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Abstract 
Understanding treatment effect heterogeneity is vital to many scientific fields because the same treatment 
may affect different individuals differently. Quantile regression provides a natural framework for modelling 
such heterogeneity. We propose a new method for inference on heterogeneous quantile treatment effects 
(HQTE) in the presence of high-dimensional covariates. Our estimator combines an ℓ1-penalised regression 
adjustment with a quantile-specific bias correction scheme based on rank scores. We study the theoretical 
properties of this estimator, including weak convergence and semi-parametric efficiency of the estimated 
HQTE process. We illustrate the finite-sample performance of our approach through simulations and an 
empirical example, dealing with the differential effect of statin usage for lowering low-density lipoprotein 
cholesterol levels for the Alzheimer’s disease patients who participated in the UK Biobank study. 
Keywords: causal inference, debiased Inference, high-dimensional data, quantile regression, semi-parametric 
efficiency 

1 Introduction 
1.1 Motivation 
Understanding treatment effect heterogeneity in observational studies is vital to many scientific 
fields because often the same treatment affects different individuals differently. For instance, in 
modern drug development, it is important to test for the existence (or the lack) of treatment effect 
heterogeneity and to identify sub-populations for which a treatment is most beneficial (or harmful) 
(Lipkovich et al., 2017; Ma & Huang, 2017). Similarly, in precision medicine, it is essential to be 
able to generalise causal effect estimates from a small experimental sample to a target population 
(Coppock et al., 2018; Kern et al., 2016). 

Quantile regression (Koenker, 2005) models the effect of covariates on the conditional distribu-
tion of the response variable and thus provides a natural framework for studying treatment het-
erogeneity. In this paper, we propose a new method for inference on the heterogeneous quantile 
treatment effects (HQTE) curve in the presence of high-dimensional covariates. The HQTE curve 
is defined as the difference between the quantiles of the conditional distributions of treatment and 
control group: 

α(τ; z) := Q1(τ; z) − Q0(τ; z), (1) 

where Q1(τ; z) (Q0(τ; z)) is the conditional quantile curve of the potential outcome of the treated 
group (the control group) evaluated at a quantile level τ ∈ (0, 1) and covariate z ∈ Rp. 
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The HQTE curve provides information about the treatment effect at every quantile level. Unlike 
the average treatment effect, which only gives the mean effect of a treatment, the HQTE curve of-
fers a more nuanced analysis by examining the treatment effects at different points in the distribu-
tion. For instance, the bio-medical literature documents that maternal hypertension is a risk factor 
for low infant birth weight and this effect is more pronounced in the lower quantiles of the birth 
weight distribution (Bowers et al., 2011; Mhanna et al., 2015). By utilising a statistical procedure 
that focuses on detecting treatment effects at the lower quantiles, researchers can gain more useful 
insights than relying solely on estimating the average treatment effect. Another scenario where the 
HQTE curve proves beneficial is when the outcome variable exhibits a skewed distribution, such 
as survival times. L. Wang et al. (2018) demonstrate that treatment regimes aimed at maximising 
the average treatment effect, or the mean-optimal treatment regimes, may not be optimal for in-
dividuals who significantly differ from the typical sample population. In such cases, an adaptive 
quantile-optimal treatment regime based on the HQTE becomes preferable as it considers the ef-
fects across different quantiles and can be tailored to individuals’ unique characteristics. 

1.2 Contribution and outline of the paper 
The primary contribution of this article is the novel rank-score debiased estimator of the hetero-
geneous quantile treatment effects (HQTE) curve and a comprehensive study of its theoretical 
properties. We break summarise our contributions as follows: 

• Statistical methodology: We show how to use inverse-density weighted regression rank scores 
to debias estimates of the conditional quantile function (CQF) when these estimates are ob-
tained from solving an ℓ1-penalised quantile regression problem. We rationalise this idea in 
two different ways: a bias-variance trade-off and an approximate Neyman orthogonalisation 
procedure (Section 3). 

• Statistical theory: Our main theoretical result is the weak convergence of the rank-score de-
biased HQTE curve to a Gaussian process in ℓ∞(T ). The large sample properties of this pro-
cess are needed whenever one would like to conduct simultaneous inference on the HQTE 
curve on several (or a continuum) of quantile levels T ⊂ (0, 1). We propose two uniformly 
consistent estimators for the covariance functions of the Gaussian limit process. Moreover, 
for fixed dimensions, we prove that the rank-score debiased estimator is semi-parametric ef-
ficient (Section 4). 

• Algorithmic implementation: We propose a systematic way of selecting the tuning parameters 
in the proposed estimation procedure. Our procedure is similar to optimisation problems 
adopted for covariate balancing in causal inference (Athey et al., 2018; Y. Wang & 
Zubizarreta, 2017; Zubizarreta, 2015). While conventional covariate balancing procedures 
are rather sensitive to the choice of tuning parameters, our systematic procedure makes use 
of the dual formulation of the rank-score debiasing programme and is fully automatic 
(Section 5). We illustrate the finite-sample performance of our approach through Monte 
Carlo experiments (Section 6) and an empirical example, dealing with the differential effect 
of statin usage on lowering the low-density lipoprotein cholesterol (LDL) levels for the 
Alzheimer’s disease patients (Section 7). 

• Technical results: To analyse the theoretical properties of the quantile rank-score debiasing 
problem, we develop new technical tools that complement existing results on the consistency 
of ℓ1-penalised quantile regression (Belloni & Chernozhukov, 2011; Belloni, Chernozhukov, 
& Kato, 2019; L. Wang & He, 2021) and the weak convergence of quantile regression proc-
esses in growing dimension (Belloni, Chernozhukov, Chetverikov, et al., 2019; Chao et al., 
2017). Two new results are particularly interesting: the dual formulation of the rank-score 
debiasing programme and the Bahadur-type representation for the rank-score debiased esti-
mator (Sections C–I of the online supplementary material).  

1.3 Prior and related work 
Treatment effect heterogeneity is of significant interest in causal inference and is analysed from 
many different angles. Imai and Ratkovic (2013) formulate the estimation of heterogeneous 
mean treatment effects as a variable selection problem. Angrist (2004) studies mean treatment  
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effect heterogeneity through instrumental variables. In recent publications, Semenova and 
Chernozhukov (2021), Künzel et al. (2019), and Nie and Wager (2019) propose several new 
meta-learners to estimate conditional average treatment effects. Firpo (2007), Frölich and Melly 
(2013), and Cattaneo (2010) study (marginal) quantile treatment effects through modelling in-
verse propensity scores. Chernozhukov and Hansen (2005) and Abadie et al. (2002) show how 
instrumental variables can be helpful in identifying conditional quantile treatment effects in the 
presence of unmeasured confounding variables. Our paper contributes to this thriving field by 
introducing a novel quantile estimator to address treatment effect heterogeneity. 

Three recent articles specifically study the problem of debiased inference for high-dimensional 
quantile regression: Belloni, Chernozhukov, and Kato (2019) propose an efficient debiased esti-
mator of a single quantile regression coefficient using Neyman orthogonal scores. Bradic and 
Kolar (2017) consider the problem of debiasing the ℓ1-penalised estimate of the quantile regression 
vector when the response is homoscedastic. W. Zhao et al. (2019) consider the same problem as  
Bradic and Kolar (2017) but propose a different estimator that can deal with heteroscedastic re-
sponses. Allowing for heteroscedastic responses is of great practical importance since the ability 
to model heteroscedasticity is a key reason for using quantile regression in the first place. We pro-
vide a detailed (mathematical) comparison of our approach with the ones by Belloni, 
Chernozhukov, and Kato (2019) and W. Zhao et al. (2019) in Section A of the online 
supplementary material. The following are the three key points of this comparison: 

First, the crucial conceptual difference between the approaches by Belloni, Chernozhukov, and 
Kato (2019) and W. Zhao et al. (2019) and ours is that we treat the solution of the ℓ1-penalised 
quantile regression problem as a nuisance parameter and directly debias the scalar estimate of the 
CQF Qd(τ; z). Unlike them, we do not debias a low-dimensional or coordinate-wise projection of a 
high-dimensional regression vector. 

Second, when the goal is to debias a single regression coefficient, our estimator is asymptotically 
equivalent to the one proposed by Belloni, Chernozhukov, and Kato (2019). However, our esti-
mator is more flexible as it can debias arbitrarily many linear combinations of regression 
coefficients. 

Third, in principle, the estimator by W. Zhao et al. (2019) can also be used to construct a de-
biased estimate of the CQF. However, our approach has the following three advantages: First, 
our estimator is statistically more efficient, in theory and simulation studies. Second, to debias 
the quantile regression coefficient vector, we do not need to estimate the inverse of a high- 
dimensional covariance matrix. Therefore, our estimator is also computationally more efficient. 
Third, our estimator is asymptotically normal even in growing dimensions. 

2 Causal framework and identification 
Throughout this paper, Y ∈ R denotes the response variable, D ∈ {0, 1} a binary treatment vari-
able, and X ∈ Rp a vector of covariates. Following the framework of Rubin (1974), we define the 
causal effect of interest in terms of the so-called potential outcomes: Potential outcomes describe 
counterfactual states of the world, i.e. possible responses if certain treatments were administered. 
More formally, we index the outcomes of the response variable Y by the treatment variable D and 
write YD for the potential outcomes of Y. With this notation, the potential outcome Yd corre-
sponds to the response that we would observe if treatment D = d was assigned. The causal quan-
tity of interest in this paper is the heterogeneous quantile treatment effect (HQTE) curve evaluated 
at covariates z ∈ Rp, 

α(τ; z) := Q1(τ; z) − Q0(τ; z), (2) 

where Qd(τ; z) = inf {y ∈ R : FYd|X(y|z) ≥ τ} is the CQF of the potential outcome Yd ∣ X = z at a 
quantile level τ ∈ (0, 1) and FYd|X denotes the corresponding conditional distribution function. 

The key challenge in causal inference is that for each individual we only observe its potential 
outcome YD under one of the two possible treatment assignments D ∈ {0, 1} but never under 
both. In other words, the observed response variable is given as Y = DY1 + (1 − D)Y0. Since the 
potential outcomes Y0 and Y1 are not observed, a priori, it is unclear how to estimate Q1(τ; z) 
and Q0(τ; z). To make headway, we introduce the following condition:  
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Condition 1 (Unconfoundedness). (Y0, Y1) is independent of D given X, i.e. 
(Y0, Y1) ⊥⊥ D ∣ X. 

Colloquially speaking, this condition guarantees that after controlling for relevant covariates 
the treatment assignment is completely randomised. Under this condition, Qd(τ; z) is identifiable 
and can be recast as the solution to the following programme: 

Qd(τ; · ) ∈ arg min
q(·)

E ρτ(Y − q(X)) − ρτ(Y) ∣ D = d
􏼂 􏼃

, (3) 

where ρτ(u) = u(τ − 1{u ≤ 0}) is the so-called check-loss and the minimum is taken over all meas-
urable functions q(·) of X (Angrist et al., 2006; Koenker, 2005). While unconfoundedness of treat-
ment assignments is a standard condition in the literature on causal inference, it cannot be verified 
from the data alone. Rubin (2009) argues that unconfoundedness is more plausible when X is a 
rich set of covariates. This motivates us to frame our problem as a high-dimensional statistical 
problem with predictors X ∈ Rp whose dimension p exceeds the sample size n. 

The convex optimisation programme (3) poses already a formidable challenge in low dimen-
sions and to make it tractable in high dimensions, we need to impose further structural constraints: 

Condition 2 (Sparse linear quantile regression function). Let T be a compact subset of 
(0, 1). The CQF of Yd ∣ X = z is given by Qd(τ; z) = z′θd(τ) and 
supτ∈T ‖θd(τ)‖0 ≪ p ∧ n. 

In principle, this condition can be relaxed to approximate linearity and approximate sparsity 
similar to Belloni, Chernozhukov, and Kato (2019), but we do not pursue the technical refine-
ments in this direction. Under Conditions 1 and 2, the programme (3) reduces to the linear quantile 
regression programme 

θd(τ) ∈ arg min
θ∈Rp

E ρτ(Y − X′θ) − ρτ(Y) ∣ D = d
􏼂 􏼃

(4) 

and the HQTE curve is identified as 

α(τ; z) = z′θ1(τ) − z′θ0(τ). (5) 

Despite the linearity condition, the HQTE curve in equation (5) is flexible and can capture three 
different aspects of treatment heterogeneity. First, by keeping z ∈ Rp fixed and varying only the 
quantile levels τ ∈ T we can investigate treatment effect heterogeneity across different quantile 
levels. Second, by keeping τ ∈ T fixed and varying z ∈ Rp we can analyse individual treatment ef-
fects for individuals characterised by different covariates z. Third, by keeping τ ∈ T fixed and let-
ting z ∈ Rp be a sparse contrast we can identify differential effects of treatments in different 
sub-populations characterised by a few pre-treatment covariates (e.g. race, marriage status, gen-
der, socio-economic status, etc.). 

