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Nonparametric Regression Based on
Hierarchical Interaction Models

Michael Kohler and Adam Krzyżak, Fellow, IEEE

Abstract— In this paper, we introduce the so-called hierarchical
interaction models, where we assume that the computation of
the value of a function m : R

d → R is done in several layers,
where in each layer a function of at most d∗ inputs computed
by the previous layer is evaluated. We investigate two different
regression estimates based on polynomial splines and on neural
networks, and show that if the regression function satisfies a
hierarchical interaction model and all occurring functions in the
model are smooth, the rate of convergence of these estimates
depends on d∗ (and not on d). Hence, in this case, the estimates
can achieve good rate of convergence even for large d , and
are in this sense able to circumvent the so-called curse of
dimensionality.

Index Terms— Curse of dimensionality, dimension reduc-
tion, interaction models, L2 error, nonparametric regression,
projection pursuit, rate of convergence.

I. INTRODUCTION

IN regression analysis a random vector (X, Y ) with values
in R

d × R satisfying EY 2 < ∞ is given and the goal is
to predict the value of response variable Y given the value
of observation vector X . If the main aim of the analysis is
minimization of the mean squared error or L2 risk, then a
function m∗ : R

d → R is sought satisfying

E{|Y − m∗(X)|2} = min
f :Rd→R

E{|Y − f (X)|2}.

Let m : R
d → R, m(x) = E{Y |X = x} be the regression

function. Since

E{|Y − f (X)|2} = E{|Y − m(X)|2}
+
∫

| f (x) − m(x)|2PX (dx)

(cf., e.g., Györfi et al. [9, Sec. 1.1]), the regression function is
the optimal predictor m∗ = m, and any function f : R

d → R
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is a good predictor in the sense that its L2 risk is close to the
optimal value if and only if the L2 error∫

| f (x) − m(x)|2PX (dx)

is small. In nonparametric regression a set of data

Dn = {(X1, Y1), . . . , (Xn, Yn)}
is given, where (X, Y ), (X1, Y1), (X2, Y2), …are independent
and identically distributed random variables, and the aim is to
construct a regression estimate mn(·) = mn(·,Dn) such that
its L2 error ∫

|mn(x) − m(x)|2PX (dx)

is small.
To appreciate the difference between parametric and

nonparametric regression estimation note that in parametric
estimation one assumes that the structure of the regression
function is known and depends only on finitely many parame-
ters, and one uses the data to estimate the (unknown) values of
these parameters. In nonparametric approach we do not assume
that the regression function can be described by finitely many
parameters and the whole function is estimated from the data.

For a systematic and rigorous coverage of nonparametric
regression estimation refer to Györfi et al. [9].

In order to derive nontrivial results on the rate of
convergence of the expected L2 error, it is neces-
sary to impose smoothness assumptions on m (cf., e.g.,
Györfi et al. [9, Th. 3.1]). It was shown in Stone [25] that
the optimal minimax rate of convergence for estimation of
(p, C)-smooth regression function (where roughly speaking,
see below for the exact definition, the regression function is
p-times continuously differentiable) is

n− 2p
2p+d

where the minimax rate of convergence is defined as follows:
The sequence of (eventually) positive numbers an is called

a lower minimax rate of convergence for the class D if

lim inf
n→∞ inf

mn
sup

(X,Y )∈D
E{‖mn − m‖2}

an
= C1 > 0.

The sequence is said to be an achievable rate of
convergence for the class D if

lim sup
n→∞

sup
(X,Y )∈D

E{‖mn − m‖2}
an

= C2 < ∞.
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The sequence is called an optimal minimax rate of convergence
if it is both a lower minimax and an achievable rate of
convergence.

If d is large compared to p, then this rate of convergence is
rather slow, which is a consequence of the fact, that high-
dimensional regression problems are especially difficult to
solve due to so–called curse of dimensionality. But unfortu-
nately, most applications are high-dimensional problems and
hence very hard to solve. The only way to circumvent this
curse of dimensionality is to impose additional assumptions
on the regression function in order to derive better rates of
convergence.

Stone [26] proposed to impose an additivity condition on
the structure of the regression function. He assumed that

m(x (1), . . . , x (d)) = m1(x (1)) + · · · + md(x (d))

(x = (x (1), . . . , x (d))T ∈ R
d)

for (p, C)-smooth univariate functions m1, . . . , md : R → R,
and he was able to show that in this case n−2p/(2p+1) is the
optimal minimax rate of convergence. A generalization of this
approach to so–called interaction models was presented in
Stone [27]. Here it was assumed that for some d∗ ∈ {1, . . . , d}
the regression function satisfies

m(x) =
∑

I⊆{1,...,d},|I |=d∗
mI (xI ),

where |I | denotes the cardinality of the set I , mI are (p, C)-
smooth functions defined on R

|I | and for x = (x (1), . . . , x (d))T

and I = {i1, . . . , id∗} with 1 ≤ i1 < · · · < id∗ ≤ d we set
xI = (x (i1), . . . , x (id∗ ))T . In other words, it is assumed that
the regression function is a sum of (p, C)-smooth functions
where each function in the sum depends on at most d∗ of the
components of x . Under this assumption it was shown that
n−2p/(2p+d∗) is the optimal minimax rate of convergence.

Other models which yield good rates of convergence even
for high dimensional data include single index models and
projection pursuit. In single index models it is assumed that

m(x) = g(aT x) (x ∈ R
d),

where g : R → R is an univariate function and a ∈ R
d

is a d-dimensional vector (cf., e.g., Härdle et al. [10],
Härdle and Stoker [12], Kong and Xia [19], and
Yu and Ruppert [29]). In projection pursuit the regression
function is allowed to be a sum of functions of the above
form, i.e.,

m(x) =
K∑

k=1

gk(a
T
k x) (x ∈ R

d),

where K ∈ N is a natural number, gk : R → R are
univariate functions and ak ∈ R

d are d-dimensional vectors
(cf., e.g., Friedman and Stuetzle [8]). If the univariate
functions above are (p, C)-smooth, then corresponding
regression estimates can achieve under these assumptions
the corresponding univariate rates of convergence
(cf., e.g., Györfi et al. [9, Ch. 22]).

Horowitz and Mammen [16] considered a general regression
model

m(x)=g

⎛
⎝ L1∑

l1=1

gl1

⎛
⎝ L2∑

l2=1

gl1,l2

⎛
⎝. . .

