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We study the properties of nonparametric least squares regression us-
ing deep neural networks. We derive non-asymptotic upper bounds for the
prediction error of the empirical risk minimizer of feedforward deep neu-
ral regression. Our error bounds achieve minimax optimal rate and improve
over the existing ones in the sense that they depend polynomially on the di-
mension of the predictor, instead of exponentially on dimension. We show
that the neural regression estimator can circumvent the curse of dimension-
ality under the assumption that the predictor is supported on an approximate
low-dimensional manifold or a set with low Minkowski dimension. We also
establish the optimal convergence rate under the exact manifold support as-
sumption. We investigate how the prediction error of the neural regression
estimator depends on the structure of neural networks and propose a notion
of network relative efficiency between two types of neural networks, which
provides a quantitative measure for evaluating the relative merits of different
network structures. To establish these results, we derive a novel approxima-
tion error bound for the Holder smooth functions using ReL.U activated neu-
ral networks, which may be of independent interest. Our results are derived
under weaker assumptions on the data distribution and the neural network
structure than those in the existing literature.

1. Introduction. Consider a nonparametric regression model

1) Y = fo(X) +n,

where Y € R is a response, X € R? is a d-dimensional vector of predictors, fo: [0,1]¢ — R
is an %rm\w_rg regression function, 7 is an error with mean 0 and finite variance o*, inde-
pendent of X . A basic problem in statistics and machine learning is to estimate the unknown
target regression function fj based on a random sample, (X;,Y;),i=1,...,n, where n is the
sample size, that are mWW) as ( X Y
There is a vast literature on nonparametric regression based on minimizing the empiri-
cal least squares loss function, see, for example, Nemirovski, Polyak and Tsybakov (1985),
Van de Geer (1990), Birgé and Massart (1993) and the references therein. The consistency
of the nonparametric least squares estimators under general conditions was studied by
Geman and Hwang (1982), Nemirovski, Polyak and Tsybakov (1983), Nemirovski, Polyak and Tsybakov
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(1984), Van de Geer (1987) and Van de Geer and Wegkamp (1996), among others. In the
context of pattern recognition, comprehensive results concerning empirical risk minimization
can be found in Devroye, Gyorfi and Lugosi (1996) and Gyorfi et al. (2002). In addition to
the consistency, the convergence rate of the empirical risk minimizers was analyzed in many
important works. Examples include Stone (1982), Pollard (1984), Rafaj (1987), Cox (1988),
Shen and Wong (1994), Lee, Bartlett and Williamson (1996), Birgé and Massart (1998) and
Van de Geer (2000). These results were generally established under certain smoothness as-
sumption on the unknown target function fy. Typically, it is assmmder
class with a smoothness index 3 > 0 (8-Holder smooth), i.e., all the partial derivatives up
to order | 3] exist and the partial derivatives of order | 3] are 3 — | 3] Holder continuous,
where | 5| denotes the largest integer strictly smaller than 3. For such an fj, the optimal con-
vergence rate of the prediction error is Cyn~28/(26+d) under mild conditions{(Stone,-1982),
where Cy is a prefactor independent of n but depending on d and other model parameters.

[ ’Q/N‘ In low-dimensional models with a small d, the impact of Cy; on the convergence rate is not
(A 03

T

significant, however, in high-dimensional models with a large d, the impact of C; can be
substantial, see, for exam horbani et al. (2020). Therefore, it is crucial to elucidate how
this prefac s on the dimensionality so that the error bounds are meamngful n the
high-dimensional settings.

Recently, several elegant and stimulating papers have studied the convergence propertles
of nonparametric regression estimation based on neural network approximation of the regres-
sion function f; (Bauer and Kohler, 2019; Schmidt—H'@lzet,/ 2019, 2020; Chen et al., 2019;
Kohler, Krzyzafand Langer, 2019; Nakada and Imaizumi, 2020; Farrell, Liang-and Misra,
2021). These works show that eural network regression can achiéﬁtg; optimal-
minimax rate established by m% under certain conditions. However, the conver-
ence rate can be extremely E}e’;vﬁlen the dimensionality d of the predictor X is high.

Q

nown problem of curse of dimensionality in high-dimensions without any conditions on

(1' herefore, nonparametric regression using deep neural networks cannot escape the well-
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the underlying model. There has been much effort devoted to deriving better convergence
rates under certain assumptions that mitigate the curse of dimensionality./ There are two
main types of assumptions in the existing literature: structural assumptions on the target
function fq (Schmidt-Hieber, 2020; Bauer and Kohler, 2019; Kohler, Krzyzak and Langer,
2019) and distributional assumptions on the input X (Schmidt-Hieber, 2019; Chen et al.,
2019; Nakada and Imaizumi, 2020). Under either of these assumptions, the convergence rate
Cyn~28/8+) could be improved to Cy 4-n—28/(28+4") for some d* < d, where Cy 4- is
Mnding on (d*,d) and d* isthe intrinsic dimension of fj or the intrinsic di-
mension of the support of the predictommon between our
results and the existing results in Section 7.

In this paper, we study the properties of nonparametric least squares regression using deep
neural networks. Our main contributions are as follows:

(i) We derive a novel approximation error bound for the Holder smooth functions with
smoothness index 3 > 0 using RelLU activated neural networks. Our work builds on
the results of Shen, Yang and Zhang (2020) and Lu et al. (2021). Shen, Yang and Zhang
(2020) derived approximation error bound with prefactor depending on d polynomially
for Holder continuous functions (with smoothness index 3 € (0,1]). Lu et al. (2021) de-
rived approximation error bound explicitly in network depth and width for higher-order
smooth functions (with smoothness index B > 1 being positi\L/'e integer) but with prefactor
depending on d ¢xponential éor 8 > 1, the prefactor of our error bound is significantly

improved in the sense that it de;egds oﬁ/ polynomially instead of exponenua}lr@]Thm

approximation result is of independent interest and may be useful in other problem
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(i) We alleviate the curse of dimensionality by assuming that X is supported on an ap-
proximate low—dlmen§10nal manifold. Under such an approximate Tow-dimensional man-
ifold support assumption, we show that the rate of convergence O(n‘Qﬁ/ (26+d)) can be

\/}\) improved to O(n_%/éjf”d”‘ log(d))) " where dpq is the intrinsic dimension of the low-

dimensional manifold and 5 > 0 is the order of the Holder-smoothness of fy. Moreover,
under the exact manifold support assumption, we established a result that achieves the
optimal rate O(n_w/ (25+dM)) (up to a logarithmic factor) with a prefactor only de-
pending linearly on d. We also consider a low Minkowski dimension ion as in
Nakada and Imaizumi (2020) and derive an error bound that alleviates the curse of di-
memwork architectures and using a different proof technique.

(iii)) We derive ¢xplicitly how the error bounds are determined by the neural network param-
eters, includii; width, the depth and the size of the network. We propose a notion of
network relative efficiency between two types of neural networks, defined as the ratio of
the logarithms of the network sizes needed to achieve the optimal convergence rate. This
provides a quantitative measure for evaluating the relative merits of ne struﬁs.

r

the problem and the class of ReLU activated feedforward neural networks used in estimat-
ing the regression function. In Secmemmﬁmm excess risk in
terms of the stochastic and approximation errors aMﬁWs
oWWoximation error bound for the Holder smooth
functions with smoothness index 5 > 0 using ReL.U activated neural networks%ln Section 4
we provide sufficient conditions under which the neural regression estimator-possesses the
basic consistency property, establish non-asymptotic error bounds for the neural regression
estimator using deep feedforward neural networks. In Section 5 we present the results on how
the error bounds depend on the network structures and propose a notion of network relative
efﬁcien’cy/bchTeén two types of neural networks, defined as the ratio of the logarithms of the

network 31 eeded to achieve the optimal convergence rate. This can be used as a quan-

tive measure for evaluating the relative merits of different network structures ection
e show that the neural regression estimator can circumvent the curse of dimensionality

if the data_distribution is supporte ximate) low-dimensional manifold or a set
with a low_Minkowski dimension. Detailed comparison between our results and the related
works are presented in section 7. Concluding remarks are given in section 8.

2. Preliminaries. In this section, we present the basic setup of the nonparametric re-
gression problem and define the excess risk and the prediction error for which we wish to
establish the non-asymptotic error bounds. We also describe the structure of feedforward
neural networks to be used in the estimation of the regression function.

2.1. Least squares estimation. A basic paradigm for estimating fy is to minimize the
mean squared error or the Lo risk. For any (random) function f,let Z = (X,Y") be a random
vector independent of f. The Lo risk is defined by L(f) =Ez|Y — f(X)|?. At the population
level, the least-squares estimation is to find a measurable function f*: R? — R satisfying

= argm}nL(f) = argm}nEz\Y - f(X)|2

Under the assumption that E(n|X) = 0, the underlying regression function fy is the optimal
solution f* on X'. However, in applications, the distribution of (X,Y) is typically unknown
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and only a random sample S = {(X;,Y;)}? ; is available. Let
,\___\

2) v Z\Y F(X)P/n

be the empirical risk of f on the sample S. Based on the observed random sample, our pri-
mary goal is to construct an estimators of fy within a certain class of functions ;, by min-
imizing the empirical risk. Such an estimator is called the empirical risk minimizer (ERM),
defined by ~———

3 f, € arg min L .
3) Jn € arg min Ln(f)

~—
Throughout the paper, we choose 7, to be a function class consisting of feedforward neural
networks. For any estimator f,, we evaluate its quality via its excess risk, defined as the
difference between the Lo risks of f,, and fj,

b L(fa) = L(fo) =Ez|Y — fu(X)]> —Ez|Y — fo(X)|*.