3 Methodology 
In this section, we introduce the rank-score debiasing procedure for estimating the HQTE curve. 
We show that the estimator solves a bias-variance trade-off problem and discuss its relation to 
Neyman orthogonalisation (Belloni, Chernozhukov, & Kato, 2019; Neyman, 1959). 

3.1 The rank-score debiasing procedure 
Let {(Yi, Di, Xi)}

n
i=1 be a random sample of response variable Y, treatment indicator D, and cova-

riates X. Denote by fYd|X the conditional density of Yd ∣ X, d ∈ {0, 1}. To simplify notation, write 
fi(τ) = fYDi |X

(X′iθDi (τ)|Xi), i = 1, . . . , n. Moreover, assume that the first n0 observations belong to 
the control group and the remaining n1 = n − n0 observations to the treatment group.  
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Step 1. For d ∈ {0, 1}, compute pilot estimates of θd(τ) as the solution of the ℓ1-penalised quan-
tile regression programme, 

θ̂d(τ) ∈ arg min
θ∈Rp

􏽘

i:Di=d

ρτ(Yi − X′iθ) + λd‖θ‖1

􏼨 􏼩

, (6) 

where λd > 0 is a regularisation parameter. Use the pilot estimates θ̂d(τ) to estimate the conditional 
densities fi(τ) as 

f̂i(τ) :=

2h

X′iθ̂1(τ + h) − X′iθ̂1(τ − h)
, i ∈ {j : Dj = 1}

2h

X′iθ̂0(τ + h) − X′iθ̂0(τ − h)
, i ∈ {j : Dj = 0},

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(7) 

where h > 0 is a bandwidth parameter. We discuss the choice of λd and h in Sections 5.1 and 5.3. 
Step 2. Solve the rank-score debiasing programme with plug-in estimates of the conditional 

densities from Step 1, 

􏽢w(τ; z) ∈ arg min
w∈Rn

􏽘n

i=1

w2
i f̂ −2

i (τ) : z −
1
��
n
√

􏽘

i:Di=d

wiXi

􏼍
􏼍
􏼍
􏼍
􏼍
􏼍

􏼍
􏼍
􏼍
􏼍
􏼍
􏼍

∞

≤
γd

n
, d ∈ {0, 1}

⎧
⎨

⎩

⎫
⎬

⎭
, (8) 

where the γd > 0 are tuning parameters. We discuss the choice of γd in Section 5.2. 
Step 3. Define the rank-score debiased estimator of the CQF as 

􏽢Qd(τ; z) := z′θ̂d(τ) +
1
��
n
√

􏽘

i:Di=d

􏽢wi(τ; z) f̂ −1
i (τ)(τ − 1{Yi ≤ X′iθ̂d(τ)}). (9) 

Step 4. Define the rank-score debiased estimator of the HQTE curve as 

􏽢α(τ; z) := 􏽢Q1(τ; z) − 􏽢Q0(τ; z) 

and construct an asymptotic 95% confidence interval of α(τ; z) as 

􏽢α(τ; z) ± 1.96 ×

�����������������������������
τ(1 − τ)

n

􏽘n

i=1

􏽢w2
i (τ; z) f̂ −2

i (τ)

􏽳􏼢 􏼣

.

Steps 2 and 3 constitute the core of the rank-score debiasing procedure. In Step 2, we compute 
quantile-specific debiasing weights and in Step 3 we augment the estimated conditional quantile 
function z′θ̂d(τ) with a bias correction based on these weights. This bias correction addresses 
the penalisation bias in z′θ̂d(τ), because the ℓ1-penalty introduces a regularisation bias by shrinking 
coefficients in θ̂d(τ) towards zero. Also, since the quantile regression vector θ̂d(τ) is based on the 
observed covariates {Xi : Di = d} alone, estimating Qd(τ; z) as z′θ̂d(τ) introduces a sort of mismatch 
bias. The more z differs from a typical covariate in {Xi : Di = d}, the larger is this bias. We refer to 
our estimator as the rank-score debiased estimator, because its key component is a weighted sum 
of quantile regression rank scores with weights that approximately match the covariates. 

3.2 Heuristic explanation in terms of a bias-variance trade-off 
The rank-score debiased estimator can be motivated in terms of a bias-variance trade-off. This per-
spective offers a first glimpse at its theoretical properties.  
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Let θ ∈ Rp and w ∈ Rn be arbitrary. To simplify notation, write fi(τ) = fYDi |X
(X′iθDi (τ)|Xi) and 

Fi(τ) = FYDi |X
(X′iθ|Xi) for i = 1, . . . , n. Define φi(θ) = 1{Yi ≤ X′iθ} − 1{Yi ≤ X′iθd(τ)} and note that 

E[f −1
i (τ)φi(θ) ∣ Xi] = f −1

i (τ)(FYDi |X
(X′iθ|Xi) − Fi(τ)). Thus, a first-order Taylor approximation at θ = 

θDi (τ) yields 

1
��
n
√

􏽘

i:Di=d

wiE f −1
i (τ)φi(τ) ∣ Xi

􏼂 􏼃
=

1
��
n
√

􏽘

i:Di=d

wiX′i(θ − θd(τ)) + an(θ), 

where |an(θ)| ≤ ‖ 1��
n
√
􏽐

i:Di=d wif −1
i (τ)ξi,τXiXi‖op‖θ − θd(τ)‖22 and ξi,τ = f ′YDi |X

(X′iξ|Xi), with ξ a point 

on the line connecting θ and θDi (τ). Suppose that this identity remains (approximately) true for 
θ = θ̂d(τ). Then, re-arranging this expansion leads to 

z′θ̂d(τ) +
1
��
n
√

􏽘

i:Di=d

wif −1
i (τ)(τ − 1{Yi ≤ X′iθ̂d(τ)})

= z′θd(τ) +
1
��
n
√

􏽘

i:Di=d

wif −1
i (τ)(τ − 1{Yi ≤ X′iθd(τ)})

+ z −
1
��
n
√

􏽘

i:Di=d

wiXi

􏼠 􏼡′

(θ̂d(τ) − θd(τ)) + an(θ̂d(τ)) + bn(θ̂d(τ)),

(10) 

where bn(θ) = − 1��
n
√
􏽐

i:Di=d wi(f −1
i (τ)φi(θ) − E[f −1

i (τ)φi(θ) ∣ Xi]). 
If θ̂d(τ) is consistent for θd(τ) and if the remainder terms an(θ̂d(τ)) and bn(θ̂d(τ)) can be shown to be 

asymptotically negligible, then the statistical behaviour of the left-hand side of equation (10) is gov-
erned by the first three terms on the right-hand side. In particular, the first term on the right-hand 
side, z′θd(τ), is deterministic, the second term has mean zero and variance τ(1 − 
τ)n−1􏽐

i:Di=d w2
i f −2

i (τ) (expectations taken conditionally on the Xis), and the third term can be 
upper bounded by ‖z − 1��

n
√
􏽐

i:Di=d wiXi‖∞‖θ̂d(τ) − θd(τ)‖1. Since the weights w are arbitrary, we 
can choose them to fine-tune the statistical behaviour of the left-hand side of equation (10). 
Given above observations, it is natural to seek weights w that minimise the variance τ(1 − 
τ)n−1􏽐

i:Di=d w2
i f −2

i (τ) while controlling the bias term ‖z − 1��
n
√
􏽐

i:Di=d wiXi‖∞. The rank-score de-
biasing programme (8) with plug-in estimates f̂i(τ) can be viewed as a feasible sample version of 
this constrained minimisation problem. Since the weights are chosen to minimise the variance of 
the right-hand side, we expect that the rank-score balanced estimator can be more efficient than 
other debiasing procedures. We emphasise that the theoretical analysis of the rank-score debiased 
estimator does not rely on this Taylor expansion because it is impossible to bound the remainder 
terms uniformly in w ∈ Rn as n diverges. 

3.3 Connection to Neyman orthogonalisation 
Our algorithm can also be rationalised as an approximate Neyman orthogonalisation procedure 
(Belloni, Chernozhukov, & Kato, 2019; Chernozhukov et al., 2018; Neyman, 1959). 

Given the target Qd(τ; z), one may interpret the true quantile regression coefficient θd(τ) as a 
nuisance parameter, say η0 ≡ θd(τ). To carry out valid inference on Qd(τ; z) when the high- 
dimensional nuisance parameter η0 cannot be estimated at 

��
n
√

-rate, one then seeks a score function 
ψ(q, η) such that for all η in a (shrinking) neighbourhood Nn of η0 and a null sequence (δn)n≥1, 

E[ψ(Qd(τ; z), η0) ∣ X] = 0 and sup
η∈Nn

∂
∂η

E[ψ(Qd(τ; z), η0) ∣ X](η − η0)
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌 ≤ δnn−1/2. (11) 

These equations are known as Neyman near-orthogonality conditions (Chernozhukov et al., 
2018, Section 3.2). The neighbourhood Nn is also called the nuisance realisation set and chosen 
such that it contains the estimated nuisance parameter η̂ with high probability. Given the  

6                                                                                                                                        Giessing and Wang 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/advance-article/doi/10.1093/jrsssb/qkad075/7239218 by N
ational Library of H

ealth Sciences user on 04 D
ecem

ber 2023



definition of the rank-score debiased estimator in equation (9), a natural choice for the score 
function is 

ψw(q, η) := q − z′η −
1
��
n
√

􏽘

i:Di=d

wif −1
i (τ)(τ − 1({Yi ≤ X′iη}), 

where w ∈ Rn is a tuning parameter to be chosen later. One easily verifies that the score function 
ψw satisfies the first equality in equation (11) for all w ∈ Rn. Furthermore, provided that w ∈ Rn 

satisfies the box-constraint in programme (8) and that the nuisance realisation set can be chosen 
as Nn = {η ∈ Rp : ‖η − η0‖1 ≤ δn

γd
n1/2}, the second inequality in equation (11) holds as well: 

Indeed, for all η ∈ Nn, by Hölder’s inequality, 

∂
∂η

E[ψw(Qd(τ; z), η0) ∣ X](η − η0)
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌 = z −

1
��
n
√

􏽘

i:Di=d

wiXi

􏼠 􏼡′

(η − η0)

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

≤ δnn−1/2.

Next, denote by 􏽢Qd(τ; z, w) the generalised method of moment estimator that solves 
􏽐

i:Di=d ψw(􏽢Qd(τ; z, w), η̂) = 0. Conditionally on the Xis, 􏽢Qd(τ; z, w) has asymptotic variance 
τ(1 − τ)n−1􏽐

i:Di=d w
2
i f −2

i (τ) (e.g. Chernozhukov et al., 2018, Section 3.2). Since w ∈ Rn is arbi-
trary, it is sensible to choose w to minimise this asymptotic variance. Hence, the rank-score de-
biasing algorithm with plug-in estimates f̂i(τ) can be viewed as a feasible sample version of this 
approximate Neyman orthogonalisation procedure. Intuitively, the box-constraint in pro-
gramme (8) relaxes the strict Neyman orthogonality condition since in high dimensions one can-
not hope to match z exactly with a linear combination of the Xis. Furthermore, the 
inverse-density weighting of the weights in the expression 

􏽐
i:Di=d w2

i f −2
i (τ) ensures that observa-

tions associated with low density at the τth quantile are given smaller debiasing weights. 

4 Theoretical analysis 
In this section, we establish joint asymptotic normality of the HQTE process, propose consistent 
estimators of its asymptotic covariance function, and discuss the duality theory of the rank-score 
debiasing programme which underlies the theoretical results. 

4.1 Regularity conditions 
Throughout, we assume that {(Yi, Di, Xi)}

n
i=1 are i.i.d. copies of (Y, D, X). Recall that 

Y = DY1 + (1 − D)Y0 ∈ R, where Y1 and Y0 are potential outcomes, D ∈ {0, 1}, and X ∈ Rp. 
For examples of quantile regression models that satisfy below conditions, we refer to Section  
4.2. 

Condition 3 (Sub-Gaussian predictors). X ∈ Rp is a sub-Gaussian vector, i.e. ‖X − 
E[X]‖ψ2

≲ (E[(X′u)2])1/2 for all u ∈ R. 

Condition 3 is standard in high-dimensional statistics. We introduce it to analyse the rank-score 
debiasing programme (8), but it also simplifies the theoretical analysis of the quantile regression 
programme (6). The specific formulation of sub-Gaussianity is convenient because it allows us 
to relate higher moments of (sparse) linear combinations X′u to (sparse) eigenvalues of their co-
variance and second moment matrix (i.e. design matrix). 

We require the following conditions on the conditional quantiles and density of Yd given X: 

Condition 4 (Sparsity and Lipschitz continuity of τ 7! θd(τ)). Let T be compact subset of 
(0, 1).  

(i) There exists sθ ≥ 1 such that supd∈{0,1} supτ∈T |Tθd
(τ)| ≤ sθ for 

Tθd
(τ) = support(θd(τ));  
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(ii) There exists Lθ ≥ 1 such that supd∈{0,1} ‖θd(τ) − θd(τ′)‖2 ≤ Lθ|τ − τ′| for 
all τ, τ′ ∈ T . 

