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1 Introduction

The jackknife is a general-purpose tool for estimating the variance, and reducing the bias,
of a wide variety of estimates. The basic idea of the jackknife is to omit one observation and
recompute the estimate using the remaining observations. This is done for each observation,
and the results are then combined to produce a variance estimate or bias correction. If we
assign each observation a weight, then omitting an observation is the same as giving it a
weight of zero. Instead of doing that, we shall give the observation only slightly less weight
than the others, and consider the limiting case as this deficiency in the weight approaches
zero. We call the result of this process the “infinitesimal jackknife”, or IJK for short. We
thus have a set of procedures analogous to the ordinary jackknife, or OJK.

It turns out that for many estimates the two kinds of jackknife have the same asymptotic
behavior. However, to obtain asymptotic results, it seems more natural to work with the
IJK. Furthermore, the IJK point of view gives us deeper insight into the nature of the
jackknife process, and thereby helps us to see how to apply the jackknife idea in more
complex situations.

We begin in Section 2 with the one-sample case, where we have n i.i.d. random variables
and a statistic T , a function which is symmetric in its arguments. We define the IJK in this
case, and in Section 3 we give some examples. We then discuss its asymptotic properties in
Section 4, under the assumption that the distribution of the observations is discrete, with a
certain form. We show that if T satisfies certain conditions, then both the IJK and the OJK
give consistent estimates of the asymptotic variance and “asymptotic bias” of T . Then in
Section 5 we consider some of the problems which arise when the observations lie in a more
general space. In Section 6 we discuss some extensions and open questions, and finally, in
Section 7 we consider a more general model, which includes the case of linear regression.
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2 The one-sample case

Let X1, . . . , Xn be i.i.d. random variables with distribution F. Although we shall sometimes
consider real-valued observations, the Xi could be more general random variables in most of
this work. We want to estimate some unknown real parameter θ of F . We want to think of
θ and the procedure for estimating it as being somehow independent of n, the sample size.
That is, for each n we must have a function θ̂ for estimating θ, symmetric in its n arguments,
such that all of these functions “do the same thing” to the observations. A broad class of
such estimates may be characterized as follows:

Suppose we may write θ = T (F ), where T is a real-valued functional defined on some
appropriate set of probability distributions including F and a sufficiently rich set of proba-
bility distributions “near” F . Suppose further that for each n, θ is estimated by θ̂ = T (F̂ ),
where F̂ is the empirical probability distribution (usually denoted by Fn). That is, F̂ assigns
probability 1/n to each of the Xi. We write F̂ to de-emphasize the dependence on sample
size and to indicate that F̂ is to be thought of as an estimate of F . We now have a sequence
of estimates whose definitions are not explicitly dependent on n. Since F̂ approaches F in
some sense as n increases, θ̂ = T (F̂ ) will approach θ = T (F ), if T is well behaved. We shall
assume that θ̂ is consistent; that is, that θ̂ converges to θ in probability. We shall see that
this is a natural framework for our problem. Such a framework has been used by von Mises
(1947) and others.

We begin by defining the OJK. Let θ̂ be the estimate of θ based on X1, . . . , Xn. If we
omit Xi and estimate θ from the n− 1 remaining observations, we call this estimate the ith

pseudoestimate, and we write it as θ̂(i). We also define p(i) = nθ̂−(n−1)θ̂(i). This is known as
the ith pseudovalue. Although much of the literature deals primarily with the pseudovalues,
we shall concentrate on the pseudoestimates. If we average over i we have the (ordinary)
jackknifed estimate

p(·) = nθ̂ − (n− 1)θ̂(·) .

We observe that
p(i) − p(·) = −(n− 1)

(
θ̂(i) − θ̂(·)

)
.

The jackknife does two things for us: It gives a variance estimate for θ̂, and it reduces the
bias in θ̂. We estimate the variance of θ̂ (or of p(·)) by

V̂ =
1

n(n− 1)

n∑
i=1

(
p(i) − p(·)

)2
=

n− 1

n

n∑
i=1

(
θ̂(i) − θ̂(·)

)2
.

We reduce the bias by using p(·) as our estimate, rather than θ̂. See Miller (1964). We can

also think of this as estimating and subtracting off the bias term of order n−1 in θ̂. That is,
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the estimated bias is
B̂ = θ̂ − p(·) = (n− 1)

(
θ̂(·) − θ̂

)
,

and the jackknifed estimate is
θ̂ − B̂ .

We now define the IJK. If we attach a weight to each observation, then we can think of
omitting an observation as the same as giving that observation a weight of zero. Instead
of doing that, as the OJK does, we shall give the observation only slightly less weight than
the others, and consider the limiting case as the deficiency in the weight approaches zero.
We assign weights w1, . . . , wn to X1, . . . , Xn, respectively. We shall see below that it is not
necessary that

∑
wi = 1. We assume T is defined for discrete probability distributions, by

which we mean distributions which concentrate all of their mass on a finite number of points.
In particular, we wish to evaluate T at distributions which assign arbitrary probabilities
w1, . . . , wn to the points X1, . . . , Xn, respectively. We can then write T as a function of 2n
variables:

T (X1, . . . , Xn; w1, . . . , wn) . (1)

If all of the wi are 1/n, we have

θ̂ = T (F̂ ) = T
(
X1, . . . , Xn; 1

n
, . . . , 1

n

)
.

To simplify some of the algebra, we extend the definition of T as follows. If G is any
probability distribution for which T is defined, and c is a positive constant, then we let
T (cG) = T (G). Thus, if we are considering discrete distributions with possible values
zi, i = 1, . . . , I, we can assign to each zi the weight wi without requiring that

∑
wi = 1, and

T will be defined for these weights. The following lemma will be useful.

Lemma 1. Let G be a discrete distribution, defined by P (X = zi) = gi, i = 1, . . . , I. We
assume the zi are distinct. Let wi be a variable weight, attached to the value zi. Let

DG
i =

∂T

∂wi

∣∣∣∣∣
wj=gj , j=1,...,I

and

DG
ji =

∂2T

∂wj∂wi

∣∣∣∣∣
wk=gk, k=1,...,I

.

Then, if the respective derivatives exist,

I∑
i=1

giD
G
i = 0 and

I∑
i=1

I∑
j=1

gigjD
G
ji = 0 .
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Proof. Since T (cG) = T (G), if we let wi = cgi, we have

0 =
dT (cg1, . . . , cgI)

dc
=
∑

i

∂T

∂wi

dwi

dc
=
∑

i

gi
∂T

∂wi

.

Evaluating at c = 1, we obtain the first result. If we differentiate the expression above once
again with respect to c, we obtain

∑
i

gi

∑
j

gj
∂2T

∂wj∂wi

= 0 .

Evaluating at c = 1, we obtain the second result.
If we reduce wi by ε and leave the other weights at 1/n, we have

θ̂(i)(ε) = T
(
X1, . . . , Xn;

1

n
, . . . ,

1

n
− ε,

1

n
, . . .

)
.

If ε = 1/n, then wi = 0 and we have θ̂(i) as defined earlier. Assume we can differentiate T
with respect to wi. (That is, we let ε → 0). Let

D̂i =
∂T

∂wi

∣∣∣∣∣
xj=Xj , wj=

1
n

, j=1,...,n

.

Similarly, let

D̂ii =
∂2T

∂w2
i

∣∣∣∣∣
xj=Xj , wj=

1
n

, j=1,...,n

.

Since T is defined even if the sum of the weights is not one, we can perform these differenti-
ations. Note that we are differentiating with respect to the weight wi, rather than the value
Xi. We can now form the Taylor series expansion

θ̂(i)(ε)− θ̂ = T
(
. . . ,

1

n
− ε, . . .

)
− T

(
. . . ,

1

n
, . . .

)
(2)

= − εD̂i +
ε2

2
D̂ii − . . . .

We can define a variance estimate V̂ (ε) by

n2ε2V̂ (ε) = (1− ε)
∑[

θ̂(i)(ε)− θ̂(·)(ε)
]2

.
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If ε = 1/n, this is the ordinary jackknife V̂ defined above. Using the shortened expansion

θ̂(i)(ε) ∼= θ̂ − εD̂i ,

we see that
θ̂(·)(ε) ∼= θ̂ − ε

n

∑
D̂i = θ̂ ,

because by Lemma 1, ∑ 1

n
D̂i = 0 .