L p∑
l p=1

gl1,...,l p (xl1,...,l p )

⎞
⎠
⎞
⎠
⎞
⎠

where g, gl1, . . . , gl1,...,l p are assumed to be unknown
(p, C)-smooth univariate functions and xl1,...,l p are
one-dimensional elements of a covariate vector x , which
may be identical for two different indices (l1, . . . , l p). They
estimated the model by the penalized least squares and
obtained the rate n−2p/(2p+1). Their model is more restrictive
than our generalized hierarchical interaction model introduced
in Section 2. In addition they work with smoothing splines
whereas we estimate our model with multilayer neural
networks.

A mixture of parametric and nonparametric approach is
achieved in semiparametric models. Here it is assumed that
for a part of the components of x the influence on the
regression function is known and is described by a parametric
model (e.g., a linear model), and only the remaining part
is estimated nonparametrically (cf., e.g., Härdle et al. [11]).
Under this assumption the corresponding estimates are able to
achieve rates of convergence corresponding to d∗ dimensional
problems, where d∗ is the number of components of x for
which a parametric model is not given.

In any application these estimates achieve good rates of
convergence only if the imposed assumptions are satisfied. Our
research in this paper is motivated by applications in connec-
tion with complex technical systems, which are constructed in
a modular form (in particular a load bearing structure studied
currently by the Collaborative Research Centre 805 at the
Technische Universität Darmstadt, Germany). If such systems
are constructed in a modular form, then it is plausible to model
the outcome of the system as a function of the outputs of
the modular parts of it, where each modular part computes a
function depending only on a subset of the components of the
high-dimensional input. In the simplest case we formulate this
by assuming that our regression function satisfies

m(x) = g( f1(xI1), . . . , fd∗(xId∗ )) (x ∈ R
d ),

where d∗ ∈ {1, . . . d}, I1, . . . , Id∗ ⊆ {1, . . . , d} are sets of
cardinality d∗ and g, f1, . . . , fd∗ are (p, C)-smooth functions
defined on R

d∗
. The corresponding general case can be found

in Section 2. In the general case the above model is recursively
applied, which is reasonable especially if we consider a com-
plex technical system constructed in a modular form, where
each modular part may be again a complex system constructed
in a similar modular form. Under the above assumption we
show that suitably defined spline and neural network estimates
achieve (up to some logarithmic factor) the rate of convergence
n−2p/(2p+d∗).

A. Notation

Throughout the paper the following notation is used: The
sets of positive integers, nonnegative integers, integers, non-
negative real numbers and real numbers are denoted by N,
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N0, Z, R+ and R, resp. Let D ⊆ R
d and let f : R

d → R

be a real-valued function defined on R
d . We write

x = arg maxz∈D f (z) if maxz∈D f (z) exists and if x satisfies

x ∈ D and f (x) = max
z∈D

f (z).

The Euclidean and the supremum norms of x ∈ R
d are denoted

by ‖x‖ and ‖x‖∞, resp. For f : R
d → R

‖ f ‖∞ = sup
x∈Rd

| f (x)|

is its supremum norm, and the supremum norm of f on a set
A ⊆ R

d is denoted by

‖ f ‖∞,A = sup
x∈A

| f (x)|.

The support of an R
d–valued random variable X is abbrevi-

ated by

supp(X) =
{

x ∈ R
d : PX (Sr (x)) > 0 for all r > 0

}
,

where Sr (x) is the ball of radius r around x .
The outline of this paper is as follows: The assumption

on the structure of the regression function is described in
Section 2, in Section 3 we introduce estimates based on
polynomial splines and present a result concerning their rates
of convergence, Section 4 does the same for neural networks,
and Section 5 contains the proofs.

II. HIERARCHICAL INTERACTION MODELS

In this section we formalize the assumption that a function
value is computed in several layers where in each layer a
function of at most d∗ inputs is computed and where the inputs
are outputs of the previous layer (or components of the input
variable, in case that there is no previous layer). We do this
in the following recursive definition.

Definition 1: Let d ∈ N, d∗ ∈ {1, . . . , d}, l ∈ N0 and m :
R

d → R.
a) We say that m satisfies a hierarchical interaction model

of order d∗ and level 0, if there exist I ⊆ {1, . . . , d} with
|I | = d∗ and f : R

d∗ → R such that

m(x) = f (xI ) for all x ∈ R
d .

b) We say that m satisfies a hierarchical interaction model
of order d∗ and level l + 1, if there exist g : R

d∗ → R

and f1, . . . , fd∗ : R
d → R such that f1, . . . , fd∗ satisfy a

hierarchical interaction model of order d∗ and level l and
such that

m(x) = g ( f1(x), . . . , fd∗(x)) for all x ∈ R
d .

The class of functions satisfying a hierarchical interaction
model of order 1 neither includes all additive functions nor
all functions satisfying the assumption of projection pursuit.
But after a slight extension of the definition, which we present
next, all such functions are included.

Definition 2: Let d ∈ N, d∗ ∈ {1, . . . , d}, l ∈ N0 and m :
R

d → R.

a) We say that m satisfies a generalized hierarchical
interaction model of order d∗ and level 0, if there exist
a1, . . . , ad∗ ∈ R

d∗
and f : R

d∗ → R such that

m(x) = f (aT
1 x, . . . , aT

d∗ x) for all x ∈ R
d .

b) We say that m satisfies a generalized hierarchical inter-
action model of order d∗ and level l+1, if there exist K ∈ N,
gk : R

d∗ → R (k = 1, . . . , K ) and f1,k, . . . , fd∗,k : R
d → R

(k = 1, . . . , K ) such that f1,k, . . . , fd∗,k (k = 1, . . . , K )
satisfy a generalized hierarchical interaction model of order
d∗ and level l and such that

m(x) =
K∑

k=1

gk
(

f1,k(x), . . . , fd∗,k(x)
)

for all x ∈ R
d .

Obviously, each hierarchical interaction model is also a
generalized hierarchical interaction model of the same order
and the same level (because we can choose a′

ks as unit vectors
and K = 1). Furthermore, additive functions, all functions
satisfying the assumption of projection pursuit or of inter-
action model belong to the class of generalized hierarchical
interaction model of order d∗ and level 1, where d∗ = 1 in
case of additive functions or projection pursuit.