Condition 5 (Boundedness and Lipschitz continuity of fYd|X). Let a, b, x ∈ Rp be arbitrary.  

(i) There exists f̅ ≥ 1 such that supd∈{0,1} fYd |X(a|x) ≤ f̅ ;  
(ii) There exists f > 0 such that infd∈{0,1} infτ∈T fYd|X(x′θd(τ)|x) ≥ f ;  
(iii) There exists Lf ≥ 1 such that 

supd∈{0,1} |fYd|X(x′a|x) − fYd|X(x′b|x)| ≤ Lf |x′a − x′b|. 

Condition 6 (Differentiability of τ 7! Qd(τ; X)). Let T be a compact subset of (0, 1). The 
CQF Qd(τ; X) is three times boundedly differentiable on T , i.e. there exists 
CQ ≥ 1 such that supd∈{0,1} |Q

′′′
d (τ; x)| ≤ CQ for all x ∈ Rp and τ ∈ T . 

Conditions 4 and 5 are common in the literature on high-dimensional quantile regression 
(Belloni & Chernozhukov, 2011; Belloni, Chernozhukov, & Kato, 2019; Chao et al., 2017;  
L. Wang & He, 2021). They are relevant for establishing weak convergence of the rank-score de-
biased HQTE process to a Gaussian process in ℓ∞(T ). Conditions 5(i) and (ii) are only needed for 
the theoretical analysis of programme (8) and for establishing uniform (in τ ∈ T ) consistency of 
the non-parametric estimates of the conditional densities in equation (7); for all other purposes 
they can be dropped. If one is only interested in consistency and asymptotic normality of a single 
(or finitely many) quantile level(s), one can also drop Conditions 4(ii) and 5(iii). Condition 6 was 
introduced recently in Belloni, Chernozhukov, and Kato (2019) as part of the sufficient conditions 
for establishing consistency of the non-parametric estimates of the conditional densities in equa-
tion (7). It might be possible to relax this condition to Qd(τ; x) belonging to a Hölder class of func-
tions, which is a common assumption in non-parametric (quantile) spline estimation (He & Shi, 
1994; He et al., 2013). 

The next two definitions and conditions are variations of canonical assumptions for high- 
dimensional regression models. 

Definition 1 (s-Sparse maximum eigenvalues). We define the s-sparse maximum eigen-
values of the population and sample design matrices by 

φmax ,d(s) := sup
u:‖u‖0≤s

E[(X′u)21{D = d}]
‖u‖22

and

􏽢φmax ,d(s) := sup
u:‖u‖0≤s

n−1􏽐
i:Di=d (X′iu)2

‖u‖22
.

Condition 7 (Bounds on maximum eigenvalues). There exists an absolute constant 
φmax ≥ 1 such that 

φmax ,d(nd/ log (ndp)) ∨􏽢φmax ,d(nd/ log (ndp)) ≤ φmax, d ∈ {0, 1}.

Under Condition 3 and for log p = o(nd) one can upper bound the empirical maximal eigenvalue 
􏽢φmax ,d(nd/ log (ndp)) by a constant multiple of φmax ,d(nd/ log (ndp)) with probability tending to 1 
(e.g. apply Lemma 7 in the online supplementary Appendix). Hence, Condition 7 is a first and fore-
most condition on the maximum eigenvalue of the population design matrix. 

To state the next definition, recall that for J ⊆ {1, . . . , p}, q ≥ 1, and ϑ ∈ [0, ∞] the cone of 
(J, ϑ)-dominant coordinate is defined as Cp

q(J, ϑ) := {u ∈ Rp : ‖uJc‖q ≤ ϑ‖uJ‖q}. 

Definition 2 ((ω, ϑ, ϱ)-restricted minimum eigenvalue of the design matrix). Let T be a 
compact subset of (0, 1) and ω, ϑ, ϱ ≥ 0. We define the (ω, ϑ, ϱ)-restricted 
minimum eigenvalue of the design matrix as  
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κω(ϑ, ϱ) := min
d∈{0,1}

inf
τ∈T

inf
‖ζ‖2≤ϱ

inf
u∈Cp

1(Tθ(τ),ϑ)∩∂Bp
2(0,1)

E f ω
Y|X(X′θ0(τ) + X′ζ |X)(X′u)21{D = d}

􏽨 􏽩
.

To simplify notation, we write κω(ϑ) := κω(ϑ, 0). 

Condition 8 (ϱn-Restricted identifiability of θd(τ)). Let T be a compact subset of (0, 1) 
and (ϱn)n≥1 a null sequence. The quantile regression vectors θd(τ) with d ∈ 
{0, 1} and τ ∈ T are ϱn-restricted identifiable, i.e. 
κ1(2) > 0 and κ1(2, ϱn) ≳ κ1(2).

Condition 8 guarantees that the objective function of the ℓ1-penalised quantile regression pro-
gramme (6) can be locally minorised by a quadratic function. To the best of our knowledge, this 
identifiability condition for high-dimensional quantile regression vectors is new. We use it with 
ϱn ≍

���������������
sθ( log np)/n

􏽰
. For this choice of ϱn, Condition 8 is milder than the restricted identifiability 

and non-linearity condition D.5 in Belloni and Chernozhukov (2011) and also slightly less restrict-
ive than Condition (C1) in L. Wang and He (2021). For a comparison of these conditions, see 
Remark 1 in L. Wang and He (2021) and Section F.2 in the online supplementary material. 

The last set of definitions and conditions concern the dual of the rank-score debiasing pro-
gramme 8. Readers may skip over these conditions and return to them after having read Section  
4.4. 

Definition 3 (ϵ-approximation). Let ϵ ≥ 0. We call a vector ṽ ∈ Rp an ϵ-approximation of 
v ∈ Rp if ‖v − ṽ‖2 ≤ ϵ‖v‖2. 

Condition 9 (Sparse ϵn-approximate solution to the population dual). For z ∈ Rp, τ ∈ T , 
and d ∈ {0, 1} define 

vd(τ; z) := −2E f 2
Yd|X

(X′θd(τ)|X)XX′1{D = d}
􏽨 􏽩−1

z.

Let (ϵn)n≥1 be a null sequence and (ṽd,n(τ; z))n≥1 the associated collection of 
ϵn-approximations of vd(τ; z). We assume that there exists (sv,n)n≥1 such that 

sup
d∈{0,1}

sup
τ∈T
|Tvd,n (τ)| ≤ sv,n ≪ n ∧ p, where Tvd,n (τ) = support(ṽd,n(τ; z)).

We drop the subscript n on sv,n and vd,n(τ; z) if this does not cause confusion. 

Condition 9 is a technical condition that allows us to analyse the rank-score debiasing weights. 
The plausibility of Condition 9 depends crucially on the choice of (ϵn)n≥1. Intuitively, the larger 
ϵn ≥ 0, the easier it is to find a sparse ϵn-approximation ṽd(τ; z) of vd(τ; z). Indeed, if ϵn ≥ 1, 
then one may take ṽd(τ; z) ≡ 0 with sv = 0. In contrast, if ϵn = 0, then, necessarily, ṽd(τ; z) = 
vd(τ; z) and sv = ‖vd(τ; z)‖0, which may or may not be less than n ∧ p. Our theoretical results 
hold for any null sequence ϵn ≲ 1/

���
sv
√

. Typically, we choose sv ≍ log n, and, hence, Definition 3 
and Condition 9 combine the notion of sieve estimators from classical statistics (e.g. Chen, 
2007) with the concept of compressibility from the literature on compressive sensing (e.g.  
Foucart & Rauhut, 2013). We provide concrete examples and high-level conditions under which 
Condition 9 holds in Section 4.2. To simplify the presentation, above definition and condition are 
stated somewhat informal. The rigorous formulations can be found in Section G.2 in the online 
supplementary material. 

Condition 10 (Identifiability of ṽd(τ; z)). The sparse ϵn-approximate solution to the 
population dual ṽd(τ; z) is identifiable, i.e. κ2(∞) > 0.  
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Condition 10 guarantees that the objective function of the dual programme (8) can be locally 
minorised by a quadratic function. 

4.2 Examples of simple sufficient conditions 
We illustrate the general Conditions 3–10 with some simple sufficient conditions. We emphasise 
that the conditions of Section 4.1 are significantly more general than the examples discussed here. 

Example 1 (Location model with Gaussian predictors and autoregressive covariance 
structure). Consider the location model 

Yd = αd + X′βd + ε, X ⊥⊥ ε, d ∈ {0, 1}, 

where ε ∼ N(0, σ2
ε ), σε > 0 fixed, X ∼ N(0, Σ), and smallest and largest eigen-

values of Σ ∈ Rp×p bounded from below by κ > 0 and from above by φ̅ < ∞. 
Moreover, suppose that the precision matrix Σ−1 ≡ Ω = (ω jk)p

j,k=1 has band-
width 1 ≤ q < p, i.e. ω jk = 0 if k < j − q or k > j + q. 

Lemma 1 Let z ∈ Rp be sparse with ‖z‖0 ≤ sz and T = [ξ, 1 − ξ]. Under the design in 
Example 1, Condition 3–10 are satisfied with 

sθ ≤ max
d∈{0,1}

‖βd‖0 + 1, Lθ = σε/ξ ∨ 1, f̅ = 1/
������

2πσ2
ε

􏽱

∨ 1, f =
��
ξ

􏽰
/

������

2πσ2
ε

􏽱

,

sv ≤ (q + 1)sz, Lf =
����������

e/(2πσ4
ε )

􏽱

∨ 1, CQ = 4σε/ξ4, φmax = φ̅,

κ1(2) ≥
��
ξ

􏽰
κ/

������

2πσ2
ε

􏽱

, κ2(∞) ≥ ξκ/(2πσ2
ε ), ϱn = o(1), ϵn = 0.

In Example 1, the covariance structure and the sparsity of z guarantee that vd(τ; z) is sparse. 
Hence, Condition 9 is trivially satisfied. In the next two examples, we only require vd(τ; z) to lie 
in some cone of dominant coordinates. This is a mild assumption and allows vd(τ; z) to be dense 
and/or weakly sparse (see also Lemma 4 below). 

Example 2 (Location model with Gaussian predictors). Consider the location model 

Yd = αd + X′βd + ε, X ⊥⊥ ε, d ∈ {0, 1}, 

where ε ∼ N(0, σ2
ε ), σε > 0 fixed, X ∼ N(0, Σ), and smallest and largest eigen-

values of Σ ∈ Rp×p bounded from below by κ > 0 and from above by φ̅ < ∞. 

Lemma 2 Let T = [ξ, 1 − ξ], c0 ∈ (0, ∞], and J ⊆ {1, . . . , p} with |J| ≤ s. Suppose that 
vd(τ; z) ∈ Cp

1(J, c0) for d ∈ {0, 1} and τ ∈ T . Under the design in Example 2, 
Conditions 3–10 are satisfied with 

sθ ≤ max
d∈{0,1}

‖βd‖0 + 1, Lθ = σε/ξ ∨ 1, f̅ = 1/
������

2πσ2
ε

􏽱

∨ 1, f =
��
ξ

􏽰
/

������

2πσ2
ε

􏽱

,

sv = s log n Lf =
����������

e/(2πσ4
ε )

􏽱

∨ 1, CQ = 4σε/ξ4, φmax = φ̅,

κ1(2) ≥
��
ξ

􏽰
κ/

������

2πσ2
ε

􏽱

, κ2(∞) ≥ ξκ/(2πσ2
ε ), ϱn = o(1), ϵn = o c0/

������
log n

􏽰􏼐 􏼑
.
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Example 3 (Location-scale model with bounded predictors). Consider the location-scale 
model 

Yd = X′βd + ε ·X′ηd, X ⊥⊥ ε, d ∈ {0, 1}, 

where ε ∼ F with twice boundedly differentiable density f. Suppose that the 
smallest and largest eigenvalues of E[XX′] ∈ Rp×p are bounded from below 
by κ > 0 and from above by φ̅ < ∞. Furthermore, suppose that there exit ab-
solute constants K, υ,Υ > 0 such that max1≤k≤p |x(k)| ≤ K and 0 < υ ≤ x′η ≤ 
Υ < ∞ for all x = (x(1), . . . , x(p))′ in the range of X. 

Lemma 3 Let T = [ξ, 1 − ξ], c0 ∈ (0, ∞], and J ⊆ {1, . . . , p} with |J| ≤ s. Suppose that 
vd(τ; z) ∈ Cp

1(J, c0) for d ∈ {0, 1} and τ ∈ T . Under the design in Example 3, 
Conditions 3–10 are satisfied with 

sθ ≤ max
d
‖βd‖0 + ‖ηd‖0, Lθ = max

d
‖ηd‖2 f , f̅ = max

y
f (y)/υ ∨ 1,

f = min
τ∈T

f (F−1(τ))/Υ, sv = s log n, Lf = max
f

f ′(y)/υ2 ∨ 1,

CQ = max
y

f ′′(y)/ f 4 + 3L2
f υ4/ f 5

􏼐 􏼑
Υ, φmax = φ̅, κ1(2) ≥ fκ,

κ2(∞) ≥ f 2κ, ϱn = o(1), ϵn = o c0/
������
log n

􏽰􏼐 􏼑
.

