) uniquely.

Theorem 1.2(Representation Theorem for Exchangeable Arrays; Theorem7.22 in [18]).
Suppose thatA0, A1, . . . ,Ak are standard Borel spaces and that(Xe)|e|≤k is an ex-
changeable random array of r.v.s with eachXe valued inA|e|. Then there are middle-
symmetric Borel functions

fi : [0, 1)
P[i] −→ Ai, i = 0, 1, . . . , k,

such that
(Xe)|e|≤k

law
=

(
f|e|((Ua)a⊆e)

)
|e|≤k

dfn
= f̂((Ue)|e|≤k),

where(Ue)|e|≤k is an i.i.d. family ofU[0, 1)-r.v.s.
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The companion Equivalence Theorem, which addresses the non-uniqueness of the
representing function̂f , will be recalled later.

To produce a random measure, the idea will simply be to use directing functionsfi
that depend on two sources of randomness, and then conditionon one of them.

Theorem A Suppose thatµ is an ERM onA0 × · · · ×AN(k)

k . Then there are middle-
symmetric Borel functions

fi : ([0, 1)× [0, 1))P[i] −→ Ai

such that
µ(·)

law
= P

(
f̂((Ue, Ve)|e|≤k) ∈ ·

∣∣ (Ue)|e|≤k

)
,

whereUe andVe for e ⊆ N, |e| ≤ k are all i.i.d. ∼ U[0, 1). On the right-hand side,
this is a measure-valued random variable as a function of ther.v.s(Ue)|e|≤k.

We will find that after some manipulation of the problem, Theorem A can be de-
duced from the Representation Theorem and Equivalence Theorems for exchangeable
random arrays themselves.

The proof of Theorem A can be considerably simplified whenk = 1, so we will first
prove that case separately. In that case, the structure given by Theorem A is essentially
a combination of examples (3) and (5) above. To see this, we reformulate the result as
follows.

Given a standard Borel spaceA, letB([0, 1),PrA) denote the space of Lebesgue-
a.e. equivalence classes of measurable functions[0, 1) −→ PrA. ThenB([0, 1),PrA)
has a natural measurable structure generated by the functionals

f 7→

∫ 1

0

φ(t)f(t, B) dt

corresponding to allφ ∈ L∞[0, 1) and Borel subsetsB ⊆ A. This measurable structure
is also standard Borel: for instance, if one realizesA as a Borel subset of a compact
metric space, then the above becomes the Borel structure of the topology of conver-
gence in probability onB([0, 1),PrA), which is Polish.

Theorem B If µ is an ERM onAN, then there is an exchangeable sequence of r.v.s
(λi)i∈N taking values inB([0, 1),PrA) such that

µ(·)
law
=

∫ 1

0

(⊗

i∈N

λi(t, ·)
)
dt.

So whenk = 1, every ERM is a mixture of ERPMs.
With the structure given by Theorem B, one may next apply the de Finetti-Hewitt-

Savage Theorem to the sequenceλi to obtain a random measureγ onB([0, 1),PrA)
such thatλi is obtained by first choosingγ and then choosingλi i.i.d. with lawγ. We
write Samp(γ) for the ERM obtained by this procedure, and refer toγ as adirecting
random measurefor µ.

5



After proving Theorems A and B, we offer a couple of applications of the case
k = 1. These applications can also be given higher-dimensional extensions using the
casesk ≥ 2, but those extensions seem less natural. The reader interested only in the
applications need not read the proof of the general case of Theorem A.

The first application is a new proof of the classical Dovbysh-Sudakov Theorem:

Dovbysh-Sudakov Theorem Suppose(Rij)i,j∈N is a random matrix which is a.s.
positive semi-definite, and is exchangeable in the sense that

(Rσ(i)σ(j))i,j
law
= (Rij)i,j ∀σ ∈ SN.

Then there are a separable real Hilbert spaceH and an exchangeable sequence(ξi, ai)i∈N
of random variables valued inH× [0,∞) such that

(Rij)i,j
law
= (〈ξi, ξj〉+ δijai)i,j ,

whereδij is the Kronecker delta.

This first appeared in [9], and more complete accounts were given in [12] and [21].
The proofs of Hestir and Panchenko start with the Aldous-Hoover Representation The-
orem, which treats(Rij)i,j as a general two-dimensional exchangeable array. They
then require several further steps to show that the PSD assumption implies a simplifi-
cation of that general Aldous-Hoover representation into the form promised above. On
the other hand, we will find that if one simply interprets(Rij)i,j as the covariance ma-
trix of an exchangeable random measure, then one can read offthe Dovbysh-Sudakov
Theorem from Theorem B, which in turn does not require the Aldous-Hoover Theorem.

Our second application is to the study of certain mean-field spin glass models, and
particularly Viana and Bray’s dilute version of the Sherrington-Kirkpatrick model [25].
In the case of the original Sherrington-Kirkpatrick model agreat deal has now been
proven, much of it relying on the notions of ‘random overlap structures’ and their di-
recting random Hilbert space measures: see, for instance, Panchenko’s monograph [22].
The analogous theory for dilute models is less advanced. In this note we will simply
sketch how the main conjecture of Replica Symmetry Breakingcan be formulated quite
neatly in terms of limits of exchangeable random measures, translating from the earlier
works [23, 20]. We will not recall most of the spin glass theory behind this conjecture,
but will refer the reader to those references for more background.

Acknowledgements

I am grateful to Kavita Ramanan, Dmitry Panchenko and the anonymous referees for
several helpful suggestions and references.

2 The replica trick

The key to Theorem A is the simple observation that the law of arandom measure
on some spaceE can be equivalently described by the law of a random sequencein
E, obtained by first sampling and quenching that random measure, and then sampling
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i.i.d. from it. This idea is standard in the more general setting of representing quasi-
factors in ergodic theory ([11, Chapter 8]). In a sense, it isan abstract version of
the ‘replica trick’ from the statistical physics of spin glasses ([19]). In physics, the
phrase ‘replica trick’ usually refers to the calculation ofthe sequence of moments of
the (random) partition function of a random Gibbs measure, which is then fed into an
ansatz for guessing more about the law of the partition function, such as the expected
free energy. This resembles our ‘replica trick’ insofar as computing a moment of the
random partition function amounts to computing the partition function for the law of
several i.i.d. samples from the random Gibbs measure.