Our smoothness assumptions imposed on the functions
occurring in a hierarchical interaction model are formalized
in the next definition.

Definition 3: a) Let p = k + s for some k ∈ N0 and 0 <
s ≤ 1. A function m : R

d → R is called (p, C)-smooth, if for
every α = (α1, . . . , αd ) ∈ N

d
0 with

∑d
j=1 α j = k the partial

derivative ∂k m
∂x

α1
1 ...∂x

αd
d

exists and satisfies

∣∣∣∣ ∂km

∂xα1
1 . . . ∂xαd

d

(x) − ∂km

∂xα1
1 . . . ∂xαd

d

(z)

∣∣∣∣ ≤ C · ‖x − z‖s

for all x, z ∈ R
d .

b) We say that the (generalized) hierarchical interaction
model in Definition 1 (Definition 2) is (p, C)–smooth, if all
functions occurring in its definition are (p, C)–smooth accord-
ing to part a) of this definition.

Remark 1: a) If

m(x) = g ( f1(x), . . . , fd∗(x)) (x ∈ R
d)

for some (p, C)–smooth functions g : R
d∗ → R and

f1, . . . , fd∗ : R
d → R, then we get in case p ≤ 1

|m(x) − m(z)|
= |g ( f1(x), . . . , fd∗(x)) − g ( f1(z), . . . , fd∗(z))|
≤ C · √d · max

j=1,...,d∗ | f j (x) − f j (z)|p.

Using this and

‖xI − zI ‖ ≤ ‖x − z‖
for I ⊆ {1, . . . , d} and x, z ∈ R

d we see that for any p ≤ 1
any function which satisfies a hierarchical interaction model
of level l which is (p, C)–smooth according to Definition 3 b)
is (pl+1, C̄)-smooth according to Definition 3 a).

b) In the definition of (generalized) hierarchical interac-
tion model it is possible to choose some of the occurring

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on November 10,2023 at 20:38:47 UTC from IEEE Xplore.  Restrictions apply. 
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functions as projections on some component of their input,
which are always (p, C)–smooth functions. Consequently,
(p, C)–smooth functions depending on at most d∗ components
of its input variable belong to the class of functions satisfying
(p, C)–smooth (generalized) hierarchical interaction models
of order d∗ and any fixed level. Therefore we can conclude
from Stone [25] that the minimax rate of convergence of esti-
mation of (p, C)–smooth (generalized) hierarchical interaction
models of order d∗ is lower bounded by n−2p/(2p+d∗). In the
next two sections we show that suitably defined spline and
neural network estimates achieve this rate of convergence up
to some logarithmic factor. In order to simplify the notation
the result for splines is derived only for hierarchical interaction
models, however the result for neural networks considers also
generalized hierarchical interaction models.

III. ESTIMATES BASED ON POLYNOMIAL SPLINES

In the next two sections we study least squares estimates
defined by

mn(·) = arg min
h∈Hn

1

n

n∑
i=1

|Yi − h(Xi )|2, (1)

where Hn is a set of functions h : R
d → R. For simplicity we

assume here and in the sequel that the minimum above indeed
exists. When this is not the case our theoretical results also
hold for any estimate which minimizes the above empirical
L2 risk up to a small additional term (e.g., 1/n).

In this section we will define Hn by using tensor products
of polynomial splines, i.e., tensor products of piecewise poly-
nomials satisfying a global smoothness condition. Concerning
applications of tensor products of polynomial splines in non-
parametric regression we refer to Friedman [7], Kohler [17],
and Stone et al. [28] and the literature cited therein.

In the sequel we introduce spaces of tensor product B–
splines defined on R

d and then compose them according to
the definition of hierarchical interaction models. Our function
spaces will depend on parameters α > 0 (controlling the
supremum norm of the functions), β > 0 (controlling the
support of the functions), γ > 0 (controlling the Lipschitz
constant of the functions), M0 ∈ N (the degree of the
splines), K ∈ N (controlling the degrees of freedom) and
d (the dimension of R

d ).
We start by introducing univariate space of polynomial

spline functions and a corresponding B-spline basis consisting
of basis functions with compact support as follows: For K ∈ N

and M ∈ N0 set uk = k · β/K (k ∈ Z). For k ∈ Z let Bk,M :
R → R be the univariate B-spline of degree M with knot
sequence (ul)l∈Z and support supp(Bk,M) = [uk, uk+M+1].
In case M = 0 this means that Bk,0 is the indicator function
of the interval [uk, uk+1), and for M = 1 we have

Bk,1(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x − uk

uk+1 − uk
, uk ≤ x ≤ uk+1,

uk+2 − x

uk+2 − uk+1
, uk+1 < x ≤ uk+2,

0, else,

(so-called hat-function). The general definition of Bk,M can be
found, e.g., in de Boor [2], or in Györfi et al. [9, Sec. 14.1].

These B-splines are basis functions of sets of univariate
piecewise polynomials of degree M , where the piecewise poly-
nomials are globally (M−1)–times continuously differentiable
and where the M-th derivative of the functions have jump
points only at the knots ul (l ∈ Z).

For k = (k1, . . . , kd) ∈ Z
d we define the tensor product

B-spline Bk,M : R
d → R by

Bk,M (x (1), . . . , x (d))

= Bk1,M (x (1)) · · · Bkd ,M (x (d)) (x (1), . . . , x (d) ∈ R).

And we define SK ,M as the set of all linear combinations of all
those of the above tensor product B-splines, where the support
has nonempty intersection with (−β, β)d , i.e., we set

SK ,M =
⎧⎨
⎩

∑
k∈{−K−M,−K−M+1,...,K−1}d

ak · Bk,M : ak ∈ R

⎫⎬
⎭.

For our estimate we need to impose bounds on the supremum
norm and the Lipschitz constant of our functions. We do this
by restricting the coefficients in the spline space as follows:
Let ei be the i -th unit vector in R

d (i = 1, . . . , d). Then we
set

SK ,M,α,β,γ,d

=
{ ∑

k∈Zd

ak · Bk,M : |ak| ≤ α, |ak − ak−ei | ≤ β · γ√
d · K

(i = 1, . . . , d),

ak = 0 if supp(Bk,M) ∩ (−β, β)d = ∅
}
.

