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Abstract
We obtain sharp bounds on the convergence rate of Empirical Risk Minimization performed in a
convex class and with respect to the squared loss, without any boundedness assumptions on class
members or on the target.

Rather than resorting to a concentration-based argument, the method relies on a ‘small-ball’
assumption and thus holds for heavy-tailed sampling and heavy-tailed targets. Moreover, the re-
sulting estimates scale correctly with the ‘noise level’ of the problem.

When applied to the classical, bounded scenario, the method always improves the known esti-
mates.

1. Introduction

The aim of this note is to study the error rate of Empirical Risk Minimization (ERM), performed in
a convex class, and relative to the squared loss.

To be more precise, given a class of real-valued functions F on a probability space (Ω, µ) and
an unknown target function Y , one would like to find some function in F that is ‘closest’ to Y in
some sense.

A rather standard way of measuring how close Y is to F is by using the squared loss ℓ(t) = t2

to capture the ‘point-wise distance’ (f(x) − y)2, and being ‘close’ is measured by averaging that
point-wise distance. Hence, the goal of the learner is to identify the function f∗ ∈ F that minimizes
Eℓ(f(X)− Y ) = ∥f(X)− Y ∥2L2

in F , assuming, of course, that such a minimizer exists.
Unlike questions in Approximation Theory, the point in prediction problems is to identify f∗

using random data – an independent sample (Xi, Yi)
N
i=1 selected according to the joint distribution

defined by the underlying measure µ and the target Y .
A more ‘statistical’ way of describing this problem is finding the function that minimizes the

average cost of a mistake that is incurred by predicting f(X) instead of Y . If the cost of a mistake
is (f(X) − Y )2, the functional one would like to minimize is the average cost E(f(X) − Y )2 =
∥f(X)− Y ∥2L2

.
Of course, the choice of the squared loss for measuring the point-wise cost of an error is only

one possibility out of many, and although the new results presented here focus on the squared loss,
the claims extend far beyond that case (see the discussion in Section 7).

One way of using the given data (Xi, Yi)
N
i=1 is by selecting a random element in F , denoted by

f̂ , that minimizes the empirical loss

PNℓf =
1

N

N∑
i=1

ℓ(f(Xi)− Yi)
2.

c⃝ 2014 S. Mendelson.
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With this choice, f̂ is called the empirical minimizer, and the procedure that selects f̂ is Empirical
Risk Minimization (ERM).

There are various ways in which one may measure the success of ERM and the effectiveness of
the choice of f̂ , and here, we will focus on the following one: that with high probability over the
random samples (Xi, Yi)

N
i=1, ERM produces a function that is close in L2 to the best approximation

of the target Y in F ; that is, an upper estimate on ∥f̂ − f∗∥2L2
= E

(
(f̂ − f∗)2(X)|(Xi, Yi)

N
i=1

)
for the empirical minimizer f̂ selected according to the data (Xi, Yi)

N
i=1, that holds with sufficiently

high probability.
The other typical notion is measured by an oracle inequality. Although the method presented

here may be used to establish an oracle inequality, we will not present it here. Rather, we refer the
reader to Mendelson (b), in which this question, and others – related to different loss functionals are
explored.

The starting point of this note is a well known result that deals with this very question: control-
ling the distance between the random function produced by ERM and f∗. Theorem 1.1 formulated
below is from Bartlett et al. (2005) (see Corollary 5.3 there and also Theorem 5.1 in the survey
Koltchinskii (2011)).

Let Df∗ be the L2(µ) ball of radius 1, centred in f∗. Thus, {f ∈ F : ∥f − f∗∥L2 ≤ r} =
F ∩ rDf∗ . For any r > 0, let

kN (r) = E sup
f∈F∩2rDf∗

∣∣∣∣∣ 1√
N

N∑
i=1

εi(f − f∗)(Xi)

∣∣∣∣∣ , (1.1)

where (εi)
N
i=1 are independent, symmetric, {−1, 1}-valued random variables that are independent

of (Xi)
N
i=1.

Set
k∗N (γ) = inf

{
r > 0 : kN (r) ≤ γr2

√
N
}
.

Theorem 1.1 There exist absolute constants c0, c1 and c2 for which the following holds. If F is
a convex class of functions that are bounded by 1 and the target Y is also bounded by 1, then for
every t > 0, with probability at least 1− c0 exp(−t),

∥f̂ − f∗∥2L2
≤ c1max

{
(k∗N (c2))

2 ,
t

N

}
. (1.2)

The proof of Theorem 1.1 relies heavily on the fact that F consists of functions that are bounded
by 1 and that the target is also bounded by 1. Both are restrictive assumptions that exclude many
natural prediction problems that one would like to consider.

1. Gaussian noise and heavy-tailed noise: arguably the most basic statistical problem is when
Y = f0(X) +W for some f0 ∈ F and W that is a centred gaussian variable with variance σ
that is independent of X . Thus, the given data consists of ‘noisy’ measurements of f0 relative
to a gaussian noise.