Before we proceed, first observe that, since any standard Borel space is isomor-
phic to a Borel subset of a compact metric space, we may replace the spacesA0, . . . ,
Ak with such enveloping compact spaces in Theorems A and B, and so assume these
spaces are themselves compact. We will make this assumptionthroughout the proofs
of those theorems, although some non-compact examples willre-appear later in the
applications.

Proposition 2.1(Replica trick). If µ is an ERM on
∏

i≤k A
N(i)

i , then there are auxiliary

standard Borel spacesA0, A1, . . . , Ak and an exchangeable array(Ye, Xe)|e|≤k of
random variables such that

• each(Ye, Xe) takes values inA|e| ×A|e|, and

• one has
µ(·)

law
= P((Xe)|e|≤k ∈ · | (Ye)|e|≤k).

Proof. After enlarging the background probability space if necessary, we may couple
the random variableµ with a doubly-indexed family of random variables

(
(Xi,e)i∈N,e∈N(≤k) , (Xe)e∈N(≤k)

)
, (1)

all taking values in one of theAis, as follows:

• first, sample the random measureµ itself;

• then, choose the sub-families(Xe)|e|≤k, (X1,e)|e|≤k, (X2,e)|e|≤k, . . . independently
with lawµ.

In notation, this coupling is defined by

P
(
(Xe)|e|≤k ∈ da, (X1,e)|e|≤k ∈ da1, (X2,e)|e|≤k ∈ da2, . . .

∣∣µ
)

= µ(da) · µ(da1) · µ(da2) · · · · .

Having done this, letAi := AN
i and letYe := (Xj,e)j∈N ∈ A|e| for eache ∈

N(≤k). The exchangeability ofµ implies that the joint distribution of the family (1)
is invariant under applying elements ofSN to the indexing setse, and hence that the
process(Ye, Xe)|e|≤k is exchangeable.
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On the other hand, since we assume eachAi is compact, so is
∏

i≤k A
N(i)

i , and now
the Law or Large Numbers shows that in the above process one has the a.s. convergence
of empirical measures

1

N

N∑

n=1

δ(Xn,e)|e|≤k
−→ µ

in the vague topology onPr
∏

i≤k A
N(i)

i .
Therefore in the process

(
(Ye)|e|≤k, (Xe)|e|≤k,µ

)

the family of r.v.s(Ye)|e|≤k determineµ a.s., whereas conditionally onµ the family
(Ye)|e|≤k becomes independent from(Xe)|e|≤k. This implies that

P
(
(Xe)|e|≤k ∈ ·

∣∣ (Ye)|e|≤k

)
= P

(
(Xe)|e|≤k ∈ ·

∣∣µ
)
= µ(·) a.s.,

as required.

3 Proofs in one dimension

3.1 Some preliminaries

We will repeatedly need the following standard tool from measure-theoretic probabil-
ity. See, for instance, the slightly-stronger Theorem 6.10in [17].

Lemma 3.1(Noise-Outsourcing Lemma). Suppose thatA andB are standard Borel
spaces and that(X,Y ) is an (A × B)-valued r.v. Then, possibly after enlarging the
background probability space, there are a r.v.U ∼ U[0, 1) coupled withX andY and
a Borel functionf : A× [0, 1) −→ Y such thatU is independent fromX and

(X,Y ) = (X, f(X,U)) a.s..

Of course, the functionf in this lemma is highly non-unique. The degenerate case
in whichX is deterministic is still important: it reduces to the assertion that for any
standard Borel probability space(B, ν) there is a Borel functionf : [0, 1) −→ B such
thatf(U) ∼ ν whenU ∼ U[0, 1).

Finally, let us recall the full de Finetti-Hewitt-Savage Theorem for the casek = 1,
which is rather stronger than just the casek = 1 of Theorem 1.2. The following is the
combination of Proposition 1.4 and Corollaries 1.5 and 1.6 in [18].

Theorem 3.2. SupposeA is a compact metric space and(Xn)n is an exchangeable
sequence ofA-valued r.v.s. Then the sequence of empirical distributions

WN :=
1

N

N∑

n=1

δXn
∈ PrA

converges a.s. to a(PrA)-valued r.v.W which has the following properties:

8



(i) W is a.s. a function of(Xn)n,

(ii) W generates the tailσ-algebra of(Xn)n up toµ-negligible sets;

(iii) the r.v.sXn are conditionally i.i.d. givenW ;

(iv) if Z is any other r.v. on the same probability space such that

(Z,X1, X2, . . .)
law
= (Z,Xσ(1), Xσ(2), . . .) ∀σ ∈ SN,

thenZ is conditionally independent from(Xn)n overW .

3.2 Proofs in one dimension

Proof of Theorem A in one dimension.Supposeµ is an ERM onAN and let(Yn, Xn)n
be a process as given by Proposition 2.1.

We next apply Theorem 3.2 twice: first to the sequence(Yn)n, to obtain a r.v.W
taking values inE := PrA; and secondly to(Yn, Xn)n, to obtain a r.v.Z taking values
in F := Pr (A × A). From their definitions as limits of empirical distributions,W is
almost surely a function ofZ. On the other hand, property (iv) of Theorem 3.2 gives
thatZ is conditionally independent from(Yn)n overW .

Now pick ann ∈ N. By Lemma 3.1, there is a Borel functionf1 : E × F × A ×
[0, 1) −→ A such that

(W,Z, Yn, Xn)
law
= (W,Z, Yn, f1(W,Z, Yn, Vn)),

where(Vn)n are i.i.d.∼ U[0, 1) and are independent from(W,Z, Yn). Moreover, this
samef1 works for everyn, by exchangeability. It follows that in fact

(
W,Z, (Yn, Xn)n∈N

) law
=

(
W,Z, (Yn, f1(W,Z, Yn, Vn))n∈N

)
, (2)

because both sides have the same marginals for individualn, and both sides are condi-
tionally i.i.d. over(W,Z), so all finite-dimensional marginals agree.