So
θ̂(i)(ε)− θ̂(·)(ε) ∼= −εD̂i

and
n2ε2V̂ (ε) ∼= (1− ε)

∑
ε2D̂2

i .

Letting ε → 0, we have

nV̂ (0) =
1

n

∑
D̂2

i .

V̂ (0) is the IJK variance estimate for θ̂.
We can define a bias estimate B̂(ε) by

n2ε2B̂(ε) = n(1− ε)
(
θ̂(·)(ε)− θ̂

)
.

If ε = 1/n, this is the B̂ defined above. We write

θ̂(i)(ε) ∼= θ̂ − εD̂i +
ε2

2
D̂ii .

Now, since
∑

D̂i = 0,

θ̂(·)(ε) ∼= θ̂ +
ε2

2n

n∑
i=1

D̂ii ,

so

n2ε2B̂(ε) ∼= n(1− ε)

(
ε2

2n

∑
D̂ii

)
.

Letting ε → 0, we have

nB̂(0) =
1

2n

∑
D̂ii .

B̂(0) is the IJK estimate of the bias in θ̂. To be precise, it is an estimate of the component
of the bias which is of order n−1. The jackknifed estimate is then

θ̂ − B̂(0) .
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3 Some examples.

If we want to apply the IJK to a given estimate, we must first write the estimate as a function
not only of the n observations, but also of the n weights. In order to do this we must think of
the estimate as a functional to be evaluated not only at F̂ , but also at discrete distributions
with arbitrary weights. In other words, we must remove the explicit dependence on n usually
present in the definition of an estimate. The new definition must also satisfy T (cG) = T (G).

To illustrate the variance and the bias aspects of the IJK, we consider the sample variance,
which we define as

θ̂ = T =
1

n

n∑
i=1

(
Xi − X̄

)2
.

We must write this as a function of the Xi and weights wi. We begin with the sample mean,
which we rewrite as

M(X1, . . . , Xn; w1, . . . , wn) =

∑
wiXi∑
wi

.

Note that M(F̂ ) =
∫

xdF̂ (x) = X̄ and M(F ) =
∫

xdF (x) = E(X). Similarly, we can write
T as

T (X1, . . . , Xn; w1, . . . , wn) =
1∑
wi

∑
wi (Xi −M)2 .

We also have T (F̂ ) =
∫

[x−M(F̂ )]2 dF̂ (x) = θ̂ and T (F ) =
∫

[x−M(F )]2 dF (x) = varX.
We now differentiate T . We obtain

∂T

∂wk

=
1∑
wi

{∑
wi 2(Xi −M)

(
−∂M

∂wk

)
+ (Xk −M)2

}
− 1

(
∑

wi)
2

∑
wi (Xi −M)2 .

Since
∑

wiXi = M
∑

wi, the first expression in the brackets vanishes, and we have

∂T

∂wk

=
1∑
wi

[
(Xk −M)2 − T

]
.

Hence,

D̂k =
(
Xk − X̄

)2
− 1

n

∑
i

(
Xi − X̄

)2
,

and our estimate of the variance of θ̂ is

V̂ (0) =
1

n2

∑
k

[(
Xk − X̄

)2
− 1

n

∑
i

(
Xi − X̄

)2
]2

.
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If we differentiate again, we obtain

∂2T

∂w2
k

=
1∑
wi

{
2 (Xk −M)

(
−∂M

∂wk

)
− ∂T

∂wk

}
− 1

(
∑

wi)
2

[
(Xk −M)2 − T

]
.

Since
∂M

∂wk

=
1∑
wi

(Xk −M) ,

we find that

D̂kk = −4
(
Xk − X̄

)2
+

2

n

∑
i

(
Xi − X̄

)2
.

If we fudge the definition of B̂(0) a little, by replacing n by n − 1 in the denominator, we
have

B̂(0) =
1

2n(n− 1)

∑
D̂kk = − 1

n(n− 1)

∑ (
Xi − X̄

)2
.

The jackknifed estimate is then

θ̂ − B̂(0) =

(
1

n
+

1

n(n− 1)

)∑ (
Xi − X̄

)2

=
1

n− 1

∑ (
Xi − X̄

)2
,

which we know to be exactly unbiased. If we had used our original definition of B̂(0)
instead, the bias would not have been eliminated completely. But the remaining bias would
only have been of order n−2; the bias of order n−1 would have been removed, which is all
the IJK is intended to do. Actually, the multiplicative constants used in the definitions of
V̂ (0) and B̂(0) were chosen somewhat arbitrarily. Further work is needed to determine the
best constants to use.

We give one more example of the IJK variance estimate. Suppose θ̂ is defined to be the
root of the equation

0 =
1

n

n∑
i=1

h
(
Xi, θ̂

)
,

where h(x, θ) is some given function. If h(x, θ) = ∂
∂θ

log f(x, θ), where f(x, θ) is the density

of the Xi, then θ̂ is the maximum likelihood estimate of θ. However, this type of estimate
may occur in other contexts; see for example Huber (1964). We define T , using weights, as
the root of

0 =
∑

wi h(Xi, T ) . (3)
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We can write θ̂ = T (F̂ ), since θ̂ is defined by 0 =
∫

h(x, θ̂)dF̂ (x). The parameter to be
estimated is θ = T (F ), where θ satisfies 0 =

∫
h(x, θ)dF (x).

If we differentiate in (3) and let h2(x, θ) = ∂
∂θ

h(x, θ), we obtain

0 =
∑

wi h2(Xi, T )
∂T

∂wk

+ h(Xk, T ) ,

so
∂T

∂wk

= − h(Xk, T )∑
wi h2(Xi, T )

and

D̂k = − h(Xk, T )
1
n

∑
h2(Xi, T )

.

Therefore,

nV̂ (0) =
1
n

∑
h2(Xk, T ){

1
n

∑
h2(Xi, T )

}2 .

Under appropriate conditions this quantity will converge to the asymptotic variance of√
n(θ̂ − θ). See the asymptotic variance formulas given in Huber (1964), and in Brillinger

(1964), in which the OJK is applied to the maximum likelihood estimate.

4 Asymptotic behavior of the IJK and OJK for discrete F .

In this section we shall assume that F is discrete, with the form given below. This case will
be easier to deal with than the general case, which we shall discuss in the next section. The
basic concepts involved will emerge in our treatmemt of the discrete case.

We assume that under F , X can take on the M distinct values zj, each with probability
1/M . We describe a random sample of size n from F as follows. For each j, j = 1, . . . ,M ,
we define a random variable Ŵj by

Ŵj =
1

n
{number of times zj occurs in the sample} .

The vector (nŴ1, . . . , nŴM) has a multinomial distribution, and
∑

Ŵj = 1. It is easy to
verify that

E Ŵj =
1

M
,

Var Ŵj =
1

nM

(
1− 1

M

)
,
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and

Cov
(
Ŵj, Ŵk

)
= − 1

nM2
.

If we write in vector notation
w = (W1, . . . ,WM) ,

then we can write

w0 =
(

1

M
, . . . ,

1

M

)
and

ŵ =
(
Ŵ1, . . . , ŴM

)
.

As n →∞, the vector

√
n (ŵ −w0) =

(√
n
(
Ŵ1 −

1

M

)
, . . . ,

√
n
(
ŴM − 1

M

))
has a multivariate normal limiting distribution, for which all means are zero, all variances
are 1

M
(1− 1

M
), and all covariances are − 1

M2 .
We assume T is defined for discrete distributions which assign arbitrary non-negative

weights Wj to the zj. Letting z = (z1, . . . , zM), we can write the estimate as

θ̂ = T (F̂ ) = T (z, ŵ) . (4)

We also have
θ = T (F ) = T (z,w0) .

Since the zj are fixed, we shall think of T (z,w) as a function of the M variables Wj. Although

the Ŵj actually take on only certain rational values, we shall consider the Wj to be continuous
variables, with

∑
Wj not necessarily equal to one, so that we can differentiate T with respect

to these variables. As before, we assume that T (cG) = T (G). Note that although (4) and
(1) appear similar in form, in that each describes T as a function of values and weights,
there is a very important difference between them. In (1) the Xi are random variables and
the wi are constants, whereas in (4) it is the zj that are fixed, while the Ŵj, are the random
variables.