Since a gaussian random variable is unbounded, Theorem 1.1 cannot be used to address a
prediction problem that involves gaussian noise, regardless of the choice of F . For the same
reason, any kind of a prediction problem that involves a heavy-tailed target Y cannot be
treated using Theorem 1.1.
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2. Gaussian regression: Let F be a class of linear functionals indexed by T ⊂ Rn – that is,
F =

{⟨
t, ·
⟩
: t ∈ T

}
for some T ⊂ Rn. If the underlying measure µ is the standard gaussian

measure on Rn, then for every t ∈ T , ft(X) =
⟨
t,X

⟩
is unbounded. Thus, regardless of the

target, it is impossible to apply Theorem 1.1 to a prediction problem that involves the class
F .

3. General regression: A class of linear functionals on Rn is not bounded unless the underlying
measure µ has a compact support. What is rather striking is that even in problems in which µ
has a compact support and which seemingly belong to the bounded framework, Theorem 1.1
is far from optimal.

For example, let Bn
1 = {x ∈ Rn :

∑n
i=1 |xi| ≤ 1}, set TR = RBn

1 for some R > 0 and put
F = {

⟨
t, ·
⟩
: t ∈ TR}. Assume that µ is supported in κBn

∞ = {x ∈ Rn : maxi |xi| ≤ κ},
and that it is isotropic; that is, for every t ∈ Rn, E

⟨
X, t

⟩2
= ∥t∥2ℓn2 , where ∥t∥2ℓn2 =

∑n
i=1 t

2
i .

An example of such a random vector is X = (xi)
n
i=1 whose coordinate are independent,

mean-zero, variance one random variables that are bounded by κ.

Assume further that Y =
⟨
t0, ·
⟩
+W for some t0 ∈ TR and that W is independent of X and

is also bounded by κ.

Despite the fact that the prediction problem associated with the target Y and the class F =
{
⟨
t, ·
⟩
: t ∈ TR} belongs to the bounded framework, we will indicate later that the estimate

resulting from Theorem 1.1 on the Euclidean distance ∥t̂ − t0∥ℓn2 is far from optimal, and
scales incorrectly both with R and with the variance of W .

Moreover, one may show that this poor outcome is endemic, and Theorem 1.1 leads to subop-
timal estimates in many generic learning problems, for example, in compressed sensing and
LASSO.

The reason why Theorem 1.1 is restrictive is that its proof is based on concentration and con-
traction arguments. This forces one to deal with only classes of uniformly bounded functions and
bounded targets, and the resulting error rate does not scale well with the ‘noise level’ – the distance
between Y and f∗.

Here, we will address all these issues, and in particular show that there is no need for the coarse
concentration or contraction methods that were used in the proof of Theorem 1.1 to obtain a bound
on ∥f̂ − f∗∥L2 . The resulting bound holds in full generality – for almost every choice of convex
class F , measure µ and a target Y , and it scales correctly with the ‘noise level’. Moreover, in the
bounded framework, Theorem 2.2, formulated below, always improves the estimate from Theorem
1.1.

Finally, a word about the title of this note. The meaning of “Learning without concentration”
is not that concentration methods are not used in the proof. Rather, it is there to highlight that
prediction is possible even in situations where concentration is simply false – for example, when
trying to obtain prediction bounds for classes of functions with ‘heavy tails’, e.g. that have a well
behaved fourth moment, but are not in Lp for p > 4. An empirical mean of such a function
concentrates poorly around its true mean, rendering standard methods of analysis useless. Despite
that, learning is still possible: the key point is that concentration fails because of the ‘upper tail’ in
the deviation estimate, while the lower one is true almost ‘for free’. The new argument shows that
this lower tail suffices when trying to prove prediction bounds.
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2. The main result

To formulate the main result, one has to introduce the following complexity parameters.

Definition 2.1 Let ξ = f∗(X)− Y , and given (Xi, Yi)
N
i=1 set ξi = f∗(Xi)− Yi. Let

ϕN (s) = sup
f∈F∩sDf∗

∣∣∣∣∣ 1√
N

N∑
i=1

εiξi(f − f∗)(Xi)

∣∣∣∣∣ , (2.1)

where (εi)
N
i=1 are, as always, independent, symmetric {−1, 1}-valued random variables, that are

also independent of (Xi, Yi)
N
i=1. Set

α∗
N (κ, δ) = inf

{
s > 0 : Pr

(
ϕN (s) ≤ κs2

√
N
)
≥ 1− δ

}
and let

β∗N (κ) = inf

{
r > 0 : E sup

f∈F∩rDf∗

∣∣∣∣∣ 1√
N

N∑
i=1

εi(f − f∗)(Xi)

∣∣∣∣∣ ≤ κ
√
Nr

}
.