Next, another appeal to Lemma 3.1 gives a Borel functiong : E × [0, 1) −→ F
such that

(W,Z)
law
= (W, g(W,V ))

with a new independentV ∼ U[0, 1). This implies that

(W,Z, (Yn)n∈N)
law
= (W, g(W,V ), (Yn)n∈N),

becauseZ is conditionally independent from(Yn)n overW , so again all finite-dimensional
marginals agree. Combining this with (2) gives

(W,Z, (Yn, Xn)n∈N)
law
= (W, g(W,V ), (Yn, f2(W,Yn, V, Vn))n∈N),

where
f2(w, y, v, v

′) := f1(w, g(w, v), y, v
′).

9



It follows that

P((Xn)n ∈ · | (Yn)n) = P
(
(f2(W,Yn, V, Vn))n ∈ ·

∣∣ (Yn)n
)
.

Finally, we may apply de Finetti’s Theorem again, this time to (Yn)n, to obtain Borel
functionsh1 : [0, 1) −→ E andh2 : [0, 1)2 −→ A such that

(W, (Yn)n∈N)
law
=

(
h1(U), (h2(U,Un))n∈N

)
,

whereU and(Un)n are i.i.d.∼ U[0, 1) r.v.s, independent of everything else. Letting

f(u, u′, v, v′) := f2(h1(u), h2(u, u
′), v, v′),

substituting for(W, (Yn)n) in the above gives

P((Xn)n ∈ · | (Yn)n)
law
= P

(
(f(U,Un, V, Vn))n ∈ ·

∣∣U, (Un)n
)
,

as required.

Proof of Theorem B.By the Law of Iterated Conditional Expectation, the representa-
tion obtained above may be re-written as

µ(·)
law
= E

(
P
(
(f(U,Un, V, Vn))n ∈ ·

∣∣U, (Un)n, V
) ∣∣∣U, (Un)n

)

= E

(⊗

n∈N

P
(
f(U,Un, V, Vn) ∈ ·

∣∣U,Un, V
) ∣∣∣U, (Un)n

)

=

∫ 1

0

(⊗

n∈N

λn(t, · )
)
dt,

where
λn(t, · ) := P(f(U,Un, t, Vn) ∈ · |U,Un).

As functions of(U,Un) for eachn, these form an exchangeable sequence of r.v.s taking
values inB([0, 1),PrA), so the proof is complete.

3.3 Relation to row-column exchangeability

A relative of exchangeability for a two-dimensional randomarray (Xi,n)(i,n)∈N2 is
row-column exchangeability, which asserts that

(Xσ(i),τ(n))i,n
law
= (Xi,n)i,n ∀σ, τ ∈ SN.

Sinceσ andτ may be chosen separately, this is a rather stronger symmetrythan ordi-
nary two-dimensional exchangeability. Here, too, there isa representation theorem due
to Aldous and Hoover, and also a version in arbitrary dimensions due to Kallenberg,
who calls such arrays ‘separately exchangeable’.

10



Theorem 3.3 (Corollary 7.23 in [18]). If (Xi,n)i,n is an A-valued row-column ex-
changeable array then there is a Borel function[0, 1)4 −→ A such that

(Xi,n)i,n
law
= (f(Z,Ui, Vn,Wi,n))i,n,

whereZ, Ui for i ∈ N, Vn for n ∈ N andWi,n for (i, n) ∈ N2 are i.i.d.∼ U[0, 1).

An alternative proof of Theorem B can be given via Theorem 3.3. One begins
with the construction of the two-dimensional random array(Xi,n)i,n as in the proof
of Proposition 2.1 (where the setse have become singletonsn). Since this array is
row-column exchangeable, the Representation Theorem gives

(Xi,n)i,n
law
= (f(U,Ui, Vn,Wi,n))i,n

for some Borel directing functionf : [0, 1)4 −→ A, whereU , Ui for i ∈ N, Vn for
n ∈ N andWi,n for i, n ∈ N are i.i.d. ∼ U[0, 1). One can now read off a directing
random measureγ(U) onB([0, 1),PrA), a function ofU ∼ U[0, 1), in the following
two steps:

• first, for each fixedU andU ′ one obtains an elementλ(U,U ′) ∈ B([0, 1),PrA)
according to

λ(U,U ′)(t, · ) = PW (f(U,U ′, t,W ) ∈ · ), W ∼ U[0, 1);

• second,γ(U) is the distribution ofλ(U,U ′) whereU ′ ∼ U[0, 1).

On the other hand, a couple of simple applications of the Noise-Outsourcing Lemma
show that any directing random measureγ onB([0, 1),PrA) can be represented this
way, so this gives a bijective correspondence

{directing random measures onB([0, 1),PrA) up to equivalence}

↔ {directing functions[0, 1)4 −→ A up to equivalence},

where ‘up to equivalence’ refers to the possibility that different directing random mea-
sures or directing functions may give rise to the same row-column exchangeable array.

This approach is the basis of the paper [20], to be discussed later. It is quick, but at
the expense of assuming Theorem 3.3.

On the other hand, our approach to Theorem B does not use any exchangeability
theory in dimensions greater than one. Moreover, one can reverse the idea above to
give a fairly quick proof of Theorem 3.3 using Theorem B.

Proof of Theorem 3.3 from Theorem B.First let(Xi,n)i,n = ((Xi,n)i)n, thought of as
an exchangeable sequence ofAN-valued r.v.s. By the de Finetti-Hewitt-Savage The-
orem applied to the exchangeability inn, its law is a mixture of product measures;
equivalently, there is a(PrAN)-valued r.v.µ such that

law((Xi,n)i)n) = E(µ⊗N).