In above three examples, we have imposed high-level assumptions on v0(τ; d) which guarantee 
that Condition 9 holds. The next lemma provides more specific and (to some extent) testable suf-
ficient conditions under which Condition 9 is met. 

Lemma 4 (Sufficient conditions for sparse ϵn-approximate solutions to the population 
dual). To simplify notation, write 
A = [A1, . . . , Ap] := E[f 2

Yd |X
(X′θd(τ)|X)XX′1{D = d}]−1 ∈ R p×p. For subsets 

S, T ⊆ {1, . . . , p} let AS,T ∈ R|S|×|T| be the sub-matrix obtained from A by delet-
ing all rows in Sc and columns in Tc. Denote by σmin(AS,T) the smallest singular 
value of AS,T and set κmin(S, c0) := infu∈Cp

1(S,c0) ‖ASu‖2/‖u‖2 for c0 ≥ 0.  

(i) If each column of A has at most q ≥ 1 non-zero entries and z ∈ Rp has at 
most sz ≥ 1 non-zero entries, then Condition 9 holds with sv = qsz and 
ϵn ≡ 0 for all n ≥ 1.  

(ii) Suppose that there exists ϑ ∈ (0, ∞) such that Ak ∈ Cp
1(Jk, ϑ), 

Jk ⊆ {1, . . . , p}, for all 1 ≤ k ≤ p and z ∈ Rp has support set support(z) = 
Tz of size at most sz ≥ 1. Let J ⊆ {1, . . . , p} be such that σmin(AJ,Tz ) > 0. 
Then Condition 9 holds with sv = |J| log n and 
ϵn = O((1 + ϑ)K(J, z)/

������
log n

􏽰
), where 

K(J, z) = maxk∈Tz

���
sz
√
‖AJk,k‖1/σmin(AJ,Tz ).  

(iii) Suppose that there exists ϑ ∈ (0, ∞) such that Ak ∈ Cp
1(Jk, ϑ), 

Jk ⊆ {1, . . . , p}, for all 1 ≤ k ≤ p. Let J ⊆ {1, . . . , p} be such that zJ ≠ 0 
and κmin(J, c0) > 0 with c0 = ‖zJc‖1/‖zJ‖1. Then Condition 9 holds with 

sv = |J| log n and ϵn = O((1 + ϑ)K(J, z)/
������
log n

􏽰
), where 

K(J, z) = (1 + c0) max1≤k≤p

���
|J|

􏽰
‖AJk,k‖1/κmin(J, c0).  

(iv) Suppose that there exists ϑ ∈ (0, ∞) such that Ak ∈ Cp
1(Jk, ϑ), 

Jk ⊆ {1, . . . , p}, for all 1 ≤ k ≤ p and z ∈ Uz ⊆ Rp, dim(Uz) ≤ sz. Let J ⊆ 
{1, . . . , p} be such that zJ ≠ 0 and minu∈Uz∩Sp−1 ‖AJu‖2 > 0. Then 

Condition 9 holds with sv = |J| log n and ϵn = O((1 + ϑ)K(J, z)/
������
log n

􏽰
),  
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where K(J, z) = ‖z‖1/‖zJ‖1 max1≤k≤p

���
|J|

􏽰
‖AJk,k‖1/minu∈Uz∩Sp−1 ‖AJu‖2.  

From this lemma we infer that Condition 9 holds whenever the columns of 
E[f 2

Yd|X
(X′θd(τ)|X)XX′1{D = d}]−1 ∈ Rp×p are (weakly) sparse. Typically, this is the case if most 

predictors are only weakly correlated. Moreover, sparsity of z ∈ Rp is not necessary; in particular, 
by parts (iii) and (iv), ‖z‖1 = O(1) is sufficient. We illustrate these facts in the following example: 

Example 4 (Homoscedastic quantile regression model). Suppose that Yd = αd + X′βd + ε 
with X, D, ε independent of each other for all d ∈ {0, 1}. Let Qε(τ) be the τth 
quantile of the error ε and 0 < P{D = 1} = π1 = 1 − π0 = 1 − P{D = 0} < 1. 
Then, 

vd(τ; z) = −2π−1
d fε(Qε(τ))−2E[XX′]−1z.

From this expression, we easily read off the following: 

(i) If z ∈ Rp has at most sz ≥ 1 non-zero entries and at least p − q ≥ 1 en-
tries in X ∼ N(0, Σ) are independent or X follows an AR(q) process, 
q ≥ 1, then Lemma 4(i) applies.  

(ii) If z ∈ Rp has at most sz ≥ 1 non-zero entries and X follows an MA(q) 
process, q ≥ 1, then there exist a set J ⊆ {1, . . . , p} with |J| ≤ sz and ϑ ∈ 
[0, ∞) such that Lemma 4(ii) applies.  

(iii) Suppose that z ∈ Rp has p non-zero entries and ‖z‖1 = O(1). If at least p − 
q ≥ 1 entries in X ∼ N(0, Σ) are independent or X follows an AR(q) or 
MA(q) process, then there exist a set J ⊆ {1, . . . , p} with |J| = 1, 
ϑ ∈ [0, ∞), and Uz ⊂ Rd with dim(Uz) = 1 such that Lemma 4(iv) 
applies. 

4.3 Weak convergence results 
In this section, we establish weak convergence of the rank-score debiased CQF and the HQTE 
processes, 

��
n
√

(􏽢Qd(τ; z) − Qd(τ; z)) : τ ∈ T
􏽮 􏽯

and
��
n
√

(􏽢α(τ; z) − α(τ; z)) : τ ∈ T
􏼈 􏼉

.

The large sample properties of these processes are needed whenever one would like to conduct 
inference on the HQTE curve on more than just one quantile at a time. For example, statistical 
comparisons of the HQTE across different quantiles require uniform confidence bands that hold 
for all quantiles under consideration. Similarly, testing hypotheses about subsets of quantiles re-
quires constructing rejection regions that hold across these quantiles. In both cases, process 
methods provide a natural way of addressing these problems. We provide concrete examples 
below. 

To formulate the theoretical results, we introduce the following operator: 

H(n)
d (τ1, τ2; z) := v′d(τ1; z)E[fYd|X(X′θd(τ1)|X)fYd|X(X′θd(τ2)|X)XX′1{D = d}]vd(τ2; z), 

where vd(τ; z) = −2(E[f 2
Yd |X

(X′θd(τ)|X)XX′1{D = d}])−1z. Since the dimension n may grow with the 

sample size n, we make the dependence of H(n)
d (τ1, τ2; z) on n explicit. 

The following theorem establishes joint asymptotic normality of the rank-score balanced CQF 
process. 

Theorem 1 (Weak convergence of the rank-score debiased CQF process). Let T be a 
compact subset of (0, 1). Suppose that Conditions 1–10 hold with ϱn = ���������������������

(sv + sθ) log (np)/n
􏽰

and ϵ2
n = O(

��
n
√

h−1ϱ2
n + h2). In addition, suppose that 

(sv + sθ)3 log3 (np) log3 (n) = o(nh3), h2sv = o(1), and ‖z‖2 = O(1). If λd ≍  
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������φmax
√ �����������

n log (np)
􏽰

and γd ≍ ‖z‖2(h−1sθ log (np) +
��
n
√

h2)
��
n
√

, then 

��
n
√

(􏽢Qd( · ; z) − Qd( · ; z))⇝Gd( · ; z) in ℓ∞(T ), 

where Gd( · ; z) is a centred Gaussian process with covariance function 
(τ1, τ2) 7! Hd(τ1, τ2; z) := limn→∞

τ1∧τ2−τ1τ2
4 H(n)

d (τ1, τ2; z) provided this limit 
exists pointwise for all τ1, τ2 ∈ T . 

Remark 1 (On the existence of the covariance function). It is easy to verify that the limit 
Hd(τ1, τ2; z) is finite for all τ1, τ2 ∈ T whenever Condition 10 holds and 
‖z‖2 = O(1). However, this alone does not imply existence of the limit, since 
H(n)

d (τ1, τ2; z) may oscillate with the sample size n. Hence, we impose pointwise 
convergence of H(n)

d (τ1, τ2; z) for all τ1, τ2 ∈ T as an additional assumption. In 
the context of abstract weak convergence results for classes of functions that 
may change with the sample size n, this assumption is standard (e.g. van der 
Vaart & Wellner, 1996, ch. 2.11.3); in the context of high-dimensional quan-
tile regression, this assumption also appears in Chao et al. (2017). If 
H(n)

d (τ1, τ2; z) does not converge pointwise for all τ1, τ2 ∈ T , weak process con-
vergence fails, but we still have asymptotic normality of the studentised rank- 
score debiased CQF: Indeed, for all (fixed) τ ∈ T , Lemma 7 implies that 
􏽢σ−1

2 (τ; z)
��
n
√

(􏽢Qd(τ; z) − Qd(τ; z))⇝N(0, 1), where 􏽢σ2(τ; z) is defined in equation 
(16). 

Assume, for a moment, that dimension p is fixed. Then, Theorem 1 implies that 

��
n
√

(􏽢Qd(τ; z) − Qd(τ; z))⇝N 0, τ(1 − τ)z′ E[f 2
Yd |X

(X′θd(τ)|X)XX′1{D = d}]
􏼐 􏼑−1

z
􏼒 􏼓

.

What is of interest here is that the asymptotic variance τ(1 − τ)z′(E[f 2
Yd |X

(X′θd(τ)|X)XX′1{D = 
d}])−1z is known to be the semi-parametric efficiency bound for all estimators of the linear condi-
tional quantile function (Newey & Powell, 1990). In particular, the rank-score balanced estimator 
of the CQF is as efficient as the estimate of the CQF based on the weighted quantile regression pro-
gramme (Koenker, 2005; Koenker & Zhao, 1994; Q. Zhao, 2001). This lends further support to 
the heuristic arguments made in Section 3.2. Though we note that as the conditional densities can 
be hard to estimate, the weighted quantile regression problems can be less popular in practice. 

Since the rank-score debiased estimates of Q1(τ; z) and Q0(τ; z) are asympototically independ-
ent, Theorem 1 and the Continuous Mapping Theorem yield the following result for the HQTE 
process. 

Theorem 2 (Weak convergence of the rank-score debiased HQTE process). Let T be a 
compact subset of (0, 1). Under the conditions of Theorem 1, 

��
n
√

(􏽢α( · ; z) − α( · ; z))⇝G1( · ; z) + G0( · ; z) in ℓ∞(T ), 

where G1( · ; z), G0( · ; z) are independent, centred Gaussian processes with 
covariance functions (τ1, τ2) 7! Hd(τ1, τ2; z) with d ∈ {0, 1}. 

The takeaway from Theorem 2 is that the HQTE process converges weakly to the sum of two 
independent centred Gaussian processes. We illustrate Theorem 2 with four examples; for more 
elaborate applications of process weak convergence in the context of quantile regression we refer 
to Belloni, Chernozhukov, Chetverikov, et al. (2019), Chao et al. (2017), Angrist et al. (2006), and  
Chernozhukov and Fernández-Val (2005).  
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Example 5 (Asymptotic normality of the HQTE estimator). For fixed quantile τ ∈ T , 
Theorem 2 implies that 

��
n
√

(􏽢α(τ; z) − α(τ; z)) is asymptotically normal with 
mean zero and variance σ2(τ; z) := limn→∞ σ2

(n)(τ; z), where 

σ2
(n)(τ; z) := τ(1 − τ)z′ (π1E[f 2

Y1|X(X′θ1(τ)|X)XX′ ∣ D = 1])−1
􏽨

+ (π0E[f 2
Y0 |X(X′θ0(τ)|X)XX′ ∣ D = 0])−1

􏽩
z, 

where 0 < π1 = 1 − π0 = P{D = 1} < 1. 

Example 6 (Joint asymptotic normality of the HQTE estimator at finitely many quan-
tiles). Consider a finite collection of quantile levels {τ1, . . . , τK} ⊂ T . 
Theorem 2 implies that the collection 

��
n
√

(􏽢α(τj; z) − α(τj; z)), j = 1, . . . , K, is 
jointly asymptotically normal with mean zero and covariance matrix 
Σ = (H1(τj, τk; z) + H0(τj, τk; z))K

j,k=1. 

Example 7 (Uniform confidence bands for the HQTE curve). Define 
K(z) := supτ∈T |G1(τ; z)/σ(τ; z) + G0(τ; z)/σ(τ; z)|, where σ2(τ; z) is the vari-
ance from Example 5. Let κ̂(α; z) and 􏽢σ2

n(τ; z) be (uniformly) consistent es-
timates of the α quantile of K(z) and σ2(τ; z), respectively. Then, 

lim
n→∞

P α(τ; z) ∈ α̂(τ; z) ± κ̂(α; z)
􏽢σn(τ; z)

��
n
√

􏼔 􏼕

, τ ∈ T
􏼚 􏼛

= α.

