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Consider the multivariate nonparametric regression model. It is shown
that estimators based on sparsely connected deep neural networks with ReLU
activation function and properly chosen network architecture achieve the min-
imax rates of convergence (up to logn-factors) under a general composition
assumption on the regression function. The framework includes many well-
studied structural constraints such as (generalized) additive models. While
there is a lot of flexibility in the network architecture, the tuning parame-
ter is the sparsity of the network. Specifically, we consider large networks
with number of potential network parameters exceeding the sample size. The
analysis gives some insights into why multilayer feedforward neural networks
perform well in practice. Interestingly, for ReLU activation function the depth
(number of layers) of the neural network architectures plays an important
role, and our theory suggests that for nonparametric regression, scaling the
network depth with the sample size is natural. It is also shown that under
the composition assumption wavelet estimators can only achieve suboptimal
rates.

1. Introduction. In the nonparametric regression model with random covariates in the
unit hypercube, we observe n i.i.d. vectors Xi ∈ [0,1]d and n responses Yi ∈ R from the
model

Yi = f0(Xi) + εi, i = 1, . . . , n.(1)

The noise variables εi are assumed to be i.i.d. standard, normal and independent of (Xi)i .
The statistical problem is to recover the unknown function f0 : [0,1]d → R from the sample
(Xi , Yi)i . Various methods exist that allow to estimate the regression function nonparametri-
cally, including kernel smoothing, series estimators/wavelets and splines; cf. [15, 50, 51]. In
this work we consider fitting a multilayer feedforward artificial neural network to the data.
It is shown that the estimator achieves nearly optimal convergence rates under various con-
straints on the regression function.

Multilayer (or deep) neural networks have been successfully trained recently to achieve
impressive results for complicated tasks such as object detection on images and speech recog-
nition. Deep learning is now considered to be the state-of-the art for these tasks. But there is
a lack of mathematical understanding. One problem is that fitting a neural network to data is
highly nonlinear in the parameters. Moreover, the function class is nonconvex, and different
regularization methods are combined in practice.

This article is inspired by the idea to build a statistical theory that provides some under-
standing of these procedures. As the full method is too complex to be theoretically tractable,
we need to make some selection of important characteristics that we believe are crucial for
the success of the procedure.
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To fit a neural network, an activation function σ :R →R needs to be chosen. Traditionally,
sigmoidal activation functions (differentiable functions that are bounded and monotonically
increasing) were employed. For deep neural networks, however, there is a computational ad-
vantage using the nonsigmoidal rectified linear unit (ReLU) σ(x) = max(x,0) = (x)+. In
terms of statistical performance, the ReLU outperforms sigmoidal activation functions for
classification problems [13, 38], but for regression this remains unclear; see [6], Supplemen-
tary Material B. Whereas earlier statistical work focuses mainly on shallow networks with
sigmoidal activation functions, we provide statistical theory specifically for deep ReLU net-
works.

The statistical analysis for the ReLU activation function is quite different from earlier
approaches, and we discuss this in more detail in the overview on related literature in Sec-
tion 6. Viewed as a nonparametric method, ReLU networks have some surprising properties.
To explain this, notice that deep networks with ReLU activation produce functions that are
piecewise linear in the input. Nonparametric methods which are based on piecewise linear
approximations are typically not able to capture higher-order smoothness in the signal and
are rate-optimal only up to smoothness index two. Interestingly, ReLU activation combined
with a deep network architecture achieves near minimax rates for arbitrary smoothness of the
regression function.

The number of hidden layers of state-of-the-art network architectures has been growing
over the past years; cf. [48]. There are versions of the recently developed deep network
ResNet which are based on 152 layers; cf. [18]. Our analysis indicates that for the ReLU
activation function the network depth should be scaled with the sample size. This suggests
that, for larger samples, additional hidden layers should be added.

Recent deep architectures include more network parameters than training samples. The
well-known AlexNet [28], for instance, is based on 60 million network parameters using
only 1.2 million samples. We account for high-dimensional parameter spaces in our analysis
by assuming that the number of potential network parameters is much larger than the sample
size. For noisy data generated from the nonparametric regression model, overfitting does not
lead to good generalization errors and incorporating regularization or sparsity in the estimator
becomes essential. In the deep networks literature, one option is to make the network thinner
assuming that only few parameters are nonzero (or active); cf. [14], Section 7.10. Our analysis
shows that the number of nonzero parameters plays the role of the effective model dimension
and, as is common in nonparametric regression, needs to be chosen carefully.

Existing statistical theory often requires that the size of the network parameters tends to
infinity as the sample size increases. In practice, estimated network weights are, however,
rather small. We can incorporate small parameters in our theory, proving that it is sufficient
to consider neural networks with all network parameters bounded in absolute value by one.

Multilayer neural networks are typically applied to high-dimensional input. Without addi-
tional structure in the signal besides smoothness, nonparametric estimation rates are then slow
because of the well-known curse of dimensionality. This means that no statistical procedure
can do well regarding pointwise reconstruction of the signal. Multilayer neural networks are
believed to be able to adapt to many different structures in the signal, therefore avoiding the
curse of dimensionality and achieving faster rates in many situations. In this work we stick to
the regression setup and show that deep ReLU networks can indeed attain faster rates under a
hierarchical composition assumption on the regression function which includes (generalized)
additive models and the composition models considered in [3, 6, 21, 22, 26].

Parts of the success of multilayer neural networks can be explained by the fast algorithms
that are available to estimate the network weights from data. These iterative algorithms are
based on minimization of some empirical loss function using stochastic gradient descent. Be-
cause of the nonconvex function space, gradient descent methods might get stuck in a saddle
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point or converge to one of the potentially many local minima. Choromanska et al. [9] derive
a heuristic argument and shows that the risk of most of the local minima is not much larger
than the risk of the global minimum. Despite the huge number of variations of the stochastic
gradient descent, the common objective of all approaches is to reduce the empirical loss. In
our framework we associate to any network reconstruction method a parameter quantifying
the expected discrepancy between the achieved empirical risk and the global minimum of
the energy landscape. The main theorem then states that a network estimator is minimax rate
optimal (up to log factors) if and only if the method almost minimizes the empirical risk.

We also show that wavelet series estimators are unable to adapt to the underlying structure
under the composition assumption on the regression function. By deriving lower bounds, it is
shown that the rates are suboptimal by a polynomial factor in the sample size n. This provides
an example of a function class for which fitting a neural network outperforms wavelet series
estimators.

Our setting deviates in two aspects from the computer science literature on deep learning.
First, we consider regression and not classification. Second, we restrict ourselves in this arti-
cle to multilayer feedforward artificial neural networks, while most of the many recent deep
learning applications have been obtained using specific types of networks such as convolu-
tional or recurrent neural networks.

The article is structured as follows. Section 2 introduces multilayer feedforward artificial
neural networks and discusses mathematical modeling. This section also contains the defini-
tion of the network classes. The considered function classes for the regression function and
the main result can be found in Section 3. Specific structural constraints, such as additive
models, are discussed in Section 4. In Section 5 it is shown that wavelet estimators can only
achieve suboptimal rates under the composition assumption. We give an overview of relevant
related literature in Section 6. The proof of the main result together with additional discussion
can be found in Section 7.

Notation: Vectors are denoted by bold letters, for example, x := (x1, . . . , xd)�. As
usual, we define |x|p := (

∑d
i=1 |xi |p)1/p , |x|∞ := maxi |xi |, |x|0 := ∑

i 1(xi �= 0) and write
‖f ‖p := ‖f ‖Lp(D) for the Lp-norm on D, whenever there is no ambiguity of the domain D.
For two sequences, (an)n and (bn)n, we write an � bn if there exists a constant C such that
an ≤ Cbn for all n. Moreover, an 	 bn means that an � bn and bn � an. We denote by log2
the logarithm with respect to the basis two and write 
x� for the smallest integer ≥ x.

2. Mathematical definition of multilayer neural networks. Definitions: Fitting a mul-
tilayer neural network requires the choice of an activation function σ : R → R and the net-
work architecture. Motivated by the importance in deep learning, we study the rectifier linear
unit (ReLU) activation function

σ(x) = max(x,0).

For v = (v1, . . . , vr) ∈ R
r , define the shifted activation function σv :Rr →R

r as

σv

⎛⎜⎝y1
...

yr

⎞⎟⎠=
⎛⎜⎝σ(y1 − v1)

...

σ (yr − vr)

⎞⎟⎠ .

