
Neural Networks 124 (2020) 319–327

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Theory of deep convolutional neural networks: Downsampling
Ding-Xuan Zhou
School of Data Science and Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong

a r t i c l e i n f o

Article history:
Received 4 July 2019
Received in revised form 21 December 2019
Accepted 17 January 2020
Available online 25 January 2020

Keywords:
Deep learning
Convolutional neural networks
Approximation theory
Downsampling
Filter masks

a b s t r a c t

Establishing a solid theoretical foundation for structured deep neural networks is greatly desired
due to the successful applications of deep learning in various practical domains. This paper aims
at an approximation theory of deep convolutional neural networks whose structures are induced by
convolutions. To overcome the difficulty in theoretical analysis of the networks with linearly increasing
widths arising from convolutions, we introduce a downsampling operator to reduce the widths. We
prove that the downsampled deep convolutional neural networks can be used to approximate ridge
functions nicely, which hints some advantages of these structured networks in terms of approximation
or modeling. We also prove that the output of any multi-layer fully-connected neural network can
be realized by that of a downsampled deep convolutional neural network with free parameters of
the same order, which shows that in general, the approximation ability of deep convolutional neural
networks is at least as good as that of fully-connected networks. Finally, a theorem for approximating
functions on Riemannian manifolds is presented, which demonstrates that deep convolutional neural
networks can be used to learn manifold features of data.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction and downsampling

Deep learning has provided powerful applications in many
practical domains of science and technology. It is based on struc-
tured deep neural networks with structures or network architec-
tures designed according to various purposes. As an important
family of structured deep neural networks with convolutional
structures, deep convolutional neural networks (DCNNs) have
been applied successfully to speeches, images, and many other
types of data (Goodfellow, Bengio, & Courville, 2016; Hinton,
Osindero, & Teh, 2006; Krizhevsky, Sutskever, & Hinton, 2012;
LeCun, Bottou, Bengio, & Haffner, 1998). Empirical observations
have led to a belief that convolutions enable DCNNs to efficiently
learn locally shift-invariant features, and thereby to demonstrate
their powers in speech and image processing.

Compared with their rapid developments in practical applica-
tions and understanding of some computational issues like back-
propagation, stochastic gradient descent, and error-correction
tuning (Goodfellow et al., 2016), modeling, approximation, or
generalization abilities of structured deep neural networks (struc-
tured nets) are not well understood rigorously. In this paper
we present an approximation theory for downsampled DCNNs
in which an operation of downsampling is applied to DCNNs
and plays a role of pooling in reducing widths of deep neural
networks.

E-mail address: mazhou@cityu.edu.hk.

Before demonstrating differences between structured deep
nets and the classical fully-connected nets (multi-layer neural
networks), we recall that a multi-layer neural network for learn-
ing functions of input variable vector x = (xi)di=1 ∈ Rd with ℓ

hidden layers of neurons {H (k)
: Rd

→ Rnk}ℓk=1 with widths {nk}

is defined iteratively by

H (k)(x) = σ

(
F (k)H (k−1)(x) − b̂(k)

)
, k = 1, 2, . . . , ℓ, (1.1)

where σ : R → R is an activation function acting componentwise
on vectors, F (k) is a nk × nk−1 matrix, b̂(k) ∈ Rnk is a bias
vector, and H (0)(x) = x with width n0 = d. The most crucial
part in the above fully-connected nets is the full matrix F (k)

which involves nknk−1 free parameters to be trained and leads
to huge computational complexity in implementing the induced
deep learning algorithms. In particular, the classical shallow net
corresponding to the 1-layer case J = 1 having N = n1 hidden
neurons needs to train a N × d full matrix F (1)

= [t1 t2 . . . tN]
T

with N row vectors {ti ∈ Rd
}
N
i=1. These row vectors together

with a bias vector b̂ = (b̂i)Ni=1 ∈ RN and coefficients {ci}Ni=1 form
N(d + 2) free parameters to be trained in the output function

fN (x) =

N∑
i=1

ciσ (ti · x − b̂i). (1.2)

This number of free parameters is huge when the input data
has a large dimension d and/or the number N of hidden neu-
rons is large to achieve good approximation abilities. It leads
to technical difficulty in implementing the fully-connected nets.

https://doi.org/10.1016/j.neunet.2020.01.018
0893-6080/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2020.01.018
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2020.01.018&domain=pdf
mailto:mazhou@cityu.edu.hk
https://doi.org/10.1016/j.neunet.2020.01.018

320 D.-X. Zhou / Neural Networks 124 (2020) 319–327

A large literature around the late 1980s (Barron, 1993; Cybenko,
1989; Hornik, Stinchcombe, & White, 1989; Leshno, Lin, Pinkus,
& Schocken, 1993; Mhaskar, 1993) on function approximation by
fully-connected shallow or multi-layer neural networks compen-
sates for the computational complexity. The most essential com-
ponent in such an approximation theory is the fully-connected
nature of the full matrix F (k) in (1.1) or the complete freedom of
the feature vectors {ti} in (1.2).

DCNNs considered in this paper take a special form of multi-
layer neural nets (1.1), and their specialty lies in the special
sparse network structures imposed by convolutions. Instead of
full matrices F (k) in (1.1), matrices in our DCNNs of depth J are
induced by convolutional filter masks {w(j)

: Z → R}
J
j=1 with

the restriction made throughout the paper that each filter mask
w(j) is a sequence supported in {0, 1, . . . , s(j)} for some s(j) ∈ N
called filter length, involving only s(j) + 1 free parameters. Such
a filter mask w = (wk)∞k=−∞

supported in {0, 1, . . . , s} for some
s ∈ N satisfies wk = 0 for k ̸∈ [0, s] and convoluting with
it leads to a Toeplitz type (D + s) × D convolutional matrix
Tw

:= (wi−k)i=1,...,D+s,k=1,...,D for D ∈ N given explicitly by

Tw
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w0 0 0 0 · · · · · · 0
w1 w0 0 0 · · · · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

ws ws−1 · · · w0 0 · · · 0
0 ws · · · w1 w0 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 ws · · · w1 w0
0 · · · 0 0 ws · · · w1
...

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 · · · 0 ws

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R(D+s)×D.

(1.3)

In Zhou (2018a, 2020), we take convolutional matrices T (j)
:=

Tw(j)
(with D = dj−1 and s = s(j)), and study a DCNN {h(j)

: Rd
→

Rdj}
J
j=1 with linearly increasing widths {dj = d + js} and uniform

filter length s(j) ≡ s as

h(j)(x) = AT (j),b(j) ◦ · · · ◦ AT (1),b(1) (x), j = 1, 2, . . . , J. (1.4)

Here AF ,b : Rdj−1 → Rdj−1+s(j) is an activated affine mapping
associated with a (dj−1 + s(j)) × dj−1 matrix F and a bias vector
b ∈ Rdj−1+s(j) defined by

AF ,b(u) = σ (Fu − b) , u ∈ Rdj−1 ,

and σ is the rectified linear unit (ReLU) activation function given
by σ (u) = max{u, 0}.

Note that the last layer of the fully-connected net (1.1) can be
expressed as H (ℓ)(x) = AF (ℓ),b(ℓ) ◦ · · · ◦ AF (1),b(1) (x) in terms of the
mappings AF ,b involving F (k), with ‘‘F’’ standing for ‘‘full’’ matrices
in the fully-connected nets, instead of T (j), with ‘‘T’’ standing for
‘‘Toeplitz’’ type matrices in DCNNs. We shall show in Theorem 2
that H (ℓ)(x) produced by a fully-connected net (1.1) with ℓ hidden
layers can be realized by the output h(J)(x) of a (downsampled)
DCNN with J layers; while the total number of free parameters
in the DCNN is at most 8 times of that of (1.1), the number J of
layers of the DCNN is much larger than ℓ, the number of layers
of (1.1).