The role of the two parameters will be explained in Section 3.
The key assumption on the class is the following:

Assumption 2.1 Let H be a class of functions and set QH(u) = infh∈H Pr(|h| ≥ u∥h∥L2).
Given a class of functions F , let F − F = {f − h : f, h ∈ F}. We will assume that there is

some u > 0 for which QF−F (u) > 0.

The reason for the name ‘weak small-ball’ is that in the context of random vectors, a small-ball
estimate refers to a lower bound on the measure of a ball (with respect to some norm) of radius ε.
In the same context, all that is assumed here is a lower bound on the measure of each individual
marginal.

In Section 6 we will present several generic examples showing that the weak ‘small-ball’ con-
dition of Assumption 2.1 is indeed minimal, and in natural situations one may choose u and Q to be
appropriate absolute constants. Also, Assumption 2.1 does not restrict the choice of possible targets,
nor does it restrict the joint distribution of the target Y and X . It only implies that if f − h ̸= 0,
then (f − h)/∥f − h∥L2 cannot have ‘too-much’ weight arbitrarily close to zero.
Example. To give some sense of the meaning of Assumption 2.1, consider a measure µ on Rn, and
as normalization, assume that µ is isotropic (that is, if X is distributed according to µ then for every
t ∈ Rn, E

⟨
X, t

⟩2
= ∥t∥2ℓn2 ). As Assumption 2.1 is positive homogeneous, it suffices to consider

t ∈ Sn−1, the unit Euclidean sphere in Rn. Set Ht,u =
{
x ∈ Rn : |

⟨
t, x
⟩
| ≤ u

}
, and note that

Ht,u = t⊥ + ρt for t⊥ = {x ∈ Rn :
⟨
t, x
⟩
= 0} and −u ≤ ρ ≤ u; thus, Ht,u is the ‘slab’ that is

orthogonal to t and of ‘width’ u.
One may verify that if µ is absolutely continuous, then V (t, u) = µ(Ht,u) is continuous in t and

u. A compactness argument shows that there is some u > 0 for which supt∈Sn−1 µ(Ht,u) ≤ 1/2.
Hence,

inf
t∈Rn

µ
{
|
⟨
t, ·
⟩
| > u∥t∥ℓn2

}
≥ 1/2, (2.2)
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and the existence of a level u for which QF−F (u) ≥ 1/2 for any class consisting of linear function-
als on Rn follows from the absolute continuity of µ.

Naturally, there is no hope of obtaining a quantitative estimate on u from (2.2) with such a ‘soft’
assumption as absolute continuity. In what follows we will provide sufficient conditions ensuring
that QF−F (u) and u are well behaved.

2.1. The main result

Finally, let us formulate the result, with the notation used above.

Theorem 2.2 Let F ⊂ L2 be a closed, convex class of functions and set Y ∈ L2 to be the unknown
target.

Fix τ > 0 for which QF−F (2τ) > 0 and set κ < τ2QF−F (2τ)/16. For every δ > 0, with
probability at least 1− δ − exp(−NQ2

F−F (2τ)/2),

∥f̂ − f∗∥L2 ≤ 2max

{
α∗
N (κ, δ/4) , β∗N

(
τQF−F (2τ)

16

)}
.

Highlights of the proof of Theorem 2.2 will be presented in Section 5.
While Theorem 2.2 is similar to Theorem 1.1 in the sense that it leads to a bound on ∥f̂ −

f∗∥L2 using a complexity parameter of the class F , unlike Theorem 1.1, it holds with essentially
no restrictions on the class or on the target. In particular, Theorem 2.2 is valid for an arbitrary target
Y ∈ L2 and for almost any class F that one may consider, and in particular, it may be applied
in all the examples described in the introduction that fall outside the scope of Theorem 1.1, once
Assumption 2.1 is satisfied.

To illustrate the clear advantages Theorem 2.2 has over Theorem 1.1, we will formulate one con-
crete example in which the complexity parameters involved can be easily computed: the Persistence
Problem (see e.g., Bartlett et al. (2012) and references therein).

In the persistence framework, one studies a family of linear regression problems in the set
T = RBn

1 (the ℓn1 ball of radius R, centred at 0). The point is to identify the correct way in
which the error scales with the radius R and the dimension n.

If the dimension n and the radius R are allowed to grow with the sample size N , one has to find
conditions on n(N) and R(N) that still ensure that ∥f̂ − f∗∥L2 tends to zero with high probability.

Formally, for every R ≥ 1 let FR = {
⟨
t, ·
⟩
: ∥t∥ℓn1 ≤ R}. For the sake of simplicity, assume

further that X = (ζi)
n
i=1 has iid, mean-zero variance 1 coordinates, that the unknown target is Y =⟨

t0, ·
⟩
+W for some t0 ∈ RBn

1 and a mean-zero, variance σ random variableW that is independent
of X and which represents the noise. We will identify FR with RBn

1 = {t ∈ Rn : ∥t∥ℓn1 ≤ R} in
the natural way.