The network architecture (L,p) consists of a positive integer L, called the number of hid-
den layers or depth, and a width vector p = (p0, . . . , pL+1) ∈ N

L+2. A neural network with
network architecture (L,p) is then any function of the form

f :Rp0 →R
pL+1, x 
→ f (x) = WLσvL

WL−1σvL−1 · · ·W1σv1W0x,(2)
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FIG. 1. Representation as a direct graph of a network with two hidden layers L = 2 and width vector
p = (4,3,3,2).

where Wi is a pi+1 × pi weight matrix and vi ∈ R
pi is a shift vector. Network functions are

therefore built by alternating matrix-vector multiplications with the action of the nonlinear
activation function σ . In (2), it is also possible to omit the shift vectors by considering the
input (x,1) and enlarging the weight matrices by one row and one column with appropriate
entries. For our analysis it is, however, more convenient to work with representation (2). To
fit networks to data generated from the d-variate nonparametric regression model we must
have p0 = d and pL+1 = 1.

In computer science, neural networks are more commonly introduced via their represen-
tation as directed acyclic graphs; cf. Figure 1. Using this equivalent definition, the nodes
in the graph (also called units) are arranged in layers. The input layer is the first layer and
the output layer the last layer. The layers that lie in between are called hidden layers. The
number of hidden layers corresponds to L, and the number of units in each layer generates
the width vector p. Each node/unit in the graph representation stands for a scalar product of
the incoming signal with a weight vector which is then shifted and applied to the activation
function.

Mathematical modeling of deep network characteristics: Given a network function f (x) =
WLσvL

WL−1σvL−1 · · ·W1σv1W0x, the network parameters are the entries of the matrices
(Wj )j=0,...,L and vectors (vj )j=1,...,L. These parameters need to be estimated/learned from
the data.

The aim of this article is to consider a framework that incorporates essential features of
modern deep network architectures. In particular, we allow for large depth L and a large
number of potential network parameters. For the main result, no upper bound on the number
of network parameters is needed. Thus, we consider high-dimensional settings with more
parameters than training data.

Another characteristic of trained networks is that the size of the learned network parame-
ters is typically not very large. Common network initialization methods initialize the weight
matrices Wj by a (nearly) orthogonal random matrix if two successive layers have the same
width; cf. [14], Section 8.4. In practice, the trained network weights are typically not far from
the initialized weights. Since in an orthogonal matrix all entries are bounded in absolute value
by one, the trained network weights will not be large.

Existing theoretical results, however, often require that the size of the network parameters
tends to infinity. If large parameters are allowed, one can, for instance, easily approximate
step functions by ReLU networks. To be more in line with what is observed in practice, we
consider networks with all parameters bounded by one. This constraint can be easily built
into the deep learning algorithm by projecting the network parameters in each iteration onto
the interval [−1,1].

If ‖Wj‖∞ denotes the maximum-entry norm of Wj , the space of network functions with
given network architecture and network parameters bounded by one is

F(L,p) :=
{
f of the form (2) : max

j=0,...,L
‖Wj‖∞ ∨ |vj |∞ ≤ 1

}
,(3)

with the convention that v0 is a vector with all components equal to zero.
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In deep learning, sparsity of the neural network is enforced through regularization or spe-
cific forms of networks. Dropout for instance sets randomly units to zero and has the effect
that each unit will be active only for a small fraction of the data; cf. [44], Section 7.2. In
our notation this means that each entry of the vectors σvk

Wk−1 · · ·W1σv1W0x, k = 1, . . . ,L is
zero over a large range of the input space x ∈ [0,1]d . Convolutional neural networks filter the
input over local neighborhoods. Rewritten in the form (2) this essentially means that the Wi

are banded Toeplitz matrices. All network parameters corresponding to higher off-diagonal
entries are thus set to zero.

In this work we model the network sparsity assuming that there are only few nonzero/active
network parameters. If ‖Wj‖0 denotes the number of nonzero entries of Wj and ‖|f |∞‖∞
stands for the sup-norm of the function x 
→ |f (x)|∞, then the s-sparse networks are given
by

F(L,p, s) := F(L,p, s,F )

:=
{
f ∈ F(L,p) :

L∑
j=0

‖Wj‖0 + |vj |0 ≤ s,
∥∥|f |∞

∥∥∞ ≤ F

}
.

(4)

The upper bound on the uniform norm of f is most of the time dispensable and, therefore,
omitted in the notation. We consider cases where the number of network parameters s is small
compared to the total number of parameters in the network.

In deep learning, it is common to apply variations of stochastic gradient descent combined
with other techniques such as dropout to the loss induced by the log-likelihood (see Sec-
tion 6.2.1.1 in [14]). For nonparametric regression with normal errors, this coincides with the
least-squares loss (in machine learning terms this is the cross entropy for this model; cf. [14],
p. 129). The common objective of all reconstruction methods is to find networks f with small
empirical risk 1

n

∑n
i=1(Yi − f (Xi ))

2. For any estimator f̂n that returns a network in the class
F(L,p, s,F ), we define the corresponding quantity

�n(f̂n, f0)

:= Ef0

[
1

n

n∑
i=1

(
Yi − f̂n(Xi)

)2 − inf
f ∈F(L,p,s,F )

1

n

n∑
i=1

(
Yi − f (Xi )

)2]
.

(5)

The sequence �n(f̂n, f0) measures the difference between the expected empirical risk of f̂n

and the global minimum over all networks in the class. The subscript f0 in Ef0 indicates that
the expectation is taken with respect to a sample generated from the nonparametric regression
model with regression function f0. Notice that �n(f̂n, f0) ≥ 0 and �n(f̂n, f0) = 0 if f̂n is
an empirical risk minimizer.

To evaluate the statistical performance of an estimator f̂n, we derive bounds for the pre-
diction error

R(f̂n, f0) := Ef0

[(
f̂n(X) − f0(X)

)2]
,

with X D= X1 being independent of the sample (Xi , Yi)i .
The term �n(f̂n, f0) can be related via empirical process theory to constant× (R(f̂n, f0)−

R(f̂ ERM
n , f0)) + remainder, with f̂ ERM

n an empirical risk minimizer. Therefore, �n(f̂n, f0)

is the key quantity that together with the minimax estimation rate sharply determines the
convergence rate of f̂n (up to logn-factors). Determining the decay of �n(f̂n, f0) in n for
commonly employed methods, such as stochastic gradient descent, is an interesting problem
in its own. We only sketch a possible proof strategy here. Because of the potentially many
local minima and saddle points of the loss surface or energy landscape, gradient descent
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based methods have only a small chance to reach the global minimum without getting stuck
in a local minimum first. By making a link to spherical spin glasses, Choromanska et al. [9]
provide a heuristic suggesting that the loss of any local minima lies in a band that is lower
bounded by the loss of the global minimum. The width of the band depends on the width
of the network. If the heuristic argument can be made rigorous, then the width of the band
provides an upper bound for �n(f̂n, f0) for all methods that converge to a local minimum.
This would allow us then to study deep learning without an explicit analysis of the algorithm.
For more on the energy landscape, see [31].

3. Main results. The theoretical performance of neural networks depends on the un-
derlying function class. The classical approach in nonparametric statistics is to assume that
the regression function is β-smooth. The minimax estimation rate for the prediction error is
then n−2β/(2β+d). Since the input dimension d in neural network applications is very large,
these rates are extremely slow. The huge sample sizes often encountered in deep learning
applications are by far not sufficient to compensate the slow rates.

We therefore consider a function class that is natural for neural networks and exhibits some
low-dimensional structure that leads to input dimension free exponents in the estimation rates.
We assume that the regression function f0 is a composition of several functions, that is,

f0 = gq ◦ gq−1 ◦ · · · ◦ g1 ◦ g0(6)

with gi : [ai, bi]di → [ai+1, bi+1]di+1 . Denote by gi = (gij )
�
j=1,...,di+1

the components of
gi , and let ti be the maximal number of variables on which each of the gij depends on.
Thus, each gij is a ti-variate function. As an example consider the function f0(x1, x2, x3) =
g11(g01(x1, x3), g02(x1, x2)) for which d0 = 3, t0 = 2, d1 = t1 = 2, d2 = 1. We always must
have ti ≤ di and for specific constraints, such as additive models, ti might be much smaller
than di . The single components g0, . . . , gq and the pairs (βi, ti) are obviously not identi-
fiable. As we are only interested in estimation of f0, this causes no problems. Among all
possible representations, one should always pick one that leads to the fastest estimation rate
in Theorem 1 below.

In the d-variate regression model (1), f0 : [0,1]d → R and, thus, d0 = d , a0 = 0, b0 = 1
and dq+1 = 1. One should keep in mind that (6) is an assumption on the regression function
that can be made independently of whether neural networks are used to fit the data or not. In
particular, the number of layers L in the network has not to be the same as q .