11



On the other hand, for anyσ ∈ SN the exchangeability ini gives

E(µ⊗N) = law((Xi,n)i)n) = law((Xσ(i),n)i)n) = E((T σ
∗ µ)

⊗N),

whereT σ : AN −→ AN is the corresponding coordinate-permuting transformation. By
the uniqueness of the de Finetti-Hewitt-Savage decomposition, this implies

µ
law
= T σ

∗ µ ∀σ ∈ SN,

soµ is an ERM. Therefore Theorem B gives

law((Xi,n)i)n) = E

(∫ 1

0

⊗

i∈N

λi(t, ·) dt
)⊗N

for some exchangeable random sequence(λi)i taking values inB([0, 1),PrA).
Next, applying the de Finetti-Hewitt-Savage Theorem to thesequence(λi)i itself

gives a Borel functionF : [0, 1)2 −→ B([0, 1),PrA) such that the above becomes

law((Xi,n)i)n) = EZ,(Ui)i

( ∫ 1

0

⊗

i∈N

F (Z,Ui, t, ·) dt
)⊗N

= EZ,(Ui)i,(Vn)n

⊗

(i,n)∈N2

F (Z,Ui, Vn, ·), (3)

whereZ,Ui for i ∈ N andVn for n ∈ N are i.i.d.∼ U[0, 1), and in the second equality
we have simply changed notation from ‘

∫ 1

0
· dt’ to ‘EVn

’.
Finally, by Lemma 3.1 there is a Borel functionf : [0, 1)4 −→ A such that

P(f(Z,U, V,W ) ∈ · |Z,U, V ) = F (Z,U, V, ·) a.s.

whenZ, U , V , W are i.i.d. ∼ U[0, 1), and now the right-hand side of (3) becomes
law((f(U,Ui, Vn,Wi,n)i)n), as required.

4 Proof in higher dimensions

Not all parts of Theorem 3.2 generalize to higher-dimensional arrays, and instead we
must make a more careful argument using the Equivalence Theorem 4.1 below.

4.1 Some more preliminaries

The Equivalence Theorem characterizes when two functions direct the same process in
the setting of Theorem 1.2. Its formulation needs the following notion. LetC = [0, 1)r

andD = [0, 1)s for somer, s ∈ N. Then a skew-product tuple(f0, . . . , fk) in which
eachfi :

∏
j≤i C

[i](j) −→ D for eachi gives rise to a skew-product-type function

f̂ : CP[k] −→ DP[k], which is a map between Euclidean cubes. We will write that the

12



skew-product tuple isLebesgue-measure-preservingif for all i = 0, 1, . . . , k and all
(xa)a$[i] ∈ CP[i]\[i], one has

U ∼ U(C) =⇒ fi
(
(xa)a$[i], U

)
∼ U(D).

This implies, in particular, that̂f pushes Lebesgue measure onCP[k] to Lebesgue mea-
sure onDP[k] (although these cubes have different dimensions ifr 6= s). However, the
assertion that the skew-product tuple is Lebesgue-measure-preserving can be strictly
stronger than this, in case the functionsfi are not all injective.

The Equivalence Theorem is as follows.

Theorem 4.1(Equivalence Theorem for directing functions; Theorem 7.28 in [18]). If

f̂ , f̂ ′ : [0, 1)P[k] −→ A0 × · · · ×A
[k](i)

i × · · · ×Ak are functions of skew-product type
such that (

f|e|((Ua)a⊆e)
)
|e|≤k

law
=

(
f ′
|e|((Ua)a⊆e)

)
|e|≤k

,

then there are functionŝG, Ĝ′ : [0, 1)P[k] −→ [0, 1)P[k] of skew-product type, whose
skew-product tuples are Lebesgue-measure-preserving, and which make the following
diagram commute:

[0, 1)P[k]

Ĝ

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

Ĝ′

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

[0, 1)P[k]

f̂ ((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗
[0, 1)P[k]

f̂ ′
vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

A0 ×Ak
1 × · · · ×Ak.

In connection with this theorem, we will also need the following ‘factorization’
result.

Corollary 4.2. LetU⊆[k] = (Ue)e⊆[k] andV⊆[k] be independent uniform r.v.s valued
in [0, 1)P[k]. If

G : [0, 1)P[k] −→ [0, 1)P[k]

is a function of skew-product type whose skew-product tupleis Lebesgue-measure-
preserving, then there is another function

H : ([0, 1)× [0, 1))P[k] −→ [0, 1)P[k]

of skew-product type, whose skew-product tuple is Lebesgue-measure-preserving, and
such that

U⊆[k] = G
(
H(U⊆[k], V⊆[k])

)
a.s..

Another way to express this is that the maps in the following diagram come from
Lebesgue-measure-preserving skew-product tuples and a.s. commute:

13



([0, 1)× [0, 1))P[k]

Π
))❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚

H
// [0, 1)P[k]

G

��

[0, 1)P[k],

where
Π
(
(xe, ye)e⊆[k]

)
= (xe)e⊆[k]

is the obvious projection.
Geometrically, the intuition here is thatG is ‘almost onto’ (since its image measure

is Lebesgue), and that as a result one can represent it as the projection mapΠ after
usingH to ‘straighten out the fibres’.

Proof. Let G be defined by the skew-product tuple(G0, . . . , Gk). We must construct
the skew-product tuple(H0, . . . , Hk) that definesH . In terms of these tuples, our
requirement is that

Gi

((
H|e|((Ua, Va)a⊆e)

)
e⊆[i]

)
= U[i] a.s. ∀i = 0, 1, . . . , k. (4)

Wheni = 0 this simplifies to

G0(H0(U0, V0)) = U0 a.s..

We can obtain such anH0 from the Noise-Outsourcing Lemma 3.1 as follows. LetZ0

be aU[0, 1)-r.v. and letX0 := G0(Z0), so this is also∼ U[0, 1). Applying Lemma 3.1
to the pair(X0, Z0) gives a Borel functionH0 : [0, 1)× [0, 1) −→ [0, 1) such that

(X0, Z0) = (X0, H0(X0, Y0)) a.s.

for someY0 ∼ U[0, 1) independent fromX0. SinceX0 = G0(Z0), applyingG0 to the
second coordinates here gives

X0 = G0(H0(X0, Y0)) a.s.