Question 2.3 If t̂ ∈ RBn
1 is selected by ERM using an N -sample (Xi, Yi)

N
i=1, find a function

ρ(N,n,R, σ, δ) for which ∥t̂− t0∥ℓn2 ≤ ρ with probability at least 1− δ.

The following two statements summarize the outcomes of Theorem 1.1 and Theorem 2.2 in this
case.

First, let us present the estimate resulting from Theorem 1.1.
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Theorem 2.4 For every κ > 1 there exist constants c1, c2 and c3 that depend only on κ for which
the following holds. Assume that ∥ζ∥L∞ , ∥W∥L∞ ≤ κ. Set

ρN =


R2
√
N

√
log
(
2c1n√

N

)
if N ≤ c1n

2

R2n
N if N > c1n

2.

With probability at least 1−2 exp(−c2NρN/R2), ERM produces t̂ that satisfies ∥t̂−t0∥2ℓn2 ≤ c3ρN .

The ‘killer’ term is R2/
√
N when n &

√
N , which is a direct consequence of the contraction

argument used in the proof of Theorem 2.2. Not only does it display the wrong behaviour when R
is large, but also when the noise is low.

In contrast, the next result follows from Theorem 2.2. To formulate it, set

∥W∥L2,1 =

∫ ∞

0

√
Pr(|W | > t)dt.

This norm falls between the L2 norm and any Lq norm for q > 2. The proof of Theorem 2.5 shows
that ∥W∥L2,1 , which is slightly larger than the L2 norm, captures the noise level of the problem.
Since in virtually all examples the L2 and L2,1 norms are equivalent, we will abuse notation and
denote σ = ∥W∥L2,1 rather than σ = ∥W∥L2 .

Theorem 2.5 For every κ > 1 there exist constants c1, c2, c3 and c4 that depend only on κ for
which the following holds. Assume that ∥ζ∥L∞ , ∥W∥L∞ ≤ κ and that ∥W∥2,1 = σ <∞. Put

v1 =


R2

N log
(
2c1n
N

)
if N ≤ c1n,

0 if N > c2n.

and

v2 ≥


Rσ√
N

√
log
(
2c2nσ√
NR

)
if N ≤ c2n

2σ2/R2

σ2n
N if N > c2n

2σ2/R2.

Then with probability at least 1− 2 exp
(
−c3Nv2min

{
1
σ2 ,

1
R

})
, ∥t̂− t0∥2ℓn2 ≤ c4max {v1, v2}.

Observe that Theorem 2.5 yields a much better dependence of the error ∥t̂−t0∥2ℓn2 on the parameters
involved than Theorem 2.4. Moreover, the results of Lecué and Mendelson (a) show that Theorem
2.5 is optimal in the minimax sense, when W is a gaussian variable.

If one is willing to settle for a weaker probability estimate, something that cannot be helped
when dealing with heavy-tailed ensembles, Theorem 2.2 can be used to tackle a more general sce-
nario. For example, the assumption that ∥W∥L∞ ≤ κ is only used to obtain a high probability
estimate and can be removed. In fact, Theorem 2.5 can be improved even further: it holds for a
general target Y rather than just for Y =

⟨
t0, ·
⟩
+W , the assumption that X has iid coordinates

can be relaxed, and even ‘heavy-tailed’ measures µ may be used.
Unfortunately, the proof of a more general version of Theorem 2.5 comes at a high technical

cost, and since it is not our main focus, we will not explore this direction further.
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Remark 2.6 It is well known that accurate bound for T = RBn
1 is also the essence of the estimates

on compressed sensing and LASSO problems Chafaı̈ et al. (2012); Lecué and Mendelson (b,c), an
appropriate version of Theorem 2.5, which studies ERM in a heavy-tailed persistence framework,
may be used to obtain optimal estimates for heavy-tailed compressed sensing and LASSO.

3. Two parameters for two regimes

When one considers the performance of a learning procedure, it is reasonable to expect two different
‘performance regimes’, according to the difficulties the learner faces. As will be explained below,
there are clear differences between ‘low noise’ problems and ‘high noise’ ones, and each one of the
two regimes is naturally associated with one of the two complexity parameters defined above.

3.1. Controlling the version space - quadratic estimates using β∗N
Observe that β∗N measures when the Rademacher averages of the ‘localized’ set {f − f∗ : f ∈
F ∩ rDf∗} scale like r rather than like the normalization r2 that is used in the definition of k∗N and
in Theorem 1.1. Thus, when β∗N is nontrivial, in the sense that β∗N < 1, it is much smaller than k∗N .

Off-hand, the meaning and significance of β∗N is not obvious. It is, perhaps, surprising that it
captures properties of the ‘version space’ of the problem.

Recall that the version space is a random subset of F that consists of all the functions in the class
that agree with f∗ on the sample (Xi)

N
i=1. When the problem is noise-free (Y = f∗(X)), a learning

procedure is likely to make significant mistakes only when there are functions in F that, despite
being ‘far-away’ from f∗, still satisfy that f(Xi) = f∗(Xi) for every 1 ≤ i ≤ N . For example, in
empirical minimization bad mistakes occur in a noise-free problem only when the version space is
large.