In this paper we introduce a downsampling operation into
DCNNs to control the widths in (1.4). The ℓ downsamplings are
introduced at layers J := {Jk}ℓk=1 with 1 < J1 ≤ J2 ≤ · · · ≤ Jℓ = J .
Our idea of applying downsampling operators is motivated by the
literature of wavelets (Daubechies, 1992; Mallat, 2016). Denote
the integer part of u ∈ R+ as [u].

Definition 1. The downsampling operator Dm : RD
→ R[D/m]

with a scaling parameter m ≤ D is defined by

Dm(v) = (vim)
[D/m]

i=1 , v ∈ RD. (1.5)

A downsampled DCNN with ℓ downsamplings at layers J and
filter lengths {s(j)}Jj=1 has widths {dj}

J
j=0 defined iteratively by

d0 = d and for k = 1, . . . , ℓ,

dj =

{
dj−1 + s(j), if Jk−1 < j < Jk,[
(dj−1 + s(j))/dJk−1

]
, if j = Jk,

(1.6)

and is a sequence of function vectors
{
h(j)(x) : Rd

→ Rdj
}J
j=1 de-

fined iteratively by h(0)(x) = x and for k = 1, . . . , ℓ,

h(j)(x) =

{
AT (j),b(j)

(
h(j−1)(x)

)
, if Jk−1 < j < Jk,

DdJk−1
◦ AT (j),b(j)

(
h(j−1)(x)

)
, if j = Jk.

(1.7)

Moreover, we require that the bias vectors b(j) ∈ Rdj−1+s(j) satisfy
the restriction

b(j)
s(j)+1

= b(j)
s(j)+2

= · · · = b(j)dj−1
(1.8)

for j ̸∈ J . We call the downsampled DCNN uniform with uniform
filter lengths S := {s[k] ∈ N}

ℓ
k=1 if s(Jk−1+1)

= · · · = s(Jk) = s[k] for
every k ∈ {1, . . . , ℓ}.

Remark 1. Acting the activated affine mapping AT (j),b(j) on h(j−1)

(x) produces the vector in (1.7) as(
AT (j),b(j)

(
h(j−1)(x)

))
i

= σ

⎛⎝dj−1∑
r=1

w
(j)
i−r

(
h(j−1)(x)

)
r − b(j)i

⎞⎠ , 1 ≤ i ≤ dj−1 + s(j),

where
∑dj−1

r=1 w
(j)
·−r
(
h(j−1)(x)

)
r is exactly the convolution w(j)

∗h(j−1)

(x) of the filter mask w(j) with h(j−1)(x) viewed as a sequence sup-
ported in {1, . . . , dj−1}. Recall that the convolution of sequence a
supported in {0, . . . , s} and sequence b supported in {0, . . . ,D −

1} is a sequence a∗b supported in {0, . . . ,D + s − 1} given by
(a∗b)i =

∑
∞

r=−∞
ai−rbr . This illustrates the role of convolution in

the definition of DCNNs and the convolutional matrix (1.3).
The restriction (1.8) is satisfied by the vector produced by

acting the convolutional matrices T (w) on the constant 1 vector,
so we impose this constraint on the bias vector to reduce the
number of free parameters.

In this paper we make the following contributions to the
approximation theory of DCNNs:

1. To introduce a downsampling operation into the DCNNs
(1.4) so that the widths can be reduced from the linearly
increasing nature.

2. To present a theorem for approximating ridge functions of
the form g(ξ · x) with ξ ∈ Rd and g : R → R, which
demonstrates that for some classes of functions on Rd with
special structures, DCNNs may have better approximation
ability than fully-connected nets.

3. To prove that the last layer H (ℓ) of a multi-layer fully-
connected neural network (1.1) can be realized by that
of a uniform DCNN, which shows that in general, the ap-
proximation ability of DCNNs is at least as good as that of
fully-connected nets.

4. To prove a theorem for approximating functions on Rie-
mannian manifolds, which demonstrates that DCNNs can
be used to learn manifold features of data.

All the DCNNs constructed in this paper are uniform.

D.-X. Zhou / Neural Networks 124 (2020) 319–327 321

2. Main results

In terms of the sequences of filter masks w = {w(j)
}
J
j=1, bias

vectors b =
{
b(j)
}J
j=1, and filter lengths s = {s(j)}Jj=1, we introduce

a composed mapping Aq,p
w,b for p ≤ q as

Aq,p
w,b = AT (q),b(q) ◦ · · · ◦ AT (p+1),b(p+1) ◦ AT (p),b(p) : Rdp−1 → Rdq .

We omit index s for simplicity. Then the last layer in the down-
sampled DCNN with ℓ downsamplings at layers J defined in
Definition 1 can be expressed explicitly as

h(J)(x) = DdJℓ−1
◦AJ,Jℓ−1+1

w,b ◦ · · · ◦DdJ1
◦AJ2,J1+1

w,b ◦Dd ◦AJ1,1
w,b(x). (2.1)

The induced hypothesis space of functions on a bounded subset
Ω of Rd is given by

Hw,b,J ,s
=
{
c · h(J)(x) : c ∈ RdJ

}
. (2.2)

2.1. Approximating ridge functions

The first purpose of this paper is to show that DCNNs have a
nice performance in approximating ridge functions of the form

g(ξ · x), x ∈ Ω (2.3)

induced by the dot product ξ · x in Rd with an unknown feature
vector ξ ∈ Rd and an unknown univariate function g : R → R.
We denote the norm of Rd as |x| and the unit ball as B := {x ∈

Rd
: |x| ≤ 1}. We assume for ridge approximation that Ω ⊆ B.

Denote ⌈u⌉ to be the smallest integer greater than or equal to
u > 0.

The downsampled DCNN in the following approximation theo-
rem, to be proved in Section 4, has ℓ = 2 downsamplings at layers
J = {J1 ≤ ⌈

d−1
s−1 ⌉, J = J1+1}, uniform filter lengths S = {s, 4N+6}

with s ∈ [2, d], the last filter mask {w
(J)
i ≡ 1}4N+6

i=0 , and widths

dj =

⎧⎪⎨⎪⎩
d + js, if j = 0, 1, . . . , J1 − 1,
1 or 2, if j = J1,
2N + 4, if j = J, dJ1 = 2,
4N + 7, if j = J, dJ1 = 1

(2.4)

for some parameter N ∈ N which determines the approximation
accuracy. The last bias vector b(J) is chosen as(
b(J)
)
i =

{
dJ1B

(J1) + ti, for i = 1, 2, . . . , 2N + 3,
B(J1) + 1, for i ≥ 2N + 4,

(2.5)

where ti = ti,N :=
i−N−2

N for i = 1, . . . , 2N + 3, and B(J1) is a
parameter depending on w.

For the regularity of the univariate function g : R → R in (2.3),
we assume that for some 0 < α ≤ 1, g is Lipschitz-α meaning
that for some constant Cg,α ,

|g(u) − g(v)| ≤ Cg,α|u − v|
α, ∀u, v ∈ R. (2.6)

Theorem 1. Let ξ ∈ B, 2 ≤ s ≤ d, and N ∈ N. If g is Lipschitz-α for
some 0 < α ≤ 1, then there exists a uniform downsampled DCNN{
h(j)(x)

}J
j=1 at layers J = {J1 ≤ ⌈

d−1
s−1 ⌉, J = J1 + 1}, uniform filter

lengths S = {s, 4N + 6} with {w
(J)
i ≡ 1}4N+6

i=0 , and b =
{
b(j)
}J
j=1

satisfying (1.8) for j = 1, . . . , J − 1, b(J) given by (2.5) in terms of N
and a parameter B(J1), and coefficients {ci}2N+3

i=1 such that
2N+3∑
i=1

ci
(
h(J)(x)

)
i − g(ξ · x)


∞

≤
2Cg,α

Nα
. (2.7)

To achieve the approximation accuracy ϵ ∈ (0, 1), we take N =

⌈
(
2Cg,α/ϵ

)1/α
⌉ and require at mostW ≤

3d(d−1)
s−1 +2

(
2Cg,α/ϵ

)1/α
+8

widths (computation units) and N ≤ 8d + 2
(
2Cg,α/ϵ

)1/α free
parameters.