A consistent estimate κ̂(α; z) can be obtained via simulation-based boot-
strap, i.e. sampling from 􏽢K(z) = supτ∈T |

􏽥G1(τ; z) + 􏽥G0(τ; z)|, where 
􏽥G1(τ; z) and 􏽥G0(τ; z) are independent centred Gaussian processes with co-
variance functions based on uniformly consistent plug-in estimates of the 
operators (τ1, τ2) 7! Hd(τ1, τ2; z)/(σ(τ1; z)σ(τ2; z)), d ∈ {0, 1}. 

Example 8 (Asymptotic theory for the integrated HQTE curve). Assessing the HQTE 
on a specific quantile is often less relevant than assessing the average 
HQTE over a continuum of quantile levels T (e.g. lower, middle, or upper 
quantiles). In such cases, it is natural to consider the integrated HQTE. 
Theorem 2 and the continuous mapping theorem imply that 
��
n
√

∫T (􏽢α(τ; z) − α(τ; z))dτ⇝I(z), where I(z) := ∫T G1(τ, z)dτ + ∫T G0(τ; z)dτ.
While the random variable I(z) is not distribution-free, its distribution 
can be approximated via re-sampling techniques (Chernozhukov & 
Fernández-Val, 2005). 

4.4 Duality theory for the rank-score debiasing programme 
In this section, we introduce the dual to the rank-score debiasing programme (8) and explain its 
pivotal role in the proofs of the weak convergence results in Sections 4.3. The dual programme 
is also important for constructing uniformly consistent estimates of the covariance function in 
Sections 4.5. 

Observe that the solution to the rank-score debiasing programme (8) can be written as 
􏽢w(τ; z) = 􏽢w0(τ; z) + 􏽢w1(τ; z), with the 􏽢wd(τ; z)s being the solutions to two independent  
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optimisation problems: 

􏽢wd(τ; z) ∈ arg min
w∈Rn

􏽘n

i=1

w2
i f̂ −2

i (τ) : z −
1
��
n
√

􏽘

i:Di=d

wiXi

􏼍
􏼍
􏼍
􏼍
􏼍
􏼍

􏼍
􏼍
􏼍
􏼍
􏼍
􏼍

∞

≤
γd

n

⎧
⎨

⎩

⎫
⎬

⎭
, d ∈ {0, 1}. (12) 

These two optimisation problems have the following two duals: 

v̂d(τ; z) ∈ arg min
v∈Rp

1
4n

􏽘

i:Di=d

f̂ 2
i (τ)(X′iv)2 + z′v +

γd

n
‖v‖1

􏼨 􏼩

, d ∈ {0, 1}. (13) 

Provided that strong duality holds, we can estimate the rank-score debiasing weights 􏽢wd(τ; z) by 
either solving the primal problems (12) or by solving the dual problems (13) and exploiting the 
explicit relationship between primal and dual solutions. To be precise, we have the following 
result: 

Lemma 5 (Dual characterisation of the rank-score debiasing programme).   

(i) Programmes (12) and (13) form a primal-dual pair.  
(ii) Let δ ∈ (0, 1) and d ∈ {0, 1}. Suppose that Conditions 3, 5(i), and 7 hold. 

There exists an absolute constant c1 > 1 such that for all γd > 0 that satisfy 

γd ≥ c1φmaxκ−1
2 (∞) f̅

2
‖z‖2

������������
n log (p/δ)

􏽰
, we have with probability at least 

1 − δ, for all 1 ≤ i ≤ n and τ ∈ T , 

􏽢wd,i(τ; z) = −
f̂ 2
i (τ)

2
��
n
√ X′iv̂d(τ; z), i ∈ {j : Dj = d}

0, i ∉ {j : Dj = d},

⎧
⎪⎨

⎪⎩

where 􏽢wd(τ; z) and v̂d(τ; z) are the solutions to the programmes (12) and 
(13), respectively. 

The important takeaway from Lemma 5 is that, with high probability, for γd > 0 large enough, 
the rank-score balanced estimator (9) has the following equivalent dual formulation: 

􏽢Qd(τ; z) = z′θ̂d(τ) −
1

2n

􏽘

i:Di=d

f̂i(τ)(τ − 1{Yi ≤ X′iθ̂d(τ)})X′iv̂d(τ; z). (14) 

Thus, while the original formulation of the rank-score balanced estimator involves a complicated 
sum over the rank-score debiasing weights 􏽢w1(τ; z), . . . , 􏽢wn(τ; z), the dual formulation is a simple 
linear function of the dual solution v̂d(τ; z) ∈ Rp. Therefore, we can expect that (at least for fixed τ 
and p) the rank-score debiased estimator can be approximated by a sum of n independent and 
identically distributed random variables. The following non-asymptotic Bahadur-type representa-
tion is a significantly refined version of this statement (holding uniformly in τ ∈ T and for p ≥ n). It 
is key to the weak convergence results in Section 4.3. 

Lemma 6 (Bahadur-type representation). Let T be a compact subset of (0, 1) and 
δ ∈ (0, 1). Suppose that Conditions 1–10 hold with ϱn = 
������������������������
(sv + sθ) log (np/δ)/n

􏽰
and ϵ2

n = O(
��
n
√

h−1ϱ2
n + h2). In addition, suppose that 

(sv + sθ)2 log2 (np/δ) log2 (n) = o(nh2), h2sv = o(1), and ‖z‖2 = O(1). If λd ≍ 
������φmax
√ ��������������

n log (np/δ)
􏽰

and γd ≍ ‖z‖2(h−1sθ log (np/δ) +
��
n
√

h2)
��
n
√

, then 

􏽢Qd(τ; z) − Qd(τ; z)

= −
1
2n

􏽘

i:Di=d

fYd|X(X′iθd(τ)|Xi)(τ − 1{Yi ≤ X′iθd(τ)})X′ivd(τ; z) + ed(τ; z),  
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where vd(τ; z) = −2(E[f 2
Yd|X

(X′θd(τ)|X)XX′1{D = d}])−1z, and, with probability 
at least 1 − δ, 

sup
τ∈T
|en(τ; z)| ≲ c2 ϱ3/2

n ( log n)3/4 + h2ϱn + h−1ϱ2
n

􏼐 􏼑
, 

where c2 > 0 depends on f̅ , f , Lf , Lθ, CQ, κ1(2), κ2(∞), φmax, ‖z‖2. 

The upper bound (or: rate) on the remainder term en(τ; z) comprises a parametric and a non- 
parametric part. The parametric part is ϱ3/2

n ( log n)3/4 = (sv + sθ)3/4 log3/4 (np/δ) log3/4 (n)/n3/4. 
Up to the log-factors, this rate matches the optimal rate of the residuals of the Bahadur represen-
tation for classical estimators of the quantile function (Bahadur, 1966; Kiefer, 1967) as well as 
quantile regression estimators in low dimensions (Zhou & Portnoy, 1996). The non-parametric 
part h2ϱn + h−1ϱ2

n depends on the bandwidth h > 0. The particular dependence of the bandwidth 
is the result of the twofold dependence of the rank-score debiased estimator on the non-parametric 
density estimates: a direct dependence via f̂i(τ) and an indirect dependence via 􏽢vd(τ; z). 

4.5 Consistent estimates of the covariance function 
The weak convergence results and examples from Section 4.3 are only practically relevant together 
with an estimator of the asymptotic covariance function that is uniformly consistent in τ1, τ2 ∈ T . 
Here, we show how to exploit the duality formalism from Section 4.4 to construct such estimators. 

An estimate for the covariance function (τ1, τ2) 7! Hd(τ1, τ2; z) is given by 

􏽢Hd(τ1, τ2; z) := (τ1 ∧ τ2 − τ1τ2)v̂′d(τ1; z)
1
4n

􏽘

i:Di=d

f̂i(τ1) f̂i(τ2)XiX′i

􏼠 􏼡

v̂d(τ2; z), 

where v̂d(τ; z) is the solution to the dual programme (13) (see Section 4.4). By the following lemma, 
this estimate is uniformly consistent in τ1, τ2 ∈ T . 

Lemma 7 Recall the set-up of Theorem 1 and let ϱn =
���������������������
(sv + sθ) log (np)/n

􏽰
. The following 

holds: 

sup
τ1,τ2∈T

􏽢Hd(τ1, τ2; z) − Hd(τ1, τ2; z)
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌 = Op c3(ϱn +

��
n
√ ���

sv
√

h−1ϱ2
n +

���
sv
√

h2)
( 􏼁

, 

where c3 > 0 depends on f̅ , f , Lf , Lθ, CQ, κ1(2), κ2(∞), φmax, ‖z‖2. 

As a consequence, a uniformly consistent estimate of the asymptotic variance σ2(τ; z) of the 
HQTE process at a single quantile τ ∈ T (see Example 5) is given by 

􏽢σ2
1(τ; z) := τ(1 − τ)

1
4n

􏽘

i:Di=1

f̂ 2
i (τ)(X′iv̂1(τ; z))2 +

1
4n

􏽘

i:Di=0

f̂ 2
i (τ)(X′iv̂0(τ; z))2

􏼠 􏼡

, (15) 

where v̂1(τ; z) and v̂0(τ; z) are the solutions to the dual problems (13). The duality formalism from 
Section 4.4 implies that another uniformly consistent estimate for σ2(τ; z) is given by 

􏽢σ2
2(τ; z) := τ(1 − τ)

􏽘n

i=1

􏽢w2
i (τ; z) f̂ −2

i (τ), (16) 

where the 􏽢wi(τ; z)s are the rank-score debiasing weights. Neither of the two estimates requires in-
verting a (high-dimensional) matrix, which may be surprising given the form of the target σ2(τ; z).  
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5 A practical guide to the rank-score debiasing procedure 
In the following, we explain how we implement the rank-score debiasing procedure with the 
help of the dual problem. As the rank-score debiasing estimator of the HQTE depends on 
the four regularisation parameters λ0, λ1, γ0, and γ1 > 0 and the bandwidth h > 0 of the non- 
parametric density estimator, we also explain how to choose these parameters in robust and 
data-dependent ways. 

5.1 Implementing the ℓ1-penalised quantile regression programme 
To select λd > 0 in a data-dependent way, we substantially deviate from the vanilla quantile regres-
sion programme (6) and instead implement the weighted ℓ1-penalised quantile regression problem 
by Belloni and Chernozhukov (2011). That is, we compute the pilot estimate of θd(τ) as 

θ̂d(τ) ∈ arg min
θ∈Rp

􏽘

i:Di=d

ρτ(Yi − X′iθ) + λd

���������
τ(1 − τ)

􏽰 􏽘p

k=1

􏽢σd,k|θk|

􏼨 􏼩

, (17) 

with 􏽢σ2
d,k = n−1􏽐

i;Di=d X2
ik and λd = 1.5 · Λd(0.9|X1, . . . , Xn), where Λd(0.9|X1, . . . , Xn) is the 

90%-quantile of Λd|X1, . . . , Xn and 

Λd := sup
τ∈T

max
1≤k≤p

􏽘

i:Di=d

(τ − 1{Ui ≤ τ})Xik

􏽢σd,k

���������
τ(1 − τ)

􏽰

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
, 

with U1, . . . , Un be i.i.d. Uniform(0,1) random variables, independent of X1, . . . , Xn. 

5.2 Implementing the rank-score debiasing programme 
Recall the primal and dual programmes (12) and (13), respectively. Provided that strong duality 
holds, we can estimate the rank-score balancing weights 􏽢w(τ; z) by solving either of the two prob-
lems. However, from a statistical and computational point of view, it is preferable to solve the dual 
problems. 

First, since the dual programmes (13) are unconstrained optimisation problems, they allow us to 
choose the tuning parameter γd > 0 systematically via cross-validation. In contrast, the primal 
problems are constrained optimisation problems which do not naturally lend themselves to cross- 
validation procedures. In the simulation study, we therefore implement a 10-fold cross-validation 
procedure on the dual problems and choose γd > 0 as the smallest tuning parameter which yields a 
risk that is at most one standard deviation away from the smallest cross-validated risk. The main 
point of this one-standard-deviation (1SE) rule is to estimate debiasing weights with small bias 
‖z − 1��

n
√
􏽐

i:Di=d wiXi‖∞ whose risk is comparable to the one of the optimal weights. A smaller γd > 
0 produces a less biased estimate, which leads to a better coverage probability of the confidence 
interval. It is instructive to compare our 1SE rule with the 1SE rule popularised by Breiman 
et al. (1984). Breiman et al. (1984) aim to improve the out-of-sample (classification) accuracy 
of their estimator and hence advocate choosing the least variable model whose risk is compar-
able to the model with the smallest cross-validated risk. In contrast, we aim to improve stat-
istical inferential validity and hence are less concerned about the variability of our estimate 
than its bias. 