It seems plausible that when the noise level is low rather than zero, the situation does not change
significantly and mistakes are essentially due to a large version space.

Thus, when trying to bound the error of ERM, the first order of business is to identify a parameter
that captures the ‘size’ of the version space, and β∗N gives that and much more.

One may show that with high probability, if ∥f − f∗∥L2 ≥ β∗N , then

1

N

N∑
i=1

(f − f∗)2(Xi) ≥ c∥f − f∗∥2L2

for an appropriate constant c, and with (almost) no assumption on F (see Theorem 5.2 for the exact
formulation).

One immediate outcome of this fact is that the version space cannot include functions for which
∥f∗ − f∥L2 ≥ β∗N , and that sampling is ‘stable’ for functions that are not too close to f∗.

3.2. Controlling the interaction with the noise via α∗
N

The second regime is encountered once the noise level increases, and mistakes happen for a totally
different reason: the ‘interaction’ of the target Y with class members, a phenomenon which is
governed by α∗

N .
Although α∗

N and k∗N seem similar and share the same scaling, of ∼
√
Ns2, the two differ on

one key issue: while the correlation in the definition on α∗
N is relative to the actual noise faced by
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the learner, represented by the random vector (εiξi)Ni=1, the random process used in the definition
of k∗N ,

sup
f∈F∩sDf∗

| 1√
N

N∑
i=1

εi(f − f∗)(Xi)|,

measures the correlation of the same random set with a random vector (εi)
N
i=1 that represents

‘generic’ noise and has nothing to do with the specific noise that one has to deal with. The ran-
dom noise (εiξi)

N
i=1 captures the ‘true impact’ of the noise ξ on the problem, a property that is

totally missed when measuring the correlation of the random set with (εi)
N
i=1.

Note that if F and Y are bounded by 1, then ξ is bounded by 2. A standard contraction argument
(see, e.g. Ledoux and Talagrand (1991)) shows that with probability at least 1/2,

sup
f∈F∩sDf∗

∣∣∣∣∣
N∑
i=1

εiξi(f − f∗)(Xi)

∣∣∣∣∣ ≤ 4E sup
f∈F∩sDf∗

∣∣∣∣∣
N∑
i=1

εi(f − f∗)(Xi)

∣∣∣∣∣ (3.1)

and α∗
N is trivially smaller than k∗N in the bounded case.

Therefore, while k∗N is insensitive to the noise-level, because the contraction argument used in
(3.1) destroys any dependence on ξ, α∗

N is highly affected by it and may become very small when ξ
is close to 0, as should be expected from a parameter that captures the interaction of class members
with the noise.

Remark. Although it seems that the complexity parameters α∗
N and β∗N (and k∗N as well) depend

on the unknown function f∗, in virtually all applications one may replace the indexing set with
(F − F) ∩ rD, where D is the unit ball in L2(µ). Moreover, if F is centrally symmetric (i.e. if
f ∈ F then −f ∈ F) in addition to being convex, then F −F ⊂ 2F and the indexing set becomes
2F ∩ rD.

4. The method of analysis

Next, let us explain why the heuristic description of the roles of the parameters α∗
N and β∗N from the

previous section is reasonable, and why splitting the prediction problem to two components, each
captured by one of the two parameters, is the first step in bypassing the concentration-contraction
mechanism used in proof of Theorem 1.1.

The excess loss functional Lf is defined by Lf (X,Y ) = ℓf (X,Y ) − ℓf∗(X,Y ) = (f(X) −
Y )2 − (f∗(X)− Y )2, and satisfies

Lf (X,Y ) =(f − f∗)2(X) + 2(f − f∗)(X)(f∗(X)− Y )

=(f − f∗)2(X) + 2ξ(f − f∗)(X), (4.1)

where f∗ is the unique minimizer of E(f(X)− Y )2 in F and ξ = f∗(X)− Y .
Let LF = {Lf : f ∈ F} be the excess loss class and note that it has two important properties.

First, because LF is a shift of the loss class {(f(X) − Y )2 : f ∈ F} by the fixed function ℓf∗ ,
an empirical minimizer of the loss is an empirical minimizer of the excess loss. Moreover, since
0 ∈ LF , the empirical minimizer f̂ satisfies that PNLf̂ ≤ 0. Therefore, if (Xi, Yi)

N
i=1 is a sample

for which
{f ∈ F : ∥f − f∗∥L2 ≥ ρ} ⊂ {f ∈ F : PNLf > 0},
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then ∥f̂ − f∗∥L2 < ρ – simply because an empirical minimizer cannot belong to the set {f ∈ F :
∥f − f∗∥L2 ≥ ρ}.