Remark 2. From the proof of the theorem, we can see that we
may take J1 = ⌈

d−1
s−1 ⌉ to cancel the uncertain parameter J1 by

setting the filter masks w(j) for j = J1 + 1, . . . , ⌈ d−1
s−1 ⌉ to be the

delta sequence on Z in the case J1 < ⌈
d−1
s−1 ⌉. The conclusion of

Theorem 1 still holds.
The dimension-free rates of approximation given by (2.7)

demonstrate the nice performance of DCNNs in approximating
ridge functions. There has been some evidence in the approx-
imation theory literature that rates of approximation by fully-
connected nets might depend on the dimension. As an example,
it was shown in Gordon, Maiorov, Meyer, and Reisner (2002) that
for approximating functions from the unit ball F = {f ∈ W r

∞
(B) :

∥f ∥W r
∞

≤ 1} of the Sobolev space W r
∞
(B) with r ∈ N by the

fully-connected shallow net (1.2), the worse-case error depends
on the dimension d as supf∈F infci,ti,b̂i ∥f − fN∥∞ ≥ cd,rN−r/(d−1)

with a positive constant cd,r independent of N ∈ N. Of course, this
worse-case behavior does not imply that the rate in approximat-
ing an individual ridge function by the fully-connected net (1.2)
must be dimension dependent. It would be interesting to give
concrete mathematical statements on advantages of deep CNNs
over fully-connected nets. In particular, we conjecture that there
are some function classes which can be approximated by DCNNs
faster than fully-connected nets.

2.2. Representing fully-connected nets

Our second purpose of the paper is to show that output
functions produced by any deep fully-connected neural net asso-
ciated with ReLU can be realized by downsampled DCNNs. This
extends our earlier work (Zhou, 2018b, 2020) on shallow nets
which has recently been established for periodized deep CNNs
in Petersen and Voigtlaender (2018a). This more general result
confirms again that the approximation ability of DCNNs is at least
as good as that of fully-connected nets.

Theorem 2. Let {H (k)
: Rd

→ Rnk}ℓk=1 be an ℓ-layer fully connected
neural network satisfying (1.1) with connection matrices F (k), bias
vector b̂(k) such that nknk−1 > 1 for each k ∈ {1, . . . , ℓ}. Let
s[k] ∈ [2, nknk−1] for each k. Then there is a uniform downsampled
DCNN

{
h(j)(x) : Rd

→ Rdj
}J
j=1 with ℓ downsamplings at layers {Jk =∑k

j=1 ∆j} with ∆j ≤ ⌈
njnj−1−1
s[j]−1

⌉ for each j, and uniform filter lengths

S = {s[k]}ℓk=1, together with bias vectors b(j) ∈ Rdj−1+s[k] satisfying
(1.8) for j ̸∈ J such that

h(Jk)(x) = H (k)(x), ∀k ∈ {1, . . . , ℓ}, x ∈ Ω. (2.8)

The total number of free parameters in the above net is at most
8
∑ℓ

k=1 (nknk−1) and is at most 8 times of that of the fully-connected
net.

Remark 3. The number 8 seems too large to support the use of
DCNNs. It would be interesting to reduce this number to a much
smaller level.

2.3. Approximating functions on Riemannian manifolds

Our last purpose is to apply Theorem 2 and show that rates
of approximating functions on Riemannian manifolds depend on
the manifold dimension instead of that of the ambient Euclidean
space.

Theorem 3. Let Ω be a compact connected m-dimensional C∞

Riemannian manifold without boundary embedded in Rd with d ≥ 2
and s ∈ [2, d]. If f is a twice continuous differentiable function on
Ω and has bounded Hessian, then for any N ∈ N, there is a uniform

322 D.-X. Zhou / Neural Networks 124 (2020) 319–327

downsampled DCNN
{
h(j)(x) : Rd

→ Rdj
}J
j=1 with 3 downsamplings

and uniform filter lengths {s(j) ≡ s}Jj=1 of depth

J ≤
C2

Ω (d + 2N)(8mN + 5d)
s − 1

+ 3

with a constant CΩ ∈ N depending on the manifold, together with
bias vectors b(j) satisfying (1.8) for j ̸∈ J such that

inf
c∈RJ

f (x) − c · h(J)(x)

C(Ω) ≤ Af ,Ω,m,dN−2/m, (2.9)

where Af ,Ω,m,d is a positive constant independent of N. The total
number of free parameters is at most 9C2

Ω (d + 2N)(8mN + 5d).
To achieve the approximation accuracy ϵ ∈ (0, 1), we require

a depth of order O
(
(d + mϵ−m/2)2/s

)
and free parameters of order

O
(
(d + mϵ−m/2)2

)
.

2.4. Comparison and discussion

In this subsection we compare our results with those in the
literature and give some theoretical justifications for the success
of DCNNs in terms of approximation rates. Comparisons are made
by means of the total number of free parameters N and the
total number of computation units W (widths, or hidden units)
required for the same approximation accuracy ϵ > 0.

A classical literature for approximation of functions by shallow
or multi-layer fully connected nets was well developed around
1990. A series of results (Cybenko, 1989; Hornik et al., 1989;
Leshno et al., 1993) are about universality of this approximation
for any non-polynomial locally bounded and piecewise continu-
ous activation function, which was recently developed for DCNNs
with ReLU in Zhou (2020). Quantitative results about rates of
approximation were obtained in Barron (1993), Chui, Li, and
Mhaskar (1996), Hornik et al. (1989) and Mhaskar (1993) and
references therein for understanding efficiency of neural net-
works. When a C∞ activation function satisfies limu→−∞ σ (u) =

0, limu→∞ σ (u) = 1 (sigmoidal function) and f = F |[−1,1]d

for some F ∈ L2(Rd) with the Fourier transform F̂ satisfying
|w|F̂ (w) ∈ L1(Rd), it was shown in Barron (1993) that for the
shallow net (1.2) and an arbitrary probability measure µ, there
holds ∥fN − f ∥L2µ([−1,1]d) = O(1/

√
N). This result was extended to

the case with ReLU recently in Klusowski and Barron (2018). Most
results in the classical literature about rates of approximation
by fully connected nets were obtained for continuous activation
functions σ with two special assumptions: one is that for some
b ∈ R,

σ (i)(b) ̸= 0, ∀i ∈ N ∪ {0}, (2.10)

and the other is that for some integer q ̸= 1, there holds

lim
u→−∞

σ (u)/|u|q = 0 and lim
u→∞

σ (u)/uq
= 1. (2.11)

Such a result was presented in Mhaskar (1993) for shallow nets
(1.2) as

∥fN − f ∥C([−1,1]d) ≤ cf ,d,rN−r/d, ∀N ∈ N (2.12)

with a constant cf ,d,r , under the condition that the approximated
function f lies in the space C r ([−1, 1]d) of rth continuously dif-
ferentiable functions on [−1, 1]d. For the approximation accuracy
∥fN − f ∥C([−1,1]d) ≤ ϵ, one needs

W = N ≥

(cf ,d,r
ϵ

)d/r
, N ≥ (d + 2)

(cf ,d,r
ϵ

)d/r
. (2.13)

The ReLU activation function σ used in the recent deep learn-
ing literature and considered in this paper does not satisfy the
two special assumptions (2.10), (2.11). Explicit rates of approx-
imation by fully connected ReLU nets were obtained recently

in Klusowski and Barron (2018) for shallow nets, in Shaham,
Cloninger, and Coifman (2018) for nets with 3 hidden layers, and
in Bölcskei, Grohs, Kutyniok, and Petersen (2019), Petersen and
Voigtlaender (2018b), Telgarsky (2016) and Yarotsky (2017) for
nets with more layers. As an example, Theorem 1 of Yarotsky
(2017) asserts that for any r ∈ N, f ∈ W r

∞
([0, 1]d) can be

approximated within an accuracy ϵ ∈ (0, 1) by a ReLU deep net
with at most c(log(1/ϵ)+1) layers and at most cϵ−d/r (log(1/ϵ)+1)
computation units with a constant c = c(d, r). But as we pointed
out in Zhou (2020), this constant may increase very fast as d
becomes large. To be more specific, the approach in Yarotsky
(2017) is to first approximate f by a localized Taylor polynomial

f1(x) =

∑
m∈{0,1,...,N}d

∑
∥α∥1<r

Dα f (m/N)
α!