Differentiating T with respect to the weights, we have

Dj =
∂T

∂Wj

∣∣∣∣∣
w=w0

and

Djk =
∂2T

∂Wj∂Wk

∣∣∣∣∣
w=w0

.
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Note the difference between the Dj and Djj defined here, and the D̂i and D̂ii defined in

Section 2. Dj and Djj are derivatives of T evaluated at F, whereas D̂i and D̂ii are derivatives

evaluated at F̂ . By Lemma 1,

M∑
j=1

Dj = 0 and
M∑

j=1

M∑
k=1

Djk = 0 .

We use these derivatives to form the following Taylor series expansion:

T (F̂ )− T (F ) = T (z, ŵ)− T (z,w0) (5)

=
M∑

j=1

(
Ŵj −

1

M

)
Dj +

1

2

M∑
j=1

M∑
k=1

(
Ŵj −

1

M

)(
Ŵk −

1

M

)
Djk + . . .

= S1 +
1

2
S2 + . . . ,

where S1 and S2 are the respective sums above.
We begin with the variance of T (F̂ ). If T is well behaved, we may expect that the

following approximation is valid for large n:

T (F̂ )− T (F ) ∼= S1 .

By the definition of S1 we see that ES1 = 0 and

VarS1 =
∑
j

∑
k

Cov
(
Ŵj −

1

M
, Ŵk −

1

M

)
DjDk

=
∑
j

1

nM

(
1− 1

M

)
D2

j +
∑∑

j 6=k

(
− 1

nM2

)
DjDk

=
1

nM

∑
j

D2
j −

1

nM2

∑
j

∑
k

DjDk .

Since the last sum is (
∑

Dj)
2 = 0, we have

Var
(√

n S1

)
=

1

M

∑
j

D2
j = V .

We assume V > 0. Since, as we remarked earlier,
√

n (ŵ−w0) is asymptotically multivariate
normal, we see that

√
n S1 is asymptotically normal (0, V ). If the approximation above may

be used, then
√

n
[
T (F̂ )− T (F )

]
has this same limiting distribution.
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We now consider the IJK variance estimate. Suppose the value of Xi is zj. Then we can
write Xi = zj(i); that is, j(i) is a function of i, determined by the sample. We replace the

D̂i of Section 2 by D̂j(i), where D̂j is defined here as

D̂j =
∂T

∂Wj

∣∣∣∣∣
w=ŵ

.

The two terms above are the same because they are both the derivative of T with respect to
the weight attached to Xi. Using this terminology and the definition of Ŵj, we can write

nV̂ (0) =
1

n

n∑
i=1

D̂2
j(i) =

M∑
j=1

ŴjD̂
2
j .

Since ŵ is near w0 for large n, we may expect D̂j to be near Dj. If so, then the last sum

above will be near V . In other words, nV̂ (0) is an approximation to the asymptotic variance
of
√

nT (F̂ ). Although the IJK thus gives us an estimate of the asymptotic variance rather
than the actual finite sample size variance, for most applications we may regard V̂ (0) as an
estimate of the actual variance of T (F̂ ). We shall see that the OJK variance estimate, which
is a sum of squares of differences instead of derivatives, also gives us an estimate of V . We
now state these results formally as a theorem.

Theorem 1. Suppose for each j = 1, . . . ,M , ∂T
∂Wj

exists and is a continuous function of w

for all M-vectors w in some convex neighborhood U of w0. Then, as n →∞:

(i)
√

n
[
T (F̂ )− T (F )

]
is asymptotically normal with mean zero and variance

V =
1

M

M∑
j=1

D2
j .

(ii) n times the IJK variance estimate converges in probability to V . That is,

nV̂ (0) =
1

n

n∑
i=1

D̂2
i

P→ V .

(iii) n times the OJK variance estimate converges in probability to V . That is,

nV̂ = (n− 1)
n∑

i=1

(
θ̂(i) − θ̂(·)

)2 P→ V .
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Proof. Note that U is a neighborhood in the full M -dimensional space of vectors w, rather
than in the set of vectors for which

∑
Wj = 1. Since we assumed T (cw) = T (w), we can

work with T and its derivatives without regard to whether this sum is one.
(i) We shall show that

√
n
[
T (F̂ )− T (F )

]
−
√

n
M∑

j=1

(
Ŵj −

1

M

)
Dj

P→ 0 .

This will imply that the two terms above have the same limiting distribution. We saw above
that this sum is asymptotically normal (0, V ).

Consider the line segment from w0 to ŵ. We parametrize this segment as

ŵ(t) = w0 + t (ŵ −w0)

with 0 ≤ t ≤ 1, and we consider T [ŵ(t)] as a function of t. Since ŵ
P→ w0, we know that ŵ,

and hence the entire line segment, lie in U with probability approaching one. If we assume
ŵ lies in U , then by the mean value theorem there is a t̂ between 0 and 1 such that

T (F̂ )− T (F ) = T [ŵ(1)]− T [ŵ(0)]

=
dT [ŵ(t)]

dt

∣∣∣∣∣
t=t̂

=
M∑

j=1

(
Ŵj −

1

M

)
D̂j(t̂) ,

where

D̂j(t̂) =
∂T

∂Wj

∣∣∣∣∣
w=ŵ(t̂)

.

(Note that t̂ is a random variable.) Hence,

√
n
[
T (F̂ )− T (F )

]
−
√

n
∑
j

(
Ŵj −

1

M

)
Dj =

∑
j

√
n
(
Ŵj −

1

M

) (
D̂j(t̂)−Dj

)
.

Since ŵ
P→ w0 and 0 ≤ t̂ ≤ 1, we have ŵ(t̂)

P→ w0. So, since P (ŵ ∈ U) → 1 and ∂T
∂Wj

is

continuous for w in U , we have D̂j(t̂)
P→ Dj for each j. Since

√
n
(
Ŵj − 1

M

)
is bounded in

probability for each j, it follows that the sum on the right side above converges to zero in
probability as n →∞, and (i) is proved.

(ii) We saw earlier that we could write

nV̂ (0) =
∑
j

ŴjD̂
2
j .
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For the reasons given above in the proof of (i), we have D̂j
P→ Dj, and hence D̂2

j
P→ D2

j , for

all j. Since Ŵj
P→ 1/M , we see that

nV̂ (0)
P→ V .

We defer the proof of (iii) to the next section, where we shall show that it follows from
a more general result.

We turn now to the bias in T (F̂ ). We assume for the moment that the following approx-
imation based on (5) is valid for large n:

T (F̂ )− T (F ) ∼= S1 +
1

2
S2 .

We take the expected value of the right side above. Since ES1 = 0 and
∑∑

Djk = 0, we
have

E
(
S1 +

1

2
S2

)
=

1

2

∑
j

∑
k

E
(
Ŵj −

1

M

)(
Ŵk −

1

M

)
Djk

=
1

2

∑
j

1

nM

(
1− 1

M

)
Djj +

∑∑
j 6=k

(
− 1

nM2

)
Djk


=

1

2

 1

nM

∑
j

Djj −
1

nM2

∑
j

∑
k

Djk


=

1

n

1

2M

∑
j

Djj .

We call

B =
1

2M

∑
j

Djj

the “asymptotic bias” of T (F̂ ). If we can use the above approximation, we see that

ET (F̂ ) ∼= T (F ) +
B

n
.

If we can estimate B/n and subtract this estimate from T (F̂ ), we will have an estimate
of T (F ) with a bias of order less than n−1. We rewrite the IJK bias estimate as we did the
variance estimate by replacing D̂ii by D̂j(i),j(i), where

D̂jj =
∂2T

∂W 2
j

∣∣∣∣∣
w=ŵ

.

13



We can then write

nB̂(0) =
1

2n

n∑
i=1

D̂j(i),j(i) =
1

2

M∑
j=1

ŴjD̂jj .

As with the variance estimate, we may expect the last sum above to be an estimate of B.
We shall see that the OJK bias estimate is also an estimate of B.