To identify the random set {f ∈ F : PNLf > 0}, observe that by (4.1),

PNLf =
1

N

N∑
i=1

(f − f∗)2(Xi) +
2

N

N∑
i=1

ξi(f − f∗)(Xi),

and one may bound PNLf from below by showing that with high probability, and in rather general
situations,

1. the ‘version space condition’ holds: that is, for every f ∈ F that satisfies ∥f−f∗∥L2 ≥ β∗N (κ1),
one has 1

N

∑N
i=1(f − f∗)2(Xi) ≥ c1κ1∥f − f∗∥2L2

.

2. the ‘noise interaction’ condition holds: that is, for every f ∈ F that satisfies ∥f − f∗∥L2 ≥
α∗
N (κ2, δ), one has

∣∣∣ 1N ∑N
i=1 ξi(f − f∗)(Xi)

∣∣∣ ≤ c2κ2∥f − f∗∥2L2
.

Therefore, if both (1) and (2) hold, and if κ2 is chosen to be smaller than c1κ1/2c2, then with
probability at least 1 − c3δ, PNLf > 0 when ∥f − f∗∥L2 ≥ max{α∗

N (κ2, δ), β
∗
N (κ1)}; on that

event,
∥f̂ − f∗∥L2 ≤ max{α∗

N (κ2, δ), β
∗
N (κ1)}.

Let us emphasize that one may obtain a very good lower bound on the quadratic component of
PNLf (and thus on the version space condition), solely because the required estimate is one sided.
A two-sided bound, which is an upper estimate on

sup
f∈F∩sDf∗

| 1
N

N∑
i=1

(f − f∗)2(Xi)− E(f − f∗)2|,

requires F to have considerably more structure than what is needed for the lower estimate (see
Mendelson et al. (2007); Mendelson (2010); Mendelson and Paouris (2012, 2014) for two-sided
estimates on the quadratic process). The fact that 1

N

∑N
i=1(f − f∗)2(Xi) & E(f − f∗)2 when

∥f − f∗∥L2 is large enough is (almost) universally true, and the quadratic term may be bounded
from below (almost) for free, while the ‘upper tail’ results are simply not true in general.

5. Highlights of the Proof of Theorem 2.2

We begin this section with a few definitions needed for the proof of Theorem 2.2.

Definition 5.1 A class H is star-shaped around 0 if for every h ∈ H and any 0 < λ ≤ 1, λh ∈ H.
For every κ > 0, set βN (H, κ) = inf

{
r > 0 : E suph∈H∩rD

∣∣∣ 1N ∑N
i=1 εih(Xi)

∣∣∣ ≤ κr
}
.

We will sometimes write βN (κ) instead of βN (H, κ).

Observe that β∗N (κ) = βN (F − f∗, κ). Also, it is straightforward to verify that if H is star-

shaped around 0 and r > βN (κ) then E suph∈H∩rD

∣∣∣ 1N ∑N
i=1 εih(Xi)

∣∣∣ ≤ κr (see, for example, the
discussion in Lecué and Mendelson (a)).

The main component in the proof of Theorem 2.2 is the following:

9
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Theorem 5.2 Let F ⊂ L2 be a closed, convex class and assume that there is some τ > 0 for which
QF−F (2τ) > 0. For every f∗ ∈ F , set H = F−f∗. Then, for every r > βN (H, τQ(2τ)/16), with
probability at least 1− 2 exp(−NQ2

H(2τ)/2), for every f ∈ F that satisfies that ∥f − f∗∥L2 ≥ r,
one has

|{i : |(f − f∗)(Xi)| ≥ τ∥f − f∗∥L2}| ≥ N
QF−F (2τ)

4
. (5.1)

In other words, Theorem 5.2 implies that on a proportional subset of coordinates, |(f − f∗)(Xi)| ≥
τ∥f − f∗∥L2 , provided that ∥f − f∗∥L2 > βN .

The complete proof of Theorem 5.2 is presented in the Mendelson (a). It is based on the fol-
lowing uniform empirical small-ball estimate – which is of a similar nature to the results from
Koltchinskii and Mendelson and Mendelson (c).

Theorem 5.3 Let S(L2) be the L2 unit sphere and set H ⊂ S(L2). Assume that there is some
τ > 0 for which QH(2τ) > 0. If

E sup
h∈H

∣∣∣∣∣ 1N
N∑
i=1

εih(Xi)

∣∣∣∣∣ ≤ τQH(2τ)

16
,

then with probability at least 1− 2 exp(−NQ2
H(2τ)/2),

inf
h∈H

|{i : |h(Xi)| ≥ τ}| ≥ N
QH(2τ)

4
.

Proof. Recall that PNf = 1
N

∑N
i=1 f(Xi) and Pf = Ef(X). Note that for every h ∈ H and

u > 0, |{i : |h(Xi)| ≥ u}| = NPN1{|h|≥u}. Also,

PN1{|h|≥u} = P1{|h|≥2u} +
(
PN1{|h|≥u} − P1{|h|≥2u}

)
= (∗).