φm(x)(x − m/N)α, (2.14)

where the localization at scale 1/N with N ∈ N is made by means
of trapezoid functions φm(x) = Πd

i=1ϕ(3Nxi − mi) supported on
m/N+[−2/N, 2/N]

d defined with a univariate trapezoid function
ϕ(u) = σ (u + 2) − σ (u + 1) − σ (u − 1) + σ (u − 2). Then for each
basis function φm(x)(x − m/N)α in (2.14), a ReLU net of depth at
least c1(d+ ∥α∥1) log(1/δ) was constructed in Yarotsky (2017) to
achieve an approximation accuracy (d + r)δ for δ ∈ (0, 1) where
c1 = c1(d, r) is a constant. Thus, to have an accuracy ϵ ∈ (0, 1) for

approximating f by a ReLU deep net, one takes N = ⌈

(
2d+1dr

ϵr!

)1/r
⌉

and δ =
ϵ

2d+1dr (d+r)
as in Yarotsky (2017) and the depth of

the net is at least C0d(log(1/ϵ) + d + r log d) with an absolute
constant C0 > 0 while the total number of free parameters for the
approximation and the number of computation units are more
than the number of coefficients Dα f (m/N)

α!
:

(N + 1)d
(
d + r − 1

d

)
>

(
2d+1dr

ϵr!

)d/r dr−1

(r − 1)!

> ϵ−d/r

(
2

d+1
r d
r

)d
dr−1

(r − 1)!
. (2.15)

This shows that for a fixed r , the constant c(d, r) in Theorem 1
of Yarotsky (2017) increases very fast as d becomes large.

While the rates of approximation by fully-connected deep nets
presented in Yarotsky (2017) are valid for any smoothness index
r ∈ N and for general f ∈ W r

∞
([0, 1]d), our Theorem 1 shows

that for the special case of r = 1 and approximating ridge
functions, DCNNs may achieve the same accuracy with a much
smaller number of free parameters. To see this, take r = 1 in
Theorem 1 when the Lipschitz parameter α is 1. Then we can
see that for achieving the same approximation accuracy ϵ ∈

(0, 1), the number of free parameters in the DCNN constructed
in Theorem 1 is N ≤ 8d + 4Cg,α/ϵ which is much smaller than
the lower bound ϵ−d

(
2d+1d

)d stated in (2.15) when d is large.
Using the rates of approximation derived in this paper, we

may get generalization error bounds for DCNN-based learning
algorithms, as done for kernel-based algorithms in Fan, Hu, Wu,
and Zhou (2016), Guo, Xiang, Guo, and Zhou (2017), Kohler and
Krzyzak (2005), Steinwart and Christmann (2008) and Ying and
Zhou (2017) and distributed learning algorithms in Lin and Zhou
(2018), Zhang, Duchi, and Wainwright (2015) and Zhou (2018b).
The main expected difficulty arises from the hypothesis space
(2.2) which depends on the filter masks w and bias vectors b,
and is different from a reproducing kernel Hilbert space used in
kernel methods.

3. Analysis of convolutions in DCNNs

Before proving our main results, we analyze the role of con-
volutions in our downsampled DCNNs.

D.-X. Zhou / Neural Networks 124 (2020) 319–327 323

3.1. Convolutions in factorizations of matrices and filter masks

To understand the structure of the composed mapping
AJk,Jk−1+1

w,b in (2.1), we first consider the product T (Jk) · · · T (Jk−1+2)

T (Jk−1+1) of Toeplitz type matrices in the activated affine map-
pings. Here T (j) is a (dj−1 + s(j)) × dj−1 matrix of the form
(1.3) with D = dj−1 and s = s(j). Observe that the sequence
W (k)

:= w(Jk) ∗ · · · ∗ w(Jk−1+1) obtained by convoluting the filter
masks {w(j)

}
Jk
j=Jk−1+1 is supported on {0, 1, . . . , ∆k} where ∆k =∑Jk

j=Jk−1+1 s
(j). We denote the Toeplitz type matrix (1.3) with D =

dJk−1 and s = ∆k induced by this sequence as

T (Jk,Jk−1+1)
:=

(
W (k)

i−k

)
i=1,...,dJk−1+∆k,k=1,...,dJk−1

.

It turns out that this matrix induced by the convoluted se-
quence W (k) is exactly equal to the product T (Jk) · · · T (Jk−1+1),
which demonstrates the role of convolutions in matrix factor-
izations and is proved in the appendix by methods from Zhou
(2018b).

Lemma 1. For k = 1, . . . , ℓ, we have

T (Jk,Jk−1+1)
= T (Jk) · · · T (Jk−1+2)T (Jk−1+1). (3.1)

The role of convolutions in filter mask decompositions can
be seen from the following lemma (Zhou, 2020) for factoriz-
ing an arbitrary pre-assigned sequence W supported in Z+ into
convolutions w(p)

∗ . . . ∗w(2)
∗w(1) of a sequence {w(j)

}
p
j=1.

Lemma 2. Let s ≥ 2 and W = (Wk)∞k=−∞
be a sequence supported

in {0, . . . ,M} with M ≥ 0. Then there exists a finite sequence
of filter masks {w(j)

}
p
j=1 each supported in {0, . . . , s(j) = s} with

p ≤ ⌈
M
s−1⌉ such that the following convolutional factorization holds

true

W = w(p)
∗w(p−1)

∗ . . . ∗w(2)
∗w(1). (3.2)

3.2. Choosing bias vectors

To derive explicit expressions for h(j)(x), we need to choose the
bias vectors according to the special form of the convolutional
matrices Tw .

For a function vector h : Ω → RD, we denote

∥h∥∞ = max
i=1,...,D

sup
x∈Ω

⏐⏐(h(x))i⏐⏐ .
Denote ∥w∥1 =

∑
k∈Z |wk| to be the ℓ1-norm of a finitely sup-

ported sequence w on Z. Then we see immediately from the
definition of the convolutional matrices T (j)

= Tw(j)
that for any

h : Ω → Rdj−1 ,T (j)h


∞
≤ ∥w(j)

∥1 ∥h∥∞ . (3.3)

We use some ideas from our previous study (Zhou, 2020) on
DCNNs without downsampling and choose the biases to be small
enough such that the vectors T (j)h(j−1)(x) − b(j) have nonnegative
entries. A special feature in our downsampled DCNNs is the
matrix representing the downsampling operator Dm(k) at layer Jk
with k ∈ {1, . . . , ℓ} given by

M (k)
=

⎡⎢⎢⎢⎣
0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · ·

0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 · · · 0 0 0 · · ·

.

.

.
. . .

. . .
. . .

. . .
. . .

. . .
. . .

.

.

.