It is conceivable that for many of the problems for which neural networks perform well, a
hidden hierarchical input-output relationship of the form (6) is present with small values ti ;
cf. [35, 40]. Slightly more specific function spaces, which alternate between summations and
composition of functions, have been considered in [6, 21]. We provide below an example of
a function class that can be decomposed in the form (6) but is not contained in these spaces.

Recall that a function has Hölder smoothness index β if all partial derivatives up to order
�β� exist and are bounded, and the partial derivatives of order �β� are β −�β� Hölder, where
�β� denotes the largest integer strictly smaller than β . The ball of β-Hölder functions with
radius K is then defined as

Cβ
r (D,K) =

{
f : D ⊂ R

r →R :
∑

α:|α|<β

∥∥∂αf
∥∥∞ + ∑

α:|α|=�β�
sup
x,y∈D

x�=y

|∂αf (x) − ∂αf (y)|
|x − y|β−�β�∞

≤ K

}
,

where we used multi-index notation, that is, ∂α = ∂α1 . . . ∂αr with α = (α1, . . . , αr) ∈ N
r and

|α| := |α|1.
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We assume that each of the functions gij has Hölder smoothness βi . Since gij is also

ti -variate, gij ∈ Cβi
ti

([ai, bi]ti ,Ki), and the underlying function space becomes

G(q,d, t,β,K) := {
f = gq ◦ . . . ◦ g0 : gi = (gij )j : [ai, bi]di → [ai+1, bi+1]di+1,

gij ∈ Cβi
ti

([ai, bi]ti ,K)
, for some |ai |, |bi | ≤ K

}
,

with d := (d0, . . . , dq+1), t := (t0, . . . , tq), β := (β0, . . . , βq).
For estimation rates in the nonparametric regression model, the crucial quantity is the

smoothness of f . Imposing smoothness on the functions gi , we must then find the induced
smoothness on f . If, for instance, q = 1, β0, β1 ≤ 1, d0 = d1 = t0 = t1 = 1, then f = g1 ◦
g0 and f has smoothness β0β1; cf. [22, 41]. We should then be able to achieve at least
the convergence rate n−2β0β1/(2β0β1+1). For β1 > 1, the rate changes. Below we see that the
convergence of the network estimator is described by the effective smoothness indices

β∗
i := βi

q∏
�=i+1

(β� ∧ 1)

via the rate

φn := max
i=0,...,q

n
− 2β∗

i
2β∗

i
+ti .(7)

Recall the definition of �n(f̂n, f0) in (5). We can now state the main result.

THEOREM 1. Consider the d-variate nonparametric regression model (1) for composite
regression function (6) in the class G(q,d, t,β,K). Let f̂n be an estimator taking values in
the network class F(L, (pi)i=0,...,L+1, s,F ) satisfying:

(i) F ≥ max(K,1),
(ii)

∑q
i=0 log2(4ti ∨ 4βi) log2 n ≤ L� nφn,

(iii) nφn � mini=1,...,L pi ,
(iv) s 	 nφn logn.

There exist constants C,C′ only depending on q,d, t,β,F , such that if

�n(f̂n, f0) ≤ CφnL log2 n,

then

R(f̂n, f0) ≤ C ′φnL log2 n,(8)

and if �n(f̂n, f0) ≥ CφnL log2 n, then

1

C′ �n(f̂n, f0) ≤ R(f̂n, f0) ≤ C ′�n(f̂n, f0).(9)

In order to minimize the rate φnL log2 n, the best choice is to choose L of the order of
log2 n. The rate in the regime �n(f̂n, f0) ≤ Cφn log3 n becomes then

R(f̂n, f0) ≤ C ′φn log3 n.

The convergence rate in Theorem 1 depends on φn and �n(f̂n, f0). Below we show that
φn is a lower bound for the minimax estimation risk over this class. Recall that the term
�n(f̂n, f0) is large if f̂n has a large empirical risk compared to an empirical risk minimizer.
Having this term in the convergence rate is unavoidable as it also appears in the lower bound
in (9). Since for any empirical risk minimizer the �n-term is zero by definition, we have the
following direct consequence of the main theorem:
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COROLLARY 1. Let f̃n ∈ arg minf ∈F(L,p,s,F )

∑n
i=1(Yi − f (Xi ))

2 be an empirical risk
minimizer. Under the same conditions as for Theorem 1, there exists a constant C′, only
depending on q,d, t,β,F , such that

R(f̃n, f0) ≤ C ′φnL log2 n.(10)

Condition (i) in Theorem 1 is very mild and only states that the network functions should
have at least the same supremum norm as the regression function. From the other assumptions
in Theorem 1, it becomes clear that there is a lot of flexibility in picking a good network
architecture as long as the number of active parameters s is taken to be of the right order.
Interestingly, to choose a network depth L, it is sufficient to have an upper bound on the
ti ≤ di and the smoothness indices βi . The network width can be chosen independent of the
smoothness indices by taking, for instance, n � mini pi . One might wonder whether for an
empirical risk minimizer the sparsity s can be made adaptive by minimizing a penalized least
squares problem with sparsity inducing penalty on the network weights. It is conceivable that
a complexity penalty of the form λs will lead to adaptation if the regularization parameter λ

is chosen of the correct order. From a practical point of view, it is more interesting to study
�1/�2-weight decay. As this requires much more machinery, the question will be moved to
future work.

The number of network parameters in a fully connected network is of the order∑L
i=0 pipi+1. This shows that Theorem 1 requires sparse networks. More specifically, the

network has at least
∑L

i=1 pi − s completely inactive nodes, meaning that all incoming signal
is zero. The choice s 	 nφn logn in condition (iv) balances the squared bias and the variance.
From the proof of the theorem, convergence rates can also be derived if s is chosen of a
different order.

For convenience, Theorem 1 is stated without explicit constants. The proofs, however,
are nonasymptotic, although we did not make an attempt to minimize the constants. It is
well known that deep learning outperforms other methods only for large sample sizes. This
indicates that the method might be able to adapt to underlying structure in the signal and,
therefore, to achieve fast convergence rates but with large constants or remainder terms which
spoil the results for small samples.

The proof of the risk bounds in Theorem 1 is based on the following oracle-type inequality:

THEOREM 2. Consider the d-variate nonparametric regression model (1) with unknown
regression function f0, satisfying ‖f0‖∞ ≤ F for some F ≥ 1. Let f̂n be any estimator taking
values in the class F(L,p, s,F ), and let �n(f̂n, f0) be the quantity defined in (5). For any
ε ∈ (0,1], there exists a constant Cε , only depending on ε, such that with

τε,n := CεF
2 (s + 1) log(n(s + 1)Lp0pL+1)

n
,

(1 − ε)2�n(f̂n, f0) − τε,n ≤ R(f̂n, f0)

≤ (1 + ε)2
(

inf
f ∈F(L,p,s,F )

‖f − f0‖2∞ + �n(f̂n, f0)
)

+ τε,n.

One consequence of the oracle inequality is that the upper bounds on the risk become
worse if the number of layers increases. In practice, it also has been observed that too many
layers lead to a degradation of the performance; cf. [18], [17], Section 4.4 and [45], Section 4.
Residual networks can overcome this problem. But they are not of the form (2) and will need
to be analyzed separately.
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One may wonder whether there is anything special about ReLU networks compared to
other activation functions. A close inspection of the proof shows that two specific properties
of the ReLU function are used.

One of the advantages of deep ReLU networks is the projection property

σ ◦ σ = σ(11)

that we can use to pass a signal without change through several layers in the network. This is
important since the approximation theory is based on the construction of smaller networks for
simpler tasks that might not all have the same network depth. To combine these subnetworks
we need to synchronize the network depths by adding hidden layers that do not change the
output. This can be easily realized by choosing the weight matrices in the network to be the
identity (assuming equal network width in successive layers) and using (11); see also (18).
This property is not only a theoretical tool. To pass an outcome without change to a deeper
layer is also often helpful in practice and realized by so-called skip connections, in which
case they do not need to be learned from the data. A specific instance are residual networks
with ReLU activation function [18] that are successfully applied in practice. The difference to
standard feedforward networks is that if all networks parameters are set to zero in a residual
network, the network becomes essentially the identity map. For other activation functions it
is much harder to approximate the identity.

Another advantage of the ReLU activation is that all network parameters can be taken to
be bounded in absolute value by one. If all network parameters are initialized by a value in
[−1,1], this means that each network parameter only need to be varied by at most two during
training. It is unclear whether other results in the literature for non-ReLU activation functions
hold for bounded network parameters. An important step is the approximation of the square
function x 
→ x2. For any twice differentiable and nonlinear activation function, the classical
approach to approximate the square function by a network is to use rescaled second order
differences (σ (t + 2xh) − 2σ(t + xh) + σ(xh))/(h2σ ′′(t)) → x2 for h → 0 and a t with
σ ′′(t) �= 0. To achieve a sufficiently good approximation, we need to let h tend to zero with
the sample size, making some of the network parameters necessarily very large.