Let ϕu : R+ → [0, 1] be the function

ϕu(t) =


1 t ≥ 2u,

(t/u)− 1 u ≤ t ≤ 2u,

0 t < u,

and observe that for every t ∈ R, 1[u,∞)(t) ≥ ϕu(t) and ϕu(t) ≥ 1[2u,∞)(t). Hence,

(∗) ≥ P1{|h|≥2u} + PNϕu(|h|)− Pϕu(|h|)
≥ inf

h∈H
Pr(|h| ≥ 2u)− sup

h∈H
|PNϕu(|h|)− Pϕu(|h|)| .

Let Z(X1, ..., XN ) = suph∈H |PNϕu(|h|)− Pϕu(|h|)|. By the bounded differences inequality
applied to Z (see, for example, Boucheron et al. (2013)), it follows that for every t > 0, with
probability at least 1− 2 exp(−2t2),

sup
h∈H

|PNϕu(|h|)− Pϕu(|h|)| ≤ E sup
h∈H

|PNϕu(|h|)− Pϕu(|h|)|+
t√
N
.

10
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Note that ϕu is a Lipschitz function that vanishes in 0 and with a Lipschitz constant 1/u. Therefore,
by the Giné-Zinn symmetrization theorem Giné and Zinn (1984) and the contraction inequality for
Bernoulli processes (see, e.g. Ledoux and Talagrand (1991)),

E sup
h∈H

|PNϕu(|h|)− Pϕu(|h|)| ≤
4

u
E sup

h∈H

∣∣∣∣∣ 1N
N∑
i=1

εih(Xi)

∣∣∣∣∣ .
Hence, with probability at least 1− 2 exp(−2t2), for every h ∈ H,

PN1{|h|≥u} ≥ inf
h∈H

Pr(|h| ≥ 2u)− 4

u
E sup

h∈H

∣∣∣∣∣ 1N
N∑
i=1

εih(Xi)

∣∣∣∣∣− t√
N
.

If QH(2τ) > 0, set u = τ and t =
√
NQH(2τ)/2. Recall that

E sup
h∈H

∣∣∣∣∣ 1N
N∑
i=1

εih(Xi)

∣∣∣∣∣ ≤ τQH(2τ)

16
,

and thus, with probability at least 1− 2 exp(−NQ2
H(2τ)/2), |{i : |h(Xi)| ≥ τ}| ≥ N QH(2τ)

4 .

6. Some Examples

It turns out that the weak small-ball assumption needed in Theorem 2.2 holds even in the extreme
end of the ‘boundedness spectrum’: classes in which one has almost no moment control. In partic-
ular, this leads to prediction bounds in cases that are completely out of reach for the concentration-
contraction based ‘bounded theory’.

Lemma 6.1 Let F be a class of functions on a probability space (Ω, µ).

1. If ∥f1 − f2∥L2 ≤ κ1∥f1 − f2∥L1 for every f1, f2 ∈ F , then there are constants c1 and c2 that
depend only on κ1 for which Q(c1) ≥ c2.

2. If there are p > 2 and κ2 for which ∥f1 − f2∥Lp ≤ κ2∥f1 − f2∥L2 for every f1, f2 ∈ F , then
there are constants c1 and c2 that depend only on κ2 and p for which Q(c1) ≥ c2.

Lemma 6.1 is an immediate outcome of the Paley-Zygmund inequality (see, e.g. de la Peña and Giné
(1999)) and its proof is omitted.

Let ζ be a mean-zero, variance 1 random variable and set X = (ζ1, ..., ζn) to be a vector with
independent coordinates, distributed according to ζ. Clearly, such a random vector is isotropic,
since E

⟨
X, t

⟩2
= ∥t∥2ℓn2 for every t ∈ Rn.

Lemma 6.2 Let ζ and X be as above.

1. Assume that there is some κ1 > 0 for which ∥ζ∥L2 ≤ κ1∥ζ∥L1 . Then ∥
⟨
t,X

⟩
∥L2 ≤

c1∥
⟨
t,X

⟩
∥L1 for every t ∈ Rn, and for a constant c1 that depends only on κ1.

2. If ∥ζ∥Lp ≤ κ2 for some p > 2 then ∥
⟨
t,X

⟩
∥Lp ≤ c2∥

⟨
t,X

⟩
∥L2 for every t ∈ Rn and for a

constant c2 that depends only on κ2 and p.

11
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The proof of Lemma 6.2 as well as examples of a similar flavour may be found in Mendelson (a).
Using Lemma 6.2, one may obtain a prediction bound in the following generic regression prob-

lem. Let X = (ζi)
n
i=1 be a random vector as above, set T ⊂ Rn to be a closed, convex set and

put F =
{⟨
t, ·
⟩
: t ∈ T

}
. Consider a square-integrable target Y and let f∗ =

⟨
t∗, ·
⟩

be the unique
minimizer in F of f → E(f(X) − Y )2. Note that if X is isotropic then for every ft =

⟨
t, ·
⟩
,

∥ft − f∗∥L2 = ∥t− t∗∥ℓn2 .