Second, since the primal problems (12) are constrained optimisation programmes, finding feas-
ible points can be difficult. In contrast, the dual programmes are unconstrained convex optimisa-
tion problems and therefore can be easily solved by off-shelf optimisation packages. In our 
simulation studies, we solve the primal problem using R package CVXR (Fu et al., 2017), and 
the dual problem using alternating direction method of multipliers to the l1-regularised quadratic 
programme (Wahlberg et al., 2012) via R package accSDA (Atkins et al., 2017). 

Third, since the dual programmes do not involve the inverses of the estimated densities f̂i(τ), 
they are numerically more stable than the primal problems. Therefore, in the simulation studies 
and the real data analysis, we only report results obtained via the dual problem.  

J R Stat Soc Series B: Statistical Methodology                                                                                         17 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/advance-article/doi/10.1093/jrsssb/qkad075/7239218 by N
ational Library of H

ealth Sciences user on 04 D
ecem

ber 2023



5.3 Selecting bandwidth h for the non-parametric density estimator 
To stabilise the density estimator (7), we replace the ℓ1-penalised quantile regression estimates 
with refitted quantile regression estimates. The refitted estimates are obtained by fitting a quantile 
regression model to the data using only the covariates in the support set of θ̂d(τ). As this density 
estimator takes a similar form as the one in Belloni, Chernozhukov, and Kato (2019), we follow 
their advice and set bandwidth h = min {n−1/6, τ(1 − τ)/2}. 

6 Simulation study 
We carry out simulation studies to investigate the performance of the rank-score debiased 
estimator. The goal of the simulation studies is to: (1) illustrate our rank-score debiased esti-
mator provides consistent estimate of HQTE with nominal-level coverage probabilities, (2) 
showcase the rank-score debiased estimator is more efficient than the unweighted quantile re-
gression estimator, and (3) provide numerical evidence supporting the theoretical results from 
Section 4.3. 

6.1 Simulation design 
Our simulation design mimics high-dimensional observation studies where treatments are as-
signed based on covariates. We consider the following generative model: 

Y1 = X′θ1 + εσ1(X), Y0 = X′θ0 + εσ0(X), X ⊥⊥ ε, ε ∼ N(0, 1),

D ∣ X ∼ Bernoulli
e1−X7+X8

1 + e1−X7+X8

􏼒 􏼓

, Y = DY1 + (1 − D)Y0.

For the noise level σd(X) and the covariates X, we consider two sets of covariate designs for the 
homoscedastic case and the heteroscedastic case. We first generate W ∼ N(0, Σ), where Σ = 

(Σ jk) p−1
j,k=1 and Σ jk = 0.5|j−k|. Then, in the homoscedastic case, we set σ1(X) = σ0(X) = 1 and gener-

ate the covariates with X1 = 1 and Xj = Wj, for 2 ≤ j ≤ p. In the heteroscedastic case, we set 
X1 = 1, X2 = |W2| + 0.1, X3 = W2

3 + 0.5, Xj = Wj for 4 ≤ j ≤ p, and σd(X) = (1 − d)X2 + dX3 

for d ∈ {0, 1}. In both cases, we set θ0 = (0.5, 0, 1, − 1, 0, . . . , 0)′ ∈ Rp and consider the follow-
ing three scenarios for θ1: sparse (θ1 ∝ (1, 1, 1, 1, 1, 1, 0, . . . , 0)′), dense (θ1 ∝ (1, 
1/

��
2
√

, . . . , 1/
��
p
√

)′) and pseudo-dense (θ1 ∝ (1, 1/2, . . . , 1/p)′). We consider three different 
signal strengths ‖θ1‖2 ∈ {1, 2, 4}. We choose the sample size n and the dimension of the covariates 
p from (n, p) ∈ {(600, 400), (1000, 600)}. As we estimate the CQF separately by using the ob-
served data in the treated and control groups, the effective sample size for our rank-score debiasing 
programme nd is approximately half of the sample size. Thus, the effective sample size is always 
less than p. Lastly, we set z = (0, 1/

��
2
√

, 1/
��
2
√

, 0, . . . , 0)′ or z = (1, 1, 1/
��
2
√

, . . . , 1/
��
p
√

)′. 
Under this data generating process, the HQTE at z is the linear function α(τ; z) = z′(θ1(τ) − θ0(τ)). 

We implement the rank-score debiased estimator as discussed in Section 5. In particular, this 
means that even in the case of homoscedastic noise we do not use a specialised density estimator 
that could exploit this extra information. Since in practice homoscedasticity may be difficult to de-
tect, we do not want to rely on the validity of the homoscedasticity assumption. To illustrate the 
bias-variance trade-off that underlies the tuning parameter γd, we report results not just for the 
‘1SE’ rule (‘Rank-1SE’) but also for a ‘2SE’ rule (‘Rank-2SE’). The ‘2SE’ rule chooses the smallest 
γd > 0 that is less than two standard errors away from the tuning parameter with the lowest dual 
loss function. 

To showcase the merit of the rank-score debiased estimator, we compare it with the following 
four methods: ‘Unweighted Oracle’, ‘Refit’, ‘Lasso’, and ‘Debiased’. The ‘Unweighted Oracle’ 
method fits a quantile regression model based on the true model, i.e. based on the covariates in 
the support set of θd(τ) only. The (unweighted) oracle estimate of the HQTE is 
􏽢αoracle(τ; z) = z′(θ̂oracle

1 (τ) − θ̂oracle
0 (τ)). We compute this (unweighted) oracle estimate only in the 

scenario with sparse θd(τ). The ‘Refit’ method is the following two-step procedure: We first obtain 
estimates θ̂d(τ) by solving the weighted ℓ1-penalised quantile regression programme (17). Then, we  
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compute a refitted estimate θ̂refit
d (τ) by fitting a quantile regression model based only on the cova-

riates in the support set of θ̂d(τ). The refitted estimate of the HQTE is 
􏽢αrefit(τ; z) = z′(θ̂refit

1 (τ) − θ̂refit
0 (τ)). The ‘Lasso’ method refers to simply using the estimates θ̂d(τ) 

from the ℓ1-penalised quantile regression programme (17) without any adjustments. The Lasso es-
timate of the HQTE is thus 􏽢αlasso(τ; z) = z′(θ̂lasso

1 (τ) − θ̂lasso
0 (τ)). The ‘Debiased’ method refers to the 

debiased ℓ1-penalised quantile regression coefficient estimate proposed by W. Zhao et al. (2019). 
We denote the debiased estimate of the HQTE as 􏽢αdebias(τ; z) = z′(θ̂debias

1 (τ) − θ̂debias
0 (τ)) with 

θ̂debias
d (τ) = θ̂Lasso

d (τ) + Θ̂d(τ) ·
1
nd

􏽘

i:Di=d

Xi(τ − 1{Yi ≤ X′iθ̂d(τ)}), 

where Θ̂d(τ) is an estimate of the inverse covariance matrix [E[fYd |X(X′θd(τ)|X)XX′1{D = d}]]−1. 
Following the recommendation by W. Zhao et al. (2019), we use the R package clime to obtain 
Θ̂d(τ). 

Confidence intervals for the rank-score debiased estimator are based on the asymptotic normal-
ity results in Section 4.3 and hold under the mild regularity conditions stated in Section 4.1. 
Confidence intervals for the (unweighted) oracle method are constructed using standard large 
sample theory (Angrist et al., 2006). Confidence intervals for the Lasso and the Refit method 
are constructed assuming that the selected models equal the true model, i.e. the support sets of 
θ̂lasso

d (τ), θ̂refit
d (τ) equal the support set of θd(τ). This assumption is satisfied under strong oracle con-

ditions (Fan & Li, 2001). As W. Zhao et al. (2019) focus on providing accurate point estimate of 
the quantile regression coefficients, they do not construct confidence interval for θd(τ). Based on 
our conjecture provided in the online supplementary material, we construct confidence intervals 
based on normal approximation with an estimated asymptotic variance equal to 
π1z′Θ̂1(τ) 1

n1

􏽐
i:Di=1 XiX′iΘ̂1(τ)z + π0z′Θ̂0(τ) 1

n0

􏽐
i:Di=0 XiX′iΘ̂0(τ)z. 

6.2 Simulation results 
We measure the performance of the estimators in terms of their biases [computed as the differences 
between the mean of the Monte Carlo estimates of α(τ; z) and the true HQTE], variances [com-
puted as the variances of the Monte Carlo estimates of α(τ; z)] and coverage probabilities of the 
confidence intervals with the nominal coverage probability of 95%. We provide finite-sample 
comparisons through Table 1 and Figure 1 for homoscedastic data, and Table 2 and Figure 2 
for heteroscedastic data. Details about the model parameters are given in the captions of these ta-
bles and figures. Our simulation results are evaluated through 2,000 Monte Carlo samples. 

The main takeaway from the simulation study is that the rank-score debiased estimator with γd 
selected by the 1SE rule outperforms the Refitted and Lasso estimators in terms of bias, variance 
and the validity of inference in most scenarios. In the following, we highlight three conclusions. 
First, the rank-score debiased estimator performs better in sparse than in dense models. Second, 
the rank-score debiased estimator can have a smaller variance than the unweighted Oracle estima-
tor in the heteroscedastic cases when θ1 is sparse. Third, the asymptotic normality results from 
Section 4.3 continue to hold reasonably well in finite samples. This can be deduced from  
Figures 1d and 2d, in which we provide histograms of the standardised estimates of the rank-score 
debiased estimator, 

􏽢σ−1
2 (τ; z) ·

��
n
√

(􏽢α(τ; z) − α(τ; z)), (18) 

where 􏽢σ2(τ; z) is the estimate defined in equation (15). These histograms fit the overlaid N(0,1) 
densities. In contrast, the Lasso estimator is clearly biased (Figures 1a and 2b) and so is the 
Refitting estimator in scenarios with smaller signal-to-noise ratio, i.e. scenarios with small 
‖θ1(τ)‖2 (Tables 1 and 2). These biases suggest that the oracle condition is violated and hence 
the finite-sample distributions of these estimators may not be approximated by a standard normal 
distribution. The debiased quantile Lasso estimator has small biases, but it often has larger vari-
ance compared to the rank-score debiased estimator. This observation is in-line with our conjec-
ture based on the derivation provided in the online supplementary material.  
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Table 1. Homoscedastic data   

τ Unweighted Oracle Refit Lasso Debias Rank-1SE Rank-2SE  

n = 600, p = 400, sparse θ1 with ‖θ1‖2 = 1, sparse z 
��
n
√

Bias 0.2 0.12(0.08) −0.03(0.08) −1.25(0.08) −0.37(0.10) −0.50(0.09) −0.47(0.09)   

0.5 0.14(0.07) −0.1(0.07) −1.15(0.08) −0.41(0.09) −0.27(0.08) −0.23(0.09)   

0.7 0.10(0.07) −0.11(0.07) −1.16(0.07) −0.54(0.08) −0.26(0.08) −0.25(0.08) 

nVar 0.2 6.58(0.31) 7.10(0.33) 6.48(0.35) 9.58(0.47) 7.97(0.37) 8.06(0.38)   

0.5 5.13(0.21) 5.60(0.24) 6.13(0.34) 7.37(0.35) 6.53(0.33) 6.77(0.33)   

0.7 5.14(0.21) 5.56(0.25) 5.13(0.28) 7.14(0.29) 5.9(0.25) 6.01(0.26) 

Coverage 0.2 0.94 0.85 0.84 0.97 0.91 0.93   

0.5 0.95 0.91 0.85 0.98 0.95 0.96   

0.7 0.95 0.89 0.88 0.96 0.95 0.95 

n = 600, p = 400, pseudo-sparse θ1 with ‖θ1‖2 = 1, sparse z 
��
n
√

Bias 0.2 – −0.34(0.09) −2.15(0.08) −1.20(0.10) −0.90(0.09) −0.86(0.09)   

0.5 – −0.33(0.08) −1.60(0.08) −0.93(0.09) −0.64(0.09) −0.58(0.09)   

0.7 – −0.27(0.08) −1.54(0.08) −1.09(0.09) −0.75(0.08) −0.72(0.09) 

nVar 0.2 – 7.55(0.32) 6.75(0.51) 9.15(0.52) 8.03(0.41) 8.05(0.4)   

0.5 – 6.39(0.27) 6.46(0.41) 8.61(0.49) 8.36(0.43) 8.96(0.46)   

0.7 – 6.15(0.31) 5.85(0.37) 8.21(0.42) 7.01(0.32) 7.46(0.34) 

Coverage 0.2 − 0.82 0.73 0.97 0.97 0.98   

0.5 – 0.88 0.82 0.96 0.94 0.96   

0.7 – 0.86 0.77 0.97 0.96 0.98 

n = 600, p = 400, dense θ1 with ‖θ1‖2 = 1, sparse z 
��
n
√

Bias 0.2 – −2.02(0.12) −3.06(0.09) −2.15(0.12) −1.91(0.10) −1.79(0.1)   

0.5 – −1.76(0.11) −3.04(0.09) −1.73(0.12) −1.55(0.10) −1.46(0.10)   