Theorem 2.Suppose for each j, k = 1, . . . ,M , ∂T
∂Wj

and ∂2T
∂Wj∂Wk

exist and are continuous

functions of w for all M-vectors w in some convex neighborhood U of w0. Then, as n →∞:

(i)

n

T (F̂ )− T (F )−
M∑

j=1

(
Ŵj −

1

M

)
Dj


has a limiting distribution whose expectation is

B =
1

2M

M∑
j=1

Djj .

(ii) n times the IJK bias estimate converges in probability to B. That is,

nB̂(0) =
1

2n

n∑
i=1

D̂ii
P→ B .

(iii) n times the OJK bias estimate converges in probability to B. That is,

nB̂ = n(n− 1)
(
θ̂(·) − θ̂

)
P→ B .

Proof. (i) We parametrize the line segment from w0 to ŵ as before:

ŵ(t) = w0 + t (ŵ −w0) ,

with 0 ≤ t ≤ 1. We then expand in a Taylor series:

T (F̂ )− T (F ) = T [ŵ(1)]− T [ŵ(0)]

=
dT

dt

∣∣∣∣∣
t=0

+
1

2

d2T

dt2

∣∣∣∣∣
t=t̂

=
M∑

j=1

(
Ŵj −

1

M

)
Dj +

1

2

M∑
j=1

M∑
k=1

(
Ŵj −

1

M

)(
Ŵk −

1

M

)
D̂jk(t̂) ,
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where 0 ≤ t̂ ≤ 1 and

D̂jk(t̂) =
∂2T

∂Wj∂Wk

∣∣∣∣∣
w=ŵ(t̂)

.

Hence

n

T (F̂ )− T (F )−
∑
j

(
Ŵj −

1

M

)
Dj

− n

2

∑
j

∑
k

(
Ŵj −

1

M

)(
Ŵk −

1

M

)
Djk (6)

=
n

2

∑
j

∑
k

(
Ŵj −

1

M

)(
Ŵk −

1

M

) (
D̂jk(t̂)−Djk

)
.

Since ŵ
P→ w0, P (ŵ ∈ U) → 1, 0 ≤ t̂ ≤ 1, and the derivatives of T are continuous for w

in U , we have D̂jk(t̂)
P→ Djk. Therefore, since for each j and k, n

(
Ŵj − 1

M

) (
Ŵk − 1

M

)
is

bounded in probability, the sum on the right side of (6) converges to zero in probability as
n →∞.

The second expression on the left side of (6) has a limiting distribution because it is a fixed
combination of a fixed number of random variables which have a limiting joint distribution.
It follows that the first expression on the left side of (6) has the same limiting distribution.
By a computation similar to the computation of 1

2
ES2 above, we find that the expectation

of this limiting distribution is B, and (i) is proved.
Note that we are dealing here with the expectation of the limiting distribution, rather

than with the limit of the expectations. However, we may in general use B as an approxi-
mation to the expectation of the first expression in (6).

(ii) For the reasons given above in the proof of (i) we have D̂jj
P→ Djj and Ŵj

P→ 1/M .

Therefore, if we rewrite nB̂(0) as we did earlier, we have

nB̂(0) =
1

2

M∑
j=1

ŴjD̂jj
P→ B .

We defer the proof of (iii) to the next section.

We remark that under the conditions of Theorem 2,
√

nT (F̂ ),
√

n
[
T (F̂ )− B̂(0)

]
, and

√
n
[
T (F̂ )− B̂

]
all have asymptotic variance V. Therefore our variance estimates may be

used to estimate the asymptotic variance of the original estimate, or of either form of jack-
knifed estimate.
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5 Asymptotic behavior for general F.

If F is not discrete, some complications arise. We need first a generalization of the concept
of differentiating T with respect to the weight assigned to a possible value of X. We must
then consider the relationship of the derivative of T evaluated at a distribution near F to
the derivative of T evaluated at F . We shall follow the approach of von Mises (1947), who
considered these problems in his work on differentiable statistical functions. We would like
to have general theorems analogous to our Theorems 1 and 2 of Section 4. However, general
proofs of the asymptotic properties of T (F̂ ) would involve us in difficulties which are beyond
the scope of this paper, so we shall give in each case what amounts to an outline of a proof.
Then, for a given T and F , it will often be possible to fill in the missing steps for that
particular example. We do, however, give fairly general proofs of the consistency of the
jackknife estimates of variance and bias.

We define a class F of finite measures as follows. Let S be the set of possible values for
X. S can be a fairly arbitrary set; it need not be a set of real numbers. For each x in S, let
δx be the probability measure which assigns measure one to the point x. Let F be the set of
all linear combinations of F and an arbitrary finite number of the δx measures. Let F+ be
the set of positive measures in F , not including the zero measure. We assume T is defined
for probability measures in F+. We extend T to all of F+ by letting T (cG) = T (G) for all
c > 0. Note that F+ is convex and contains all possible F̂ .

We now define the derivative of T , essentially following von Mises (1947). We say T is
differentiable at G in F+ if there exists a function T ′(G, x), defined at all x in S, with the
following property: Let H be any member of F such that G + tH is in F+ for all t in some
interval 0 ≤ t ≤ tH , tH > 0, so that T (G + tH) is defined for t in this interval. Then, for
any such H, T ′(G, x) satisfies

dT (G + tH)

dt

∣∣∣∣∣
t=0

= lim
t→0

1

t
{T (G + tH)− T (G)} (7)

=
∫

T ′(G, x) dH(x) .

If we let H = G in (7), we see that since T (cG) = T (G),∫
T ′(G, x) dG(x) = 0 , (8)

as in Lemma 1. Now, if we let H = δx0 −G in (7) and apply (8), we find

lim
t→0

1

t
{T [G + t (δx0 −G)]− T (G)} =

∫
T ′(G, x) d (δx0 −G) (x)

= T ′(G, x0) .
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T ′ can often be found by a direct application of this equation. Hampel (1968) has defined
T ′(G, x) in this way and has called it the “influence curve”, since it expresses the influence on
T of adding a small mass to G at x. We observe that the vector of derivatives (D1, . . . , DM)
in Section 4 is the discrete analog of the function T ′(F, x).

Equation (7) gives the derivative of T (G+tH) at t = 0. It will be useful to have a similar
expression for the derivative at an arbitrary t0, 0 < t0 < tH . If we let Gt0 = G + t0H and
u = t− t0, we can write G + tH = (G + t0H) + (t− t0)H = Gt0 + uH. Then, assuming T is
differentiable at Gt0 , we have

dT (G + tH)

dt

∣∣∣∣∣
t=t0

=
dT (Gt0 + uH)

du

∣∣∣∣∣
u=0

=
∫

T ′ (Gt0 , x) dH(x) .

We now assume that T is differentiable, in the sense defined above, at all G in some
convex neighborhood of F in F+, such that F̂ lies in the neighborhood with probability
approaching one. Following the reasoning in the proof of Theorem 1, we parametrize the
segment from F to F̂ by

F̂ (t) = F + t(F̂ − F )

for 0 ≤ t ≤ 1. Then, if F̂ lies in the neighborhood, we can write

T (F̂ )− T (F ) = T
[
F̂ (1)

]
− T

[
F̂ (0)

]
=

dT [F̂ (t)]

dt

∣∣∣∣∣
t=t̂

=
∫

T ′(F̂ (t̂), x)d(F̂ − F )(x) ,

for some 0 ≤ t̂ ≤ 1. For large n, F̂ is near F , so we would expect T ′
(
F̂ (t̂), x

)
to be near

T ′(F, x) in some sense. We write

√
n
[
T (F̂ )− T (F )−

∫
T ′(F, x)d(F̂ − F )(x)

]

=
√

n
∫ [

T ′(F̂ (t̂), x)− T ′(F, x)
]
d(F̂ − F )(x) .