Corollary 6.3 If either one of the moment conditions of Lemma 6.2 holds, then with probability at
least 1− δ − exp(−c1N), ERM produced t̂ ∈ T for which

∥t̂− t∗∥ℓn2 ≤ 2max{α∗
N (c2, δ/4), β

∗
N (c3)}

for appropriate constants c1, c2 and c3 that depend only on κ1 or on κ2 and p.

Needless to say that the situation in Corollary 6.3 falls outside the scope of Theorem 1.1.

7. Concluding Remarks

The fact that one parameter (β∗N ) depends on the average over samples and the other (α∗
N ) does

not is just an artifact of our presentation. It is possible to replace β∗N with a parameter that is not
averaged using a slightly different argument (see Mendelson (b)). Obviously, one may replace α∗

N

with an averaged version, but when doing that, the resulting high probability estimate will depend on
concentration – something one would rather avoid when tackling a heavy-tailed learning scenario.

Another observation is that although the results presented here are formulated for the squared
loss, with some effort they can be extended well beyond that case.

To explain why the choice of the squared loss is not essential for the method presented above,
consider a smooth, increasing and even function ℓ that satisfies ℓ(0) = 0. The point-wise cost of
predicting f(X) instead of Y is ℓ(f(X) − Y ) ≡ ℓf (X,Y ). As above, set f∗ to be a minimizer of
the functional Eℓ(f(X)− Y ) in F .

Assumption 7.1 Assume that f∗ is unique, and setting ξ = f∗(X) − Y , assume that Eℓ′(ξ)(f −
f∗)(X) ≥ 0.

Assumption 7.1 is not really restrictive. It is straightforward to verify that it holds, for example,
when ℓ is convex and F is closed and convex, or when Y = f0(X) +W for an arbitrary class F ,
f0 ∈ F and an independent noise W .

Recall that the excess loss functional is Lf = ℓf − ℓf∗ , and that it shares similar properties to
the ones mentioned for the squared excess loss: an empirical minimizer of the loss is an empirical
minimizer of the excess loss, and PNLf̂ ≤ 0.

Given the data (Xi, Yi)
N
i=1, and since Eℓ′(ξ)(f − f∗) ≥ 0, a straightforward application of

Taylor’s expansion around ξi = f∗(Xi)− Yi shows that for every f ∈ F

PNLf ≥

(
1

N

N∑
i=1

ℓ′(ξi)(f − f∗)(Xi)− Eℓ′(ξ)(f − f∗)

)
+

1

2N

N∑
i=1

ℓ′′(Zi)(f−f∗)2(Xi), (7.1)

for midpoints (Zi)
N
i=1 that belong to the intervals whose ends are ξi and ξi + (f − f∗)(Xi); thus,

the intervals depend only on f and on the sample (Xi, Yi)
N
i=1.

12
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Just as in the squared-loss case, if PNLf > 0 then f cannot be an empirical minimizer. There-
fore, using (7.1), one may obtain a lower bound on PNLf by identifying the levels ᾱN and β̄N , for
which, if ∥f −f∗∥L2 ≥ β̄N then 1

2N

∑N
i=1 ℓ

′′(Zi)(f −f∗)2(Xi) ≥ c∥f −f∗∥2L2
, for some constant

c, and if ∥f − f∗∥L2 ≥ ᾱN then
∣∣∣ 1N ∑N

i=1 εiℓ
′(ξi)(f − f∗)(Xi)

∣∣∣ ≤ c
4∥f − f∗∥2L2

. On that event,

∥f̂ − f∗∥L2 ≤ max{ᾱN , β̄N}.
To compare this situation with Theorem 2.2, observe that for the squared loss ℓ(t) = t2,

ℓ′′(Zi) = 2 regardless of Zi and ℓ′(ξi) = ξi. Hence, ᾱN and β̄N in the squared loss case lead
to the parameters α∗

N and β∗N . Also, if ℓ happens to be strictly convex, that is, if ℓ′′ ≥ κ > 0, the
mid-points Zi need not play a real role in the lower bound on the quadratic term. However, when ℓ
is only convex (or when it has areas in which it is concave), the role of the midpoints becomes more
significant.

Indeed, if ℓ is convex, one has to identify β̄N for which, if ∥f − f∗∥L2 ≥ β̄N , there is a subset
of {1, ..., N} of cardinality proportional to N (that depends on f and on the sample) on which both
|f − f∗|(Xi) & ∥f − f∗∥L2 and ℓ′′(Zi) ≥ κ1. This requires a more careful analysis than the proof
of Theorem 2.2 and will be presented in Mendelson (b). It is also the reason behind the formulation
of Theorem 5.2, which leads to information on a proportional subset of coordinates, rather than the
analogous lemma from Koltchinskii and Mendelson in which a lower bound on the empirical L2

norm of f − f∗ is obtained.
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