Because of the simple form of the least squares loss, the excess risk can be simply expressed
as

© 1o = follZay = ExIfa(X) = fo(X)I2,

where v denotes the marginal distribution of X. A good estimator fn should have a small ex-
cess risk || f, — fol|? 72(v)- Thereafter, we focus on deriving the non-asymptotic upper bounds

of the excess risk [[f,, — foll? 12() and the pre(hctlonerror//wL

f

2.2. ReLU feedforward neural networks. In recent years, deep neural network model-
ing has achieved impressive successes in many applications. Also, neural network functions
have proven to be an effective approach for approximating high-dimensional functions. We
consider regression function estimators based on the feedforward neural networks with rec-
tified linear unit (ReLU) activation function. Specifically, we set the function class be

Fpwu.s,B, aclass of feedforward neural networks fy : R® — R with parameter ¢, depth D,
width WV, size S. number of neurons U and fy satisfying || f4|oc < B for some 0 < B < oo,

where || f|o is the sup-norni of a function f. Notl I at the network parameters may depend

on the sample size n, but the dependence 1s O n the notation for simplicity. A brief
description of the feedforward neural networksare given below. —

We begin with the multi-layer perceptron (MLP), an important and widely used subclass
of feedforward neural networks in practice. The architecture of a MLP can be expressed as a
composition of a series of functions

W ogoLy(z), x € W
where pg = d and o(x max(0,z) is the recti inéar unit (ReLU) activation function

(defined for each component of x if = is a vector) and L;(z) = Wz + b;,i =0,1,...,D,
where W; Weumns or compu-
tational units) of the7-th Tayer, and b; € RP:+! is the bias vector in the ¢-th linear transfor-
mation £;. The input data consisting of predictor values X is the first layer and the output
is\thC\@t/lg& Such a network f, has D hi layers and (D + 2) layers in total. We
use a (D + 2)-vector (pg,p1,...,pp,ppy1)  to describe the width of each layer; partic-
ularly, po = d is the dimension of the input X and ppy; = 1 is the dimension of the re-

sponse Y in model (1). The width W is defined as the maximum width of hidden layers,
i.e., W=max{py,...,pp}; the size S is defined as the total number of parameters in the
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network fy, i.e., S = lezo{piﬂ X (p; + 1)}; the number of neurons ¢ is defined as the
number of computational units in hidden layers, i.e., U = Zz‘21 p;. Note that the neurons in
consecutive layers of a MLP are connected to each other via linear transformation matrices
W;,1=0,1,...,D. In other words, an MLP is fully connected between consecutive layers
and has no other connections. For an MLP class Fp 14,y s 5, its parameters satisfy the simple

relationship N Al W V\ff/t/‘)ﬂ:l) onpeT
max{W, D} <S < W(d+ 1) + W? + W)(D - 1) @: oW?*D).

The network parameters can depend on the sample size n, thatis, S = S,,, D =D,,, W =W,
and B = B,,. This makes it possible to approximate the target regression function by neural
networks as n increases. For notational simplicity, we omit the subscript below. The approx-
imation and excess error rates will be determined in part by how these network parameters
depend on n.

Different from multilayer perceptrons, a general feedforward neural network may not be

fully connected. For such a network, each neuron in layer ¢ may be connected to only a
small subset of neurons in layer ¢ + 1. The total number of parameters S is reduced and the
computati@fmﬂeqummm
Though our discussion focuses on multi-layer perceptrons due to their simplicity, our
theoretical results are valid for general feedforward neural networks. Moreover, our results
for ReLU networks can be extended to networks with piecewise-linear activation functions

without further difficulty, based on the approximation results (Yarotsky, 2017) and the VC-
dimension bounds (Bartlett et al., 2019) for piecewise linear neural networks.

3. Basic error analysis. In this section, we present a basic inequality for the excess risk
in terms of the stochastic and approximation errors and describe our approach to the analysis
_of these errors.

I]J 5“

M\

3.1. A basic inequality. To begin with, we give a basic upper bound on the ex-

st term of the right hand side is the sfochastic error, and the second term is the ap-
he stochastic error depends on the estimator f,,, which measures the
the error of f,, and the best one in F,,. The approximation error depends on

nction class F,, and the tar 0, which measures how well the function f; can be

,% ) pproximated using JF;, with respec e loss L. R
/ For least squares estimation, the loss function L is the Lo loss and fr is the ERM defined
i We firstly establish an upper bound on the excess risk of f,, with least squares loss.
p T e e
9

LEMMA 3.1.  For any random sample S = {(X;,Y;) }I_,, the excess risk of ERM satisfies
Bl fo — foll2a)] = Es[L(f2) — L(fo)]
< Es[L(fo) = 2Lu(fn) + L(fa)] + 2 inf If - follZzwy- &

By Lemma 3.1, the excess risk of ERM isoiaounded above by the sum of two terms:

the stochastic error bound Eg[L — 2L, (fn) + L(f,)] and the approximation error
—
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infrer, || f — foH%Q(V). The first term Eg[L(fo) — 2Ln(fyn) + L(f»)] can be bounded by
the complexity of F,, using the empirical process theory (Van der Vaart and Wellner, 1996;
Anthony and Bartlett, 1999; Bartlett et al., 2019). The second term inf¢cz, || f — fOH%Q(V)
measures the approximation error of the function clags F,, to fo. The approximation of high-
dimensional functions using neural networks has bezlS studied by many authors, some recent
works include Yarotsky (2017, 2018); Shen, Yang and Zhang (2019, 2020); Lu et al. (2021);
Shen, Yang and Zhang (2022), among others.

—_—

3.2. Stochastic error. In this subsection, we focus on the stochastic error of ERM imple-
mented using the feedforward neural networks and establish an upper bound on the prediction
error, or the expected excess risk. For the least-squares estimator of neural networks non-
parametric regression, oracle inequalities for a bounded response variable were studied by
Gyorfi et al. (2002) and Farrell, Liang and Misra (2021). Without the boundedness assump-

chmidt-Hieber (2020); Bauer and ived the oracle inequality for
We consider a sub-exponentially distributed Y.

ASSUMPTION 1. The response variable Y is sub-exponentially distribu i.e, there
exists a constant oy > 0 such that Eexp(oy|Y]) < oc.
c D

For a class F of functions: X — R, its pseudo dimension, denoted by Pdim(F), is the
largest integer m for which there exists (xl,...,:ém,yl,...,ym) € A™ x R™ such that
for any (by,...,by) € {0,1}™ there exists f € F such that Vi : f(z;) >y, < b =1
(Anthony and Bartlett, 1999; Bartlett et al., 2019). For a class of real-valued functions gen-
erated by neural networks, pseudo dimension is a natural measure of its complexity. In
particular, if 7 is the class of functions generated by a neural network with a fixed grchi-

tecture and f@aﬁon functigns, we have Pdim(F) = VCdim(F) (Theorem 14.1 in

Anthony and/Bartlett ¥1999)) where VCdim(F) is the VC dimension of F. In our results,

we require th ple size n to reater than the pseudo dimension of the #ass of neural
networks considered.

20 P~
For a given sequence = = (1, ...,x,) € X", let F | = {( . fef } be
the subset of R™. For a positive number g, let N (0, || - ||OO,]: |z ) be the coverlng number
of F,|, under the norm || - || with radius d. Define the uniform covering number N, (4, || -
|00, Fr) to be the maximum over all zz € X of the covering number N (6, || - ||oo, Frlz)s i-€-,

) Na(0, 1]+ lloos Fn) = max{N (5, [ - lloos Fnlz) : & € X'}

LEMMA 3.2. Consider the d-variate nonparametric regression model in (1) with an un-
known regression function fo. Let F,, = Fp wu.s,B be the class of feedforward neural net-
works with a continuous piecewise-linear activation function with finitely many inflection
points and f, € argmingscr, L, (f) be the empirical risk minimizer over F,. Assume that
Assumption 1 holds and || fo||cc < B for B> 1. Then, for n > Pdim(F,)/2,

5) ES[L(fO) - 2Ln(fn) + L(fn)] < 0084(1()%”)4 %log/\/én(n_l, H : Hom]:n)a

where co > 0 is a constant independent of d, n, B, D, W and S, and
R 1
2 5 5 . 2
©  Ellfa— follia) < CoBlogn)® ~SDlog(S) +2 int I = fllt(

where Cy > 0 is a constant independent of d, n, B, D, VW and S.

o3
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The stochastic error is bounded by a term determined by the metric entropy of %, in
(5), which is measured by the covering number of F,,. To obtain (6), we further bound the
covering number of ¥, by its pseudo dimension (VC dimension). Based on Bartlett et al.
(2019), the pseudo dimension (VC dimension) of F,, with piecewise-linear activation func-
tion can be further contained and represented by its parameters D and S, i.e., Pdim(F,) =
O(SDlog(S)). This leads to the upper bound for the prediction error by the sum of the
stochastic error and the approximation error of F,, to fp in (6).