We shall assume that the integral on the right side converges to zero in probability. This
is the missing step which can often be verified for a particular example. (von Mises (1947)
used a somewhat different method in his Theorem 1, p. 327.) By (8), we have

√
n
∫

T ′(F, x)d(F̂ − F )(x) =
1√
n

n∑
i=1

T ′(F, Xi) .
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Now this sum is a sum of i.i.d. random variables. Using (8) again, we have ET ′(F, X) = 0.
If we let

V =
∫

[T ′(F, x)]
2
dF (x)

and assume that 0 < V < ∞, we see that the sum above is asymptotically normal (0, V ). It
follows from our assumptions that

√
n [T (F̂ )− T (F )] has this same limiting distribution.

We would now like to estimate V . If we think of F̂ as an estimate of F , and T ′(F̂ , x) as
an estimate of T ′(F, x), then a natural estimate of V is∫ [

T ′(F̂ , x)
]2

dF̂ (x) =
1

n

n∑
i=1

[
T ′(F̂ , Xi)

]2
.

But this is exactly n times the IJK variance estimate, because in the notation of this section
we can write

D̂i = lim
t→0

1

t

{
T (F̂ + tδXi

)− T (F̂ )
}

=
∫

T ′(F̂ , x) dδXi
(x) = T ′(F̂ , Xi) .

So the estimate above is n−1∑ D̂2
i = nV̂ (0). If we knew the shape of T ′(F, x), the influence

curve, in advance, we could use this knowledge to estimate V . But since F is unknown, and
T ′(F, x) depends on both T and F , we generally do not know T ′ in advance. The key to the
jackknife procedure is that it provides us with an estimate of T ′ when F is unknown.

We now give conditions under which the IJK and OJK variance estimates converge in
probability to V . The theorem is formulated in a fairly abstract way.

Lemma 2. Let Z1, . . . , Zn be i.i.d. non-negative random variables with EZ < ∞, and let
z̄n be their average. Then for any z0 > EZ,

P [z̄n < z0] → 1 as n →∞ .

Proof. By the weak law of large numbers, z̄n
P→ EZ.

Therefore, P [|z̄n − EZ| < z0 − EZ] → 1. The result follows.

Definition. Let F̂(i) be the discrete measure which assigns weight 1/n to each Xj, j 6= i.

That is, F̂(i) = F̂ − n−1δXi
.

Theorem 3. Suppose T is differentiable at F , and V =
∫

T ′(F, x)2 dF (x) < ∞. Let
X1, . . . , Xn be i.i.d. with distribution F . Suppose that for all ε > 0 there is a convex set U
in F+ and a function A(x) such that T is differentiable at all G in U and
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(a1) P [F̂ ∈ U ] → 1 as n →∞,

(a2) P [F̂(i) ∈ U, i = 1, . . . , n] → 1 as n →∞,

(b) For all G ∈ U and x ∈ S:

|T ′(G, x)− T ′(F, x)| ≤ A(x),

and (c)
∫

A2(x)dF (x) ≤ ε .
Then as n →∞ we have for the IJK

nV̂ (0)
P→ V ,

and for the OJK

nV̂
P→ V .

In many cases we can let A(x) =
√

ε for all x. An example where a non-constant A(x)
is needed is the sample variance, which we discussed in Section 3. The set U can often be
defined in terms of some measure of distance in F+.

We need the following lemma.

Lemma 3.Under the assumptions of the theorem, for all ε > 0, there is a convex set U in
F+ and a function C(x) such that (a1) and (a2) above hold, T is differentiable at all G in
U , and

(d) For all G ∈ U and x ∈ S:

|T ′(G, x)2 − T ′(F, x)2| ≤ C(x),

and (e)
∫

C(x) dF (x) ≤ ε
2

.

Proof. For a given ε, choose ε1 so that 2
√

ε1V + ε1 ≤ ε/2. Let U and A be the set and
the function provided by the assumptions of the theorem for ε1. Define C(x) by C(x) =
2A(x)|T ′(F, x)|+A2(x). Then for all G ∈ U and x ∈ S, if we write R(x) = T ′(G, x)−T ′(F, x),
we have

T ′(G, x) = T ′(F, x) + R(x)

and
T ′(G, x)2 − T ′(F, x)2 = 2R(x)T ′(F, x) + R2(x) .

By (b), ∣∣∣T ′(G, x)2 − T ′(F, x)2
∣∣∣ ≤ 2A(x) |T ′(F, x)|+ A2(x) = C(x) .
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By (c), ∫
C(x) dF (x) = 2

∫
A(x) |T ′(F, x)| dF (x) +

∫
A2(x) dF (x)

≤ 2
{∫

A2(x) dF (x)
}1/2

·
{∫

T ′(F, x)2 dF (x)
}1/2

+ ε1

≤ 2
√

ε1V + ε1 ≤
ε

2
.

Proof of the theorem. For the IJK variance estimate, we have nV̂ (0) = n−1∑T ′(F̂ , Xi)
2.

Fix ε > 0. We obtain U and C(x) from Lemma 3. If we assume F̂ ∈ U , we have

∆ =
∣∣∣∣ 1n ∑ T ′(F̂ , Xi)

2 − 1

n

∑
T ′(F, Xi)

2

∣∣∣∣
≤ 1

n

∑∣∣∣T ′(F̂ , Xi)
2 − T ′(F, Xi)

2
∣∣∣

≤ 1

n

∑
C(Xi) .

By (a1), (e) and Lemma 2, we have P [∆ < ε] → 1 as n →∞. Therefore, ∆
P→ 0, so nV̂ (0)

and n−1∑T ′(F, Xi)
2 have the same limiting distribution. Since the latter expression is an

average of i.i.d. random variables, it converges in probability to its expected value, which is

V . Therefore, nV̂ (0)
P→ V .

We now consider the OJK variance estimate. If we let T̄ = n−1∑T (F̂(i)), then we can
write

nV̂ = (n− 1)
n∑

i=1

[
T (F̂(i))− T̄

]2
= (n− 1)

∑[
T (F̂(i))− T (F̂ )

]2
− n(n− 1)

[
T̄ − T (F̂ )

]2
.

We consider the two components above separately. For each i, we parametrize the segment
from F̂ to F̂(i) as

F̂(i)(t) = F̂ + t
(
F̂(i) − F̂

)
= F̂ − t

n
δXi

,

where 0 ≤ t ≤ 1. Now fix ε > 0. We obtain U and C(x) from Lemma 3. If we assume F̂
and all F̂(i), and hence all F̂(i)(t), are in U , then for some 0 ≤ t̂i ≤ 1,

T (F̂(i))− T (F̂ ) =
dT

[
F̂(i)(t)

]
dt

∣∣∣∣∣∣
t=t̂i
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= − 1

n

∫
T ′(F̂(i)(t̂i), x)dδXi

(x)

= − 1

n
T ′(F̂(i)(t̂i), Xi) .

So

n
∑[

T (F̂(i))− T (F̂ )
]2

=
1

n

∑
T ′(F̂(i)(t̂i), Xi)

2 .

If we let

∆ =
∣∣∣∣ 1n ∑T ′(F̂(i)(t̂i), Xi)

2 − 1

n

∑
T ′(F, Xi)

2

∣∣∣∣ ,

then by (a2) and the same argument used above for the IJK, we see that ∆
P→ 0, so that

the two sums in its definition have the same limiting distribution. It follows that

(n− 1)
∑[

T (F̂(i))− T (F̂ )
]2 P→ V .

We can now see the close relationship between the IJK and the OJK. We observe that the
differences T (F̂(i))−T (F̂ ) in the sum above, times −n, are approximations to the respective

derivatives T ′(F̂ , Xi), which occur in the IJK variance estimate.
Finally, we show that the second component of nV̂ above converges to zero in probability.

If we fix ε > 0, we obtain U and A(x) from the assumptions of the theorem. If we assume F̂
and all F̂(i) are in U , then, as before, we have

T (F̂(i))− T (F̂ ) = − 1

n
T ′(F̂(i)(t̂i), Xi) ,

so we can write

n
[
T̄ − T (F̂ )

]
=

n∑
i=1

[
T (F̂(i))− T (F̂ )

]
= − 1

n

∑
T ′(F̂(i)(t̂i), Xi) .

Then

∆ =
∣∣∣∣ 1n ∑T ′(F̂(i)(t̂i), Xi)−

1

n

∑
T ′(F, Xi)

∣∣∣∣
≤ 1

n

∑∣∣∣T ′(F̂(i)(t̂i), Xi)− T ′(F, Xi)
∣∣∣

≤ 1

n

∑
A(Xi) .
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Since [EA(X)]2 ≤ EA2(X) ≤ ε, it follows from Lemma 2 that P [∆ < 2
√

ε] → 1 as n →∞.