The log2 n-factor in the convergence rate φnL log2 n is likely an artifact of the proof.
Next, we show that φn is a lower bound for the minimax estimation risk over the class
G(q,d, t,β,K) in the interesting regime ti ≤ min(d0, . . . , di−1) for all i. This means that
no dimensions are added on deeper abstraction levels in the composition of functions. In
particular, it avoids that ti is larger than the input dimension d0. Outside of this regime, it
is hard to determine the minimax rate, and in some cases it is even possible to find another
representation of f as a composition of functions which yields a faster convergence rate.

THEOREM 3. Consider the nonparametric regression model (1) with Xi drawn from a
distribution with Lebesgue density on [0,1]d which is lower and upper bounded by pos-
itive constants. For any nonnegative integer q , any dimension vectors d and t satisfying
ti ≤ min(d0, . . . , di−1) for all i, any smoothness vector β and all sufficiently large constants
K > 0, there exists a positive constant c such that

inf
f̂n

sup
f0∈G(q,d,t,β,K)

R(f̂n, f0) ≥ cφn,

where the inf is taken over all estimators f̂n.

The proof is deferred to Section 7. To illustrate the main ideas, we provide a sketch here.
For simplicity, assume that ti = di = 1 for all i. In this case the functions gi are univariate and
real valued. Define i∗ ∈ arg mini=0,...,q β∗

i /(2β∗
i + 1) as an index for which the estimation
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rate is obtained. For any α > 0, xα has Hölder smoothness α, and for α = 1, the function
is infinitely often differentiable and has finite Hölder norm for all smoothness indices. Set
g�(x) = x for � < i∗ and g�(x) = xβ�∧1 for � > i∗. Then,

f0(x) = gq ◦ gq−1 ◦ · · · ◦ g1 ◦ g0(x) = (
gi∗(x)

)∏q

�=i∗+1 β�∧1
.

Assuming for the moment uniform random design, the Kullback–Leibler divergence is
KL(Pf ,Pg) = n

2‖f − g‖2
2. Take a kernel function K , and consider g̃(x) = hβi∗ K(x/h).

Under standard assumptions on K , g̃ has Hölder smoothness index βi∗ . Now, we can

generate two hypotheses f00(x) = 0 and f01(x) = (hβi∗ K(x/h))
∏q

�=i∗+1 β�∧1 by taking
gi∗(x) = 0 and gi∗(x) = g̃(x). Therefore, |f00(0) − f01(0)| � hβ∗

i∗ assuming that K(0) > 0.
For the Kullback–Leibler divergence, we find KL(Pf00,Pf01) � nh2β∗

i∗+1. Using Theo-
rem 2.2(iii) in [50], this shows that the pointwise rate of convergence is n−2β∗

i∗/(2β∗
i∗+1) =

maxi=0,...,q n−2β∗
i /(2β∗

i +1). This matches with the upper bound since ti = 1 for all i. For lower
bounds on the prediction error, we generalize the argument to a multiple testing problem.

The L2-minimax rate coincides in most regimes with the sup-norm rate obtained in Sec-
tion 4.1 of [22] for composition of two functions. But unlike the classical nonparametric re-
gression model, the minimax estimation rates for L2-loss and sup-norm loss differ for some
setups by a polynomial power in the sample size n.

There are several recent results in approximation theory that provide lower bounds on the
number of required network weights s such that all functions in a function class can be ap-
proximated by a s-sparse network up to some prescribed error; cf., for instance, [7]. Results
of this flavor can also be quite easily derived by combining the minimax lower bound with
the oracle inequality. The argument is that if the same approximation rates would hold for
networks with less parameters, then we would obtain rates that are faster than the minimax
rates which clearly is a contradiction. This provides a new statistical route to establish ap-
proximation theoretic properties.

LEMMA 1. Given β,K > 0, d ∈ N, there exist constants c1, c2 only depending on
β,K,d , such that if

s ≤ c1
ε−d/β

L log(1/ε)

for some ε ≤ c2, then for any width vector p with p0 = d and pL+1 = 1,

sup
f0∈Cβ

d ([0,1]d ,K)

inf
f ∈F(L,p,s)

‖f − f0‖∞ ≥ ε.

A more refined argument using Lemma 4 instead of Theorem 2 yields also lower bounds
for L2.

4. Examples of specific structural constraints. In this section we discuss several well-
studied special cases of compositional constraints on the regression function.

Additive models: In an additive model the regression function has the form

f0(x1, . . . , xd) =
d∑

i=1

fi(xi).

This can be written as a composition of functions

f0 = g1 ◦ g0(12)

with g0(x) = (f1(x1), . . . , fd(xd))� and g1(y) =∑d
j=1 yj . Consequently, g0 : [0,1]d → R

d

and g1 : Rd → R and, thus, d0 = d , t0 = 1, d1 = t1 = d , d2 = 1. Equation (12) decomposes
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the original function into one function where each component only depends on one variable
only and another function that depends on all variables but is infinitely smooth. For both types
of functions, fast rates can be obtained that do not suffer from the curse of dimensionality.
This explains then the fast rate that can be obtained for additive models.

Suppose that fi ∈ Cβ
1 ([0,1],K) for i = 1, . . . , d . Then, f : [0,1]d g0−→ [−K,K]d g1−→

[−Kd,Kd]. Since for any γ > 1, g1 ∈ Cγ
d ([−K,K]d, (K + 1)d),

f0 ∈ G
(
1, (d, d,1), (1, d),

(
β, (β ∨ 2)d

)
, (K + 1)d

)
.

For network architectures F(L,p, s,F ) satisfying F ≥ (K + 1)d , 2 log2(4(β ∨ 2)d) logn ≤
L� logn, n1/(2β+1) � mini pi and s 	 n1/(2β+1) logn, we thus obtain by Theorem 1,

R(f̂n, f0)� n
− 2β

2β+1 log3 n + �(f̂n, f0).

This coincides up to the log3 n-factor with the minimax estimation rate.
Generalized additive models: Suppose the regression function is of the form

f0(x1, . . . , xd) = h

(
d∑

i=1

fi(xi)

)
for some unknown link function h : R → R. This can be written as composition of three
functions f0 = g2 ◦ g1 ◦ g0 with g0 and g1 as before and g2 = h. If fi ∈ Cβ

1 ([0,1],K) and

h ∈ Cγ
1 (R,K), then f0 : [0,1]d g0−→ [−K,K]d g1−→ [−Kd,Kd] g2−→ [−K,K]. Arguing as

for additive models,

f0 ∈ G
(
2, (d, d,1,1), (1, d,1),

(
β, (β ∨ 2)d, γ

)
, (K + 1)d

)
.

For network architectures satisfying the assumptions of Theorem 1, the bound on the estima-
tion rate becomes

R(f̂n, f0)�
(
n

− 2β(γ∧1)
2β(γ∧1)+1 + n

− 2γ
2γ+1

)
log3 n + �(f̂n, f0).(13)

Theorem 3 shows that n−2β(γ∧1)/(2β(γ∧1)+1) +n−2γ /(2γ+1) is also a lower bound. Let us also
remark that for the special case β = γ ≥ 2 and β,γ integers, Theorem 2.1 of [21] establishes
the estimation rate n−2β/(2β+1).

Sparse tensor decomposition: Assume that the regression function f0 has the form

f0(x) =
N∑

�=1

a�

d∏
i=1

fi�(xi)(14)

for fixed N , real coefficients a� and univariate functions fi�. Especially, if N = 1, this is the
same as imposing a product structure on the regression function f0(x) = ∏d

i=1 fi(xi). The
function class spanned by such sparse tensor decomposition can be best explained by making
a link to series estimators. Series estimators are based on the idea that the unknown function is
close to a linear combination of few basis functions, where the approximation error depends
on the smoothness of the signal. This means that any L2-function can be approximated by
f0(x) ≈∑N

�=1 a�

∏d
i=1 φi�(xi) for suitable coefficients a� and functions φi�.

Whereas series estimators require the choice of a basis, for neural networks to achieve fast
rates it is enough that (14) holds. The functions fi� can be unknown and do not need to be
orthogonal.