Results similar to Lemma 3.2 with slightly different constants have been obtained for a
bounded Y in Gyorfi et al. (2002) and a sub-Gaussian Y in Bauer and Kohler (2019) and
Schmidt-Hieber (2020).

_—

3.3. Approximation error. The approximation error depends on F, = Fpwuy.s,B8
through its parameters and is related to the smoothness of fy. The existing works on ap-
proximation posit different smoothness assumptions on fy. For example, Bauer and Kohler
(2019) assume that fj is S-Holder smooth with 5 > 1, i.e., all partial derivatives of fy up
to order |3] exist and the partial derivatives of order |3] are § — |3] Holder continu-
ous. Farrell, Liang and Misra (2021) requires that f; lies in a Sobolev ball with smooth-
ness 3 € N*, ie., fo(x) € WH®([-1,1]¢). Approximation theories on Korobov spaces
(Mohri, Rostamizadeh and Talwalkar (2018)), Besov spaces (Suzuki, 2018) or function space
with fo € CP[0,1]¢ with integer 3 > 1 can be found in Liang and Srikant (2016), Lu et al.
(2017), Yarotsky (2017) and Lu et al. (2021).

Here, we assume that fy is a S-Holder smooth function as stated in Assumption 2 below.
We aim to develop an approximation theory by utilizing the smoothness of f; and obtain an
explicit approximation error bound in terms of the network depth and width with an improved
prefactor compared to previous results.

Let B=s+r>0,r € (0,1 and s = | 3| € Ny, where || denotes the largest integer
strictly smaller than 8 and Ny denotes the set of non-negative integers. For a finite constant
By > 0, the Holder class of functions #”([0,1]%, By) is defined as

@) HB([Oa 1]daBO)

= {f:[O, 11 5 R, max, 10% flloo < Bp, max sup‘ 1) —an(y)| < Bo},
a2 < ol =5 zy lz —yll5

where 9 = 9% ... 9% with a = (v1,...,aq) " € Nd and ol = 3%, a;.

ASSUMPTION 2 (Holder smoothness). The target function fj belongs to the Holder class
#5([0,1]¢, By) defined in (7) for a given 3 > 0 and a finite constant By > 0 .
r\’_———

Under Assumption 2, all partial derivatives of fy up to the |3]-th order exist. When [ €
(0,1), fo is a Holder continuous function with order 8 and Holder constant By; when = 1,
fo 1s a Lipschitz function with Lipschitz constant By; when 8 > 1, fo belongs to the C'* class
(class of functions whose s-th partial derivatives exist and are bounded) with s = | 5].

In this work, the function class F,, consists of the feedforward neural networks with
the ReLU activation function. An important result on deep neural network approximation
proved by Yarotsky (2017) is the following: for any € € (0,1), any d, 8, and any fj in the
Sobolev ball W#>°([0,1]%) with 3 > 0, there exists a ReLU network f with depth D at most
c{log(1/e) + 1}, size S and number of neurons I/ at most ce ~4/8{log(1/¢) + 1} such that
I1f = folloo = max,e[o,1)4 |f(x) — fo(z)| < e, where ¢ is some constant depending on d and

(. In particular, it is required that the constant ¢ = O(2%), an exponential rate of d, due to
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the technicality in the proof. The main idea of Yarotsky (2017) is to show that, small neu-
ral networks can approximate polynomials well locally, and stacked neural networks (by 2¢
small sub-networks) can further approximate smooth function by approximating its Taylor
expansions. Yarotsky (2018) derived the optimal rate of approximation for continuous func-
tions by deep ReLU networks in terms of the network size S and the modulus of continuity
of fo. It was shown that inf ;e 7, [|f — folleo < c1wy, (c2S™P/?) for some p € [1,2] and some
constants cq, ¢y possibly depending on d, p but not S, fo. The upper bound holds for any
p € (1,2] if the network F,, = Fp . s.5 satisfies D > c3SP~1/log(S) for some constant
c3 possibly depending on p and d. Shen, Yang and Zhang (2022) established the optimal
rate of approximation for Holder continuous functions by deep ReLU networks in terms
both width and depth. They showed by construction that deep ReLU networks with width
W = O((max{d|N'/?| N 4 2})) and depth D = O(L) can approximate a Holder con-
tinuous function on [0, 1]¢ with an approximation rate O(Bov/d(N?L?log N)~#/%), where
B € (0,1] and By > 0 are Holder order and constant, respectively.

Several recent studies have considered approximation properties of deep neural networks
(Chen, Jiang and Zhao, 2019; Nakada and Imaizumi, 2020; Schmidt-Hieber, 2019, 2020).
These studies used a construction similar to that of Yarotsky (2017). A common feature of
these results is that, the prefactor of the approximation error is of the order O(a?) for some
a > 2 and the size S or the width W of the network grows at least exponentially in d. Unfor-
tunately, a prefactor of the order O(a?) with a > 2 can be very large even for a moderate d,
which severely deteriorates the quality of the error bound. For example, for a typical genomic
dataset, the dimensionality d = 20,531 and the sample size n = 801 (Weinstein et al., 2013),
which leads to a prohibitively large prefactor.

Next, we present a new ReLU network approximation result for Hélder smooth functions
in H7([0,1]¢, By) with a prefactor in the error bound only depending on the dimension d

olynomially, i.e., dL#1+(BV1)/2,

|f(2) — do(x)| < 18Bo(|8] + 1)2dBI+BVI/2 (N N p)=28/d,

forall z € [0,1]\Q([0,1]%, K, §), where a\/ b := max{a, b}, [a] denotes the smallest integer
no less than a, and

d K-1
Q([0, 1%, K,0) = | J{z =[z1.22,....2d) " 12z € | (/K —6,k/K)},
i=1 k=1

with K = [(MN)?/*] and 6 an arbitrary number in (0,1/(3K)).

Theorem 3.3 is inspired by and builds on the work of Shen, Yang and Zhang (2020)
and Luetal. (2021). Similar to the results of Shen, Yang and Zhang (2020) and Lu et al.
(2021), the approximation error bound in Theorem 3.3 has the optimal approximation rate
(NM )_26/ . This error bound is non-asymptotic in the sense that it is valid for arbitrary
network width and depth specified by N and M. The error bound is also explicit since no
unknown or undefined paramefters are involved. Moreover, our error bound is given in terms
of the network width and depth, which is more informative than the bounds just in terms of
the network size as in many existing works.

However, the prefactor in the approximation error bound and the network width in The-
orem 3.3 are different from those in the result of Lu et al. (2021), who showed that, for
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a positive integer 3, and suppose that the network width and depth are chosen to be
16871 (N +2)logy(8N) and 1832 (M + 2) log, (4 M), respectively, the approximation error
bound is of the form 84(3 + 1)?8%(NM)~2%/4, The prefactor in this bound depends on d
exponentially through the term (3 4-1)?8”. In comparison, the prefactor in the error bound in
Theorem 3.3 depends on d polynomially through (| 3] +1)2d8/+(BV1)/2 This is a significant
improvement for a large d with a moderate 3, which is a probable situation in nonparametric
regression. Even in the unlikely case where 8 = O(d)-is-alarge number, our prefactor is still
comparable with O((5 4 1)487).

The basic idea of our proof follows that of Lu et al. (2021): we appreXimate a Holder
smooth function f using Taylor expansion locally over a discretization (of [0, 1]¢, however,
we have a more careful conme partial derivatives. € specifically,
our proof consists of three steps: (a) we first construct a network ¢ that discretizes [0, 1]d; (b)
we construct a second network ¢, to approximate the Taylor coefficient; (¢) We construct a
third network P, (x) to approximate the polynomial . Putting all these together, we use

o)=Y oe(2D poa—via)
el <s

\’_/’_/

to approximate f, where ¢ (-,-) is a network function approximating the product function
of two scalar inputs.

To use the information of higher order smoothness, the existing results such as Yarotsky
(2017) and Lu et al. (2021), are also based on the idea of approximating the Taylor expansion
of the target function locally on a discretized hyper cube. Two key components of the tech-
nique used in the proof affects the prefactor of the approximation error: (a) how the hyper
cube is discretized and the target function is locally approximated; (b) how the number of
partial derivatives is upper bounded. We use the method of discretization and local approx-
imation in Lu et al. (2021), which avoids the 2¢ prefactor appeared in Yarotsky (2017) and
Schmidt-Hieber (2020). At the same time, we changed the way of bounding the number of
partial derivatives, which leads to a O(d®) prefactor instead of O(8%(5 + 1)%) in Lu et al.
(2021) and O((2¢)%( 4 1)%) in Theorem 5 of Schmidt-Hieber (2020). The d? prefactor is
clearly an improvement over (3 + 1)¢ when d is large and 3 is moderate.

Based on Theorem 3.3, we can establish the approximation error bounds under the LP(v)
norm for p € (0, 00) with an absolutely continuous v (with respect to the Lebesgue measure
on R? ). For the approximation result under the L>°([0,1]%) norm, we have the following
corollary of Theorem 3.3.