Hence, ∆
P→ 0, so the two sums in its definition have the same limiting distribution. By (8),

ET ′(F, X) = 0, so each of these sums converges to zero in probability. It follows that

n(n− 1)
[
T̄ − T (F̂ )

]2 P→ 0 ,

and the proof is complete.
We return now to the proof of part (iii) of Theorem 1. We show that under the assump-

tions of that theorem, the conditions of Theorem 3 are satisfied. It is clear from (7) that
T ′(F, x) in this case is just the vector (D1, . . . , DM), so T is differentiable at F . For a given
ε, let A(x) =

√
ε for all x. Then, since S is a finite set and the ∂T

∂Wj
are assumed continuous,

condition (b) is satisfied for all w in some convex open set Uε containing w0. It is clear from
Section 4 that conditions (a1) and (a2) are satisfied. We can therefore apply Theorem 3 to
complete the proof of Theorem 1.

We now turn to the bias in T (F̂ ). Our treatment of the bias will in many ways parallel our
treatment of the variance. We say T is twice differentiable at G in F+ if it is differentiable
there, and if there exists a function T ′′(G, x, y) defined at all x, y in S such that for any
admissible H (as described earlier),

d2T (G + tH)

dt2

∣∣∣∣∣
t=0

=
∫ ∫

T ′′(G, x, y) dH(x)dH(y) .

We assume T ′′(G, x, y) = T ′′(G, y, x). If we let H = G, we find, as in (8),∫ ∫
T ′′(G, x, y) dG(x)dG(y) = 0 . (9)

To find the asymptotic bias, we assume that T is twice differentiable, in the sense defined
above, at all G in some convex neighborhood of F in F+, such that F̂ lies in the neighborhood
with probability approaching one. We again parametrize the segment from F to F̂ by
F̂ (t) = F + t(F̂ − F ), 0 ≤ t ≤ 1. Then if F̂ lies in the neighborhood, we can expand in a
Taylor series, as in Theorem 2:

T (F̂ )− T (F ) = T [F̂ (1)]− T [F̂ (0)]

=
dT

dt

∣∣∣∣∣
t=0

+
1

2

d2T

dt2

∣∣∣∣∣
t=t̂

=
∫

T ′(F, x) d(F̂ − F )(x)

+
1

2

∫ ∫
T ′′(F̂ (t̂), x, y) d(F̂ − F )(x)d(F̂ − F )(y)
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for some 0 ≤ t̂ ≤ 1. For large n, F̂ is near F , so we would expect T ′′(F̂ (t̂), x, y) to be near
T ′′(F, x, y) in some sense. We write

n
{
T (F̂ )− T (F )−

∫
T ′(F, x) d(F̂ − F )(x)

}
(10)

− n

2

∫ ∫
T ′′(F, x, y) d(F̂ − F )(x) d(F̂ − F )(y)

=
n

2

∫ ∫ [
T ′′(F̂ (t̂), x, y)− T ′′(F, x, y)

]
d(F̂ − F )(x) d(F̂ − F )(y) .

We shall assume that the integral on the right side above converges to zero in probability.
As before, this is the missing step which can often be verified for a particular example. If
this assumption is true, then if either of the two expressions on the left side of (10) has a
limiting distribution, then both have the same limiting distribution.

We consider the second of these expressions. If we write

n(F̂ − F ) =
n∑

i=1

(δXi
− F ) ,

we have, using (9),

n2
∫ ∫

T ′′(F, x, y) d(F̂ − F )(x) d(F̂ − F )(y)

=
∑

i

∑
j

∫ ∫
T ′′(F, x, y) d (δXi

− F ) (x) d
(
δXj

− F
)

(y)

=
∑

i

∑
j

{
T ′′(F, Xi, Xj)−

∫
T ′′(F, Xi, y) dF (y)−

∫
T ′′(F, x, Xj) dF (x)

}

=
∑

i

∑
j

h(Xi, Xj) ,

where h is defined by the expression in brackets above. If we let

U =

(
n

2

)−1 ∑∑
i<j

h(Xi, Xj) ,

then U is a U -statistic of second order. We assume that Eh2(X, Y ) < ∞. We observe that
by the definition of h, E[h(X, Y )|Y = y] = 0. It follows from the work of Hoeffding (1948)
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that nU has a limiting distribution as n → ∞. Since Eh(X, Y ) = 0, the expected value of
the limiting distribution of nU is zero. We must also consider terms of the form h(X, X).
Let

B =
1

2

∫
T ′′(F, x, x) dF (x) .

We assume
∫
|T ′′(F, x, x)| dF (x) < ∞. Then 1

2
Eh(X,X) = B, and hence,

Z =
1

2n

∑
h(Xi, Xi)

P→ B .

The second expression on the left side of (10) now becomes

1

2n

∑
i

∑
j

h(Xi, Xj) = Z +
n− 1

2
U .

We conclude from the discussion above that this quantity has a limiting distribution whose
expected value is B. By (8), we have

E
{∫

T ′(F, x) d(F̂ − F )(x)
}

= 0,

so, as we remarked in Section 4, we have by (10) the following approximation for large n:

ET (F̂ ) ∼= T (F ) +
B

n
.

We call B the “asymptotic bias” of T (F̂ ).
We would like to estimate B, so that we can remove the bias term of order n−1 from

T (F̂ ). If we regard T ′′(F̂ , x, x) as an estimate of T ′′(F, x, x), a natural estimate of B is

1

2

∫
T ′′(F̂ , x, x) dF̂ (x) =

1

2n

n∑
i=1

T ′′(F̂ ,Xi, Xi) .

But this is just n times the IJK bias estimate, because in the notation of this section,

D̂ii =
d2T (F̂ + tδXi

)

dt2

∣∣∣∣∣
t=0

=
∫ ∫

T ′′(F̂ , x, y) dδXi
(x) dδXi

(y) = T ′′(F̂ , Xi, Xi) .

So the estimate above is nB̂(0).
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We now give conditions, similar to those in Theorem 3, under which the IJK and OJK
bias estimates converge to B.

Theorem 4. Suppose T is twice differentiable at F , and
∫
|T ′′(F, x, x)| dF (x) < ∞. Let

X1, . . . , Xn be i.i.d. with distribution F . Suppose that for all ε > 0 there is a convex set U
in F+ and a function A(x) such that T is twice differentiable at all G in U and

(a1) P [F̂ ∈ U ] → 1 as n →∞ ,

(a2) P [F̂(i) ∈ U, i = 1, . . . , n] → 1 as n →∞ ,

(b) For all G ∈ U and x ∈ S:

|T ′′(G, x, x)− T ′′(F, x, x)| ≤ A(x) ,
and (c) ∫

A(x) dF (x) ≤ ε .

Then,if B = 1
2

∫
T ′′(F, x, x) dF (x), as n →∞ we have for the IJK,

nB̂(0)
P→ B

and for the OJK

nB̂
P→ B .

Proof. For the IJK bias estimate, we have nB̂(0) = (2n)−1∑ T ′′(F̂ , Xi, Xi). If we fix ε > 0,
we obtain U and A(x) from the assumptions above. If we assume F̂ ∈ U , we have

∆ =
∣∣∣∣ 1

2n

∑
T ′′(F̂ ,Xi, Xi)−

1

2n

∑
T ′′(F, Xi, Xi)

∣∣∣∣
≤ 1

2n

∑ ∣∣∣T ′′(F̂ ,Xi, Xi)− T ′′(F, Xi, Xi)
∣∣∣

≤ 1

2n

∑
A(Xi) .

By (a1), (c) and Lemma 2, P [∆ < ε] → 1 as n → ∞. Therefore ∆
P→ 0, so nB̂(0) and

(2n)−1∑ T ′′(F, Xi, Xi) have the same limiting distribution. Since the latter expression is an

average of i.i.d. random variables, it converges in probability to B. Therefore, nB̂(0)
P→ B.