We can rewrite (14) as a composition of functions f0 = g2 ◦ g1 ◦ g0 with g0(x) =
(fi�(xi))i,�, g1 = (g1j )j=1,...,N performing the N multiplications

∏d
i=1 and g2(y) =∑N

�=1 a�y�. Observe that t0 = 1 and t1 = d . Assume that fi� ∈ Cβ
1 ([0,1],K) for K ≥ 1

and max� |a�| ≤ 1. Because of g1,j ∈ Cγ
d ([−K,K]d,2dKd) for all γ ≥ d + 1 and g2 ∈
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Cγ ′
N ([−2dKd,2dKd ]N,N(2dKd + 1)) for γ ′ > 1, we have [0,1]d g0−→ [−K,K]Nd g1−→

[−2dKd,2dKd ]N g2−→ [−N(2dKd + 1),N(2dKd + 1)] and

f0 ∈ G
(
2, (d,Nd,N,1), (1, d,Nd),

(
β,βd ∨ (d + 1),Nβ + 1

)
,N

(
2dKd + 1

))
.

For networks with architectures satisfying 3 log2(4(β + 1)(d + 1)N) log2 n ≤ L � logn,
n1/(2β+1) � mini pi and s 	 n1/(2β+1) logn, Theorem 1 yields the rate

R(f̂n, f0)� n
− 2β

2β+1 log3 n + �(f̂n, f0),

and the exponent in the rate does not depend on the input dimension d .

5. Suboptimality of wavelet series estimators. As argued before, the composition as-
sumption in (6) is very natural and generalizes many structural constraints such as additive
models. In this section we show that wavelet series estimators are unable to take advantage
from the underlying composition structure in the regression function and achieve in some
setups much slower convergence rates.

More specifically, we consider general additive models of the form f0(x) = h(x1 +
· · · + xd) with h ∈ Cα

1 ([0, d],K). This can also be viewed as a special instance of the sin-
gle index model, where the aim is not to estimate h but f0. Using (13), the prediction er-
ror of neural network reconstructions with small empirical risk and depth L 	 logn is then
bounded by n−2α/(2α+1) log3 n. The lower bound below shows that wavelet series estimators
cannot converge faster than with the rate n−2α/(2α+d). This rate can be much slower if d is
large. Wavelet series estimators thus suffer in this case from the curse of dimensionality while
neural networks achieve fast rates.

Consider a compact wavelet basis of L2(R) restricted to L2[0,1], say (ψλ,λ ∈ �); cf.
[10]. Here, � = {(j, k) : j = −1,0,1, . . . ;k ∈ Ij } with k ranging over the index set Ij , and
ψ−1,k := φ(· − k) are the shifted scaling functions. Then, for any function f ∈ L2[0,1]d ,

f (x) = ∑
(λ1,...,λd )∈�×···×�

dλ1···λd
(f )

d∏
r=1

ψλr (xr),

with convergence in L2[0,1] and

dλ1···λd
(f ) :=

∫
f (x)

d∏
r=1

ψλr (xr) dx

the wavelet coefficients.
To construct a counterexample, it is enough to consider the nonparametric regres-

sion model Yi = f0(Xi ) + εi , i = 1, . . . , n with uniform design Xi := (Ui,1, . . . ,Ui,d) ∼
Unif[0,1]d . The empirical wavelet coefficients are

d̂λ1···λd
(f0) = 1

n

n∑
i=1

Yi

d∏
r=1

ψλr (Ui,r ).

Because of E[d̂λ1···λd
(f0)] = dλ1···λd

(f0), this gives unbiased estimators for the wavelet co-
efficients. By the law of total variance,

Var
(
d̂λ1···λd

(f0)
)= 1

n
Var

(
Y1

d∏
r=1

ψλr (U1,r )

)

≥ 1

n
E

[
Var

(
Y1

d∏
r=1

ψλr (U1,r )|U1,1,, . . . ,U1,d

)]

= 1

n
.
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For the lower bounds we may assume that the smoothness indices are known. For estimation
we can truncate the series expansion on a resolution level that balances squared bias and
variance of the total estimator. More generally, we study estimators of the form

f̂n(x) = ∑
(λ1,...,λd )∈I

d̂λ1···λd
(f0)

d∏
r=1

ψλr (xr )(15)

for an arbitrary subset I ⊂ � × · · · × �. Using that, the design is uniform,

R(f̂n, f0) = ∑
(λ1,...,λd )∈I

E
[(

d̂λ1···λd
(f0) − dλ1···λd

(f0)
)2]+ ∑

(λ1,...,λd )∈I c

dλ1···λd
(f0)

2

≥ ∑
(λ1,...,λd )∈�×···×�

1

n
∧ dλ1···λd

(f0)
2.

(16)

By construction, ψ ∈ L2(R) has compact support, We can, therefore, without loss of gener-
ality assume that ψ is zero outside of [0,2q] for some integer q > 0.

LEMMA 2. Let q be as above and set ν := 
log2 d� + 1. For any 0 < α ≤ 1 and any
K > 0, there exists a nonzero constant c(ψ,d) only depending on d and properties of the
wavelet function ψ such that, for any j , we can find a function fj,α(x) = hj,α(x1 + · · · + xd)

with hj,α ∈ Cα
1 ([0, d],K) satisfying

d(j,2q+νp1)···(j,2q+νpd)(fj,α) = c(ψ,d)K2− j
2 (2α+d)

for all p1, . . . , pd ∈ {0,1, . . . ,2j−q−ν − 1}.
THEOREM 4. If f̂n denotes the wavelet estimator (15) for a compactly supported wavelet

ψ and an arbitrary index set I , then, for any 0 < α ≤ 1 and any Hölder radius K > 0,

sup
f0(x)=h(

∑d
r=1 xr ),h∈Cα

1 ([0,d],K)

R(f̂n, f0)� n− 2α
2α+d .

A close inspection of the proof shows that the theorem even holds for 0 < α ≤ r with r the
smallest positive integer for which

∫
xrψ(x)dx �= 0.

6. A brief summary of related statistical theory for neural networks. This section is
intended as a condensed overview on related literature summarizing main proving strategies
for bounds on the statistical risk. An extended summary of the work until the late 90s is given
in [39]. To control the stochastic error of neural networks, bounds on the covering entropy
and VC dimension can be found in the monograph [1]. A challenging part in the analysis of
neural networks is the approximation theory for multivariate functions. We first recall results
for shallow neural networks, that is, neural networks with one hidden layer.

Shallow neural networks: A shallow network with one output unit and width vector
(d,m,1) can be written as

fm(x) =
m∑

j=1

cjσ
(
w�

j x + vj

)
, wj ∈R

d, vj , cj ∈R.(17)

The universal approximation theorem states that a neural network with one hidden layer can
approximate any continuous function f arbitrarily well with respect to the uniform norm
provided there are enough hidden units; cf. [11, 19, 20, 29, 46]. If f has a derivative f ′, then
the derivative of the neural network also approximates f ′. The number of required hidden
units might be, however, extremely large; cf. [37] and [36]. There are several proofs for the
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universal approximation theorem based on the Fourier transform, the Radon transform and
the Hahn–Banach theorem [42].

The proofs can be sharpened in order to obtain rates of convergence. In [33] the con-
vergence rate n−2β/(2β+d+5) is derived. Compared with the minimax estimation rate, this is
suboptimal by a polynomial factor. The reason for the loss of performance with this approach
is that rewriting the function as a network requires too many parameters.

In [4, 5, 23, 24] a similar strategy is used to derive the rate Cf (d
logn

n
)1/2 for the

squared L2-risk, where Cf := ∫ |ω|1|Ff (ω)|dω and Ff denotes the Fourier transform
of f . If Cf < ∞ and d is fixed, the rate is always n−1/2 up to logarithmic factors. Since∑

i ‖∂if ‖∞ ≤ Cf , this means that Cf < ∞ can only hold if f has Hölder smoothness at least
one. This rate is difficult to compare with the standard nonparametric rates except for the spe-
cial case d = 1, where the rate is suboptimal compared with the minimax rate n−2/(2+d) for
d-variate functions with smoothness one. More interestingly, the rate Cf (d

logn
n

)1/2 shows
that neural networks can converge fast if the underlying function satisfies some additional
structural constraint. The same rate can also be obtained by a Fourier series estimator; see
[8], Section 1.7. In a similar fashion, Bach [2] studies abstract function spaces on which
shallow networks achieve fast convergence rates.

Results for multilayer neural networks: In [34] it is shown how to approximate a polytope
by a neural network with two hidden layers. Based on this result, [25] uses two-layer neural
networks with sigmoidal activation function and achieves the nonparametric rate n−2β/(2β+d)

up to logn-factors for β ≤ 1. This is extended in [26] to a composition assumption and
further generalized to β > 1 in the recent article [6]. Unfortunately, the result requires that
the activation function is at least as smooth as the signal (cf. Theorem 1 in [6]) and, therefore,
rules out the ReLU activation function.