Q%)ROLLARY 3.1. Assumethat f € HP([0,1]%, By) with = s+, s € Ny and r € (0, 1].
or any M, N € N7, there exists a function ¢ implemented by a ReLU network with width
W =38(| 8] + 1)23%dlPI+ 1 N [log,(8N)] and depth D = 21(| 8] + 1)2M [log
such that

(8M)] +2d

If(2) — ¢(z)| < 19Bo(| 8] + 1)2dlBI+BVD/2(N pp)=26/d,

The approximation error under L>°([0, 1]) is the same as that of Theorem
that the network width should be as large as 3¢ times of that in Theorem 3.3.

Lastly, we note that, by Proposition 1 of Yarotsky (2017), in terms of the computational
power and complexity of a neural network, there is no substantial difference in using the
ReLU activation function and other piece-wise linear activation functions with finitely many
inflection points. To elaborate, let ¢ : R — R be any continuous piece-wise linear function
with M inflection points (1 < M < oo). If a network f is activated by ¢, of depth D, size S
and the number of neurons U/, then there exists a ReLU activated network with depth D, size

73, at the price
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not more than (M + 1)2S, the number of neurons not more than (M + 1)I, that computes
the same function as f.. Conversely, let f, be a ReLU activated network of depth D, size S
and the number of neurons I/, then there exists a network with activation function ¢, of depth
D, size 4§ and the number of neurons 2\ that computes the same function f, on a bounded
subset of R?.

4. Non-asymptotic error bounds. Lemma 3.2 provides the basis for establishing the
consistency and non-asymptotic error bounds. To ensure consistency, the two items on the
right hand side of (6) should vanish as n — oo. For the non-asymptotic error bound, the
exact rate of convergence will be determined by a trade-off between the stochastic error and
the approximation error. We first state a consistency result and then present the result on the
non-asymptotic error bound of nonparametric regression estimator using neural networks.

THEORE@(Consistency). Under model (1), suppose that Assumption 1 holds, the
target function fo is continuous on [0, l]d, and || follco < B for some B > 1, and the function
class of feedforward neural networks F,, = Fpywu.s B with continuous piecewise-linear
activation function with finitely many inflection points satisfies

1
S—oo and B°(logn)® ~SDlog(S) — 0, asn — oco.
n

Then, the prediction error of the empirical risk minimizer f, is consistent in the sense that

E|l fn — fOH%z(V) —0 asn — o0o.

Theorem 4.1 is a direct consequence of Lemma 3.2 and Theorem 1 on the approxima-
tion of continuous function by ReLU neural networks in Yarotsky (2018). The conditions
in Theorem 4.1 are sufficient for the consistency of the deep neural regression, and they
are relatively mild in terms of the assumptions on the underlying target fy and the dis-
tribution of Y. Van de Geer and Wegkamp (1996) gave the sufficient and necessary condi-
tions for the consistency of the least squares estimation in nonparametric regression model
(1) under the assumptions that fo € F,, the error n is symmetric about 0 and it has zero
point mass at 0. Their results are for the convergence of the empirical error || f,, — fol|? :=

S [fa(X0) = fo(X0)? /.

THEOREM 4.2 (Non-asymptotic error bound). Under model (1), suppose that Assump-
tions 1-2 hold, the probability measure of the covariate v is absolutely continuous with re-
spect to the Lebesgue measure and B > max{By, 1}. Then, for any N, M € N7, the func-
tion class of ReLU multi-layer perceptrons F,, = Fp yu,s,B with width W = 38(| 5] +
1)2dWPIH1 N logy (8N)] and depth D = 21(| 5] 4 1) M [logy(8M)], for n > Pdim(F,)/2,
the prediction error of the ERM fn satisfies

" 1 _
E|| fn = foll72(,) < CB’(logn)® ~SDlog(S) + 324B2(| B8] 4 1)*a?LPIHBVY (N pp)—4B/d,
where C > 0 is a constant not depending on n,d,3,5,D, By, 3, N or M.

Under the assumption that the target function f belongs to a Holder class, non-asymptotic
error bounds can be established. Similar results have been shown by Bauer and Kohler
(2019); Nakada and Imaizumi (2020); Schmidt-Hieber (2020) and Kohler and Langer (2021).
Our error bound is different from the existing ones in the sense that the prefactor of our ap-
proximation error depends on d polynomially, instead of exponentially.
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The upper bound of the prediction error in Theorem 4.2 is a sum of the upper bound on
the stochastic error CB°SDlog(S)(logn)®/n and the approximation error 324B3(| 5] +
)42 BI+AVE(N M) =48/4, Two important aspects worth noting. First, our error bound is
non-asymptotic and explicit in the sense that no unclearly defined constant is involved.
The prefactor 324B3(|3] + 1)*d?lP1+8V1 in the upper bound of approximation error de-
pends on the dimension d polynomially, drastically different from the exponential depen-
dence in existing results. Second, the approximation rate (N M) —46/d i5 in terms of the width
W =38(|3] + 1)2dPIF1 N log,(8N)] and depth D = 21(| 3] + 1)>M [logy(8M)], rather
than just the size S of the network. This provides insights into the relative merits of different
the network designs and provides some qualitative guidance on the network design.

To achieve the best error rate, we need to balance the trade-off between the stochastic
error and the approximation error. On one hand, the upper bound for the stochastic error
CB58Dlog(S)(logn)5 /n increases as the complexity and richness of Fp yy /.55 increase;
larger D, S and B lead to a larger upper bound on the stochastic error. On the other hand, the
upper bound for the approximation error 324 B3 (| 3] 4 1)*d2LP+8VI(N M) ~4#/4 decreases
as the size of Fp . s 5 increases; larger D and )V lead to smaller upper bound on the
approximation error.

In Section 5 we present the specific error bounds for various designs of network struc-
tures, including detailed descriptions of how the prefactors in these bounds depend on the
dimension d of the predictor.

5. Comparing network structures. T@ provides an explicit expression of
how the non-asymptotic error bounds depend on the network parameters, which can be used
to quantify the relative efficiency of networks with different shapes in terms of the network
size needed to achieve the optimal error bound. The calculati iven below demonstrate the
advantages of deep networks over shallow ones in the sense that deep networks can achieve
thei{mé_‘mlﬁ‘ndﬂ&&he shallow networks with a fewer total ber of parameters in the
network. We will make this statement quantitatively clear in terms of the notion of relative
efficiency between networks defined below.

5.1. Relative efficiency of network structures. Let S1 and Ss be the sizes of two neural
networks A7 and N5 needed to achieve the same non-asymptotic error bound as given in
Theorem 4.2. We define the network relativé efficiency between two networks N7 and N> as
log So
logS; -

®) NRE(N,N2) =

Here we use the logarithm of the size because the size of the network for achieving the opti-
mal error rate has the form ‘-S/fw for some s > 0 up to a factor only involving the
power of log n, as will be seen below. Let 7 = NRE(N7, A>). In terms of sample complexity,
this definition of relative efficiency implies that, if it takes a sample of size n for network N
to achieve the optimal error rate, then it will take a sample of size n" to achieve the same
error rate.

For any multilayer neural network in Fp yy 14,5 5, its parameters naturally satisfy

max{W,D} <S<W(d+1)+ W?* + W)(D - 1)+ W+ 1=0W?D).

rollaries 5.1-5.3 below follow from this relationship and Theorem 4.2.

COROLLARY 5.1 (Deep with fixed width networks). Under model (1), suppose that
Assumptions 1-2 hold, v is absolutely continuous with respect to the Lebesgue measure,
and B > max{1,By}. Then, for any N € N and the function class of ReLU multi-
layer perceptrons F, = Fpwus.s with depth D, width W and size S given by D =
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21(|B] + 1) [n/2 25 log, (sn®/2(HH2) ], W = 38(|8] + 1)*d* ' Nlog,(8N)], S =
O(n/2(4+28) 10g, n), the ERM fn € arg min¢er, Ly (f) satisfies

Ean _ f0||%2(1,) §{0185(10gn)8 + 324Bgd2b3]+,3\/1N74/3/d}(LIBJ + 1)4n*25/(d+25)7

§0285N—4ﬂ/d( LIBJ + 1)4d2\_ﬂj+ﬁ\/1 (log n)8n—26/(d+26)’

for n > Pdim(F,)/2, where c1,ca > 0 are constants which do not depend on n, B, By, B or
N.

Corollary 5.1 is a direct consequence of Theorem 4.2. We note that the prefactor depends
on d at most polynomially.

COROLLARY 5.2 (Wide with fixed depth netw{é). Under model (1), suppose that
Assumptions 1-2 hold, v is absolutely continuous with respect to Lebesgue measure
and B > max{1, By}. Then, for any M € NT and the function class of ReLU multi-
layer perceptrons F, = Fpwu.s,5 with depth D, width VW and size S given by D =
21(18) +1)* M [logy(8M)], W =38(|8] + 1)2dl 1 [nd/2E29) log, (8nt/2(H20))], S =
O(n¥(@+28) (1og, n)?), the ERM f,, € argminscx, L, (f) satisfies

E||fn = foll7:() g{clgf)(logn)s + 324 B2 Q218181 M745/d}(w | + 1)4n—28/(@+28)

SCQB5M_4B/d( I_BJ + 1)4d2\ﬂj+6\/1n—26/(d+26) (log n)8’
r/\/—\_/\/\/\/\/\

for 2n > Pdim(F,), where c1,co > 0 are constants which do not depend on n,B, By, 3 or
M.