The general case now follows by induction oni. Suppose thati ≥ 1, let Ye for
e $ [i] andZe for e ⊆ [i] be i.i.d. ∼ U[0, 1); defineXe := G|e|((Za)a⊆e) for
all e ⊆ [i]; and assume thatH0, . . . , Hi−1 have already been constructed such that
Ze := H|e|((Xa, Ya)a⊆e) for eache $ [i]. Applying Lemma 3.1 again gives a Borel
functionHi : ([0, 1)× [0, 1))P[i] −→ [0, 1) and a r.v.Y[i] ∼ U[0, 1) such that

(
(Xe)e⊆[i], (Ye)e$[i], Z[i]

)
=

(
(Xe)e⊆[i], (Ye)e$[i], Hi

(
(Xe)e⊆[i], (Ye)e⊆[i]

))
,

and as before this is equivalent to the desired equality (4).
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4.2 Completion of the proof

We need the following enhancement of Proposition 2.1.

Lemma 4.3. If µ is an ERM on
∏

i≤k A
N(i)

i , then there is an exchangeable array
(Ue, Xe)|e|≤k such that

• (Ue)|e|≤k are i.i.d.∼ U[0, 1),

• eachXe takes values inA|e|,

• and one has
µ(·)

law
= P

(
(Xe)|e|≤k ∈ ·

∣∣ (Ue)|e|≤k

)
.

Proof. Let (Ye, Xe)|e|≤k be the process given by Proposition 2.1, with each(Ye, Xe)

taking values inA|e| ×A|e|. By the Representation Theorem 1.2 applied to(Ye)|e|≤k,

there is a function̂f : [0, 1)P[k] −→
∏

i≤k A
[k](i)

i of skew-product type such that

(Ye)|e|≤k
law
= f̂((Ue)|e|≤k),

where(Ue)|e|≤k is an i.i.d.∼ U[0, 1) array.
Now consider the coupling(Ue, Xe)|e|≤k whose law is the relatively independent

product over the condition(Ye)|e|≤k = f̂((Ue)|e|≤k):

P((Ue)e ∈ du, (Xe)e ∈ da)

= P((Ue)e ∈ du) · P((Xe)e ∈ da | (Ye)e = f̂(u)). (5)

This is exchangeable and has the three desired properties. The exchangeability
follows because both factors on the right-hand side of (5) are invariant under the action
of SN on the indexing sete, by the exchangeability of(Ue)e and(Ye, Xe)e. The first
two of the properties listed are obvious, and the third follows from Proposition 2.1
because the above relative product formula gives

P
(
(Xe)e ∈ da

∣∣ (Ue)e = u
)
= P

(
(Xe)e ∈ da

∣∣ (Ye)e = f̂(u)
)
,

and we conditioned on the equality(Ye)e = f̂((Ue)e).

Proof of Theorem A. Let the process(Ue, Xe)|e|≤k be as in the preceding corol-
lary. Applying Theorem 1.2 to this whole process gives functions ĝ : [0, 1)P[k] −→

[0, 1)P[k] andĥ : [0, 1)P[k] −→
∏

i≤k A
[k](i)

i of skew-product type such that

((Ue)|e|≤k, (Xe)|e|≤k)
law
=

(
ĝ((U ′

e)|e|≤k), ĥ((U
′
e)|e|≤k)

)
, (6)

where again(U ′
e)|e|≤k are i.i.d.∼ U[0, 1).

For the first coordinates, this reads

(Ue)|e|≤k
law
= ĝ((U ′

e)|e|≤k).
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Since both input and output are i.i.d.U[0, 1) arrays, we may apply the Equivalence
Theorem 4.1 to this equality of laws: it gives functionsG,G′ : [0, 1)P[k] −→ [0, 1)P[k]

of skew-product type whose skew-product tuples are Lebesgue-measure-preserving
and which make the following diagram commute:

[0, 1)P[k]

G

��

G′

%%▲
▲▲

▲▲
▲▲

▲▲
▲

[0, 1)P[k]

ĝ
yyrr
rr
rr
rr
rr

[0, 1)P[k].

(Note that this seems almost unnecessary, sinceĝ already sends Lebesgue measure on
[0, 1)P[k] to itself. However, we will need the structure of Lebsgue-measure-preserving
skew-product tuples, which need not follow in caseĝ is not injective: see the remarks
immediately preceding Theorem 4.1.)

Now applying Corollary 4.2 toG, one obtains a functionH : ([0, 1)×[0, 1))P[k] −→
[0, 1)P[k] of skew-product type, given by a Lebesgue-measure-preservingskew-product
tuple, and such that the above commutative diagram can be enlarged to

([0, 1)× [0, 1))P[k] H
//

Π

$$■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■

[0, 1)P[k]

G

��

G′

%%▲
▲▲

▲▲
▲▲

▲▲
▲

[0, 1)P[k]

ĝ
yyrr
rr
rr
rr
rr

[0, 1)P[k].

Let (Ve)|e|≤k be another collection of i.i.d.U[0, 1)-r.v.s independent from(Ue)|e|≤k,

and letf̂ := ĥ ◦G′ ◦H . Then the above diagram implies that:

• on the one hand,

(Ue)|e|≤k = ĝ(G′(H((Ue, Ve)|e|≤k))) a.s.,

• and on the other,G′(H((Ue, Ve)|e|≤k)) is an i.i.d. array ofU[0, 1)-r.v.s, and so

(ĝ((U ′
e)|e|≤k), ĥ((U

′
e)|e|≤k))

law
=

(
ĝ(G′(H((Ue, Ve)|e|≤k))), ĥ(G

′(H((Ue, Ve)|e|≤k)))
)
.

Combining (6) with these two facts now gives

(Ue, Xe)|e|≤k
law
=

(
ĝ(G′(H((Ue, Ve)|e|≤k))), ĥ(G

′(H((Ue, Ve)|e|≤k)))
)
|e|≤k

law
=

(
(Ue)|e|≤k, f̂((Ue, Ve)|e|≤k)

)
,
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and conditioning both sides of this on(Ue)|e|≤k gives

P((Xe)|e|≤k ∈ · | (Ue)|e|≤k) = P(f̂((Ue, Ve)|e|≤k) ∈ · | (Ue)|e|≤k),

as required.