We now consider the OJK bias estimate. We write

β =
n2

n− 1
B̂ = n2

[
T̄ − T (F̂ )

]
= n

∑[
T (F̂(i))− T (F̂ )

]
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where T̄ = n−1 ∑ T (F̂(i)). We fix ε > 0 and obtain U and A(x) from the assumptions above.

For each i, we parametrize the segment from F̂ to F̂(i) as

F̂(i)(t) = F̂ + t(F̂(i) − F̂ ) = F̂ − t

n
δXi

,

where 0 ≤ t ≤ 1. If we assume F̂ and all F̂(i), and hence all F̂(i)(t), are in U , then for some
0 ≤ t̂i ≤ 1,

T (F̂(i))− T (F̂ ) =
dT [F̂(i)(t)]

dt

∣∣∣∣∣
t=0

+
1

2

d2T [F̂(i)(t)]

dt2

∣∣∣∣∣
t=t̂i

= − 1

n

∫
T ′(F̂ , x) dδXi

(x)

+
1

2n2

∫ ∫
T ′′(F̂(i)(t̂i), x, y) dδXi

(x) dδXi
(y)

= − 1

n
T ′(F̂ , Xi) +

1

2n2
T ′′(F̂(i)(t̂i), Xi, Xi) .

Since
∑

T ′(F̂ , Xi) = 0, we can write

β =
1

2n

∑
T ′′(F̂(i)(t̂i), Xi, Xi) .

If we let

∆ =
∣∣∣∣ 1

2n

∑
T ′′(F̂(i)(t̂i), Xi, Xi)−

1

2n

∑
T ′′(F, Xi, Xi)

∣∣∣∣ ,

then by (a2) and the same argument used above for the IJK, we see that ∆
P→ 0, so that

the two sums in its definition have the same limiting distribution. Therefore, β
P→ B, from

which it follows that nB̂
P→ B also, and the proof is complete.

We can apply Theorem 4 to complete the proof of Theorem 2 by an argument analogous
to that given above for applying Theorem 3 to Theorem 1. We remark, as we did for the
discrete case, that under the conditions of Theorems 3 and 4, if the original estimate has
asymptotic variance V , then both forms of jackknifed estimate do also.

6 Some extensions and open questions.

A number of questions are raised by the jackknife procedures. For example: Which is better,
the IJK or the OJK? Since for large n they are nearly the same, the choice of which to use
would probably depend on which is easier to compute. Does the bias correction increase
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or decrease the mean squared error of the estimate? Does the variance estimate (or bias
estimate) have a bias in it? Could that bias be removed by jackknifing? Could we esti-
mate the variance of the variance estimate this way? Such an estimate would be of interest
because it could be converted into an approximate “degrees of freedom”, with which we
could studentize the original estimate or form a confidence interval. Some recent work has
appeared on higher order bias reduction. See Gray, Watkins and Adams (1972). Analogous
IJK procedures could presumably be defined by considering higher order derivatives. If T (F̂ )
is asymptotically normal, the IJK or OJK variance estimate gives us a normal approxima-
tion to the distribution of T (F̂ ) for sample size n. It may be possible to improve on this
approximation by considering higher order terms in the Taylor expansions of Sections 4 and
5.

In Section 2 we defined the IJK by analogy with the OJK. Then, in Sections 4 and 5,
when we derived the asymptotic variance and bias of T (F̂ ), we saw that the IJK estimates
of these quantities were in a sense their natural estimates. So if we want to apply the IJK
method to other problems, it appears that what we should do is first derive the asymptotic
variance (or bias, or other quantity) of the estimate by considering derivatives as in Sections 4
and 5, and then try to find an estimate of the quantity thus derived. For example, consider
the following situation:

Suppose we estimate more than one parameter from the sample, and we want to estimate
their joint moments. For example, suppose we have two statistics T and U , which we write
in the notation of Section 4 as

T (F̂ ) = T (F ) +
∑

i

(
Ŵi −

1

M

)
DT

i + . . .

and

U(F̂ ) = U(F ) +
∑
j

(
Ŵj −

1

M

)
DU

j + . . . ,

and suppose we want to estimate their covariance. We write

E
{
[T (F̂ )− T (F )][U(F̂ )− U(F )]

}
∼= E

∑
i

(
Ŵi −

1

M

)
DT

i ·
∑
j

(
Ŵj −

1

M

)
DU

j


= E

∑
j

(
Ŵj −

1

M

)2

DT
j DU

j +
∑∑

i6=j

(
Ŵi −

1

M

)(
Ŵj −

1

M

)
DT

i DU
j


=

1

nM

∑
DT

j DU
j .
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We can estimate this quantity by
1

n2

n∑
i=1

D̂T
i D̂U

i ,

if T and U are well behaved. So the IJK gives us an estimate of the covariance of the two
statistics.

Miller (1964) showed that certain functions of the sample mean can be jackknifed. This
result was extended to functions of U -statistics by Arvesen (1969). We can ask the following
more general question: Given a statistic T which can be jackknifed, and a sufficiently smooth
function h, can we jackknife U = h(T )? We shall consider this question for the IJK variance
estimate. We shall see that the result of jackknifing U is the same as for an alternative
method, which we now describe. If we expand h[T (F̂ )] in a Taylor series

U(F̂ ) = h[T (F̂ )] ∼= h[T (F )] + [T (F̂ )− T (F )] · h′[T (F )] ,

we see that
Var U(F̂ ) ∼= Var T (F̂ ) · {h′[T (F )]}2

.

So if V̂ T (0) is the IJK estimate of Var T (F̂ ), an estimate of Var U(F̂ ) would be

V̂ T (0) ·
{
h′[T (F̂ )]

}2
.

If we apply the IJK directly to U(F̂ ), we find, using the notation of Section 4,

∂U

∂wi

=
dh(T )

dT
· ∂T

∂wi

and

D̂U
i =

∂U

∂wi

∣∣∣∣∣
wj=

1
n

, j=1,...,n

= h′[T (F̂ )] · D̂T
i ,

so that

V̂ U(0) =
1

n2

∑ (
D̂U

i

)2
=

1

n2

∑ (
D̂T

i

)2
· {h′[T (F̂ )]}2

= V̂ T (0) · {h′[T (F̂ )]}2 .

This is the same as the estimate obtained by the Taylor series method above.
A similar computation can be done for the estimated bias in h[T (F̂ )].
In this paper we have restricted ourselves to models with independent observations. But

if we look back at the Taylor expansion (5), we see that all we really need to know are the
expectations, variances, and covariances of the Ŵj. So we may be able to apply the IJK in
some models where we do not have independence, so long as we have sufficient information
about the Ŵj.
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7 A more general model.

We now consider a more general situation, in which the Xi are not identically distributed
and T is not symmetric in its arguments. We follow the procedure mentioned in Section 6;
that is, we approximate the variance using derivatives, and then we find an estimate for that
variance expression. A particular example, which we shall consider in detail, is the problem
of estimating the variance of the estimated slope of a regression line.

Suppose the Xi, i = 1, . . . , n are independent, and the distribution of Xi is Fi. We assume
that each Fi is discrete, and that for each i,

P (Xi = zij) =
1

M
, j = 1, . . . ,M .

We define the random variable Ŵij by

Ŵij =

 1 if Xi = zij

0 otherwise.

Then

EŴij =
1

M
, Var Ŵij =

1

M

(
1− 1

M

)
,

Cov(Ŵij, Ŵi`) = − 1

M2
for j 6= ` ,

and
Cov(Ŵij, Ŵk`) = 0 for i 6= k .

To make the notation here more like that of Section 4, we write

F = (F1, . . . , Fn),

and
F̂ = (F̂1, . . . , F̂n),

where F̂i is simply the distribution which assigns probability one to Xi. We can then think
of the estimate T (F̂ ) as a function of the Mn random variables {Ŵij}. The quantity to be
estimated is then T (F ). We assume T (cG) = T (G).

We now write down the Taylor expansion, through first derivatives only. We have

T (F̂ ) = T (F ) +
n∑

i=1

M∑
j=1

(
Ŵij −

1

M

)
Dij + . . . ,
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where

Dij =
∂T

∂Wij

∣∣∣∣∣
Wk`=

1
M

, k=1,...,n, `=1,...,M

.