By Corollaries 5.1 and 5.2, the size of the deep with fixed width network Sprw and the size
of the wide with fixed depth network Swrp to achieve the same error rate are

(10 w = O0n¥2@+28) (1ogn)) and Swrp = O(n? 428 (logn)?),
%
respectively. So\vﬁa\have/ﬂﬁ_raationship Sprw =~ +/Swrp. The relative efficiency of these

two networks as defined in (8) is
o ()5 Swin D SoEr)

11 NRE
(11) (Nprw, Nwrp) = -

Thus deep networks are twice as efficient as w1dmv6r}s/l;1/ terms of NRE. In terms of

ample complexity, (11) means that, if tli iimple size needed for a deep with fixgd-width

S
ketwork to achieve the optimal error 74 hen it is about n? for a wide with fixed depth
etwork. /lbv\'—/\/ -

Limitations of the approximation capabilities of shallow neural networks and the ad-
vantages of deep neural networks have been well studied (Chui, Li and Mhaskar, 1996;
Eldan and Shamir, 2016; Telgarsky, 2016). In Telgarsky (2016), it was shown that for any
integer £ > 1 and dimension d > 1, there exists a function computed by a ReL.U neural net-
work with 2k3 4 8 layers, 3k% + 12 neurons and 4 + d different parameters such that it cannot
be approximated by networks activated by piecewise polynomial functions with no more than
k layers and O(2¥) neurons. In addition, Lu et al. (2017) showed that depth can be more ef-
fective than width for the expressiveness of ReLLU networks. Our calculation directly links
the network structure with the sample coniplexity in the context of nonparametric regression.
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COROLLARY 5.3 (Deep and wide networks). Under model (1), suppose that Assump-
tions 1-2 hold, v is absolutely continuous with respect to Lebesgue measure and B >
max{1, Bo}. Then, for the function class of ReLU multilayer perceptrons F,, = Fpwu.s,B
with depth D, width VW and size S given by

W = O(n¥* 442 1og, (n)), D = O(n¥* 20 logy (n)), S = O(n*¥*+20) (log n)*),
the ERM fn satisfies
Ean . fOH%Q(y) 3{0185 (logn)“ + 324B(Q]d2\ﬁj+ﬁV1N74ﬁ/d}(LIBJ + 1)4n*25/(d+25)’

SCQB5( L/B + 1)4d2|ﬂj+ﬂ\/1n—2ﬂ/(d+2ﬁ) (logn)H’

for 2n > Pdim(F,,), where c1,co > 0 are constants which do not depend on n, B, By or 5.

By Corollary 5.3, the size Spaw of the deep and wide network achieving the optimal error
bound is

(12) Spaw = O(n?’d/4(d+2ﬂ) (log n)_s).

Combining (10) and (12) and ignoring the logn factors, we have S3gy ~ Swrp ~ Sé//&,.
Therefore, the relative efficiencies are

3/4 3 3/4 3
NRE(NDFV\DNDAW) = 3/4 =5 and NRE(NWFDSVDAW) = 3/4 =-.

1/2 2 —— 1 4
The relative sample complexity of a deep with fixed width network versus a deep and wide

network is n : n%/2; and the relative sample complexity of a wide with fixed depth network

versus a deep and wide network is n : n3/4.

We note that the choices of the network parameters are not unique to achieve the optimal
convergence rate. For deep and wide networks, there are multiple choices that attain the op-
timal rate. For example, the following two different specifications of the network parameters
achieve the same convi:ﬁnce rate.

)

D =21(| 8] + DY nY2 420 1og, (8nd/2d+28))]
W =38(|8] + 1)%d"1* (log n) [log,(8(log )], S = O(n/**+29) (log n)*),
and
D =21(| 8] +1)*[(log n) log,(8(logn))],
W= 38(L/BJ + 1)2d\_,8j+1 [nd/2(d+2,8) log, (8nd/2(d+2’3)ﬂ, S = O(nd/(d+2ﬁ) (log 7,L)4)7

The above calculations suggest that there is no unique optimal selection of network pa-
rameters for achieving the optimal rate of convergence in nonparametric regression. Instead,
we should consider the efficient design of the network structure for achieving the optimal
convergence rate with the minimal network size.

5.2. Efficient design of rectangle networks. We now discuss the efficient design of rect-
angle networks, i.e., networks with equal width for each hidden layer. For such networks with
a regular shape, we have an exact relationship between the size of the network and the depth
and the width:

(13) S=W(d+1)+W*+W)(D-1)+W+1=0W?D).

Based on this relationship and Theorem 4.2, we can determine the depth and the width of the
network to achieve the optimal error with the minimal size.

\j VAL i
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Specifically, to achieve the optimal rate with respect to the sample size n with a minimal
network size, we can set =

W= 114(18) + 12V, D = 21(|] + 1) [n/20+29) logy (8n/2429) )]
§ = OIV*D) = O(([8] + 1%L+ 24529 g, ). T

It is interesting to note that the most efficient network’s shape is a fixed-width rectangle; its
width is a multiple of d%*1, a polynomial of dimension d, but does not depend on the sample
size n. Its depth D = wwdﬁﬁm ~ O(y/n) ford>> j.

The calculation in this subsection suggests that, in designing neural networks for high-
dimensional nonparametric regression with a large n and d >> /3, we may consider setting the
width of the network to be of the order O(dl%J*1) and the depth to be proportional to /72,
so as to achieve the optimal convergence rate with minimal number of network parameters.
Qualitatively, this suggests that the depth of the network should be roughly proportional to
the square root of sample size and the width of the network should roughly be proportional
to a polynomial order of the data dimension. However, we note that the design of a network
architecture is very much problem specific and requires careful data-driven tuning in prac-
tice. Also, we did not consider the optimization aspect where deeper neural networks can
be more challenging to optimize. In general, gradient descent and stochastic gradient decent
will find a reasonable solution for the optimization problem raised in deep leaning tasks with
overparameterized deep networks, see for example Allen-Zhu, Li and Song (2019); Du et al.
(2019) and Nguyen and Pham (2020). Also, the results here are based on the use of feedfor-
ward neural networks in the context of nonparametric regression. In other types of problems
such as image classification using convolutional neural networks, the calculation here may
not apply and new derivation is needed.

@ Circumventing the curse of dimensionality. For many modern statistical and ma-
chine learning tasks, the dimension d of the input data can be large, which results in
an extremely slow rate of convergence even if the sample size is big. This problem is
known as the curse of dimensionality. A promising way to mitigate the curse of dimen-
sionality is to impose additional conditions on the data distribution and the target func-
tion fp. In Lemmas 3.1 and 3.2, the approximation error infrcr, ||f — fOH%Q(V) is de-
fined with respect to the probability measure v, this provides us a chance to improve the
rate. Although the domain of fj is high dimensional, when the support of X is concen-
trated on some neighborhood of a low-dimensional manifold, the upper bound of the ap-
proximation error can be much improved in terms of the exponent of the convergence rate
(Baraniuk and Wakin, 2009; Shen, Yang and Zhang, 2020). There have been growing evi-
dence and examples indicating that high-dimensional data tend to have low-dimensional la-
tent structures in many applications such as image processing, video analysis, natural lan-
guage processing (Belkin and Niyogi, 2003; Hoffmann, Schaal and Vijayakumar, 2009).
Goodfellow, Bengio and Courville (2016) argued that the approximately low-dimensional
manifold assumption is generally correct for images, supported by two observations.
First, natural images are locally connected, with each image surrounded by other highly
similar images reachable through image tran?@a@%%ast,brigh}ness). Sec-
ond, natural images seem to lie on an approximately low-dimensional structure, as the
probability distribution of images is highly concentrated; uniformly sampl@s can
hardly emble a meani image. Furthermore, results from many numerical ex-
periments strongly support the low-dimensional manifold hypothesis for many image
datasets (Roweis and Saul, 2000; Tenenbaum, De Silva and Langford, 2000; Brand, 2002;
Fefferman, Mitter and Narayanan, 2016). For example, for the well-known benchmark im-
age datasets MNIST (LeCun, Cortes and Burges, 2010), whose ambient dimension d = 28 X
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28 = 784, CIFAR-10, whose ambient dimension d = 32 x 32 x 3 = 1024 (Krizhevsky, 2009),
and ImageNet (Deng et al., 2009), whose ambient dimension d = 224 x 224 x 3 = 150, 528,
the estimated intrinsic dimensions of these three datasets are between 9 and 43 (Pope et al.,
2020; Recanatesi et al., 2019). Therefore, it is important to study the properties deep non-
parametric regression under the assumption that the intrinsic dimension is lower than its

ambient dimension. A
In this section, we establish nor=asymptotic error bounds for the ERM f,, under three dif-
ferent cases of low-dimensional support of X: (a) an approximate low-dimensional manifold;
(b) an e@dimension manifold; and (c) a low Minkowski dinthﬁm
realistic assuimiption. Case (b) is of theoretical interest, since in this case we can show that
the convergence rate is determined by the exact dimension of the manifold. Case (a) is more
difficult than (b) in the sense that the convergence rate under (a) is slower than that under
(b). The Minkowski dimension is a more general notion than the topological dimension of a
manifold. In particular, case (c) includes (b) as a special case, but does not include (a). Since
the Minkowski dimension only depends on the metric, it can also be used to measure the
dimensionality of highly non-regular sets (Falconer, 2004).