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 1 0 · · ·

⎤⎥⎥⎥⎦ ,

(3.4)

where the entries 1 appear in columns dJk−1, 2dJk−1, . . . , [(dJk−1+

s(Jk))/dJk−1]dJk−1. We denote the constant 1 vector in Rdj as 1dj and
J0 = 0. The proof of the following lemma will be given in the
appendix.

Lemma 3. Let k ∈ {1, . . . , ℓ}. Assume that for some positive
number B and another real number B̂ ∈ [−B, B], there holdsh(Jk−1) − B̂1dJk−1


∞

≤ B. (3.5)

If we take b(Jk−1+1)
= B̂T (Jk−1+1)1dJk−1

− B∥w(Jk−1+1)
∥11dJk−1+1 and

b(j) = B
(
Π

j−1
p=Jk−1+1∥w

(p)
∥1

)
T (j)1dj−1

− B
(
Π

j
p=Jk−1+1∥w

(p)
∥1

)
1dj−1+s(j) (3.6)

for j = Jk−1 + 2, . . . , Jk − 1, then for Jk−1 < j < Jk, (1.8) is satisfied
and

h(j)(x) = T (j)
· · · T (Jk−1+1)

(
h(Jk−1)(x) − B̂1dJk−1

)
+ B

(
Π

j
p=Jk−1+1∥w

(p)
∥1

)
1dj . (3.7)

If we choose b(Jk) by (3.6), then (1.8) is also satisfied for j = Jk and

h(Jk)(x) = M (k)T (Jk,Jk−1+1)
(
h(Jk−1)(x) − B̂1dJk−1

)
+ B

(
Π

Jk
p=Jk−1+1∥w

(p)
∥1

)
1dJk

. (3.8)

4. Constructing DCNNs and proving theorems

In this section we prove our main results.

4.1. Approximating ridge functions by DCNNs

To prove Theorem 1 for approximating ridge functions, we
apply the convolutional factorization stated in Lemma 2 to the
sequence supported in {0, 1, . . . , d − 1} given by reversing the
components of ξ as [Wd−1 Wd−2 . . .W0] = [ξ1 ξ2 . . . ξd] = ξ T .

Proof of Theorem 1. We construct the first J1 layers and find
h(J1)(x). Take W to be the sequence supported in {0, 1, . . . , d− 1}
given by Wi = ξd−i for i = 0, . . . , d − 1. Applying Lemma 2
with M = d − 1, we know that there exists a sequence of
filter masks w = {w(j)

}
J1
j=1 supported in {0, . . . , s(j) = s} with

J1 ≤ ⌈
d−1
s−1 ⌉ satisfying the convolutional factorization W =

w(J1)∗w(J1−1)
∗ . . . ∗w(2)

∗w(1).
Take ∆1 = J1s and d0 = d. Then by s ≤ d,

d + J1s < d +

(
d − 1
s − 1

+ 1
)
s

= d +
s(d + s − 2)

s − 1

= d +
2d(s − 1) − (d − s)(s − 2)

s − 1
< 3d.

Thus the (d + ∆1) × d matrix T (J1,1) in (1.3) has its dth row
[Wd−1 Wd−2 . . .W0] = [ξ1 ξ2 . . . ξd] = ξ T and its 2dth row
[W2d−1 Wd−2 . . .Wd] being the zero row if J1s ≥ d. So by Lemma 1,
after the first downsampling of scale d, the width is dJ1 ∈ {1, 2},
the function vector M (1)T (J1,1)x has one row or two and equals

ξ T x = ξ · x if dJ1 = 1, and
[
ξ T x = ξ · x

0

]
∈ R2 if dJ1 = 2.

The input layer h(0)(x) = x satisfies (3.5) with B̂ = 0 and B = 1
by our assumption Ω ⊆ B. Take the bias vectors {b(j)}J1j=1 as in

324 D.-X. Zhou / Neural Networks 124 (2020) 319–327

(3.6), by Lemma 3, we have

h(J1)(x) = M (1)T (J1,1)x + B(J1)1dJ1
,

where B(J1) = Π
J1
p=1∥w

(p)
∥1.

Then we construct the last layer with J = J2 = J1 +1 and filter
length s(J) = 4N+6. It follows from dJ1 ∈ {1, 2} and the definition
(1.6) of the downsampled width that

dJ =
[
(dJ−1 + 4N + 6)/dJ1

]
=

{
4N + 7, if dJ1 = 1,
2N + 4, if dJ1 = 2.

Take the filter mask w(J) to be supported in {0, . . . , 4N + 6} with
w

(J)
i = 1 for i = 0, . . . , 4N + 6.
When dJ1 = 1, the (4N + 7) × 1 matrix T (J) given by (1.3) has

all the 4N +7 rows identical, having only one entry 1, which tells
us that all the entries of T (J)h(J1)(x) equals ξ · x + B(J1). We choose
the bias vector b(J) by (2.5), that is,

b(J)i =

{
B(J1) + ti, for i = 1, 2, . . . , 2N + 3,
B(J1) + 1, for i = 2N + 4, . . . , 4N + 7.

Then
(
h(J)(x)

)
i =

(
AT (J),b(J)

(
h(J−1)(x)

))
i = σ (ξ · x − ti) for i =

1, 2, . . . , 2N + 3 and
(
h(J)(x)

)
i = 0 for i ≥ 2N + 4.

When dJ1 = 2, the (4N + 8) × 2 matrix T (J) given by (1.3) has
the first row [1, 0], last row [0, 1] and all the middle rows [1, 1].
Hence

(
T (J)h(J1)(x)

)
i =

⎧⎨⎩ξ · x + B(J1), if i = 1,
ξ · x + 2B(J1), if i = 2, . . . , 4N + 7,
B(J1), if i = 4N + 8.

Choose the even entries of the bias vector b(J) by (2.5), that is,

b(J)2i =

{
2B(J1) + ti, for i = 1, 2, . . . , 2N + 3,
B(J1) + 1, for i = 2N + 4.

Then by (1.7) and the above identities on T (J)h(J1)(x) and b(J), we
have(
h(J)(x)

)
i =

(
AT (J),b(J)

(
h(J−1)(x)

))
2i

= σ (ξ · x − ti) , i = 1, 2, . . . , 2N + 3

and
(
h(J)(x)

)
2N+4 = 0.

What is left for approximation is to find the coefficients
(cr)2N+3

r=1 for a function from the hypothesis space (2.2). For this
purpose we need a well-known scheme in approximation theory
which can be found with a general form in Zhou (2018a). In our
setting, we take t = {ti}2N+3

i=1 to be the 2N + 3 nodes and the
approximation scheme Lt on [t2, t2N+2] = [−1, 1] is defined by

Lt(g)(u) =

2N+2∑
i=2

g(ti)δi(u), u ∈ [−1, 1], g ∈ C[−1, 1], (4.1)

where the function δi ∈ C(R) with i ∈ {2, . . . , 2N +2} is given by

δi(u) = Nσ (u − ti−1) − 2Nσ (u − ti) + Nσ (u − ti+1).

It can be found from Lemma 6 of Zhou (2018a) that from the
Lipschitz-α continuity of g , we have

∥Lt(g) − g∥C[−1,1] = sup
u∈[−1,1]

|Lt(g)(u) − g(u)| ≤
2Cg,α

Nα
. (4.2)

Since |ξ | ≤ 1 and |x| ≤ 1 for every x ∈ Ω , the above
approximation estimate yields

sup
x∈Ω

⏐⏐⏐⏐⏐g(ξ · x) −

2N+2∑
i=2

g(ti)δi(ξ · x)

⏐⏐⏐⏐⏐ ≤
2Cg,α

Nα
.

Moreover,
2N+2∑
i=2

g(ti)δi(ξ · x) ∈ span {σ (ξ · x − ti)}2N+3
i=1

= span
{(

h(J)(x)
)
i

}2N+3
i=1

.