We assume that the model is well behaved, in the sense that for each n we have a model
defined for that n, such that as n →∞ this sequence of models converges to some “asymp-
totic model”. Then if T is well behaved, the asymptotic variance of T may be found from
the expansion above. We have

Var T (F̂ ) ∼=
∑

i

∑
j

∑
k

∑
`

Cov(Ŵij, Ŵk`)DijDk` (11)

=
∑

i

∑
j

Var Ŵij ·D2
ij +

∑∑
j 6=`

Cov(Ŵij, Ŵi`)DijDi`


=

∑
i

 1

M

∑
j

D2
ij −

1

M2

∑
j

∑
`

DijDi`


=

∑
i

 1

M

∑
j

D2
ij −

 1

M

∑
j

Dij

2
 .

Note that
∑

j Dij is not necessarily zero.
To estimate the variance, we must somehow estimate the above expression from the

observations, as we did in the i.i.d. case. A little thought shows that this is not as simple
as before. In the i.i.d. case, F̂ was an estimate of F . But here we have a different Fi

for each observation, and the best estimate we have of it is F̂i, which we defined above to
have all of its weight at Xi. It seems that we can surmount this problem only if there are
some additional restrictions imposed on the model. To illustrate this difficulty, we consider
estimating the slope of a regression line.

Let ti, i = 1, . . . , n be a set of n distinct numbers such that∑
ti = 0 and

∑
t2i = 1 . (12)

Let Xi, i = 1, . . . , n be independent, with discrete distribution Fi as described above, and
suppose that

EXi = α + βti, i = 1, . . . , n ,

for some unknown α and β. We estimate β by

β̂ = T (F̂ ) =

∑
(ti − t̄)(Xi − X̄)∑

(ti − t̄)2
.
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We state the definition in this general form because when we vary the weights, as we do
below when we differentiate, then (12) will not hold in general. Using our notation, we shall
see that we can write

T (F ) =
n∑

i=1

ti

 1

M

M∑
j=1

zij


=

∑
ti(α + βti) = β .

So we are estimating T (F ) by T (F̂ ), as in the i.i.d. case.
We now derive Var β̂, which is the quantity we wish to estimate. Let σ2

i = Var Xi. Then

Var β̂ =
∑

i

t2i σ
2
i .

If we find the variance using (11), we should obtain approximately the same result. We begin
by writing T as a function of the Mn weights, Wij. We write

t̄ =

∑
i ti

∑
j Wij∑

i

∑
j Wij

and X̄ =

∑
i

∑
j zijWij∑

i

∑
j Wij

.

We then have

T ({zij}, {Wij}) =

∑
i (ti − t̄)

∑
j (zij − X̄)Wij∑

i (ti − t̄)2
∑

j Wij

(13)

=
(
∑∑

Wij) (
∑

ti
∑

zijWij)− (
∑

ti
∑

Wij) (
∑∑

zijWij)

(
∑∑

Wij) (
∑

t2i
∑

Wij)− (
∑

ti
∑

Wij)
2 =

N

D
.

If all of the Wij are 1/M , we have T = β, the true value of the parameter. We now
differentiate.

∂T

∂Wk`

=
1

D2

{
D

[∑
ti
∑

zijWij +
(∑∑

Wij

)
tkzk`

− tk
∑∑

zijWij −
(∑

ti
∑

Wij

)
zk`

]

−N
[∑

t2i
∑

Wij +
(∑∑

Wij

)
t2k − 2

(∑
ti
∑

Wij

)
tk
]}

Letting Wij = 1
M

for all i and j, we find N = nβ and D = n, so

Dk` =
1

n2

{
n [β + ntkzk` − nαtk]− nβ

[
1 + nt2k

]}
= tk (zk` − α− βtk) .
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We can now find the variance given by (11). We have

Var β̂ ∼=
∑

i

 t2i
M

∑
j

(zij − α− βti)
2 −

 ti
M

∑
j

(zij − α− βti)

2


=
∑

i

t2i σ
2
i ,

exactly the same quantity that we found directly above.
We would like to estimate this quantity from the observations. So we think of attaching

a weight vi to each observation and taking derivatives with respect to them, as in the i.i.d.
case. If we write β̂ using these n weights, we have

β̂({Xi}, {vi}) =

∑
(ti − t̄)(Xi − X̄)vi∑

(ti − t̄)2vi

(14)

=
(
∑

vi) (
∑

tiXivi)− (
∑

tivi) (
∑

Xivi)

(
∑

vi) (
∑

t2i vi)− (
∑

tivi)
2 =

N

D
,

where

t̄ =

∑
tivi∑
vi

and X̄ =

∑
Xivi∑
vi

.

Note the difference between this expression and (13), where we had Mn weights. (Actually,
(14) is a special case of (13); if we define the Wij in (13) to be vi if Xi = zij and 0 otherwise,
we have (14).) We can now differentiate (14) as we did for (13). We have

∂β̂

∂vk

=
1

D2

{
D
[∑

tiXivi +
(∑

vi

)
tkXk − tk

∑
Xivi −

(∑
tivi

)
Xk

]

−N
[∑

t2i vi +
(∑

vi

)
t2k − 2

(∑
tivi

)
tk

]}
.

Letting vi = 1 for all i, and letting α̂ = 1
n

∑
Xi, we find N = nβ̂ and D = n, so

D̂k =
1

n2

{
n
[
β̂ + ntkXk − ntkα̂

]
− nβ̂

[
1 + nt2k

]}
= tk

(
Xk − α̂− β̂tk

)
.

Since we assumed that EXi = α + βti, we have
∑

j Dij = 0 in (11), so the quantity we
must estimate is

V =
∑

i

 1

M

∑
j

D2
ij


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=
∑

i

t2i ·
1

M

∑
j

(zij − α− βti)
2 .

Our estimate of the variance is

V̂ =
∑

i

D̂2
i =

∑
i

t2i (Xi − α̂− β̂ti)
2 .

This is the IJK estimate of the variance of β̂. If we had not assumed
∑

j Dij = 0, we could
not have estimated (11), unless there were more than one observation for each ti so we could
form a “within groups” measure of variance. However, if the assumed model did not hold,
we could presumably use V̂ as an estimate of the mean square error of β̂, as in classical
regression analysis. We see that V̂ is not the same as the classical estimate

S2 =
1

n− 2

∑
(Xi − α̂− β̂ti)

2 ,

in deriving which all the σ2
i are assumed equal. V̂ is more general, however, since it applies

for arbitrary σ2
i . If all of the σ2

i are equal, we see that for large n and well behaved ti, t2i and
(Xi − α̂− β̂ti)

2 are nearly uncorrelated, so we have

1

n

∑
t2i (Xi − α̂− β̂ti)

2 ∼=
(

1

n

∑
t2i

)
· 1

n

∑
(Xi − α̂− β̂ti)

2 ,

so that V̂ ∼= S2.
We can now see the problem referred to earlier. We are estimating V , a sum containing

Mn terms, by V̂ , a sum of n terms. In the i.i.d. case, each D̂2
i could be regarded as an

estimate of the corresponding D2
i , whereas here each individual D̂2

i may be nowhere near
1
M

∑
j D2

ij. Thus we must impose conditions on the model to insure that in the aggregate

the D̂2
i may serve as estimates of the 1

M

∑
j D2

ij, so that V̂ will be a good estimate of V . For
example, if Fi changes in some gradual, regular way as i varies, then we may have a kind
of redundancy in the model which would allow us to estimate V by V̂ . In the regression
example above, if we assume that the ti are well behaved in the sense that no small subset
of the ti contribute an unduly large amount to

∑
t2i , and if we make a similar assumption

about the σ2
i , then V̂ should be a reasonably good estimate of V .

If we want to derive asymptotic results, such as that V̂ converges to the same limit that
V converges to as n → ∞, then we not only need conditions similar to those described
in Sections 4 and 5, but we also need to impose on the model conditions of the kind just
discussed.

We could also define an OJK variance estimate analogous to the IJK estimate above.
As we remarked in Section 5, the differences formed by recomputing the estimate with an
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observation omitted may be thought of as approximations to the D̂i, and thus may be used
to form an OJK variance estimate.
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