6.1. Approximate low-dimensional manifold assumption. The assumption that high-
dimensional data tend to lie in the vicinity of a low-dimensional manifold is the basis of
manifold learning (Fefferman, Mitter and Narayanan, 2016). It is also one of the basic as-
sumptions in semi-supervised learning (Belkin and Niyogi, 2004). In applications, one rarely
observes data that are located on an exact manifold. It is more reasonable to assume that
they are concentrated on a neighborhood of(a_lm&—.dimmtslional manifold. For instance, the
empirical studies by Carlsson (2009) suggest that image!data tend to have low intrinsic di-
mensions and be supported on approximate lower-dimensional manifolds. We formally state
the approximate low-dimensional manifold support assumption below.

ASSUMPTION 3. The predictor X is supported on M, a p-neighb
[0,1]¢, where M is a compact d \(-dimensional Riemannian submanifold (Lee, 200 and

M, ={zc[0,]%:inf{||lz — y|2:y € M} < p}, pc(0,1).

The following theorem gives excess risk bounds under Assumption 3 and other appropriate
conditions.

THEOREM 6.1 (Non-asymptotic error bound). Under model (1), suppose that Assump-
tions 1-3 hold, the probability measure v of X is absolutely continuous with respect
to the Lebesgue measure and B > max{1, By}. Then for any N,M € NT, the func-
tion class of ReLU multi-layer perceptrons F,, = Fp yu,s.B with width W = 38(| 5] +
1)2dP N log, (8N)] and depth D = 21(| 8] + 1)2M [log,(8M)] , the predictionerror of
the empirical*risk minimizer fn satisfies

5SDlog(S)(logn)® (36 + Co)?B32
+
n (1-6)28

Ean_fOH%z(V) < 018 (LﬁJ +1) dd 3181 (NM) 46/({}
for n > Pdim(Fy)/2 and p < Co(N M)~/ (s + 1)2dV2d3* % (\/d]ds + 1 — 8)~1(1 -
§)' =8, where ds = O(dpqlog(d/6)/6?) is an integer such that dy < ds < d forany 6 € (0,1),
and Cy,Cy > 0 dre constanis that do not depend on n,B,S,D, By, 3, p,0, N or M.

As in Subsection 5, to achieve the optimal convergence rate with a minimal network
size, we can set F,, = Fp wu,s,5 to consist of fixed-width networks with W = 114(| 8| +

N . -1 ; Iy 45
Ellfo — foll}ay < OB (logn)? ~5Dlog(§) + 324B3(1] + 1) H# (Nar) /4,

where C' > 0 is a constant not depending on n,d,B,S,D, By, 3, N or M.

YN “cofl
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D2 D = 21(|8] 1) /200529 logy (8 s/ 2104 +20))], § = O(W?D) = O((|8) +
1)6d§ 8] +2 [nds/2(ds+25) (1og, n)]). Then the prediction error of f,, in Theorem 6.1 becomes

(14)  E|fa— folla) < C3(1 = 8)72Bdd "2 (1] +1)°n 20/ @520 (log n)®,

where C'3 > 0 is a constant not depending on n,d, ds, B,S, D, By, d or 3.

We can also consider the relative efficiencies of networks with different shapes in a way
completely similar to those in Section 5.

Theorem 6.1 shows that nonparametric regression using deep neural networks can allevi-
ate the curse of dimensionality under an approximate manifold assumption. This is different
from the hierarchical structure assumption on fy (Bauer and Kohler, 2019; Schmidt-Hieber,
2020). We note that under the approximate manifold assumption, the dimension of the sup-
port of X is still d and only shrinks to das. The convergence rate in (14) depends on
ds = O(dnlog(d)), which is smaller than d but still greater than d with an extra log(d)
factor. Intuitively, this log(d) factor is due to the fact that the dimension of the approximate
manifold is still d. It is not clear if it is possible to remove the effect of d on the convergence
rate under the approximate low-dimensional manifold assumption. This is a technically chal-
lenging problem and deserves further study in the future.

6.2. Exact low-dimensional manifold assumption. Under the exact manifold support as-
sumption, we show that the log(d) factor in (14) can be removed. We establish error bounds
that achieve the minimax optimal convergence rate with a prefactor only depending linearly
on the ambient dimension d.

ASSUMPTION 4. The predictor X is supported on M C [0, 1]¢, where a M is a compact
d r4-dimensional Riemannian manifold isometrically embedded in R? with condition number
(1/7) and area of surface Spy.

For a compact Riemannian manifold M, the condition number (1/7) controls both local
properties of the manifold (such as curvature) and global properties (such as self-avoidance)
(Baraniuk and Wakin, 2009). Some authors refers to 7 as the geometric concept “reach”
(Federer, 1959; Aamari et al., 2019), which is the largest number having the following
property: The open normal bundle about M of radius r is embedded in R? for all » < 7
(Niyogi, Smale and Weinberger, 2008; Baraniuk and Wakin, 2009). Intuitively, at each point
x € M, the radius of the osculating circle is no less than 7, where a large T prevents the man-
ifold M to be curvy. Condition number (1/7) or the reach 7 here influences the complexity
of function approximation on M using neural networks.

The surface area S of a manifold M is defined as the integral of 1 over the manifold
with respect to the Riemannian volume element (Chapter 10, Lee (2003); Chapter 8, Lee
(2006); and Chapter 5, Hubbard and Hubbard (2015)). For example, for the surface area of a
d-dimensional unit ball, this definition gives the well-know result 27%2/T'(d/2), where T"is
the gamma function. For function approximation on M by neural networks, we approximate
the function on a finite number of charts which cover M. Larger surface area S only leads
to a larger number of charts, which further leads to a wider (linearly in S ) neural network
width and larger prefactor of the approximation error.

THEOREM 6.2 (Non-asymptotic error bound). Under model (1), suppose that As-
sumptions 1-2 and 4 hold, and B > max{1, By}. Then for any N,M € N, the func-
tion class of ReLU multi-layer perceptrons F, = Fpwu.sp with W = 266(|3] +
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1)2[Spm(6/7)4 ] () PI+2 N [logy (8N)] and depth D = 21(| 8] + 1)>M [log,(8M)] +
2d pq + 2, the prediction error of the empirical risk minimizer f, satisfies

A SDlog(S)(logn)®
El|fn = foll 72y < C1B° (n)( )

forn > Pdim(F,)/2, where Cy > 0 is a constant independent of n,d,da,8,S,D, N, M, 3, By, T
and S . Furthermore, if we set F, = Fp v .5 5 to consist of fixed-width networks with

W =T98(15] + 1)*[Saa(6/7) ™1 (dan) 42,
D =21(| 8] + 1) [ndM/Hdm+20) o0, (8t /2dm+20))] 4 94, 42,
S=0((|B] + 1)°d(6/7)*™ (dag)* 1P Hondat /220 10g, (),
the prediction error of fn satisfies
E|[fu— foll3eq) < CoB (18] +1)°(6/7)% (dag)*12) Bl (log m) P =20/ (di26),
where C3 > 0 is a constant independent of n,d,dn, B, By, 8,7 and S .

+ CoB2(| 8] + 1)*d(dag )PP (N M) =48/ dm

Theorem 6.2 shows that the ERM fn achieves the optimal minimax rate n—2%/(dx+26)
up to a logarithmic factor under the exact manifold assumption. Under this assumption, the
optimal rate up to a logarithmic factor has also been obtained by Chen et al. (2019) and
Schmidt-Hieber (2019). Our result differs from these previous ones in two important aspects.
First, the prefactor in the error bound depends on the ambient dimension d linearly instead
of exponentially. Second, the network structure in our result can be more flexible, which
does not need to be fixed-width or fixed-depth. Moreover, in our proof of Theorem 6.2, we
apply linear coordinate maps instead of smooth coordinate maps used in the existing work.
An attractive property of linear coordinate maps is that they can be exactly represented by
ReLU shallow networks without error. We also weaken the regularity conditions, we do not
require the smoothness index of each coordinate map and the functions in the partition of
unity to be Sd/dx, which depends on the ambient dimension d and can be large.

6.3. Low Minkowski dimension assumption. Lastly, we consider the important case
when data is supported on a set with low Minkowski dimension (Bishop and Peres, 2016)
and obtain fast convergence rates.

DEFINITION 1 (Minkowski dimension). The upper and lower Minkowski dimension of
a set A C R? are defined respectively as

— . log N (e, - [|2,4) . . Jog N(e, || - [l2, A)
d A):=1 d A):=1 f .
i (A) = limsup =70 =, dimy, (4) = liminf ==

If dimps(A) = dim,;(A) = dimp;(A), then dimy;(A) is called the Minkowski dimension
of the set A.