The definition of the B-splines implies that SK ,M,α,β,γ,d

is a subset of a linear vector space of dimension
(2 · K + M)d . Furthermore, by standard results
on B-splines and their derivatives (cf., e.g.,
Györfi et al. [9, Lemmas 14.4 and 14.6]) it can be shown
that the functions in SK ,M,α,β,γ,d are bounded in absolute
value by α and are for M > 0 Lipschitz continuous with
Lipschitz constant bounded by γ (since all partial derivatives
of order one are bounded in absolute value by γ /

√
d).

Now we assume that we have given a hierarchical inter-
action model of order d∗ and that we know all subsets I
occurring in its definition. We use them to define similarly
a composition of our spline spaces as follows:

For level 0 we define H(0) by choosing I ⊆ {1, . . . , d} with
|I | = d∗ and by setting

H(0) =
{

h : R
d → R : h(x) = f (xI ) (x ∈ R

d)

for some f ∈ SK ,M,α,β,γ,d∗
}
.

For level l + 1 we define H(l)
1 , …, H(l)

d∗ according to the func-
tions chosen in the definition of our hierarchical interaction
model of level l and set

H(l+1) =
{

h : R
d → R : h(x) = g( f1(x), . . . , fd∗(x))

(x ∈ R
d ) for some g ∈ SK ,M,α,β,γ,d∗,

f1 ∈ H(l)
1 , . . . , fd∗ ∈ H(l)

d∗

}
.
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If we choose this function space in our estimate (1), we get
the following result.

Theorem 1: Let (X, Y ), (X1, Y1), (X2, Y2), …be indepen-
dent and identically distributed random variables with values
in R

d × R such that

E exp
(

c1 · Y 2
)

< ∞
for some constant c1 > 0. Let m be the corresponding
regression function and assume that m satisfies a hierarchical
interaction model of order d∗ and level l ∈ N0, which is
(p, C)–smooth according to Definition 3 for some p ∈ N and
C > 0. Furthermore assume that supp(X) is bounded.

Let mn be the least squares estimate defined by (1),
where the function space is chosen as above using tensor
product spline functions and where the construction is done
accordingly to the hierarchical interaction model for m with
parameters

K = Kn =
⌈

n1/(2p+d∗)
⌉

, α = αn = log n, β =βn = log n

and γ = γn = log n

and degree M > p − 1. Then we have for n sufficiently large

E
∫

|mn(x) − m(x)|2PX (dx)

≤ c2 · logmax{3,2p}(n) · n−2p/(2p+d∗).

Remark 2: In the definition of the estimate in Theorem 1 we
have to choose parameters depending on the smoothness and
the structure of the assumed hierarchical interaction model,
which is not possible in an application since there the smooth-
ness of the regression function will be usually unknown.
But there are standard data-driven methods to choose the
parameters of a regression estimate, e.g., splitting of the
sample (cf., e.g., Györfi et al. [9, Ch. 7]). If we apply splitting
of the sample, then the result of Theorem 1 can be shown
also for an estimate whose definition does not depend on the
smoothness of the regression function.

IV. ESTIMATES BASED ON NEURAL NETWORKS

In this section we assume that the function space Hn in
the definition of our least squares estimate (1) consists of
multilayer feedforward neural networks. The starting point in
defining such neural networks is the choice of a so-called
activation function σ : R → [0, 1]. Usually one uses here
so-called squashing activation functions which are defined as
functions σ : R → [0, 1] which are nondecreasing and satisfy

lim
x→−∞ σ(x) = 0 and lim

x→∞ σ(x) = 1.

Examples of activation functions which are squashing func-
tions include the sigmoidal squasher

σ(x) = 1

1 + exp(−x)

or the Gaussian squasher

σ(x) = 1√
2 · π

∫ x

−∞
exp(−u2/2) du.

Multilayer feedforward neural networks with sigmoidal func-
tions can be defined recursively as follows: A multilayer

feedforward neural network with l hidden layers, K1, …,
Kl ∈ N neurons in the first, second, …, l-th layer, respectively,
and sigmoidal function σ is a real-valued function defined
on R

d of the form

f (x) =
Kl∑

i=1

c(l)
i · f (l)

i (x) + c(l)
0 , (2)

for some c(l)
0 , . . . , c(l)

Kl
∈ R and for f (l)

i ‘s recursively
defined by

f (r)
i (x) = σ

⎛
⎝

Kr−1∑
j=1

c(r−1)
i, j · f (r−1)

j (x) + c(r−1)
i,0

⎞
⎠ (3)

for some c(r−1)
i,0 , …, c(r−1)

i,Kr−1
∈ R and

f (1)
i (x) = σ

⎛
⎝ d∑

j=1

c(0)
i, j · x (i) + c(0)

i,0

⎞
⎠ (4)

for some c(0)
i,0 , . . . , c(0)

i,d ∈ R.
For applications of neural networks to nonlinear function

estimation, classification and learning we refer the reader
to the monographs Hertz et al. [15], Devroye et al. [6],
Anthony and Bartlett [1], Györfi et al. [9], Hastie et al. [13],
Haykin [14], and Ripley [24].

Consistency of nonparametric regression estimates using
neural networks has been studied by Lugosi and Zeger [20]
and Mielniczuk and Tyrcha [23]. The rate of conver-
gence of neural network regression estimates with one
hidden layer has been analyzed by Barron [4], [5]
and McCaffrey and Gallant [21], and in connection with
feedforward neural network with two hidden layers in
Kohler and Krzyżak [18].

Our choice of the set of neural networks suitable for
estimation of generalized hierarchical interaction models is
motivated by the following approximation result presented in
Mhaskar [22]: Let m : R

d → R be a (p, C)–smooth function,
where 0 < p ≤ 1, let N ∈ N and let A be a compact subset
of R

d . Then there exists a neural network

t (x)

=
Nd∑
i=1

ci ·σ
⎛
⎝ d∑

j=1

bi, j · σ
(

d∑
k=1

ai, j,k ·x (k)+ai, j,0

)
+bi,0

⎞
⎠+c0

with two hidden layers such that

|t (x) − m(x)| ≤ c3 · C · 1

N p

for ”nearly” all x ∈ A (see Lemma 6 below for details).
Now assume that m satisfies a generalized hierarchi-

cal interaction model of order d∗ and level 0, which is
(p, C)–smooth, i.e.,

m(x) = f (aT
1 x, . . . , aT

d∗x) for all x ∈ R
d

for some a1, . . . , ad∗ ∈ R
d∗

and some (p, C)-smooth function
f : R

d∗ → R. Approximating f by the above feedforward
neural network with two hidden layers defined on R

d∗
we
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see that we can approximate m by the following feedforward
neural network with two hidden layers defined on R

d :

f (x)