The activation function σ(x) = x2 is not of practical relevance but has some interesting
theory. Indeed, with one hidden layer we can generate quadratic polynomials and with L hid-
den layers polynomials of degree 2L. For this activation function the role of the network depth
is the polynomial degree, and we can use standard results to approximate functions in com-
mon function classes. A natural generalization is the class of activation functions satisfying
limx→−∞ x−kσ (x) = 0 and limx→+∞ x−kσ (x) = 1.

If the growth is at least quadratic (k ≥ 2), the approximation theory has been derived in
[34] for deep networks with a number of layers scaling with logd . The same class has also
been considered recently in [7]. For the approximations to work, the assumption k ≥ 2 is
crucial, and the same approach does not generalize to the ReLU activation function, which
satisfies the growth condition with k = 1, and always produces functions that are piecewise
linear in the input.

Approximation theory for the ReLU activation function has been only recently developed
in [30, 47, 49, 52]. The key observation is that there are specific deep networks with few
units which approximate the square function well. In particular, the function approximation
presented in [52] is essential for our approach, and we use a similar strategy to construct net-
works that are close to a given function. We are, however, interested in a somehow different
question. Instead of deriving existence of a network architecture with good approximation
properties, we show that for any network architecture satisfying the conditions of Theorem
1, good approximation rates are obtainable. An additional difficulty in our approach is the
boundedness of the network parameters.

7. Proofs.

7.1. Embedding properties of network function classes. For the approximation of a
function by a network, we first construct smaller networks computing simpler objects. Let
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p = (p0, . . . , pL+1) and p′ = (p′
0, . . . , p

′
L+1). To combine networks, we make frequent use

of the following rules.
Enlarging: F(L,p, s) ⊆ F(L,q, s′) whenever p ≤ q componentwise and s ≤ s ′.
Composition: Suppose that f ∈ F(L,p) and g ∈ F(L′,p′) with pL+1 = p′

0. For a vector
v ∈ R

pL+1 , we define the composed network g ◦ σv(f ) which is in the space F(L + L′ +
1, (p,p′

1, . . . , p
′
L′+1)). In most of the cases that we consider, the output of the first network is

nonnegative, and the shift vector v will be taken to be zero.
Additional layers/depth synchronization: To synchronize the number of hidden layers for

two networks, we can add additional layers with identity weight matrix, such that

F(L,p, s) ⊂ F
(
L + q, (p0, . . . , p0︸ ︷︷ ︸

q times

,p), s + qp0
)
.(18)

Parallelization: Suppose that f,g are two networks with the same number of hidden layers
and the same input dimension, that is, f ∈ F(L,p) and g ∈ F(L,p′) with p0 = p′

0. The
parallelized network (f, g) computes f and g simultaneously in a joint network in the class
F(L, (p0,p1 + p′

1, . . . , pL+1 + p′
L+1)).

Removal of inactive nodes: We have

F(L,p, s) =F
(
L, (p0,p1 ∧ s,p2 ∧ s, . . . , pL ∧ s,pL+1), s

)
.(19)

To see this, let f (x) = WLσvL
WL−1 . . . σv1W0x ∈ F(L,p, s). If all entries of the j th column

of Wi are zero, then we can remove this column together with the j th row in Wi−1 and the
j th entry of vi without changing the function. This shows then that f ∈ F(L, (p0, . . . , pi−1,

pi − 1,pi+1, . . . , pL+1), s). Because there are s active parameters, we can iterate this pro-
cedure at least pi − s times for any i = 1, . . . ,L. This proves f ∈ F(L, (p0,p1 ∧ s,p2 ∧ s,

. . . , pL ∧ s,pL+1), s).
We frequently make use of the fact that, for a fully connected network in F(L,p), there

are
∑L

�=0 p�p�+1 weight matrix parameters and
∑L

�=1 p� network parameters coming from
the shift vectors. The total number of parameters is thus

L∑
�=0

(p� + 1)p�+1 − pL+1.(20)

THEOREM 5. For any function f ∈ Cβ
r ([0,1]r ,K) and any integers m ≥ 1 and N ≥

(β + 1)r ∨ (K + 1)er , there exists a network

f̃ ∈ F
(
L,
(
r,6

(
r + 
β�)N, . . . ,6

(
r + 
β�)N,1

)
, s,∞)

with depth

L = 8 + (m + 5)
(
1 + ⌈

log2(r ∨ β)
⌉)

and number of parameters

s ≤ 141(r + β + 1)3+rN(m + 6),

such that

‖f̃ − f ‖L∞([0,1]r ) ≤ (2K + 1)
(
1 + r2 + β2)6rN2−m + K3βN− β

r .

The proof of the theorem is given in the Supplementary Material [43]. The idea is to first
build networks that, for given input (x, y), approximately compute the product xy. We then
split the input space into small hyper-cubes and construct a network that approximates a local
Taylor expansion on each of these hypercubes.



1890 J. SCHMIDT-HIEBER

Based on Theorem 5, we can now construct a network that approximates f = gq ◦ · · · ◦g0.
In a first step, we show that f can always be written as composition of functions defined on
hypercubes [0,1]ti . As in the previous theorem, let gij ∈ Cβi

ti
([ai, bi]ti ,Ki), and assume that

Ki ≥ 1. For i = 1, . . . , q − 1, define

h0 := g0

2K0
+ 1

2
, hi := gi(2Ki−1 · −Ki−1)

2Ki

+ 1

2
, hq = gq(2Kq−1 · −Kq−1).

Here, 2Ki−1x − Ki−1 means that we transform the entries by 2Ki−1xj − Ki−1 for all j .
Clearly,

f = gq ◦ · · · ◦ g0 = hq ◦ · · · ◦ h0.(21)

Using the definition of the Hölder balls C
β
r (D,K), it follows that h0j takes values in

[0,1], h0j ∈ Cβ0
t0

([0,1]t0,1), hij ∈ Cβi
ti

([0,1]ti , (2Ki−1)
βi ) for i = 1, . . . , q − 1 and hqj ∈

Cβq

tq ([0,1]tq ,Kq(2Kq−1)
βq ). Without loss of generality, we can always assume that the radii

of the Hölder balls are at least one, that is, Ki ≥ 1.

LEMMA 3. Let hij be as above with Ki ≥ 1. Then, for any functions h̃i = (h̃ij )
�
j with

h̃ij : [0,1]ti → [0,1],
‖hq ◦ · · · ◦ h0 − h̃q ◦ · · · ◦ h̃0‖L∞[0,1]d

≤ Kq

q−1∏
�=0

(2K�)
β�+1

q∑
i=0

∥∥|hi − h̃i |∞
∥∥∏q

�=i+1 β�∧1

L∞[0,1]di
.

PROOF. Define Hi = hi ◦ · · · ◦ h0 and H̃i = h̃i ◦ · · · ◦ h̃0. If Qi is an upper bound for the
Hölder seminorm of hij , j = 1, . . . , di+1, we find, using triangle inequality,∣∣Hi(x) − H̃i(x)

∣∣∞
≤ ∣∣hi ◦ Hi−1(x) − hi ◦ H̃i−1(x)

∣∣∞ + ∣∣hi ◦ H̃i−1(x) − h̃i ◦ H̃i−1(x)
∣∣∞

≤ Qi

∣∣Hi−1(x) − H̃i−1(x)
∣∣βi∧1
∞ + ∥∥|hi − h̃i |∞

∥∥
L∞[0,1]di .

Together with the inequality (y+z)α ≤ yα +zα , which holds for all y, z ≥ 0 and all α ∈ [0,1],
the result follows. �

PROOF OF THEOREM 1. It is enough to prove the result for all sufficiently large n.
Throughout the proof C′ is a constant only depending on (q,d, t,β,F ) that may change
from line to line. Combining Theorem 2 with the assumed bounds on the depth L and the
network sparsity s, it follows for n ≥ 3:

1

4
�n(f̂n, f0) − C′φnL log2 n

≤ R(f̂ , f0) ≤ 4 inf
f ∗∈F(L,p,s,F )

∥∥f ∗ − f0
∥∥2
∞ + 4�n(f̂n, f0) + C′φnL log2 n,

(22)

where we used ε = 1/2 for the lower bound and ε = 1 for the upper bound. Taking C = 8C ′,
we find that 1

8�n(f̂n, f0) ≤ R(f̂ , f0) whenever �n(f̂n, f0) ≥ CφnL log2 n. This proves the
lower bound in (9).