For simplicity, we denote d* = dimj;(A) below. The Minkowski dimension measures
how the covering number of a set A grows when the radius of the covering balls con-
verges to zero. When A is a manifold, its Minkowski dimension is the same as the dimen-
sionof-the-manifold. Since the Minkowski dimension only depends on the metric, it can
be used to measure the dimensionality of highly non-regular sets such as fractals (Falconer,
2004). Nakada and Imaizumi (2020) showed that deep neural networks can adapt to the low-
dimensional structure of data, and the convergence rates do not depend on the nominal high
dimensionality of data, but on its lower intrinsic Minkowski dimension. Based on random
projection, the curse of dimensionality can also be lessened when data is supported on a set
with low Minkowski dimension.
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THEOREM 6.3 (Non-asymptotic error bound). Under model (1), suppose that Assump-
tions 1-2 hold, B > max{1, By} and X is supported on a set A C [0,1]? with Minkowski
dimension d* = dimy;(A) < d . Then for any N, M € N, the function class of ReLU multi-
layer perceptrons F,, = Fpywu.s.5 with width W = 38(| 3] + 1)23% d(L)BHlN[IogQ(SNﬂ
and depth D = 21(| 3] + 1) M [logy(8M)] + 2do, the prediction error of the empirical risk
minimizer fn satisfies,

- SDlog(S)(logn)?

n

E| fn — f0||2L2(,,) <CiB

B2
+ o gy (18] + DT a0
for n > Pdim(F,)/2, where'd > do > kd* )6* =.Q(d*/6?) for § € (0,1) and some constant
k>0, and Cy,Co > 0 are constants notdepending on n,3,S,D, By, 8,k,6, N or M.

As discussed in Subsection 5, to achieve the optimal convergence rate with a minimal
network size, we can set F,, = Fp  1,s,5 to consist of fixed-width networks with

W = 114(|_IBJ + 1)23d0d(ljﬁJ+1, D = 21(|_/BJ + 1)2 [ndo/Q(doJr?ﬁ) 10g2 (8nd0/2(d0+2,8))'|’
S— O(WQD) _ O(( LBJ + 1)632d0d(2)tm+2 |'ndo/2(do+2ﬁ) (logn)‘l )
Then, the prediction error of fn in Theorem 6.3 is
E|f, — fOH%Q(u) <Cy(1— 5)*58533d0dgL6J+3(Lm +1)9dn =28/ (do+28) (190 )8,

where C3 > 0 is a constant not depending on n, d, dy, B,S,D, By, d or 5.

Prior to this work, Nakada and Imaizumi (2020) obtained an error bound with convergence
rate n~28/(d*+28) up to logn factor for a d# > dimy;(A) = d* where d# can be arbitrar-
ily close to the Minkowski dimension d* of the support of the data. While our obtained
convergence rate is n~28/(40+26) up to a logn factor for dy = O(d*/6?) with § € (0,1).
The convergence rate of Nakada and Imaizumi (2020) can be faster than that of ours. The
prefactor in the error bound of Nakada and Imaizumi (2020) is O(d?" + 59), while ours
is O(d9% d*318)+3) which can be much smaller. In their proof of the approximation re-
sult (Theorem 5 of Nakada and Imaizumi (2020)), the minimum set of hypercubes cover-
ing the support of X is partitioned into 5% subsets. Within each subset, the hypercubes
are separated by a constant distance from each other. For each such subset, a trapezoid-
type deep neural network approximates the Taylor expansion of fy locally. Then a large
neural network combining these local approximators is used to realize the whole approx-
imation on the support of X. To ensure an overall € approximation error, the network
size must be C1e=%"/8 4 Oy, where Oy = 2[(50d + 17)d*" (3M)**/Bey + 2d{11 + (1 +
B)/d# }eo {297 1B 4 ¢3d?” (3M)4*/P}] = O(d?” 39" /P) for some constants ¢y, ¢z, c3, M > 0
and Cy = 2[12 4 42 % 5% 4 2d + 2d{11 + (1 + B)/d* } (1 + [logs £])] = O(5%); and, these
prefactors of the network size, which could be large for moderate d or d7, will lead to a large
prefactor of the overall non-asymptotic error bound.

In comparison, in Theorem 6.3 we allow relatively more flexible network shapes and

3d0 d(L]ﬁJ +1

the network width could be a multiple of rather than d% or 5%, to achieve a

9do ddg L6]+3 prefactor of the generalization error bound.

In our proof of Theorem 6.3, we leverage a generalized Johnson-Lindenstrauss lemma for
infinite sets (see, for example, Theorem 13.15 in Boucheron, Lugosi and Massart (2013)) to
project the closure of the support of X into lower-dimensional space. Then our newly proved
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approximation result Theorem 3.3 is applied in the lower-dimensional space, which is in
terms of a smaller effective dimensionality related to the Minkowski dimension of the support
of X. The projection is approximately a linear transformation and can be exactly represented
by a three-layer ReLU network, thus it causes no approximation error. In addition, this also
avoids the 5% prefactor in the formula of error bounds or the network width.

Finally, we note that the results of Nakada and Imaizumi (2020) and Theorem 6.3 do not
cover Theorem 6.1, nor vice versa. On one hand, an approximate manifold assumption allows
a closed ball or a sphere in R? contained in the support of X, in which case the Minkowski
dimension of such approximate low-dimensional manifold is d and no faster convergence
rate can be obtained. To see this, if a closed ball B(a) (or a sphere) with radius a > 0 in R?
is contained in A C [0, 1]¢, the support of X, then the e-covering number of A is no less than
(a/€)? (see e.g., Corollary 4.2.13 in Vershynin (2018)), which implies that the Minkowski
dimension of A is d. On the other hand, the Minkowski dimension can be used to measure
non-smooth low-dimensional set such as fractals which may not be a low-dimensional man-
ifold or a neighborhood of a low-dimensional manifold.

7. Related works. In this section, we discuss the connections and differences between
our work and the related works with respect to the non-asymptotic error bounds, the structural
assumptions on the target regression function fj, and the distributional assumptions on the
data.

7.1. Error bounds. Recently, Bauer and Kohler (2019), Schmidt-Hieber (2020) and
Farrell, Liang and Misra (2021) studied the convergence properties of nonparametric re-
gression using feedforward neural networks. Bauer and Kohler (2019) required that the
activation function satisfies certain smoothness conditions; Schmidt-Hieber (2020) and
Farrell, Liang and Misra (2021) considered the ReLU activation function. Bauer and Kohler
(2019) and Schmidt-Hieber (2020) assumed that the regression function has a composition
structure similar. They showed that nonparametric regression using feedforward neural net-
works with a polynomial-growing network width W = O(d”) achieves the optimal rate of
convergence (Stone, 1982) up to a logn factor, however, with a prefactor Cy = O(a?) for
some a > 2, unless the network width W = O(a?) and size S = O(a?) grow exponentially
as d grows.

A key difference between our work and the existing results is in how the prefactor Cy
depends on d. Specifically, the prefactor C; in our results depends polynomially on d and
involves d” as a linear factor. In comparison, the prefactor C}; in the error bounds obtained
by Bauer and Kohler (2019), Schmidt-Hieber (2020), Farrell, Liang and Misra (2021) and
others depends on d exponentially. For high-dimensional data with a large d, it is not clear
when such an error bound is useful in a non-asymptotic sense. Similar concerns about this
type of error bounds as established in Schmidt-Hieber (2020) are raised in the discussion by
Ghorbani et al. (2020), who looked at the example of additive models and pointed out that in
the upper bound of the form E| f,, — fol|7. ) < C(d)n~¢ log? n for some €, > 0 obtained in

Schmidt-Hieber (2020), the d-dependence of the prefactor C'(d) is not characterized. It also
assumes n large enough, that is, n > ny(d) for an unspecified no(d). They further pointed
out that using the proof technique in the paper, it requires n > d? for the error bound to hold
in the additive models. For large d, such a sample size requirement is difficult to be satisfied
in practice. Another important difference between our results and the existing ones is that
our error bounds are given explicitly in terms of the width and the depth of the network. This
is more informative than the results characterized by just the network size. Such an explicit
error bound can provide guidance to the design of networks. For example, we are able to



20

provide more insights into how the error bounds depend on the network structures, as given
in Corollaries 5.1-5.3 in Section 5.

Finally, in contrast to the results of Gyorfietal. (2002) and Farrell, Liang and Misra
(2021), we do not make the boundedness assumption on the response Y and only as-
sume Y to be sub-exponential. Bauer and Kohler (2019) assumes that Y is sub-Gaussian.
Schmidt-Hieber (2020) assumes i.i.d. normal error terms and requires the network parame-
ters (weights and bias) to be bounded by 1 and satisfy a sparsity constraint, which is not the
usual practice in the training of neural network models in applications.