This proves the bound (2.7) for the approximation error.
The total number of required computation units or widths W

is

W =

J1−1∑
j=1

(d + js) + dJ1 + 2N + 4 ≤
3d(d − 1)

s − 1
+ 2N + 6.

The total number of free parameters N is the sum of J1(s + 1)
contributed by w, J1(2s+1)+1 by b, and 2N+3 by the coefficients
{ci} and can be bounded as

N ≤ J1(3s + 2) + 2N + 4 ≤ ⌈
d − 1
s − 1

⌉(3s + 2) + 2N + 4.

Since ⌈
d−1
s−1 ⌉ < d−1

s−1 +1, we know that (s−1)⌈ d−1
s−1 ⌉ < d−1+(s−1)

which implies (s − 1)⌈ d−1
s−1 ⌉ ≤ d + s − 3 and

N ≤
d + s − 3
s − 1

(3s + 2) + 2N + 4 = 3d + 2N + 3s +
5(d − 2)
s − 1

.

Observe that the function 3s +
5(d−2)
s−1 of the variable s on the

interval [2, d] is convex. So its maximum value is achieved at one
of the two endpoints and we have

3s +
5(d − 2)
s − 1

≤ max
{
6 + 5(d − 2), 3d +

5(d − 2)
d − 1

}
≤ 5d − 2.

Hence

N ≤ 8d + 2N − 2.

To achieve the approximation accuracy ϵ ∈ (0, 1), we take
N = ⌈

(
2Cg,α/ϵ

)1/α
⌉ and require the total width of W ≤

3d(d−1)
s−1 +

2
(
2Cg,α/ϵ

)1/α
+ 8 and the parameter number N ≤ 8d + 2(

2Cg,α/ϵ
)1/α . This completes the proof of Theorem 1. □

Remark 4. From our proof, we can see that we may take J1 =

⌈
d−1
s−1 ⌉ by taking the additional filter masks w(j) for j = J1 +

1, . . . , ⌈ d−1
s−1 ⌉ to be the delta sequence on Z. With this choice,

d + J1s = d + ⌈
d − 1
s − 1

⌉s ≥ d +

(
d − 1
s − 1

)
s ≥ 2d,

so dJ1 = 2.
The gap between ⌈

d−1
s−1 ⌉ and J1 can be large when ξ has

some sparse properties. It would be interesting to study better
performance of approximating ridge functions by DCNNs when
this sparsity is used.

4.2. Realizing fully-connected networks by deep CNNs

In this subsection we turn to representing output functions
from fully-connected nets by deep CNNs. In the proof of
Theorem 1, we take a sequence W supported on {0, . . . , d − 1}
by reversing the components of the feature vector ξ in the ridge
function (2.3) and make a convolutional factorization. If we view
the inner product ξ · x as the matrix–vector product ξ T x, then
we can stack the reversed row vectors of the nk × nk−1 full
connection matrix F (k) in (1.1) and form a sequence W supported
on {0, . . . , nknk−1 − 1} for a convolutional factorization. This is
the key idea in the next proof.

D.-X. Zhou / Neural Networks 124 (2020) 319–327 325

Proof of Theorem 2. We present our construction by induction,
starting from the input layer H (0)(x) = x with k = 1 of width
n0 = d. Suppose that for some k ∈ {1, . . . , ℓ}, the filter masks
{w(j)

}
Jk−1
j=1 and the bias vectors {b(j)}Jk−1

j=1 with (3.7) valid have been
constructed such that the Jk−1th layer h(Jk−1)(x) is equal to the
(k − 1)th layer H (k−1)(x) of width dJk−1 = nk−1 of the fully
connected net. We now show how to construct the DCNN layers{
h(j)(x) : Rd

→ Rdj
}Jk
j=Jk−1+1 for realizing the kth layer H (k)(x) of

the fully connected net. To this end, we define a sequence W
supported on {0, . . . , nknk−1 − 1} by stacking the reversed row
vectors of the nk × nk−1 matrix F (k) in (1.1) as

Wi+(r−1)nk−1 =
(
F (k))

r,nk−1−i ,

r = 1, 2, . . . , nk, i = 0, 1, . . . , nk−1 − 1. (4.3)

An essential point for the above definition of W is the identity[
Wnk−1−1+(r−1)nk−1 Wnk−1−2+(r−1)nk−1 . . .W(r−1)nk−1

]
=

[(
F (k))

r,·

]T
(4.4)

which is the rth row of the full matrix F (k) and is exactly the
rnk−1th row of the convolutional matrix (1.3) with D = nk−1 and
s = nknk−1 − 1.

Applying Lemma 2 to the sequence W with M = nknk−1 − 1
and s[k] ∈ [2, nknk−1], we know that there exists a sequence
of filter masks {w(j)

}
Jk
j=Jk−1

, of equal filter length s[k], with Jk ≤

Jk−1 +⌈
nknk−1−1
s[k]−1

⌉ such that the sequence W has the convolutional
factorization w(Jk)∗w(J1−1)

∗ . . . ∗w(Jk−1+1).
Then we construct the bias vectors {b(j)}Jk−1

j=Jk−1+1 as in Lemma 3
with B =

h(Jk−1)


∞
=
H (k−1)


∞

and B̂ = 0. Obviously, (3.5) is
satisfied and, when Jk > Jk−1 + 1, by Lemma 3, for j = Jk−1 +

1, . . . , Jk − 1, (1.8) is satisfied and

h(Jk−1)(x) = T (Jk−1)
· · · T (Jk−1+1)H (k−1)(x)

+
H (k−1)


∞

(
Π

Jk−1
p=Jk−1+1∥w

(p)
∥1

)
1dJk−1 . (4.5)

At the end, we choose b(Jk) as

b(Jk) =

⎧⎪⎨⎪⎩
H (k−1)


∞

(
Π

Jk−1
p=Jk−1+1∥w

(p)
∥1

)
T (Jk)1dJk−1

+θ (k), when Jk > Jk−1 + 1,

θ (k), when Jk = Jk−1 + 1,

where θ (k)
∈ RdJk−1+s[k] is an arbitrary vector satisfying DdJk−1

θ (k)

= b̂(k), then we have

h(Jk)(x) = DdJk−1
σ
(
T (Jk) · · · T (Jk−1+1)H (k−1)(x) − θ (k)) . (4.6)

By Lemma 1,

T (Jk) · · · T (Jk−1+1)
= T (Jk,Jk−1+1)

= TW

=
(
Wq−i

)
q=1,...,dJk−1+nknk−1−1,i=1,...,dJk−1

.

Recall that dJk−1 = nk−1 and thereby DdJk−1
= Dnk−1 . So for

r ∈ {1, . . . , nk}, the rnk−1th row of the matrix T (Jk) · · · T (Jk−1+1)

equals[
Wrnk−1−1 Wrnk−1−2 . . .Wrnk−1−nk−1

]
which is exactly the rth row

[(
F (k)
)
r,·

]T
of the full matrix F (k)

according to (4.4). Combining this with (4.6) yields

h(Jk)(x) = σ

(
F (k)H (k−1)(x) − b̂(k)

)
,

which verifies h(Jk)(x) = H (k)(x). Since the vector T (Jk)1dJk−1 satis-
fies (1.8), we know that the total number of free parameters in

realizing H (k)(x) from H (k−1)(x) is at most

(3s[k] + 2)⌈
nknk−1 − 1
s[k] − 1

⌉ ≤ 8nknk−1 − 6 ≤ 8nknk−1,

where we have used the argument in the proof of Theorem 1 for
bounding the number (3s[k] + 2)⌈ nknk−1−1

s[k]−1
⌉. This completes the

induction procedure and the proof of Theorem 2. □

4.3. Approximation on Riemannian manifolds by DCNNs

We are in a position to use Theorem 2 and a result from Sha-
ham et al. (2018) to prove Theorem 3.