=
Nd∗∑
i=1

ci · σ
⎛
⎝ d∗∑

j=1

bi, j · σ
(

d∑
k=1

ai, j,k · x (k) + ai, j,0

)
+ bi,0

⎞
⎠

+ c0 (x ∈ R
d). (5)

Here in the first and in the second hidden layer we are using
d∗ · Nd∗

and Nd∗
neurons, respectively. However, the neural

network has only

Nd∗ + 1 + Nd∗ · (d∗ + 1) + Nd∗ · d∗ · (d + 1)

= Nd∗ · (d∗ · d + 2 · d∗ + 1) + 1 (6)

weights. This is due to the fact, that the two hidden layers
of the neural network are not fully connected. Instead, each
neuron in the second hidden layer is connected with d∗
neurons in the first hidden layer, and this is done in such
a way that each neuron in the first hidden layer is connected
with exactly one neuron in the second hidden layer.

For N ∈ N, d ∈ N, d∗ ∈ {1, . . . , d} and α > 0 we denote
the sets of all functions f : R

d → R which satisfy (5) for
some ai, j,k , bi, j , ci ∈ R, where

|ai, j,k | ≤ α, |bi, j | ≤ α and |ci | ≤ α

for all i ∈ {0, 1, . . . , Nd∗ }, j ∈ {0, 1, . . . , d∗} and
k ∈ {0, 1, . . . , d}, by F (neural networks)

N,d∗,d,α . Motivated by the
definition of a generalized hierarchical interaction model, we
define so–called spaces of hierarchical neural networks with
parameters K , N , d∗, d and level l as follows. In case l = 0
we set

H(0) = F (neural networks)
N,d∗,d,α .

And for l > 0 we define

H(l) =
{

h : R
d → R :

h(x) =
K∑

k=1

gk
(

f1,k(x), . . . , fd∗,k(x)
)

(x ∈ R
d )

for some gk ∈ F (neural networks)
N,d∗,d∗,α and f j,k ∈ H(l−1)

}
.

The class H(0) is a set neural networks with two hidden
layers and number of weights given by (6). From this one
can conclude recursively that for l > 0 the class H(l) is a set
neural networks with 2 · l hidden layers, where the weights
can be parameterized by

(K + 1)l ·
(

Nd∗ · (d + 1)2 + 1
)

many parameters (there are in fact much more weights in the
neural networks, however, the are related to each other (in the
sense that they are products of weights ai, j,k of the network
at level 2r + 1 and of weights ci of the network at level 2r )
and can therefore be parameterized by the above number of
parameters).

Next we choose in our least squares estimate (1) the set Hn

as the set H(l), with parameters K = Kmax , N = Kn , d∗, d
and level l, where d∗ and l are the values from the definition
of the generalized hierarchical interaction model for m. In
the next result we need to truncate our regression estimate.
We define the truncation operator TL as follows

TLu =
{

u if |u| ≤ L,

L · sign(u) otherwise,

Then the following result holds.
Theorem 2: Let (X, Y ), (X1, Y1), (X2, Y2), …be indepen-

dent and identically distributed random variables with values
in R

d × R such that

E exp
(

c1 · Y 2
)

< ∞
for some constant c1 > 0 and such that supp(X) is bounded.
Let m be the corresponding regression function and assume
that m satisfies a generalized hierarchical interaction model
of order d∗ which is (p, C)–smooth according to Definition 3
for some 0 < p ≤ 1 and C > 0 and where all functions
occurring in Definition 2 b) are Lipschitz continuous. Let Kmax

be the maximal number of summands in the different levels in
Definition 2 b).

Let mn be the least squares estimate defined by (1) with
Hn defined as above with

Kn =
⌈(

n

log(n)

)1/(2p+d∗)⌉
and αn = n4.

Assume that the sigmoidal function σ : R → [0, 1] is a
Lipschitz continuous squashing function which satisfies

|σ(y) − 1| ≤ 1

y
if y > 0 and |σ(y)| ≤ 1

|y| if y < 0.

Then

E
∫

|Tconst ·lognmn(x) − m(x)|2PX (dx)

≤ c4 · log3(n) · n−2p/(2p+d∗).

Remark 3: The class of (p, C)–smooth generalized hier-
archical interaction models of order d∗, where all functions
occurring in Definition 2 b) are Lipschitz continuous, contains
all (p, C)–smooth functions which depend on at most d∗ of
its input components, since in the definition of generalized
hierarchical interaction models all functions occurring in Def-
inition 2 might be chosen as projections. Consequently the
rate of convergence in Theorem 2 is optimal up to some
logarithmic factor according to Stone [25].

Remark 4: As in Remark 2 the parameters of our neural
network estimate can be chosen in a data-dependent way by
splitting of the sample.

V. PROOFS

A. A General Result on Least Squares Estimates

The estimates in Theorems 1 and 2 are least squares
estimates. The L2 error of such estimates depends on the
approximation properties and the complexity of the used
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functions spaces. The latter one can be measured by so-called
covering numbers, which we introduce next.

Definition 4: Let ε > 0, let G be a set of functions g :
R

d → R, let x1, …, xn ∈ R
d and set xn

1 = (x1, . . . , xn).
a) Every finite collection of functions g1, …, gN : R

d →
R with the property that for every g ∈ G there exists a
j = j (g) ∈ {1, . . . , N} such that

‖g − g j‖∞ < ε

is called a supremum norm ε–cover of G. The size of the
smallest supremum norm ε–cover of G is called supremum
norm ε–covering number of G and is denoted by N∞(ε,G).
Here we set N∞(ε,G) = ∞ in case that there exists no finite
supremum norm ε–cover of G.

b) Every finite collection of functions g1, …, gN : R
d → R

with the property that for every g ∈ G there exists a j =
j (g) ∈ {1, . . . , N} such that

1

n

n∑
i=1

|g(xi) − g j (xi )| < ε

is called a L1 norm ε–cover of G on xn
1 . The size of the

smallest L1 norm ε–cover of G on xn
1 is called L1 norm

ε–covering number of G on xn
1 and is denoted by N1(ε,G, xn

1 ).
Here we set N1(ε,G, xn

1 ) = ∞ in case that there exists no
finite L1 norm ε–cover of G on xn

1 .
Using the notion of covering numbers we can formulate the

following general result on the least squares estimates.
Lemma 1: Let (X, Y ), (X1, Y1), (X2, Y2), …be independent

and identically distributed random variables with values in
R

d × R such that

E exp
(

c1 · Y 2
)