0.7 – −1.64(0.11) −2.94(0.09) −2.14(0.12) −1.83(0.09) −1.73(0.10) 

nVar 0.2 – 15.30(0.91) 7.39(0.74) 13.80(0.83) 9.72(0.60) 9.96(0.59)   

0.5 – 12.55(0.75) 8.45(0.75) 14.6(0.79) 9.99(0.54) 10.38(0.54)   

0.7 – 12.45(0.77) 7.59(0.70) 14.09(0.83) 9.06(0.55) 9.14(0.53) 

Coverage 0.2 – 0.65 0.63 0.96 0.93 0.94   

0.5 − 0.70 0.60 0.98 0.96 0.98   

0.7 − 0.72 0.60 0.96 0.97 0.98 

n = 600, p = 400, sparse θ1 with ‖θ1‖2 = 2, dense z 
��
n
√

Bias 0.2 0.79(0.12) 0.77(0.13) 4.79(0.11) 2.00(0.15) 2.71(0.12) 2.64(0.12)   

0.5 0.44(0.11) 0.35(0.11) −1.32(0.12) −0.81(0.15) −0.26(0.13) −0.24(0.13)   

0.7 0.57(0.11) 0.56(0.13) −1.16(0.11) −1.03(0.16) −0.49(0.13) −0.49(0.13) 

nVar 0.2 14.59(0.69) 16.52(0.73) 11.33(1.49) 23.32(1.27) 14.62(0.99) 14.89(0.98)   

0.5 11.22(0.52) 12.55(0.58) 14.97(0.73) 22.43(1.09) 16.69(0.82) 16.97(0.84)   

0.7 11.66(0.55) 16.95(0.83) 12.61(0.62) 27.38(1.27) 17.63(0.87) 17.97(0.89) 

Coverage 0.2 0.95 0.95 0.78 0.99 0.93 0.94   

0.5 0.95 0.93 0.88 0.99 0.95 0.97   

0.7 0.97 0.88 0.94 0.98 0.96 0.96 

Note. Standard errors of estimates based on 1,000 Monte Carlo samples are given in parenthesis. All standard errors of 
the coverage probability are smaller than 0.01 and thus are omitted.   
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Figure 1. Simulation results for homoscedastic data with (n, p) = (1,000, 600), sparse θ1 with ‖θ1‖2 = 4 and sparse 
z. (a) Bias comparison. (b) Variance comparison. (c) Coverage probability of the confidence interval while the nominal 
coverage probability is 95%. (d) Histograms of the standardised estimates of the rank-score debiased estimator 
displayed in equation (18), density of N(0, 1) in red.  

Figure 2. Simulation results for heteroscedastic data with (n, p) = (1,000, 600), sparse θ1 with ‖θ1‖2 = 4, and sparse 
z. (a) Bias comparison. (b) Variance comparison. (c) Coverage probability of the confidence interval while the nominal 
coverage probability is 95%. (d) Histograms of the standardised estimates of the rank-score debiased estimator 
displayed in (18), density of N(0, 1) in red.   
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Table 2. Heteroscedastic data   

τ Unweighted 
Oracle 

Refit Lasso Debias Rank-1SE Rank-2SE  

n = 600, p = 400, sparse θ1 with ‖θ1‖2 = 1, sparse z 
��
n
√

Bias 0.2 0.21(0.18) −10.65(0.13) −7.77(0.07) −1.14(0.15) −3.71(0.1) −3.51(0.1)   

0.5 −0.29(0.12) −2.1(0.15) −5.76(0.11) −0.97(0.16) −1.71(0.14) −1.22(0.15)   

0.7 0.2(0.15) 0.24(0.16) −2.59(0.14) −1.22(0.15) −0.83(0.13) −0.73(0.13) 

nVar 0.2 31.10(1.33) 16.39(4.63) 4.42(2.26) 24.18(1.16) 10.26(0.98) 10.81(0.95)   

0.5 15.54(0.61) 23.07(1.02) 11.26(1.82) 24.29(1.10) 17.34(0.91) 17.80(0.92)   

0.7 22.25(0.85) 26.19(1.09) 21.13(1.32) 23.79(1.09) 17.66(0.81) 18.01(0.82) 

Coverage 0.2 0.92 0.17 0.12 0.97 0.88 0.90   

0.5 0.94 0.64 0.50 0.96 0.90 0.92   

0.7 0.94 0.91 0.90 0.99 0.94 0.98 

n = 600, p = 400, pseudo-sparse θ1 with ‖θ1‖2 = 1, sparse z 
��
n
√

Bias 0.2 – −7.75(0.13) −4.55(0.08) 1.00(0.17) −0.90(0.11) −0.46(0.12)   

0.5 – −2.79(0.14) −4.69(0.09) −1.44(0.14) −1.81(0.12) −1.38(0.13)   

0.7 – −0.63(0.17) −3.00(0.16) −2.92(0.17) −1.76(0.15) −1.50(0.16) 

nVar 0.2 – 16.79(2.82) 5.84(1.02) 29.20(1.49) 14.53(0.49) 17.20(0.59)   

0.5 – 18.50(1.16) 8.92(1.31) 19.34(1.10) 13.91(0.88) 15.44(0.95)   

0.7 – 30.67(1.43) 25.12(1.55) 29.61(1.78) 23.08(1.28) 24.71(1.25) 

Coverage 0.2 – 0.26 0.39 0.96 0.96 0.97   

0.5 – 0.63 0.54 0.96 0.93 0.94   

0.7 – 0.84 0.85 0.98 0.95 0.96 

n = 600, p = 400, dense θ1 with ‖θ1‖2 = 1, sparse z 
��
n
√

Bias 0.2 – −10.94(0.16) −3.59(0.07) −0.28(0.19) −1.38(0.13) −1.31(0.14)   

0.5 – −3.53(0.15) −4.60(0.10) −1.10(0.17) −1.49(0.14) −1.43(0.14)   

0.7 – −3.61(0.20) −4.39(0.16) −4.41(0.21) −4.02(0.18) −3.93(0.18) 

nVar 0.2 – 25.23(6.01) 4.87(0.77) 35.73(1.44) 18.35(0.85) 19.27(0.86)   

0.5 – 24.13(1.45) 10.84(1.24) 29.81(1.60) 19.78(0.95) 20.12(0.95)   

0.7 – 41.7(2.54) 27.39(2.00) 43.87(2.91) 31.38(2.24) 31.77(2.23) 

Coverage 0.2 – 0.03 0.61 0.96 0.93 0.94   

0.5 − 0.60 0.57 0.99 0.95 0.97   

0.7 − 0.72 0.72 0.98 0.93 0.94 

n = 600, p = 400, sparse θ1 with ‖θ1‖2 = 2, dense z 
��
n
√

Bias 0.2 0.32(0.10) −6.47(0.12) −8.68(0.20) −7.63(0.19) −6.37(0.19) −6.23(0.19)   

0.5 0.36(0.07) 0.08(0.08) −1.71(0.08) 2.08(0.10) −0.55(0.08) −0.46(0.08)   

0.7 0.64(0.1) 0.96(0.11) 1.78(0.10) 2.82(0.12) 0.43(0.10) 0.47(0.10) 

nVar 0.2 13.06(0.58) 15.93(1.03) 38.42(4.95) 38.25(4.39) 34.45(4.04) 34.39(3.97)   

0.5 5.85(0.22) 5.74(0.28) 6.69(0.46) 9.11(0.64) 6.27(0.33) 6.43(0.33)   

0.7 11.23(0.48) 13.24(0.64) 10.16(0.62) 13.7(1.00) 10.71(0.51) 10.78(0.52) 

Coverage 0.2 0.96 0.60 0.39 0.66 0.82 0.85   

0.5 0.96 0.95 0.86 0.99 0.94 0.94   

0.7 0.95 0.90 0.92 0.94 0.95 0.95 

Note. Standard errors of estimates based on 1,000 Monte Carlo samples are given in parenthesis. All standard errors of 
the coverage probability are smaller than 0.01 and thus are omitted.   
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7 A case study 
7.1 Study design 
To illustrate the advantages of considering HQTE, we apply the proposed method to study the 
heterogeneous effect of statin usage, especially when combined with a healthy lifestyle, in lowering 
the LDL chlestrol concentration levels for older Alzheimer’s disease (AD) patients enrolled in the 
UK Biobank study. 

Alzheimer’s disease (AD) is the sixth leading cause of death in the United States, directly affect-
ing an estimated 5.8 million Americans and incurring nearly $236 billion of total healthcare costs 
(Alzheimer’s Association, 2019). While there is no disease-modifying treatment available for AD, 
several studies have reported a reduced risk for progression of AD in statin-treated populations 
(Geifman et al., 2017; Jick et al., 2000; Rockwood et al., 2002).1 This slowed progression of 
AD might be linked to the reduced cholesterol generation after statin usage suggested by a substan-
tial body of cellular and molecular mechanistic evidence (Di Paolo & Kim, 2011; McGuinness 
et al., 2010). Thus, our study may provide some additional evidence for the conjecture that statins 
are helpful for AD patients as they lower the LDL cholesterol levels. 

On the top of management of diseases related to high LDL cholesterol concentrations, there has 
been increased global attention on prevention and risk reduction of AD by maintenance of healthy 
lifestyle patterns (Barthold et al., 2020; Lourida et al., 2019; WHO, 2019). In this case study, we 
first adopt our proposed method to examine if the combined effect of healthy dietary patterns, in-
creased physical activities, reduced alcohol intake, and reduced smoking on lowering LDL chol-
esterol concentration in the statin-treated group is different from the statin-controlled group in 
AD patients. Since that the Mediterranean diet is one of the dietary patterns most commonly in-
vestigated (Kivipelto et al., 2018), we define the healthy dietary pattern on the basis of adherence 
to the following characteristics: consumption of an increased amount of fruits, vegetables, fish, 
and a reduced amount of processed meats and unprocessed red meats. We then move on to exam-
ine if the statin usage takes heterogeneous effects across different individuals with different life-
styles in the study cohorts. Detailed descriptions of our data structure and scientific questions 
are provided in the next section. 

Since existing clinical studies suggest that investigating the benefit of statin usage can be suscep-
tible to unmeasured confounding factors which induce potential selection bias, we adopt a genetic 
variant rs12916-T as a surrogate treatment variable. This means that if the subject carries the vari-
ant rs12916-T, the treatment indicator variable is set to be one D = 1, otherwise is set to be zero. 
We adopt this genetic surrogate biomarker as the treatment because the rs12916-T allele only af-
fects the LDL cholesterol concentration through HMGCR inhibition and is functionally equiva-
lent to statin usage (Swerdlow et al., 2015). Moreover, given that genetic variants are randomly 
inherited from parents and are fixed at conception, our treatment variable (whether the individual 
carrying rs12916-T) is thus independent of unmeasured factors such as lifestyle modification after 
statin usage (Swerdlow et al., 2015; Würtz et al., 2016). To further avoid potential confounding 
issues introduced by genetic pleiotropy and linkage disequilibrium, our approach includes p = 637 
additional SNPs and lifestyle factors associated with LDL cholesterol concentration as covariates. 
We hope that such a study design makes Condition 1 more plausible to believe in this case study. 
See online supplementary material for our data pre-processing steps. 

Lastly, we recognise that our study design has some potential limitations. Since the treatment 
variable is defined as carrying rs12916-T allele or not, it is a surrogate measurement of statin us-
age. This suggests that generalising the current study findings still warrants further confirmation 
from clinical trials. 

7.2 Data structure and analysis 
Our data source is the UK Biobank study. The UK Biobank study cohort is a prospective cohort 
that enrolled about 500,000 individuals aged from 40 to 69 in the United Kingdom, started in 
2006. We focus on AD (and AD proxy) patients older than 65 years since the majority of AD pa-
tients experience their first symptoms in their mid-60s (Jack et al., 2010). To avoid complications 

1 Statin is a commonly prescribed drug due to its clear benefits in reducing the level of LDL cholesterol through 
3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibition (Nissen et al., 2005).  
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due to missing data, we only include patients with complete covariates. This results in a cohort of 
n0 =

􏽐n
i=1 (1 − Di) = 563 subjects who do not carry the variant rs12916-T, and n1 =

􏽐n
i=1 Di = 

3150 subjects who carry the variant rs12916-T. In this dataset, the sample size in the controlled 
group n0 is less than the dimension p. Our response variable Yi is the individual plasma LDL chol-
esterol concentration measured in mg/dl. 

As for the covariates Xi for the subject i, we include the following variables: Xi1 is the intercept, 
Xi2 represents age, Xi3 represents number of days of moderate physical activity, Xi4 represents 
number of days of vigorous physical activity, Xi5 represents cooked vegetable intake, Xi6 repre-
sents salad/raw vegetable intake, Xi7 represents fresh fruit intake, Xi8 represents dried fruit intake, 
Xi9 represents oily fish intake, Xi,10 represents non-oily fish intake, Xi,11 represents processed meat 
intake, Xi,12 represents poultry intake, Xi,13 represents beef intake, Xi,14 represents lamb/mutton 
intake, Xi,15 represents pork intake, Xi,16 represents alcohol intake frequency per week, Xi,17 rep-
resents smoking status, Xi,19 represents insulin medication usage, Xi,18 represents gender, and 
Xi,20, . . . , Xi,p contain additional 619 SNPs associated with the LDL cholesterol concentration. 
The unit measurement of the included dietary variables is tablespoons/day. We have provided de-
tailed data pre-processing steps in the online supplementary material. 