To derive the upper bounds in (8) and (9), we need to bound the approximation error. To do
this, we rewrite the regression function f0 as in (21), that is, f0 = hq ◦ . . . h0 with hi = (hij )

�
j ,

hij defined on [0,1]ti , and for any i < q , hij mapping to [0,1].
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We apply Theorem 5 to each function hij separately. Take m = 
log2 n�, and let L′
i := 8 +

(
log2 n� + 5)(1 + 
log2(ti ∨ βi)�). This means there exists a network h̃ij ∈ F(L′
i , (ti ,6(ti +


βi�)N, . . . ,6(ti + 
βi�)N,1), si) with si ≤ 141(ti + βi + 1)3+tiN(
log2 n� + 6), such that

‖h̃ij − hij‖L∞([0,1]ti ) ≤ (2Qi + 1)
(
1 + t2

i + β2
i

)
6tiNn−1 + Qi3

βiN
− βi

ti ,(23)

where Qi is any upper bound of the Hölder norms of hij . If i < q , then we apply to the
output the two additional layers 1 − (1 − x)+. This requires four additional parameters. Call
the resulting network h∗

ij ∈ F(L′
i + 2, (ti ,6(ti + 
βi�)N, . . . ,6(ti + 
βi�)N,1), si + 4), and

observe that σ(h∗
ij ) = (h̃ij (x) ∨ 0) ∧ 1. Since hij (x) ∈ [0,1], we must have∥∥σ (h∗

ij

)− hij

∥∥
L∞([0,1]r ) ≤ ‖h̃ij − hij‖L∞([0,1]r ).(24)

If the networks h∗
ij are computed in parallel, h∗

i = (h∗
ij )j=1,...,di+1 lies in the class

F
(
L′

i + 2, (di,6riN, . . . ,6riN, di+1), di+1(si + 4)
)
,

with ri := maxi di+1(ti + 
βi�). Finally, we construct the composite network f ∗ = h̃q1 ◦
σ(h∗

q−1) ◦ · · · ◦ σ(h∗
0), which by the composition rule in Section 7.1 can be realized in the

class

F
(
E, (d,6riN, . . . ,6riN,1),

q∑
i=0

di+1(si + 4)

)
,(25)

with E := 3(q − 1) +∑q
i=0 L′

i . Observe that there is an An that is bounded in n such that
E = An + log2 n(

∑q
i=0
log2(ti ∨ βi)� + 1). Using that 
x� < x + 1, E ≤ ∑q

i=0(log2(4) +
log2(ti ∨ βi)) log2 n ≤ L for all sufficiently large n. By (18) and for sufficiently large n, the
space (25) can be embedded into F(L,p, s) with L,p, s satisfying the assumptions of the

theorem by choosing N = 
c maxi=0,...,q n

ti
2β∗

i
+ti � for a sufficiently small constant c > 0 only

depending on q,d, t,β. Combining Lemma 3 with (23) and (24),

inf
f ∗∈F(L,p,s)

∥∥f ∗ − f0
∥∥2
∞ ≤ C′ max

i=0,...,q
N

− 2β∗
i

ti ≤ C′ max
i=0,...,q

c
− 2β∗

i
ti n

− 2β∗
i

2β∗
i
+ti .(26)

For the approximation error in (22) we need to find a network function that is bounded in
sup-norm by F . By the previous inequality there exists a sequence (f̃n)n such that for all suf-
ficiently large n, f̃n ∈ F(L,p, s) and ‖f̃n − f0‖2∞ ≤ 2C maxi=0,...,q c−2β∗

i /ti n−(2β∗
i )/(2β∗

i +ti ).
Define f ∗

n = f̃n(‖f0‖∞/‖f̃n‖∞ ∧ 1). Then, ‖f ∗
n ‖∞ ≤ ‖f0‖∞ = ‖gq‖∞ ≤ K ≤ F , where

the last inequality follows from assumption (i). Moreover, f ∗
n ∈ F(L,p, s,F ). Writing

f ∗
n − f0 = (f ∗

n − f̃n) + (f̃n − f0), we obtain ‖f ∗
n − f0‖∞ ≤ 2‖f̃n − f0‖∞. This shows that

(26) also holds (with constants multiplied by 8) if the infimum is taken over the smaller space
F(L,p, s,F ). Together with (22), the upper bounds in (8) and (9) follow for any constant C.
This completes the proof. �

7.2. Proof of Theorem 2. Several oracle inequalities for the least-squares estimator are
known; cf. [12, 15, 16, 27, 32]. The common assumption of bounded response variables is,
however, violated in the nonparametric regression model with Gaussian measurement noise.
Additionally, we provide also a lower bound of the risk and give a proof that can be easily
generalized to arbitrary noise distributions. Let N (δ,F,‖ · ‖∞) be the covering number, that
is, the minimal number of ‖ · ‖∞-balls with radius δ that covers F (the centers do not need to
be in F ).
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LEMMA 4. Consider the d-variate nonparametric regression model (1) with unknown
regression function f0. Let f̂ be any estimator taking values in F . Define

�n := �n(f̂ , f0,F) := Ef0

[
1

n

n∑
i=1

(
Yi − f̂ (Xi)

)2 − inf
f ∈F

1

n

n∑
i=1

(
Yi − f (Xi )

)2]
,

and assume {f0}∪F ⊂ {f : [0,1]d → [−F,F ]} for some F ≥ 1. If Nn := N (δ,F,‖ · ‖∞) ≥
3, then,

(1 − ε)2�n − F 2 18 logNn + 76

nε
− 38δF

≤ R(f̂ , f0) ≤ (1 + ε)2
[

inf
f ∈F E

[(
f (X) − f0(X)

)2]+ F 2 18 logNn + 72

nε
+ 32δF + �n

]
,

for all δ, ε ∈ (0,1].

The proof of the lemma can be found in the Supplementary Material [43]. Next, we prove
a covering entropy bound. Recall the definition of the network function class F(L,p, s,F )

in (4).

LEMMA 5. If V :=∏L+1
�=0 (p� + 1), then, for any δ > 0,

logN
(
δ,F(L,p, s,∞),‖ · ‖∞

)≤ (s + 1) log
(
2δ−1(L + 1)V 2).

For a proof, see the Supplementary Material [43]. A related result is Theorem 14.5 in [1].

REMARK 1. Identity (19) applied to Lemma 5 yields

logN
(
δ,F(L,p, s,∞),‖ · ‖∞

)≤ (s + 1) log
(
22L+5δ−1(L + 1)p2

0p
2
L+1s

2L).
PROOF OF THEOREM 2. The assertion follows from Lemma 5 with δ = 1/n, Lemma 4

and Remark 1 since F ≥ 1. �

7.3. Proof of Theorem 3. Throughout this proof, ‖·‖2 = ‖·‖L2[0,1]d . By assumption there
exist positive γ ≤ � such that the Lebesgue density of X is lower bounded by γ and upper
bounded by � on [0,1]d . For such design, R(f̂n, f0) ≥ γ ‖f̂n − f0‖2

2. Denote by Pf the law
of the data in the nonparametric regression model (1). For the Kullback–Leibler divergence
we have KL(Pf ,Pg) = nE[(f (X1) − g(X1))

2] ≤ �n‖f − g‖2
2. Theorem 2.7 in [50] states

that if for some M ≥ 1 and κ > 0, f(0), . . . , f(M) ∈ G(q,d, t,β,K) are such that:

(i) ‖f(j) − f(k)‖2 ≥ κ
√

φn for all 0 ≤ j < k ≤ M ,
(ii) n

∑M
j=1 ‖f(j) − f(0)‖2

2 ≤ M log(M)/(9�),

then there exists a positive constant c = c(κ, γ ), such that

inf
f̂n

sup
f0∈G(q,d,t,β,K)

R(f̂n, f0) ≥ cφn.

In a next step we construct functions f(0), . . . , f(M) ∈ G(q,d, t,β,K) satisfying (i) and (ii).
Define i∗ ∈ arg mini=0,...,q β∗

i /(2β∗
i + ti). The index i∗ determines the estimation rate in

the sense that φn = n−2β∗
i∗/(2β∗

i∗+ti∗ ). For convenience, we write β∗ := βi∗ , β∗∗ := β∗
i∗ and

t∗ := ti∗ . One should notice the difference between β∗ and β∗∗. Let K ∈ L2(R) ∩ Cβ∗
1 (R,1)

be supported on [0,1]. It is easy to see that such a function K exists. Furthermore, de-
fine mn := �ρn1/(2β∗∗+t∗)� and hn := 1/mn where the constant ρ is chosen such that
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nh
2β∗+t∗
n ≤ 1/(72�‖KB‖2t∗

2 ) with B :=∏q
�=i∗+1(β� ∧ 1). For any u = (u1, . . . , ut∗) ∈ Un :=

{(u1, . . . , ut∗) : ui ∈ {0, hn,2hn, . . . , (mn − 1)hn}, define

ψu(x1, . . . , xt∗) := hβ∗
n

t∗∏
j=1

K

(
xj − uj

hn

)
.