< ∞
for some constant c1 > 0. Let m be the corresponding
regression function and let mn be the least squares estimate
defined by (1). Assume that the function space Hn consists of
functions bounded in absolute value by c5 · log(n) and that its
covering number satisfies

sup
x1,...,xn∈Rd

N1

(
1

n
,Hn, xn

1

)
≤ N1

(
1

n
,Hn

)

for some N1
( 1

n ,Hn
) ≥ 3. Then

E
∫

|mn(x) − m(x)|2PX (dx)

≤ c5 · log(n)2 · log
(N1

( 1
n ,Hn

))
n

+ 2 inf
h∈Hn

∫
|h(x) − m(x)|2PX (dx).

Proof: The result is a consequence of the stan-
dard error bounds on least squares estimates derived by
using results from the empirical process theory, cf., e.g.,
proof of Györfi et al. [9, Th. 11.5] and proof of
Bagirov et al. [3, Th. 1]. �

Remark 5: Lemma 1 also holds whenever a function space
consists of unbounded functions, if one truncates the least
squares estimate at level ±cs × log(n).

B. Proof of Theorem 1

In the proof of Theorem 1 we will apply Lemma 1.
In order to bound the covering number and the approximation
error (i.e., infh∈Hn

∫ |h(x)−m(x)|2PX (dx)), we will need the
following auxiliary results.

Lemma 2: Let g, ḡ : R
d → R, f1, f̄1, . . . , fd ,

f̄d : R
d → R and define m and m̄ by

m(x) = g( f1(x), . . . , fd (x)) (x ∈ R
d )

and

m̄(x) = ḡ( f̄1(x), . . . , f̄d (x)) (x ∈ R
d).

If g is Lipschitz continuous with Lipschitz constant C > 0,
then we have for any x ∈ R

d

|m(x) − m̄(x)| ≤ C · √d ·
d∑

j=1

| f j (x) − f̄ j (x)| + ‖g − ḡ‖∞.

Proof: The result follows from the triangle inequality, the
Lipschitz continuity of g and a bound on the L2 norm by the
L1 norm:

|m(x) − m̄(x)|
≤ ∣∣g( f1(x), . . . , fd (x)) − g( f̄1(x), . . . , f̄d (x))

∣∣
+ ∣∣g( f̄1(x), . . . , f̄d (x)) − ḡ( f̄1(x), . . . , f̄d (x))

∣∣
≤ C ·

∥∥∥( f1(x) − f̄1(x), . . . , fd (x) − f̄d (x))
)T
∥∥∥+ ‖g − ḡ‖∞

≤ C · √
d ·

d∑
j=1

| f j (x) − f̄ j (x)| + ‖g − ḡ‖∞.

�
Let G, F1, …, Fd be sets of functions f : R

d → R and
define

H = G(F1, . . . ,Fd)

=
{

h : R
d → R : h(x) = g( f1(x), . . . , fd (x)) (x ∈ R

d)

for some g ∈ G, f1 ∈ F1, . . . , fd ∈ Fd

}
.

Lemma 3: Let G, F1, …, Fd be sets of functions
f : R

d → R and define H = G(F1, . . . ,Fd) as above. If the
functions in G are Lipschitz continuous with Lipschitz constant
C > 0, then we have for any xn

1 ∈ (Rd)n and any ε > 0:

N1(ε,H, xn
1 ) ≤ N∞

(ε

2
,G
)
·

d∏
j=1

N1

(
ε

2·√d ·d ·C ,F j , xn
1

)
.

Proof: Follows directly from Lemma 2. �
Lemma 4: Let G, F1, …, Fd be sets of functions R

d → R

and define H = G(F1, . . . ,Fd) as above. Let g, f1, . . . , fd :
R

d → R and define m by

m(x) = g( f1(x), . . . , fd (x)) (x ∈ R
d).

If g is Lipschitz continuous with Lipschitz constant C > 0,
then

inf
h∈H

‖m−h‖∞ ≤ √
d ·C ·

d∑
j=1

inf
f̄ ∈F j

‖ f j − f̄ ‖∞+ inf
ḡ∈G

‖g− ḡ‖∞.

Proof: Follows directly from Lemma 2. �
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The following lemma describes a bound on the approxi-
mation error of the tensor product spline spaces introduced
in Section 3.

Lemma 5: Let p ∈ N and C > 0 and let m : R
d → R be a

(p, C)–smooth function with compact support. Let M > p−1,
K ∈ N and set

α = αn = log n, β = βn = log n and γ = γn = log n

and define the tensor product spline space SK ,M,α,β,γ,d as in
Section 3. Then we have for n sufficiently large

inf
f ∈SK ,M,α,β,γ,d

‖m − f ‖∞ ≤ c6 ·
(

log(n)

K

)p

.

Proof: Follows from Lemma 15.2, Theorem 15.1 and the
proof of Györfi et al. [9, Th. 15.2]. Here we use the fact that
the coefficients of the spline approximand constructed in the
proof of Györfi et al. [9, Th. 15.2] satisfy

|ak| ≤ log n and |ak − ak−ei | ≤ (log n)2

√
d · K

for n sufficiently large, since ak is a linear combination
of point evaluations of the bounded function m and since
ak − ak−ei is a linear combinations of differences of point
evaluations of the Lipschitz continuous function m at points
which have a supremum norm distance less than or equal to
(2M + 2) · β/K . �

Proof of Theorem 1: An easy discretization of the (bounded)
coefficients in the definition of the spline space SK ,M,α,β,γ,d∗
together with Györfi et al. [9, Lemma 15.2] shows that

N∞(ε,SK ,M,α,β,γ,d∗) ≤
(

2 · log n

ε

)(2·K+M)d∗

.