Since our goal is to investigate whether statin usage has differential effects on the study cohort, 
we estimate the HQTE α(τ; z) = z′(θ1(τ) − θ0(τ)) for two different sets of the vector z: 

In the first design, we study whether the combined effect of healthy dietary patterns, physical 
activities, and reduced smoking differs in the statin-treated and control groups for lowering 
LDL levels. We thus set 

z = (0, 0, 1, . . . , 1
􏽼����􏽻􏽺����􏽽

8

, −1, . . . , − 1
􏽼�������􏽻􏽺�������􏽽

6

, 0 . . . , 0)′ ∈ Rp.

Figure 3a shows the estimated linear combination of quantile regression coefficients z′θ̂1(τ) (green 
curve) and z′θ̂0(τ) (red curve) along with estimated uniform 95% confidence bands (see Example 7 
for details on how they were constructed). We observe that the effect of statin usage, moderate to 
vigorous physical activity combined with healthier dietary patterns on reducing the plasma LDL 
cholesterol concentration is the largest among those patients whose cholesterol are in the upper 
quantiles (i.e. whose cholesterol levels are high relative to the population). For subjects who do 
not take statins, the effect of increased moderate and vigorous physical activity combined with 
healthier dietary patterns on reducing the plasma LDL cholesterol concentration is roughly a 
quadratic function of the quantile τ, but the effect overall seems to be marginal. Figure 3b shows 
the estimate of α(τ; z). We see that the effect of statin usage is heterogeneous across different quan-
tiles of the LDL cholesterol concentration—its influence is more significant at the right tail of the 
distribution. This suggests that statin usage may help further reduce the LDL cholesterol level 

Figure 3. (a) LDL plasma concentration for the treated and control groups. (b) HQTE of statin usage by healthy 
lifestyles. Uniform 95% confidence bands discussed in Example 7 are given by the shaded regions.   
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when combined with healthy lifestyles for AD patients with rather high LDL cholesterol concen-
tration. Our findings might be helpful for researchers to design future clinical trials to study the 
effect of statin usage on patients with high LDL concentrations at baseline. 

In the second design, we estimate HQTE for three study participants in the UK Biobank cohorts 
with different lifestyles: The first patient is a 65-year-old subject (A) who exercises 4 times a week, 
has sufficient cooked and raw vegetable intake (4 tablespoons per day), has one tablespoon of fruit 
intake per day, has 2 drinks per week, and with a recent smoking history. The second patient is a 
70-year-old subject (B) who exercises every day, has sufficient vegetable and fruit intake (more 
than 3 tablespoons per day), has 2 drinks per week, and with a recent smoking history. The third 
patient is a 66-year-old subject (C) who has no moderate/vigorous physical activity, less than 2 
tablespoons vegetable and fruit intake per day, 5 drinks per week, and no recent smoking history. 
We do not observe a notable difference for meat intake among these three subjects. The point es-
timates and their corresponding 95% uniform confidence bands are reported in Figure 4. We have 
excluded these three individuals from implementing our rank-score debiasing procedure. 
Although the observed differential effects across the above three subjects might be ascribed to 
the fact that study participants have different genotypes, our study results suggest that the benefit 
of statin usage can be heterogeneous across study participants. 

8 Discussion 
In this article, we have introduced a new procedure to study treatment effect heterogeneity based 
on quantile regression modelling and rank-score debiasing. While our rank-score debiased estima-
tor is easy to implement and enjoys strong theoretical guarantees, the following points merit future 
research: First, it is worthwhile to relax the unconfoundedness assumption, simply because un-
measured confounding presents a critical challenge to causal inference from observational studies. 
A classical approach to mitigate the confounding bias is to include instrumental variable methods. 
In this context, the identification Condition 1 can be modified similar to that of Chernozhukov and 
Hansen (2005). In future work, we therefore plan to investigate how to combine instrumental var-
iables with our proposed debiasing procedure. Second, it is desirable to further study the asymp-
totic efficiency of the rank-score debiasing procedure. The existing semi-parametric efficiency 
bounds for quantile regression apply only to fixed dimensional settings when the quantile regres-
sion vector is independent of the sample size (Newey & Powell, 1990; Q. Zhao, 2001). The treat-
ment of high-dimensional quantile regression models requires a more elaborate analysis since the 
quantile regression vector may change with sample size. In future work, we intend to develop a 
concept of semi-parametric efficiency of high-dimensional processes indexed by changing function 
classes. 
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Association of lifestyle and genetic risk with incidence of dementia. JAMA, 322(5), 430–437. https://doi. 
org/10.1001/jama.2019.9879 

Ma S., & Huang J. (2017). A concave pairwise fusion approach to subgroup analysis. Journal of the American 
Statistical Association, 112(517), 410–423. https://doi.org/10.1080/01621459.2016.1148039 

McGuinness B., O’Hare J., Craig D., Bullock R., Malouf R., & Passmore P. (2010). Statins for the treatment of 
dementia. Cochrane Database of Systematic Reviews, (8). 

Mhanna M., Iqbal A., & Kaelber D. (2015). Weight gain and hypertension at three years of age and older in ex-
tremely low birth weight infants. Journal of Neonatal-Perinatal Medicine, 8(4), 363–369. https://doi.org/10. 
3233/NPM-15814080 

Newey W. K., & Powell J. L. (1990). Efficient estimation of linear and type I censored regression models under 
conditional quantile restrictions. Econometric Theory, 6(3), 295–317. https://doi.org/10.1017/ 
S0266466600005284 

Neyman J. (1959). Optimal asymptotic tests of composite hypotheses. Probability and Statistics, 213–234.  

J R Stat Soc Series B: Statistical Methodology                                                                                         27 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/advance-article/doi/10.1093/jrsssb/qkad075/7239218 by N
ational Library of H

ealth Sciences user on 04 D
ecem

ber 2023

https://doi.org/10.1111/j.1468-0262.2005.00570.x
https://doi.org/10.1073/pnas.1808083115
https://doi.org/10.1073/pnas.1808083115
https://doi.org/10.1038/nrn3012
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1111/j.1468-0262.2007.00738.x
https://doi.org/10.1080/10485259408832589
https://doi.org/10.1214/12-AOAS593
https://doi.org/10.1016/S0140-6736(00)03155-X
https://doi.org/10.1080/19345747.2015.1060282
https://doi.org/10.1080/19345747.2015.1060282
https://doi.org/10.1214/aoms/1177698690
https://doi.org/10.1038/s41582-018-0070-3
https://doi.org/10.1038/s41582-018-0070-3
https://doi.org/10.1080/10485259408832584
https://doi.org/10.1002/sim.7064
https://doi.org/10.1002/sim.7064
https://doi.org/10.1001/jama.2019.9879
https://doi.org/10.1001/jama.2019.9879
https://doi.org/10.1080/01621459.2016.1148039
https://doi.org/10.3233/NPM-15814080
https://doi.org/10.3233/NPM-15814080
https://doi.org/10.1017/S0266466600005284
https://doi.org/10.1017/S0266466600005284


Nie X., & Wager S. (2019). ‘Quasi-oracle estimation of heterogeneous treatment effects’, arXiv, 
arXiv:1712.04912, preprint: not peer reviewed. 

Nissen S. E., Tuzcu E. M., Schoenhagen P., Crowe T., Sasiela W. J., Tsai J., Orazem J., Magorien R. D., 
O’Shaughnessy C., & Ganz P. (2005). Statin therapy, LDL cholesterol, C-reactive protein, and coronary ar-
tery disease. New England Journal of Medicine, 352(1), 29–38. https://doi.org/10.1056/NEJMoa042000 

Rockwood K., Kirkland S., Hogan D. B., MacKnight C., Merry H., Verreault R., Wolfson C., & McDowell I. 
(2002). Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly 
people. Archives of Neurology, 59(2), 223–227. https://doi.org/10.1001/archneur.59.2.223 

Rubin D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of 
Educational Psychology, 66(5), 688. https://doi.org/10.1037/h0037350 

Rubin D. B. (2009). Should observational studies be designed to allow lack of balance in covariate distributions 
across treatment groups? Statistics in Medicine, 28(9), 1420–1423. https://doi.org/10.1002/sim.3565 

Semenova V., & Chernozhukov V. (2021). Debiased machine learning of conditional average treatment effects 
and other causal functions. The Econometrics Journal, 24(2), 264–289. https://doi.org/10.1093/ectj/utaa027 

Swerdlow D. I., Preiss D., Kuchenbaecker K. B., Holmes M. V., Engmann J. E., Shah T., Sofat R., Stender S., 
Johnson P. C., Scott R. A., Leusink M., Verweij N., Sharp S. J., Guo Y., Giambartolomei C., Chung C., 
Peasey A., Amuzu A., Li K., …Sattar N. (2015). HMG-coenzyme A reductase inhibition, type 2 diabetes, 
and bodyweight: Evidence from genetic analysis and randomised trials. The Lancet, 385(9965), 351–361.  
https://doi.org/10.1016/S0140-6736(14)61183-1 

van der Vaart A. W., & Wellner J. (1996). Weak convergence and empirical processes: With applications to sta-
tistics. Springer Series in Statistics. Springer-Verlag. 

Wahlberg B., Boyd S., Annergren M., & Wang Y. (2012). An ADMM algorithm for a class of total variation regu-
larized estimation problems. IFAC Proceedings Volumes, 45(16), 83–88. https://doi.org/10.3182/20120711- 
3-BE-2027.00310 

Wang L., & He X. (2021). Analysis of global and local optima of regularized quantile regression in high dimen-
sion: A subgradient approach. Preprint. 

Wang L., Zhou Y., Song R., & Sherwood B. (2018). Quantile-optimal treatment regimes. Journal of the American 
Statistical Association, 113(523), 1243–1254. https://doi.org/10.1080/01621459.2017.1330204 

Wang Y., & Zubizarreta J. (2017). Minimal dispersion approximately balancing weights: Asymptotic properties 
and practical considerations. Biometrika, 103(1), 1–29. https://doi.org/10.1093/biomet/asx011 

WHO (2019). Risk reduction of cognitive decline and dementia: WHO guidelines. 
Würtz P., Wang Q., Soininen P., Kangas A. J., Fatemifar G., Tynkkynen T., Tiainen M., Perola M., Tillin T., 

Hughes A. D., Mäntyselkä P., Kähönen M., Lehtimäki T., Sattar N., Hingorani A. D., Casas J.-P., Salomaa 
V., Kivimäki M., Järvelin M.-R., …Ala-Korpela M. (2016). Metabolomic profiling of statin use and genetic 
inhibition of HMG-CoA reductase. Journal of the American College of Cardiology, 67(10), 1200–1210. 

Zhao Q. (2001). Asymptotically efficient median regression in the presence of heteroskedasticity of unknown 
form. Econometric Theory, 17(4), 765–784. https://doi.org/10.1017/S0266466601174050 

Zhao W., Zhang F., & Lian H. (2019). Debiasing and distributed estimation for high-dimensional quantile re-
gression. IEEE Transactions on Neural Networks and Learning Systems. 

Zhou K. Q., & Portnoy S. L. (1996). Direct use of regression quantiles to construct confidence sets in linear mod-
els. Annals of Statistics, 24(1), 287–306. https://doi.org/10.1214/aos/1033066210 

Zubizarreta J. R. (2015). Stable weights that balance covariates for estimation with incomplete outcome data. 
Journal of the American Statistical Association, 110(511), 910–922. https://doi.org/10.1080/01621459. 
2015.1023805   

28                                                                                                                                      Giessing and Wang 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/advance-article/doi/10.1093/jrsssb/qkad075/7239218 by N
ational Library of H

ealth Sciences user on 04 D
ecem

ber 2023

https://doi.org/10.1056/NEJMoa042000
https://doi.org/10.1001/archneur.59.2.223
https://doi.org/10.1037/h0037350
https://doi.org/10.1002/sim.3565
https://doi.org/10.1093/ectj/utaa027
https://doi.org/10.1016/S0140-6736(14)61183-1
https://doi.org/10.3182/20120711-3-BE-2027.00310
https://doi.org/10.3182/20120711-3-BE-2027.00310
https://doi.org/10.1080/01621459.2017.1330204
https://doi.org/10.1093/biomet/asx011
https://doi.org/10.1017/S0266466601174050
https://doi.org/10.1214/aos/1033066210
https://doi.org/10.1080/01621459.2015.1023805
https://doi.org/10.1080/01621459.2015.1023805

	Debiased inference on heterogeneous quantile treatment effects with regression rank scores
	Acknowledgments
	Conflict of interest
	References