5 Relation to Dovbysh-Sudakov Theorem

Proof of Dovbysh-Sudakov Theorem.The trick to this is the standard one-to-one cor-
respondence

{
PSD(N× N)-matrices

}
↔

{
Gaussian measures onRN}

in which a Gaussian measure is identified with its variance-covariance matrix. (This is
elementary for finite PSD matrices, and then the infinite casefollows by the Daniell-
Kolmogorov Theorem: see [17, Theorem 6.14].) Because Gaussian measures are
uniquely determined by their variance-covariance matrices, this correspondence inter-
twines the two permutations actions ofN, so from(Rij)i,j we may construct an ERM
µ onRN which is almost surely Gaussian, and such that

Rij =

∫

RN

xixj µ(d(xn)n∈N) a.s..

Now Theorem B gives a representation

µ
law
=

∫ 1

0

⊗

i

λi(t, ·) dt

with (λi)i drawn from some exchangeable sequence taking values inB([0, 1),PrR).
Substituting this above gives

Rii
law
=

∫ 1

0

∫

R
x2 λi(t, dx) dt

and

Rij
law
=

∫ 1

0

( ∫

R
xλi(t, dx)

)( ∫

R
xλj(t, dx)

)
dt wheni 6= j.

Letting
H = L2([0, 1), dt),

ξi(t) =

∫

R
xλi(t, dx)

and

ai =

∫ 1

0

(∫

R
x2 λi(t, dx) −

(∫

R
xλi(t, dx)

)2)
dt,

this is the desired representation.
(Note thatξi must be inH a.s. because
∫ 1

0

ξi(t)
2 dt =

∫ 1

0

( ∫

R
xλi(t, dx)

)2

dt ≤

∫ 1

0

∫

R
x2 λi(t, dx) dt

law
= Rii,

which is finite a.s.)
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6 Limiting behaviour of the Viana-Bray model

Our second, and much more tentative, application for ERMs isto the study of the
Viana-Bray (‘VB’) model [25]. This is the basic ‘dilute’ mean-field spin glass model.
On the configuration space{−1, 1}N , it is given by the random Hamiltonian

HN (σ) =

M∑

k=1

Jkσikσjk , (7)

where:

• M is a Poisson r.v. with meanαN (the thermodynamic limit is be taken withα
fixed);

• i1, j1, i2, j2, . . . are indices from[N ] chosen uniformly and independently at
random;

• andJ1, J2, . . . are i.i.d. symmetricR-valued r.v.s with some given distribution,
often taken to be uniform±1.

(There are many essentially equivalent variants of this model, but this popular version
will do here.) From a quenched choice (that is, a fixed sample)of the random function
HN , the objects of interest are the resulting Gibbs measure

γβ,N{σ} =
1

ZN(β)
exp(−βHN (σ)),

the partition function
ZN(β) =

∑

σ

exp(−βHN (σ))

and the expected specific free energy

FN (β) =
1

N
E logZN (β), (8)

where the expectation is over the random functionHN . We will sometimes drop the
subscript ‘β’ or ‘N ’ in the sequel.

This is a relative of the older Sherrington-Kirkpatrick (‘SK’) model [19], in which
all pairs of spinsij interact according to independent random coefficientsgij ∼ N(0, 1/N).
The rigorous study of the SK model has become quite advanced in recent years; we will
not credit all of the important contributions, but refer thereader to the books [24, 22]
and the many references given there. By contrast, most properties of the VB model
remain conjectural.

A key tool in the study of the SK model is the use of random measures on Hilbert
space as a kind of ‘limit object’ for the random Gibbs measures γβ,N asN −→ ∞.
Viewing 1√

N
{−1, 1}N as a subset ofℓN2 , γβ,N is itself a random Hilbert space measure,

and the appropriate notion of convergence is convergence indistribution of the Gram-
de Finetti matrices obtained by sampling. Having taken a limit in this sense, a limit
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object in the form of a random measure on Hilbert space is provided by the Dovbysh-
Sudakov Theorem. This use of exchangeability and limit objects originates in works
of Arguin [4] and Arguin and Aizenman [5], with a precedent inthe study of classical
mean-field models in the work [10] of Fannes, Spohn and Verbeure. It is explained in
more detail in [22].

The key point for this use of random Hilbert-space measures is that the main prop-
erties of the SK model, such as the free energy, really dependonly on the covariances
among the random variablesH(σ), and hence on this Hilbert space structure. This
is no longer true for the VB model, so a more refined tool is needed. One possi-
bility has been explored in [20], and before that physicistsand mathematicians had
already worked with the related notion of ‘multi-overlap structures’ (see, e.g., [7, 8],
and also [23], although the latter does not use that terminology).

Here we will simply propose exchangeable random measures asa fairly intuitive
equivalent formalism, and compare it with two predecessorsfrom the literature: the
weighting schemes used by Panchenko and Talagrand in [23], and Panchenko’s use of
directing functions in [20]. After introducing our notion of ‘limit object’, we will give a
fairly brisk summary of the translations between these formalisms; the calculations are
all routine. We will restrict attention to the Viana-Bray model as above for simplicity,
but the discussion could easily be extended to a more generalclass of dilute models, as
in [23, 20].

6.1 Basic idea

If γβ,N is as above, then it defines an ERMµ by sampling: first quench the random
measureγβ,N ; then select samples (called ‘replicas’)σ1, σ2, . . .∈ {−1, 1}N i.i.d.
∼ γN ; and finally use these to defineµ as a mixture of delta masses:

µ =
1

N

N∑

n=1

δ(σ1
n,σ

2
n,...)

. (9)

Identifying ±1 with the extreme points ofPr{−1, 1}, this is clearly a mixture of
ERPMs of the kind considered previously. LetSamp(γβ,N) be the law ofµ.