From this we get by a (w.r.t. l) recursive application
of Lemma 3

sup
x1,...,xn∈Rd

N1

(
1

n
,H(l)

n , xn
1

)
≤ nc7·K d∗

for n sufficiently large (for some constant c7 which depends
on l). Furthermore, recursive application of Lemma 4 again
together with Lemma 5 and the Lipschitz smoothness of
all functions g occuring in Definition 1 b) of the hierar-
chical interaction model from m (which follows from the
(p, C)–smoothness of the model and p ≥ 1) implies

inf
h∈Hn

∫
|h(x) − m(x)|2PX (dx)

≤ inf
h∈Hn

‖h(x) − m(x)‖2∞,supp(X) ≤ c8 ·
(

log(n)

K

)2p

for n sufficiently large. Using these two bounds we get the
assertion by an application of Lemma 1 and the definition
of K . �

C. Proof of Theorem 2

In the proof we will use the following auxiliary results.
Lemma 6: Let m : R

d → R be a (p, C)–smooth function,
where 0 < p ≤ 1, let N ∈ N, let A ⊇ [0, 1]d be a compact
subset of R

d , let η ∈ (0, 1] and let ν be a probability measure

on R
d . Let σ : R → [0, 1] be a squashing function. Then

there exists a neural network

t (x)

=
Nd∑
i=1

ci ·σ
⎛
⎝ d∑

j=1

bi, j ·σ
(

d∑
k=1

ai, j,k ·x (k) + ai, j,0

)
+b0, j

⎞
⎠+c0

with two hidden layers such that outside of a set of ν-measure
less than or equal to η we have for all x ∈ A

|t (x) − m(x)| ≤ c9 · 1

N p
.

In case that σ satisfies

|σ(y) − 1| ≤ 1

y
if y > 0 and |σ(y)| ≤ 1

|y| if y < 0

the weights in the neural network above can be chosen such
that

|ci | ≤ 2d+1 · ‖m‖∞, |bi, j | ≤ 4 · d · Nd

and |ai, j,k | ≤ 24 · d2 · (max
z∈A

‖z‖∞ + 1) · N

η

(i ∈ {1, . . . , Nd }, j, k ∈ {1, . . . , d}).
Proof: The result can be proven by modifying the proof

of Mhaskar [22, Th. 3.4]. For the sake of completeness we
present a complete proof of this result in the Appendix. �

Lemma 7: Let σ : R → [0, 1] be a sigmoidal function
which is Lipschitz continuous with Lipschitz constant C ≥ 1.
Define f , f̄ : R

d → R recursively by

f (x) =
Kl∑

i=1

c(l)
i · f (l)

i (x) + c(l)
0

and

f̄ (x) =
Kl∑

i=1

c̄(l)
i · f̄ (l)

i (x) + c̄(l)
0

for some c(l)
0 , c̄(l)

0 , …, c(l)
Kl

, c̄(l)
Kl

∈ R and for f (l)
i , f̄ (l)

i ’s
recursively defined by

f (r)
i (x) = σ

⎛
⎝

Kr−1∑
j=1

c(r−1)
i, j · f (r−1)

j (x) + c(r−1)
i,0

⎞
⎠

and

f̄ (r)
i (x) = σ

⎛
⎝

Kr−1∑
j=1

c̄(r−1)
i, j · f̄ (r−1)

j (x) + c̄(r−1)
i,0

⎞
⎠

for some c(r−1)
i,0 , c̄(r−1)

i,0 , …, c(r−1)
i,Kr−1

, c̄(r−1)
i,Kr−1

∈ R (r ∈ {2, . . . , l},
i ∈ {1, . . . , Kr }) and

f (1)
i (x) = σ

⎛
⎝ d∑

j=1

c(0)
i, j · x ( j ) + c(0)

i,0

⎞
⎠

and

f̄ (1)
i (x) = σ

⎛
⎝ d∑

j=1

c̄(0)
i, j · x ( j ) + c̄(0)

i,0

⎞
⎠
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for some c(0)
i,0 , . . . , c(0)

i,d , c̄(0)
i,0 , . . . , c̄(0)

i,d ∈ R (i ∈ {1, . . . , K1}).
Then

| f (x) − f̄ (x)|
≤ max{‖x‖∞, 1} · (d + 1) · (l + 1)

·
(

1 + max
r=0,...,l,i=1,...,Kr+1, j=1,...,Kr

|c(r)
i, j |
)l+1

·Cl ·
l∏

r=0

(Kr + 1) · max
r=0,...,l,i=1,...,Kr+1, j=0,...,Kr

|c(r)
i, j − c̄(r)

i, j |

for any x ∈ R
d , where we have set K0 = d, Kl+1 = 1 and

c(l)
1,i = c(l)

i .
Proof: By the triangle inequality and ‖σ‖∞ ≤ 1 we get

| f (x) − f̄ (x)|

≤
Kl∑

i=1

|c(l)
i | · | f (l)

i (x) − f̄ (l)
i (x)|

+
Kl∑

i=1

|c(l)
i − c̄(l)

i | · | f̄ (l)
i (x)| + |c(l)

0 − c̄(l)
0 |

≤ Kl · max
i=1,...,Kl

|c(l)
i | · max

i=1,...,Kl
| f (l)

i (x) − f̄ (l)
i (x)|

+ (Kl + 1) · max
i=0,...,Kl

|c(l)
i − c̄(l)

i |.

Using the Lipschitz continuity of σ and again the triangle
inequality we get furthermore

| f (r)
i (x) − f̄ (r)

i (x)|

≤ C · |
Kr−1∑
j=1

c(r−1)
i, j · f (r−1)

j (x) + c(r−1)
i,0

−
Kr−1∑
j=1

c̄(r−1)
i, j · f̄ (r−1)

j (x) − c̄(r−1)
i,0 |

≤ C · Kr−1 · max
j=1,...,Kr−1

|c(r−1)
i, j |

· max
j=1,...,Kr−1

| f (r−1)
j (x) − f̄ (r−1)

j (x)|
+ C · (Kr−1 + 1) · max

j=0,...,Kr−1
|c(r−1)

i, j − c̄(r−1)
i, j |.

Finally, in the same way we see

| f (1)
i (x) − f̄ (1)

i (x)|
≤ C · max{‖x‖∞, 1} · (d + 1) · max

j=0,...,d
|c(0)

i, j − c̄(0)
i, j |,

which implies the assertion. �
Lemma 8: Let σ : R → [0, 1] be a sigmoidal function

which is Lipschitz continuous with Lipschitz constant C ≥ 1
and let A be a compact subset of R

d . Then for any l ∈ N,
xn

1 ∈ An, d∗ ∈ {1, . . . , d}, Kn ≥ 2 and αn ≥ 2 we have

N1(ε,H(l), xn
1 ) ≤ c10 ·

(
αn · Kn

ε

)c10·K d∗
n

for some constant c10, which depends on l, d and d∗.