For α with |α| < β∗, we have ‖∂αψu‖∞ ≤ 1 using K ∈ Cβ∗
1 (R,1). For α = (α1, . . . , αt∗)

with |α| = �β∗�, triangle inequality and K ∈ Cβ∗
1 (R,1) gives

hβ∗−�β∗�
n

|∏t∗
j=1 K(αj )(

xj−uj

hn
) −∏t∗

j=1 K(αj )(
yj−uj

hn
)|

maxi |xi − yi |β∗−�β∗� ≤ t∗.

Hence, ψu ∈ Cβ∗
t∗ ([0,1]t∗, (β∗)t∗ t∗). For a vector w = (wu)u∈Un ∈ {0,1}|Un|, define

φw = ∑
u∈Un

wuψu.

By construction, ψu and ψu′ , u,u′ ∈ Un, u �= u′ have disjoint support. As a consequence
φw ∈ Cβ∗

t∗ ([0,1]t∗,2(β∗)t∗ t∗).
For i < i∗, let gi(x) := (x1, . . . , xdi

)�. For i = i∗, define gi∗,w(x) = (φw(x1, . . . , xti∗ ),

0, . . . ,0)�. For i > i∗, set gi(x) := (x
βi∧1
1 ,0, . . . ,0)�. Recall that B = ∏q

�=i∗+1(β� ∧ 1).
We will frequently use that β∗∗ = β∗B . Because of ti ≤ min(d0, . . . , di−1) and the disjoint
supports of the ψu,

fw(x) = gq ◦ · · · ◦ gi∗+1 ◦ gi∗,w ◦ gi∗−1 ◦ · · · ◦ g0(x)

= φw(x1, . . . , xti∗ )
B

= ∑
u∈Un

wuψu(x1, . . . , xti∗ )
B

and fw ∈ G(q,d, t,β,K), provided K is taken sufficiently large.
For all u, ‖ψu‖2

2 = h
2β∗∗+t∗
n ‖KB‖2t∗

2 . If Ham(w,w′) = ∑
u∈Un

1(wu �= wu′) denotes the
Hamming distance, we find

‖fw − fw′‖2
2 = Ham

(
w,w′)h2β∗∗+t∗

n

∥∥KB
∥∥2t∗

2 .

By the Varshamov–Gilbert bound ([50], Lemma 2.9) and because of mt∗
n = |Un|, we conclude

that there exists a subset W ⊂ {0,1}mt∗
n of cardinality |W| ≥ 2mt∗

n /8, such that Ham(w,w′) ≥
mt∗

n /8 for all w,w′ ∈ W , w �= w′. This implies that, for κ = ‖KB‖t∗
2 /(

√
8ρβ∗∗

),

‖fw − fw′‖2
2 ≥ 1

8
h2β∗∗

n

∥∥KB
∥∥2t∗

2 ≥ κ2φn for all w,w′ ∈ W,w �= w′.

Using the definition of hn and ρ,

n‖fw − fw′‖2
2 ≤ nmt∗

n h2β∗∗+t∗
n

∥∥KB
∥∥2t∗

2 ≤ mt∗
n

72�
≤ log |W|

9�
.

This shows that the functions fw with w ∈W satisfy (i) and (ii). The assertion follows. �
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7.4. Proof of Lemma 1. We will choose c2 ≤ 1. Since ‖f0‖∞ ≤ K , it is therefore enough
to consider the infimum over F(L,p, s,F ) with F = K +1. Let f̃n be an empirical risk min-
imizer. Recall that �n(f̃n, f0) = 0. Because of the minimax lower bound in Theorem 3, there
exists a constant c3 such that c3n

−2β/(2β+d) ≤ sup
f0∈Cβ

1 ([0,1],K)
R(f̃n, f0) for all sufficiently

large n. Because of p0 = d and pL+1 = 1, Theorem 2 yields

c3n
−2β/(2β+d) ≤ sup

f0∈Cβ
d ([0,1],K)

R(f̃n, f0)

≤ 4 sup
f0∈Cβ

d ([0,1],K)

inf
f ∈F(L,p,s,K+1)

‖f − f0‖2∞

+ C(K + 1)2 (s + 1) log(n(s + 1)Ld)

n

for some constant C. Given ε, set nε := �(√8ε/
√

c3)
−(2β+d)/β�. Observe that for ε ≤ √

c3/8,

n−1
ε ≤ 2(

√
8ε/

√
c3)

(2β+d)/β and 8ε2/c3 ≤ n
−2β/(2β+d)
ε . For sufficiently small c2 > 0 and all

ε ≤ c2, we can insert nε in the previous inequality and find

8ε2 ≤ 4 sup
f0∈Cβ

d ([0,1],K)

inf
f ∈F(L,p,s,K+1)

‖f − f0‖2∞ + C1ε
2β+d

β s
(
log

(
ε−1sL)+ C2

)
for constants C1,C2 depending on K,β and d . The result follows using the condition s ≤
c1ε

−d/β/(L log(1/ε)) and choosing c1 small enough. �

7.5. Proofs for Section 5. PROOF OF LEMMA 2. Denote by r the smallest positive
integer such that μr := ∫

xrψ(x)dx �= 0. Such an r exists because {xr : r = 0,1, . . .} spans
L2[0,A] and ψ cannot be constant. If h ∈ L2(R), then we have for the wavelet coefficients

(27)
∫

h(x1 +· · ·+ xd)

d∏
�=1

ψj,k�
(x�) dx = 2− jd

2

∫
[0,2q ]d

h

(
2−j

(
d∑

�=1

x� + k�

))
d∏

�=1

ψ(x�) dx.

For a real number u, denote by {u} the fractional part of u.
We need to study the cases μ0 �= 0 and μ0 = 0 separately. If μ0 �= 0, define g(u) =

r−1ur1[0,1/2](u) + r−1(1 − u)r1(1/2,1](u). Notice that g is Lipschitz with Lipschitz constant
one. Let hj,α(u) = K2−jα−1g({2j−q−νu}) with q and ν as defined in the statement of the
lemma. For a T -periodic function u 
→ s(u), the α-Hölder seminorm for α ≤ 1 can be shown
to be supu�=v,|u−v|≤T |s(u) − s(v)|/|u − v|α . Since g is 1-Lipschitz, we have for u, v with
|u − v| ≤ 2q+ν−j ,∣∣hj,α(u) − hj,α(v)

∣∣≤ K2−jα−12j−q−ν |u − v| ≤ K

2
|u − v|α.

Since ‖hj,α‖∞ ≤ K/2, hj,α ∈ Cα
1 ([0, d],K). Let fj,α(x) = hj,α(x1 + · · · + xd). Recall that

the support of ψ is contained in [0,2q] and 2ν ≥ 2d . By definition of the wavelet coefficients,
equation (27), the definitions of hj,α and using μr = ∫

xrψ(x)dx, we find for p1, . . . , pd ∈
{0,1, . . . ,2j−q−2 − 1},

d(j,2q+νp1)...(j,2q+νpd)(fj,α)

= 2− jd
2

∫
[0,2q ]d

hj,α

(
2−j

(
d∑

�=1

x� + 2q+νp�

))
d∏

�=1

ψ(x�) dx
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= K2− jd
2 −jα−1

∫
[0,2q ]d

g

({∑d
�=1 x�

2q+ν

}) d∏
�=1

ψ(x�) dx

= r−12−qr−νr−1K2− j
2 (2α+d)

∫
[0,2q ]d

(x1 + · · · + xd)r
d∏

�=1

ψ(x�) dx

= dr−12−qr−νr−1Kμd−1
0 μr2− j

2 (2α+d),

where we used for the last identity that by definition of r , μ1 = · · · = μr−1 = 0.
In the case that μ0 = 0, we can take g(u) = (dr)−1udr1[0,1/2](u) + (dr)−1 ×

(1 − u)dr1(1/2,1](u). Following the same arguments as before and using the multinomial
theorem, we obtain

d(j,2q+νp1)...(j,2q+νpr )(fj,α) =
(
dr

r

)
1

dr
2−dqr−dνr−1Kμd

r 2− j
2 (2α+d).

The claim of the lemma follows. �

PROOF OF THEOREM 4. Let c(ψ,d) be as in Lemma 2. Choose an integer j∗ such that

1

n
≤ c(ψ,d)2K22−j∗(2α+d) ≤ 22α+d

n
.

This means that 2j∗ ≥ 1
2(c(ψ,d)2K2n)1/(2α+d). By Lemma 2, there exists a function fj∗,α

of the form h(x1 + · · · + xd), h ∈ Cα
1 ([0, d],K), such that with (16),

R(f̂n, fj∗,α) ≥ ∑
p1,...,pd∈{0,1,...,2j∗−q−ν−1}

1

n
= 1

n
2j∗d−qd−νd � n− 2α

2α+d .

�
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