It now makes sense to say thatγβ,N sampling convergesto some random prob-
ability measureγβ on B([0, 1),Pr{−1, 1}) if Samp(γβ,N ) converges toSamp(γβ)

for the vague topology onPr(Pr{−1, 1}N). This last space is compact, and the laws
of exchangeable random measures clearly comprise a furthersubspace which is closed
for the vague topology (since invariance under any given continuous transformation of
{−1, 1}N is a closed property). Therefore one can always at least takesubsequential
limits of (Samp(γβ,N))N , and now Theorem B promises the existence of someγβ that
represents the limiting ERM (although it is unique only up toequivalence).

This idea generalizes the more classical use of Gram-de Finetti matrices and their
limits recalled above. Starting from the SK model, the associated Gram-de Finetti ma-
trix is obtained by sampling and then quenching the Gibbs measure, and then sampling
from that Gibbs measure a sequence of states in{−1, 1}N and computing their inner
products as elements ofℓN2 , normalized byN (that is, their ‘overlaps’). Comparing
with the random measureµ in (9), this Gram-de Finetti matrix may be recovered as
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simply the (random) matrix of covariances of the different coordinates in{−1, 1}N

under this (random) measure.

6.2 Comparison with weighting schemes and directing functions

In [23] the authors do not introduce a notion of limits as suchfor the random measures
γβ,N , but they do formulate their most general results (Section 3of that paper) in terms
of some data that they call a ‘weighting scheme’. This consists of:

• a sequence ofR-valued r.v.s(Xk)k, and a family((X i,j
k )k)i,j of i.i.d. copies of

this sequence indexed by(i, j) ∈ N2;

• and, independently of these, a[0, 1]-valued random sequence of weights(vk)k
such that

∑
k vk = 1.

These data appear in an upper-bound formula for the free energy which will be
recalled below. They can be encapsulated in a certain directing random measureγ on
B([0, 1),Pr{−1, 1}) as follows. First, identifying elements ofPr{−1, 1} with their
expectations gives

B([0, 1),Pr{−1, 1}) = B([0, 1), [−1, 1]).

Now letΦ(x) := ex/(ex +e−x). Applying Lemma 3.1, we may find a sequence(fk)k
in B([0, 1), [−1, 1]) such that

(Φ(Xk))k
law
= (fk(U))k whenU ∼ U[0, 1). (10)

To finish, letγ be the atomic random measure

γ =
∑

k≥1

vkδfk , (11)

so the randomness ofγ is derived from the random choice of the weightsvk.
Clearly one could find many other ways to convert a weighting scheme into an

ERM, but this translation is appropriate because it gives the correct correspondence
between upper-bound formulae for the free energy to be recalled below.

On the other hand, in [20] Panchenko does introduce a family of limit objects,
closely related to our use of limiting ERMs. Given the randomGibbs measureγβ,N
on{−1, 1}N , he draws independent replicasσ1, σ2, . . . from it and then considers the
joint distribution of the whole(N ×∞)-indexed,{−1, 1}-valued random array

(σℓ
n)1≤n≤N, ℓ≥1.

Whereas we used these replicas to form an empirical measure which is an ERM,
Panchenko chooses an arbitrary extension of this to a two-dimensional infinite random
array. LettingN −→ ∞, if one considers a subsequence of theγN for which these
joint distributions converge, then in the limit one obtainsa random{−1, 1}-valued
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array which is row-column exchangeable. Applying Theorem 3.3, this array has the
same law as (

σ(U,Un, Vℓ,Wnℓ)
)
n,ℓ≥1

for some measurable functionσ : [0, 1)4 −→ {−1, 1}, whereU , Un for n ≥ 1, Vℓ for
ℓ ≥ 1 andWnℓ for n, ℓ ≥ 1 are i.i.d.∼ U[0, 1).

Panchenko then usesσ itself as his limit object for the sequence(γβ,N )N . The
equivalence between this formalism and the use of directingrandom measures on
B([0, 1),Pr{−1, 1}) is just the equivalence between our Theorem B and Theorem 3.3
described in Subsection 3.3 above.

6.3 Formula for the limiting free energy

A central result of [20] is a formula for the asymptotic expected free energy of models
such as (7) in terms of a functional of the directing functions introduced above: see [20,
Theorem 2]. For the VB model itself the result is as follows.

Theorem 6.1(Free energy formula). AsN −→ ∞, the expected specific free energy
from (8) satisfies

lim
N−→∞

FN = inf
σ

P(σ),

where forσ : [0, 1)4 −→ {−1, 1} we have

P(σ) := log 2 + E
(1) logE(2)

(
coshβ

K1∑

i=1

Jiσ(W,U, Vi, Xi)
)

− E
(1) logE(2)

(
expβ

K2∑

i=1

Jiσ(W,U, Vi, Xi)σ(W,U, V ′
i , X

′
i)
)
,

where:

• all the r.v.sW , U , V1, V2, . . . , V ′
1 , V ′

2 , . . . , X1, X2, . . . , X ′
1, X ′

2, . . . are i.i.d.
∼ U[0, 1),

• K1 is an independent Poisson r.v. of mean2α,

• K2 is an independent Poisson r.v. of meanα,

• and the coefficientsJi are chosen independently from the same distribution as
before,

and where

E
(1) = expectation overW,K1,K2, (Vi)i, (V

′
i )i and(Ji)i

and
E
(2) = expectation overU, (Xi)i and(X ′

i)i.
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If γ is the random directing measure onB([0, 1),Pr{−1, 1}) that corresponds to
σ, then the above formula may easily be recast in terms ofγ: it is

log 2 + E log

∫

B

∑

ε1,...,εK1=±1

K1∏

i=1

f(Vi, {εi})
(
coshβ

K1∑

i=1

Jiεi

)
γ(df)

−E log

∫

B

∑

ε1, . . . , εK2 = ±1
ε′1, . . . , ε

′
K2

= ±1

K2∏

i=1

f(Vi, {εi})f(V
′
i , {ε

′
i})

(
expβ

K2∑

i=1

Jiεiε
′
i

)
γ(df),

where
B = B([0, 1),Pr{−1, 1}),

and whereE is now the expectation over all the random dataγ, K1, K2, (Vi)i, (V ′
i )i

and(Ji)i.
Another elementary (but tedious) calculation shows that under the correspondence (11)

this coincides with the upper-bound expression that appears in [23]: the right-hand side
of inequality (3.3) in that paper. It is for the sake of this calculation that one uses the
functionΦ to definefk in (10).