Proof: The neural networks in H(l) can be parameterized
using

(Kmax + 1)l ·
(

Nd∗ · (d + 1)2 + 1
)

parameters. Discretizing them using a grid of size δ > 0 results
in a set of functions of size(

2 · αn

δ

)c11·K d∗
n

,

which, according to Lemma 7 has the property that for each
f ∈ H(l) there exists a function f̄ in this set satisfying

| f (x) − f̄ (x)| ≤ c12 · (Kn · αn)c12 · δ.

Here we have used the fact that some of the weights of the
neural network are products of the above parameters, and that
for such products we have∣∣a · b − ā · b̄

∣∣ ≤ |a − ā| · |b| + ∣∣b − b̄
∣∣ · |ā|

≤ 2 · max{|ā| , |b|} · max{|a − ā| , ∣∣b − b̄
∣∣}.

The result follows by setting

δ = ε

c12 · (Kn · αn)c12
.

�
Proof of Theorem 2: Repeated application of Lemma 4,

which is possible because of the Lipschitz continuity of the
functions occuring in Definition 2 b), together with Lemma 6
imply

inf
h∈Hn

∫
|h(x) − m(x)|2PX (dx) ≤ c13 ·

(
1

Kn

)2p

for n sufficiently large. Here we use that for a generalized
hierarchical interaction model the bound on the approximation
error in Lemma 6 holds simultaneously for all occuring func-
tions outside of an event of PX –measure at most c14/n2. And
on this event the integrand in the above integral is bounded in
absolute value by c15 · K d∗

n ≤ c16 · n.
Furthermore, by Lemma 8 we can bound the covering

number by

N1(
1

n
,Hn, xn

1 ) ≤ c14 · nc15·K d∗
n

for any x1, . . . , xn ∈ supp(X). Using these two bounds we
get the assertion by an application of Lemma 1, Remark 4
and the definition of Kn . �

VI. CONCLUSION

In this paper we investigate d-dimensional regression func-
tions with generalized hierarchical interaction type structures.
These functions are computed in several layers, such that
in each layer a function of at most d* inputs is computed.
Our models encompass additive regression and projection
pursuit models studied earlier in the literature. We investigated
convergence of two nonparametric regression estimates of
hierarchical interaction models: one based on polynomial
splines and the other on neural networks. We demonstrated that
the rates of convergence of the estimates depend on d* rather
than on d thus circumventing the curse of dimensionality.
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APPENDIX

In the proof we will use Mhaskar [22, Proposition 3.8],
which we reformulate here (in a slightly different form) as
Lemma 9.

Lemma 9: Let K ⊆ R
d be a polytope bounded by hyper-

planes vi · x + di ≥ 0 (i = 1, . . . , L), where v1, . . . , vL ∈ R
d

and d1, . . . , dL ∈ R. For δ > 0 set

K 0
δ :=

{
x ∈ R

d : vi · x + di ≥ δ for all i ∈ {1, . . . , L}
}

and

K c
δ :=

{
x ∈ R

d : vi · x + di ≤ −δ for some i ∈ {1, . . . , L}
}
.

Let σ : R → [0, 1] be a squashing function. Let ε, δ ∈ (0, 1]
be arbitrary. Then there exists a neural network of the form

f (x) = σ

⎛
⎝ L∑

i=1

bi · σ
⎛
⎝ d∑

j=1

ci, j · x (i) + ci,0

⎞
⎠+ b0

⎞
⎠

satisfying

| f (x)| ≤ 1 for x ∈ R
d ,

| f (x) − 1| ≤ ε for x ∈ K 0
δ ,

| f (x)| ≤ ε for x ∈ K c
δ . (7)

In case that the squashing function satisfies

|σ(y) − 1| ≤ 1

y
if y > 0 and |σ(y)| ≤ 1

|y| if y < 0,

the weights above can be chosen such that

|bi | ≤ 4L

ε
,

and

|ci, j | ≤ 4 · L

δ
· max{‖v1‖∞, |d1|, . . . , ‖vL‖∞, |dL |}

(i = 0, . . . , L, j = 0, . . . , d).
Proof: Follows from the proof of

Mhaskar [22, Proposition 3.8]. �
Proof of Lemma 6: W.l.o.g we assume that A is a cube.

We partition this cube into Nd equivolume cubes of side length
c16/N (where c16 ≥ 1 since [0, 1]d ⊆ A). Approximating
m by a piecewise constant approximand with respect to this
partition yields (since m is (p, C)–smooth) a function S
satisfying

‖S − m‖∞,A ≤ c16 · N−p . (8)

S can be expressed in the form

S(x) = m(x0) +
∑

j∈{1,...,N}d

d j ·
d∏

i=1

(x (i) − x (i)
j )0+,

where x j are the corners of the rectangles comprising the
above partition and d j are constants satisfying

|d j | ≤ c17 · N−p

(constructed by using differences of function values of m at the
corners of the above partition) and x+ = max{x, 0}. Let K j

be the polytope defined by x (i) − x (i)
j ≥ 0 (i = 1, . . . , d). Set

ε = N−d , δ = η/(6 · d · N) and apply Lemma 9 for each K j

(i.e., with L = d , vi = ei and bi = −x (i)
j , where ei denotes

the i -th unit vector) to obtain f j (x) satisfying (7) with K j

instead of K . Let

P(x) = m(x0) +
∑

j∈{1,...,N}d

d j · f j (x).

Then we can conclude from (7)

|P(x) − S(x)| ≤ c17 · N−p

for all x ∈ A which are not contained in

∪i=1,...,d ∪ j∈{1,...,N}d

{
x ∈ R

d : |x (i)−x (i)
j |<η/(6·d ·N)

}
.

(9)

By shifting the positions of the x j ’s in the i -th component we
can construct �d/η� disjoint versions of

∪ j∈{1,...,N}d

{
x ∈ R

d : |x (i) − x (i)
j | < η/(6 · d · N)

}
,

and since the sum of the ν–measures of these sets is less than
or equal to one, at least one of them must have measure less
than or equal to η/d . Consequently we can shift the x j ’s such
that (9) has ν–measure less than η. This together with (8)
implies the assertion. �
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