Proof of Theorem 3. According to Theorem 5.1 of Shaham et al.
(2018), with an atlas of size CΩ ∈ N for the manifold Ω , to
approximate the function f , one can construct a 3-layer neural
network {H (k)

: Rd
→ Rnk}3k=1 of widths n1 = dCΩ , n2 =

8m
∑CΩ

i=1 Ni+4CΩ (d−m), n3 = 2
∑CΩ

i=1 Ni, where Ni is the number
of wavelet terms used on the ith chart. Moreover, it was proved
on page 549 there that if one chooses all wavelet terms up to scale
K ∈ N, the integer part of logN

log 2 −1, then 2K+1
≤ N ,

∑CΩ

i=1 Ni ≤ CΩN
and the widths satisfy 4d ≤ n2 ≤ 8mCΩN + 4CΩ (d − m) and
2 ≤ n3 ≤ 2CΩN , and the approximation error can be bounded
as

inf
c∈Rn3

f (x) − c · H (3)(x)

C(Ω) ≤ Af ,Ω,m,dN−2/m, (4.7)

where Af ,Ω,m,d is a positive constant independent of N .
Now for the given integer s ∈ [2, d] and the layer number

ℓ = 3 of the above network {H (k)
: Rd

→ Rnk}3k=1, we take the
uniform filter lengths S = {s[k]}3k=1 to be identical to s, and apply
Theorem 2. Then we know that there is a uniform downsampled
DCNN

{
h(j)(x) : Rd

→ Rdj
}J
j=1 with 3 downsamplings and uniform

filter lengths {s[k] ≡ s}3k=1, together with bias vectors b(j) satisfying
(1.8) for j ̸∈ J such that h(J)(x) = H (3)(x) for x ∈ Ω . Combining
this with (4.7), we know that there is some c ∈ RJ such thatf (x) − c · h(J)(x)


C(Ω) ≤ Af ,Ω,m,dN−2/m.

Moreover, the downsampling layers J = {Jk}3k=1 are given by
Jk =

∑k
j=1 ∆j with ∆j ≤ ⌈

njnj−1−1
s−1 ⌉ satisfying

∆1 ≤ ⌈
n1n0 − 1
s[1] − 1

⌉ ≤ ⌈
d2CΩ − 1
s − 1

⌉,

∆2 ≤ ⌈
dC2

Ω (8mN + 4d − 4m) − 1
s − 1

⌉,

∆3 ≤ ⌈
2C2

ΩN(8mN + 4d − 4m) − 1
s − 1

⌉,

which implies J =
∑3

j=1 ∆j ≤
C2
Ω (d+2N)(8mN+5d)

s−1 + 3. The total
number of free parameters can be bounded as

N ≤ 8
3∑

k=1

(nknk−1) + n3 ≤ 9C2
Ω (d + 2N)(8mN + 5d).

To achieve the approximation accuracy ϵ ∈ (0, 1), we require
the total network width of order O

(
(d + mϵ−m/2)2/s

)
and the

total number of free parameters of order O
(
(d + mϵ−m/2)2

)
. This

proves Theorem 3. □

Acknowledgments

The work described in this paper is supported partially by
the Research Grants Council of Hong Kong [Project No. CityU
11306617].

326 D.-X. Zhou / Neural Networks 124 (2020) 319–327

Appendix

In this appendix, we prove two lemmas stated in Section 3.

Proof of Lemma 1. For 1 ≤ p ≤ Jk − Jk−1, we denote

W (k,p)
:= w(Jk−1+p)

∗ . . . ∗w(Jk−1+2)
∗w(Jk−1+1).

It is a sequence supported on {0, 1, . . . , ∆k,p} where ∆k,p =∑Jk−1+p
j=Jk−1+1 s

(j). Its associated Toeplitz type matrix (1.3)

T (Jk−1+p,Jk−1+1)
:=

(
W (k,p)

i−k

)
i=1,...,dJk−1+∆k,p,k=1,...,dJk−1

satisfies
(
T (Jk−1+p,Jk−1+1)

)
i,t = W (k,p)

i−t = 0 when i − t > ∆k,p.
We prove by induction that T (Jk−1+p,Jk−1+1)

= T (Jk−1+p)
· · ·

T (Jk−1+2)T (Jk−1+1) for 1 ≤ p ≤ Jk − Jk−1. The case p = 1 is trivial by
definition.

Suppose that the identity holds for p = q < Jk − Jk−1.
That is, T (Jk−1+q,Jk−1+1)

= T (Jk−1+q)
· · · T (Jk−1+1)

∈ R(dJk−1+∆k,q)×dJk−1 .
Consider T (Jk−1+q+1)T (Jk−1+q,Jk−1+1), the product with the (dJk−1 +

∆k,q+1)× (dJk−1 + ∆k,q) matrix T (Jk−1+q+1). The entry with 1 ≤ i ≤

dJk−1 + ∆k,q+1 and 1 ≤ j ≤ dJk−1 is given by(
T (Jk−1+q+1)T (Jk−1+q,Jk−1+1))

i,j

=

dJk−1+∆k,q∑
r=1

(
T (Jk−1+q+1))

i,r

(
T (Jk−1+q,Jk−1+1))

r,j

=

dJk−1+∆k,q∑
r=1

w
(Jk−1+q+1)
i−r W (k,q)

r−j .

This equals
∑

r∈Z w
(Jk−1+q+1)
i−r W (k,q)

r−j , because for r ∈ (−∞, 0] ∪

[dJk−1 + ∆k,q + 1, ∞), we have r − j ∈ (−∞, −1] ∪ [∆k,q + 1, ∞)
which implies W (k,q)

r−j = 0 from the support of W (k,q). Thus,(
T (Jk−1+q+1)T (Jk−1+q,Jk−1+1))

i,j

=

∑
r∈Z

w
(Jk−1+q+1)
i−r W (k,q)

r−j =
(
w(Jk−1+q+1)

∗ . . . ∗w(Jk−1+1))
i−j

which is exactly
(
T (Jk−1+q+1,Jk−1+1)

)
i,j. This together with our in-

duction hypothesis verifies the desired identity for p = q + 1,
and completes the induction procedure. The last identity with
p = Jk − Jk−1 is the equality (3.1). □

Proof of Lemma 3. We first verify (1.8) from (3.6) for j =

Jk−1 + 1, . . . , Jk. For i = s(j) + 1, . . . , dj−1, we have

(
T (j)1dj−1

)
i
=

dj−1∑
p=1

(
T (j))

i,p =

dj−1∑
p=1

w
(j)
i−p.

Observe that w(j) is supported in {0, . . . , s(j)}. So for p ∈ (−∞, 0]∪
[dj−1+1, ∞), we have i−p ∈ [s(j)+1, ∞)∪(∞, −1] which implies
w

(j)
i−p = 0. Thus,

(
T (j)1dj−1

)
i
=

∞∑
p=−∞

w
(j)
i−p =

∞∑
p=−∞

w(j)
p , ∀i = s(j) + 1, . . . , dj−1.

This verifies (1.8).
Then we prove (3.7) by induction. For j = Jk−1 + 1, we have

T (Jk−1+1)h(Jk−1)(x) − b(Jk−1+1)

= T (Jk−1+1)
(
h(Jk−1)(x) − B̂1dJk−1

)
+ B∥w(Jk−1+1)

∥11dJk−1+1 .