Remark. In [20] Panchenko also shows that the quantity above is unchanged if one
instead takes the infimum only over those directing functionsσ that satisfy an analog
of the Aizenman-Contucci stability under cavity dynamics.This modification could
also easily be formulated in terms of random directing functions, but we omit it for the
sake of brevity. ⊳

6.4 The analog of ultrametricity

After the general formalism of Section 3 of [23], Sections 4 and 5 of that paper propose
a special class of weighting scheme objects that correspondto the physicists’ notion
of ‘replica-symmetry breaking’, and conjecture that thesegive the correct expression
for the limiting free energy. Following the prescriptions of the preceding subsections,
we can translate this conjecture into a proposal for a class of limiting random directing
measures which adapt the classical Parisi ultrametricity ansatz [22] to the setting of
dilute models. As before, the necessary calculations are simple but tedious, so we omit
the details. Some discussion along these lines is given in [20] for the SK model, rather
than for dilute models.

The key objects seem to be the following. Suppose thatT is a discrete rooted tree
with all leaves at a fixed finite distance from the root. (The discussion that follows can
certainly be extended to more general trees, but we omit thathere.) Let∗ be the root
and∂T the set of leaves. Also, letΣ be the Borelσ-algebra of[0, 1). We formulate the
following on [0, 1), but it clearly makes sense on any probability space.

Definition 6.2. A branching filtration on ([0, 1),Σ,Leb) indexed byT is a family of
σ-subalgebras(Σt)t∈T such that

• t ≤ t′ =⇒ Σt ⊆ Σt′ ;
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• for any t0, . . . , tm, theσ-algebraΣt0 is conditionally independent fromΣt1 ∨
· · · ∨Σtm overΣs wheres = (t0 ∧ t1) ∨ (t0 ∧ t2) ∨ · · · ∨ (t0 ∧ tm), the closest
vertex ofT to t0 which is a common ancestor oft0 and some otherti.

By analogy with ordinary filtrations, the branching filtration iscompleteif everyΣt is
complete for Lebesgue measure.

Given a branching filtrationΣ = (Σt)t∈T , a branchingale adapted toΣ is a
family of integrableR-valued functions(ft)t∈T on [0, 1) such that

• ft isΣt-measurable;

• t ≤ t′ =⇒ ft = E(ft′ |Σt).

Observe that in this case every root-leaf path∗v1v2 · · · vd gives a martingale(f∗, fv1 , . . . , fvr )
adapted to the filtration(Σ∗,Σv1 , . . . ,Σvd); we call the branchingalehomogeneous
if every root-leaf path gives a martingale with the same distribution.

Sometimes we refer to the whole collection(ft,Σt)t∈T as a branchingale.

Remark.Of course, stochastic processes indexed by trees have been studied before, but
I have not been able to find a reference for precisely this notion. Much of the literature
concerns tree-indexed Markov processes, as in [6], but I do not see why the r.v.sfv that
we will use should have the Markov property. ⊳

Definition 6.3. A subsetY ⊆ B([0, 1), [−1, 1]) is hierarchically distributed if it
equals{fv : v ∈ ∂T } for somehomogeneousbranchingale(ft,Σt)t∈T . The min-
imal depth ofT in such a representation is thedepthof the setY .

Now a simple calculation shows that under the correspondence (11), the special
weighting schemes used to formulate ther-step replica-symmetry breaking bound
in [23, Section 5] correspond to random measuresγ which are a.s. supported on hier-
archically distributed sets of depthr, and with the weights given by a Derrida-Ruelle
probability cascade that follows the indexing tree.

To be more specific, in their work they consider r.v.sXt indexed by the leavest
of a treeT of depthr and infinite branching, and specify their joint distribution by
constructing a larger family of random variables

(η(0), η
(1)
t1

, η
(2)
t1t2

, . . . , η
(r−1)
t1t2···tr−1

, η
(r)
t1t2···tr )

indexed by all downwards paths from the root inT , where:

• η
(r)
t1···tr = Xtr for each leaftr ∈ ∂T ,

• for a shorter patht1t2 · · · ts, 0 ≤ s ≤ r − 1, the r.v.η(s)t1t2···ts takes values in the
space

Pr(Pr(· · ·Pr(︸ ︷︷ ︸
r−s

R))),
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• and for eacht1t2 · · · ts with s ≤ r− 1, the r.v.sη(s+1)
t1t2···tst indexed by all the chil-

drent of ts are chosen independently fromη(s)t1t2···ts , and similarly the random
variables at all further children along distinct ancestrallines are conditionally
independent.

Such a structure arises from a homogeneous branchingale(ft,Σt)t∈T for which 0 <

ft < 1 a.s. as follows. Letη(r−1)
t1···tr−1

be the conditional distribution ofΦ−1 ◦ ftr
on Σtr−1 for any childtr of tr−1, whereΦ(x) = ex/(ex + e−x) as before, and the

condition0 < ftr < 1 ensures that this composition is defined a.s.. Now letη
(r−2)
t1···tr−2

be the conditional distribution ofη(r−1)
t1···tr−1

onΣtr−2 , and so on. These are then related

to the functionsft themselves in thatfts is obtained fromη(s)t1···ts by applyingΦ and

then taking barycentresr− s times. If one starts instead from the r.v.sη
(s)
t1···ts as above,

another simple (but lengthy) iterated appeal to Lemma 3.1 produces a homogeneous
branchingale that gives rise to it.

Thus, the natural analog of the Parisi ultrametricity ansatz for the Viana-Bray
model seems to be that in the infimum of Theorem 6.1, if one formulates the right-
hand side in terms of directing random measures, it is enoughto consider direct-
ing random measures that are a.s. supported on hierarchically distributed subsets of
B([0, 1),Pr{−1, 1}).
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