By (3.3) and (3.5), each component of the above function vector
takes nonnegative values. But the ReLU σ is the same as the

identity function on [0, ∞), hence

h(Jk−1+1)(x) = T (Jk−1+1)
(
h(Jk−1)(x) − B̂1dJk−1

)
+ B∥w(Jk−1+1)

∥11dJk−1+1 ,

which verifies (3.7) for j = 1.
Suppose that (3.7) holds for j ≥ Jk−1 + 1 with j ≤ Jk − 1. Then

dj−1 + s(j) = dj. By the induction hypothesis and the choice (3.6)
of the bias vector, we have

h(j)(x) = σ

(
T (j)T (j−1)

· · · T (Jk+1)
(
h(Jk−1)(x) − B̂1dJk−1

)
+B

(
Π

j
p=Jk−1+1∥w

(p)
∥1

)
1dj

)
.

By (3.3) and (3.5) again, each component of the above function
vector takes nonnegative values, so (3.7) holds true for j. This
completes the induction procedure and verifies (3.7).

What is left is to prove (3.8) when b(Jk) is given by (3.6). Here

T (Jk)h(Jk−1)(x) − b(Jk) = T (Jk) · · · T (Jk−1+1)
(
h(Jk−1)(x) − B̂1dJk−1

)
+B

(
Π

Jk
p=Jk−1+1∥w

(p)
∥1

)
1d

dJk−1+s(Jk)
.

Once again, we apply (3.3) and (3.5), and find that each com-
ponent of the above function vector takes nonnegative values.
So σ

(
T (Jk)h(Jk−1)(x) − b(Jk)

)
equals the above expression, which

implies (3.8) by the linearity of the downsampling operator. The
proof of the lemma is complete. □

References

Barron, A. R. (1993). Universal approximation bounds for superpositions of a
sigmoidal function. IEEE Transaction on Information Theory, 39, 930–945.

Bölcskei, H., Grohs, P., Kutyniok, G., & Petersen, P. (2019). Optimal approximation
with sparsely connected deep neural networks. SIAM Journal on Mathematics
of Data Science, 1, 8–45.

Chui, C. K., Li, X., & Mhaskar, H. N. (1996). Limitations of the approximation capa-
bilities of neural networks with one hidden layer. Advances in Computational
Mathematics, 5, 233–243.

Cybenko, G. (1989). Approximations by superpositions of sigmoidal functions.
Mathematics of Control, Signals, and Systems, 2, 303–314.

Daubechies, I. (1992). Ten lectures on wavelets. SIAM.
Fan, J., Hu, T., Wu, Q., & Zhou, D. X. (2016). Consistency analysis of an empirical

minimum error entropy algorithm. Applied and Computational Harmonic
Analysis, 41, 164–189.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Gordon, Y., Maiorov, V., Meyer, Y., & Reisner, S. (2002). On best approximation by

ridge functions in the uniform norm. Constructive Approximation, 18, 61–85.
Guo, Z. C., Xiang, D. H., Guo, X., & Zhou, D. X. (2017). Thresholded spec-

tral algorithms for sparse approximations. Analysis and Applications, 15,
433–455.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for
deep belief nets. Neural Computation, 18, 1527–1554.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward
networks are universal approximators. Neural Networks, 2, 359366.

Klusowski, J., & Barron, A. (2018). Approximation by combinations of ReLU and
squared ReLU ridge functions with ℓ1 and ℓ0 controls. IEEE Transactions on
Information Theory, 64, 7649–7656.

Kohler, M., & Krzyzak, A. (2005). Adaptive regression estimation with multi-
layer feedforward neural networks. Journal of Nonparametric Statistics, 17,
891–913.

Krizhevsky, A., Sutskever, I., & Hinton, G. G. (2012). Imagenet classification with
deep convolutional neural networks. In NIPS. 1097-1105.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86,
2278–2324.

Leshno, M., Lin, Y. V., Pinkus, A., & Schocken, S. (1993). Multilayer feedforward
networks with a non-polynomial activation function can approximate any
function. Neural Networks, 6, 861–867.

Lin, S. B., & Zhou, D. X. (2018). Distributed kernel gradient descent algorithms.
Constructive Approximation, 47, 249–276.

Mallat, S. (2016). Understanding deep convolutional networks. Philosophical
Transactions of the Royal Society of London. Series A, 374, 20150203.

Mhaskar, H. N. (1993). Approximation properties of a multilayered feedforward
artificial neural network. Advances in Computational Mathematics, 1, 61–80.

http://refhub.elsevier.com/S0893-6080(20)30020-4/sb1
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb1
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb1
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb2
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb2
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb2
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb2
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb2
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb3
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb3
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb3
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb3
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb3
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb4
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb4
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb4
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb5
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb6
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb6
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb6
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb6
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb6
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb7
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb8
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb8
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb8
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb9
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb9
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb9
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb9
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb9
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb10
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb10
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb10
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb11
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb11
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb11
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb12
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb12
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb12
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb12
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb12
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb13
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb13
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb13
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb13
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb13
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb14
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb14
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb14
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb15
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb15
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb15
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb15
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb15
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb16
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb16
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb16
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb16
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb16
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb17
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb17
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb17
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb18
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb18
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb18
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb19
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb19
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb19

D.-X. Zhou / Neural Networks 124 (2020) 319–327 327

Petersen, P., & Voigtlaender, F. (2018a). Equivalence of approximation by con-
volutional neural networks and fully-connected networks. Proceedings of the
Americal Mathematical Society, (in press). arXiv:1809.00973.

Petersen, P., & Voigtlaender, V. (2018b). Optimal approximation of piecewise
smooth functions using deep ReLU neural networks. Neural Networks, 108,
296–330.

Shaham, U., Cloninger, A., & Coifman, R. (2018). Provable approximation proper-
ties for deep neural networks. Applied and Computational Harmonic Analysis,
44, 537–557.

Steinwart, I., & Christmann, A. (2008). Support vector machines. New York:
Springer.

Telgarsky, M. (2016). Benefits of depth in neural networks. In 29th annual
conference on learning theory, Vol. 49 (pp. 1517–1539). PMLR.

Yarotsky, D. (2017). Error bounds for approximations with deep ReLU networks.
Neural Networks, 94, 103–114.

Ying, Y., & Zhou, D. X. (2017). Unregularized online learning algorithms with
general loss functions. Applied and Computational Harmonic Analysis, 42,
224–244.

Zhang, Y. C., Duchi, J., & Wainwright, M. (2015). Divide and conquer kernel ridge
regression: A distributed algorithm with minimax optimal rates. Journal of
Machine Learning Research, 16, 3299–3340.

Zhou, D. X. (2018a). Deep distributed convolutional neural networks:
universality. Analysis and Applications, 16, 895–919.

Zhou, D. X. (2018b). Distributed approximation with deep convolutional neural
networks. submitted for publication.

Zhou, D. X. (2020). Universality of deep convolutional neural networks. Applied
and Computational Harmonic Analysis, 48, 787–794.

http://arxiv.org/abs/1809.00973
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb21
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb21
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb21
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb21
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb21
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb22
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb22
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb22
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb22
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb22
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb23
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb23
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb23
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb24
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb24
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb24
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb25
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb25
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb25
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb26
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb26
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb26
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb26
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb26
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb27
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb27
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb27
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb27
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb27
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb28
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb28
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb28
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb29
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb29
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb29
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb30
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb30
http://refhub.elsevier.com/S0893-6080(20)30020-4/sb30

	Theory of deep convolutional neural networks: Downsampling
	Introduction and downsampling
	Main results
	Approximating ridge functions
	Representing fully-connected nets
	Approximating functions on Riemannian manifolds
	Comparison and discussion

	Analysis of convolutions in DCNNs
	Convolutions in factorizations of matrices and filter masks
	Choosing bias vectors

	Constructing DCNNs and proving theorems
	Approximating ridge functions by DCNNs
	Realizing fully-connected networks by deep CNNs
	Approximation on Riemannian manifolds by DCNNs

	Acknowledgments
	Appendix
	References