7.2. Structural assumptions on the regression function. A well-known semiparamet-
ric model for mitigating the curse of dimensionality is the single index model fy(z) =
g(0"Tx), xR where g: R — R is a univariate function and § € R? is a d-dimensional
vector (Hirdle, Hall and Ichimura, 1993; Horowitz and Hérdle, 1996; Kong and Xia, 2007).
A generalization of the single index model is fy(z) = 25:1 gx(0) z), € RY, where
K €N, g, : R — R and §;, € R? (Friedman and Stuetzle, 1981). In these models, the rate
of convergence can be n~2%/(25+1) yp to some logarithmic factor if the univariate functions
gr(+) are S-Holder smooth. Another well-known model is the additive model (Stone, 1986)
fo(z1,..y2a) = for(z1) + -+ foa(®a), z=(z1,...,24)" € R For 8-Holder smooth
univariate functions fy 1,. .., fo 4, Stone (1982) showed that the optimal minimax rate of con-
vergence is n~28/(26+1) Stone (1994) also generalized the additive model to an interaction
model fo(z) =>"icq1, aprj=a- J1(21), 2= (z1,...,2q4)" € R where d* € {1,...,d},
I={iy,...;i¢:}, 1 <iy <...<ig- <d,xr = (x4,,...,2, ) andall f; are S-Holder smooth
functions defined on R, In this model, the optimal minimax rate of convergence was proved
to be n—28/(2B+d")_

Yang and Tokdar (2015) studied the minimax-optimal nonparametric regression under the
so-called sparsity inducing condition, under which fy depends on a small subset of d* pre-
dictors with d* < min{n,d}. Under this assumption, for a S-Holder smooth function f; and
continuously distributed X with a bounded density on [0, 1]¢, they proved that the prediction
error is of the order O(cyn=2/(¢"+28) 1 ¢ylog(d/d*)d* /n). Yang and Tokdar (2015) noted
that, under the sparsity inducing assumption, the estimation still suffers from the curse of
dimensionality in the large d small n settings, unless d* is substantially smaller than d.

For sigmoid or bounded continuous activated deep regression networks, Bauer and Kohler
(2019) showed that the curse of dimension can be circumvented by assuming that f; satisfies
the S-Holder smooth generalized hierarchical interaction model of order d* and level [. Un-
der such a structural assumption, the target function fj is essentially a composition of multi-
index model and d*-dimensional smooth functions. Bauer and Kohler (2019) showed that the
convergence rate of the prediction error with this assumption achieves (log n)?’n_w/ (2B+d7)
For the ReLU activated deep regression networks, Schmidt-Hieber (2020) alleviated the
curse of dimensionality by assuming that fj is a composition of a sequence of functions:
fo=94094-10---0g10g0 with g; : [a;, bi]™ — [ai1,biy1]%+ and |a;], [b;| < K for some
positive K and all . For each g; = (gz‘j)jT:L,,,, di, With di 1 components, let ¢; denote the
maximal number of variables on which each of the g;; depends on, and it is assumed that each
gij 1s a t;-variate function belonging to the ball of 3;-H6lder smooth functions with radius K,
The convergence rate is ¢, = max;—q__,n~ 25 /25 +4) where 8} = Billy_, , min{f,1}.
The resulting rate of convergence is shown to be C;(log n)3,,. However, the prefactor Cy in
these results may depend on d exponentially.

Recently, Kohler, Krzyzak and Langer (2019) assumed that the regression function fj has
a locally low dimensionality d* and obtained results that can circumvent the curse of di-
mensionality. Since such a function f is generally not globally smooth, not even continuous,
Kohler, Krzyzak and Langer (2019) assumed the true target function f; is bounded between
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two functions with low local dimensionality. Under the S-Holder smoothness assumption on
fo, proper distributional assumptions on X and other suitable conditions, they showed that

the prediction error of networks with the sigmoidal activation function can attain the rate

7.3. Assumptions on the support of data distribution. There have been growing evi-
dence and examples indicating that high-dimensional data tend to have low-dimensional
latent structures in many applications such as image processing, video analysis, natural
language processing (Belkin and Niyogi, 2003; Hoffmann, Schaal and Vijayakumar, 2009;
Nakada and Imaizumi, 2020). There has been a great deal of efforts to deal with the
curse of dimensionality by assuming that the data of concern lie on an embedded mani-
fold within a high-dimensional space, e.g., kernel methods (Kpotufe and Garg (2013)), k-
nearest neighbor(Kpotufe (2011)), local regression (Bickel and Li (2007); Cheng and Wu
(2013); Aswani, Bickel and Tomlin (2011)), Gaussian process regression (Yang and Dunson
(2016)), and deep neural networks (Nakada and Imaizumi (2020); Schmidt-Hieber (2019);
Chen, Jiang and Zhao (2019); Chen et al. (2019)). Many studies have focused on repre-
senting the data on the manifold itself, e.g., manifold learning or dimensionality re-
duction (Pelletier (2005); Hendriks (1990); Tenenbaum, De Silva and Langford (2000);
Donoho and Grimes (2003); Belkin and Niyogi (2003); Lee and Verleysen (2007)). Once the
data can be mapped into a lower-dimensional space or well represented, the curse of dimen-
sionality can be mitigated.

Recently, several authors considered nonparametric regression using neural networks with
a low-dimensional manifold support assumption (Chen, Jiang and Zhao, 2019; Chen et al.,
2019; Schmidt-Hieber, 2019; Cloninger and Klock, 2020; Nakada and Imaizumi, 2020). In
Chen et al. (2019), they focus on the estimation of the target function f; on a bounded d*-
dimensional compact Riemannian manifold isometrically embedded in R%. When f; is as-
sumed to be S-Holder smooth, approximation rate with ReLU networks for fy was derived.
The resulting prediction error is of the rate O (n~2%/(4"+26) (log n)3), when the network class
Fpuw.s.s is properly designed with depth D = O(log n), width W = O(n?"/(28+47)) 'size
S= O(nd*/ (28+d") Jog n) and each parameter is bounded by a given constant. Under simi-
lar assumptions, Nakada and Imaizumi (2020) established the approximation rate with deep
ReLU networks for f; defined on a set with a low Minkowski dimension. Their rate is in
terms of Minkowski Dimension d;j. The Minkowski dimension can describe a broad class of
low dimensional sets where the manifold needs not to be smooth. The relation between the
Minkowski dimension and other dimensions can be found in Nakada and Imaizumi (2020).
Similar convergence rates were obtained by Schmidt-Hieber (2019) in terms of the manifold
dimension under the exact manifold support assumption. Our Theorem 6.2 reduces the ex-
ponentially dependence of the prefactor on d in these previous works into linearly allowing
more flexible network structures.

Theorem 6.1 differs from the aforementioned existing results in several aspects. First, these
existing results assume that the distribution of X is supported on an exact low-dimensional
manifold or a set with low Minkowski dimension, whereas in Theorem 6.1 we assume that it
is supported on an approximate low-dimensional manifold, whose Minkowski dimension can
be the same as that of the ambient space d. Second, the size S of the network or the nonzero
weights and bias need to grow at the rate of 2%+ with respect to the dimension d 4 in many
existing results. The term 29+ will dominate the prefactor in the excess risk bound, which
could destroy the bound even when the sample size n is large. In comparison, our error bound
depends on d 4 polynomially through (daq log d)3m+3 in the approximate manifold case.
Third, to achieve the optimal rate of convergence, the network shape is generally limited to
certain types such as a fixed-depth network in Nakada and Imaizumi (2020) or a network
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with depth D = O(logn) in Schmidt-Hieber (2019) and Chen et al. (2019), while we allow
relatively more flexible network designs. Moreover, our assumptions on the data distribution
are weaker as discussed earlier. Lastly, in Theorem 6.3 we derived an error bound with a
convergence rate n~28/(28+d) with dy = O(d*) in terms of the Minkowski dimension d*,
which alleviates the curse of dimensionality. As discussed below Theorem 6.3, we used a
different argument based on a generalized Johnson-Lindenstrauss lemma for dimension re-
duction in our proof from that of Nakada and Imaizumi (2020). We allow a relatively more
flexible network architecture and achieve an improved prefactor in the excess risk bound.

8. Conclusions. In this paper, we have established neural network approximation er-
ror bounds with polynomial prefactors for Holder smooth functions and non-asymptotic
excess risk bounds for deep nonparametric regression. We have also derived new non-
asymptotic excess risk bounds under manifold assumptions, including an approximate low-
dimensional manifold assumption. To the best of our knowledge, our work is the first to
show that deep nonparametric regression can mitigate the curse of dimensionality under an
approximate manifold assumption. Moreover, we have provided a characterization of how
excess risk bounds depend on the network architecture, obtained a new error bound with a
new proof under the Minkowski dimension assumption and established a new error bound
with the optimal convergence rate and an improved prefactor under the exact manifold as-
sumption.

As we have remarked below Theorem 3.3, our work builds on the results of Shen, Yang and Zhang
(2020) and Lu et al. (2021). Specifically, Shen, Yang and Zhang (2020) derived a quanti-
tative and non-asymptotic approximation rate 19v/dw(N~%9L=2/4) in terms of width
O(N) and depth O(L) of the ReLU networks for continuous target function f, where
w¢(-) denotes its modulus of continuity. When this result is applied to Holder continuous
target functions with order (or smoothness index) a € (0,1], the approximation rate be-
comes 19v/dN—2¢/d[,=2a/d which is nearly optimal. Lu et al. (2021) showed that deep
ReLU networks of width O(N log N) and depth O(Llog L) can approximate smooth func-
tion f € C*([0,1]¢) with a nearly optimal (up to a logarithmic factor) approximation error
85(s + 1)98%|| | Cs([()’l}d)n_%/dL_%/d, where C*([0,1]%) denotes smooth function space
with smoothness index s € N (a positive integer), and || - ||« (jo,1)2) denotes the Holder
norm. The result holds for smooth target function with its smoothness index being a positive
integer s > 1, while the prefactor of the approximation error bound is (s +1)¢, which depends
on the dimension d exponentially. In comparison, our approximation results hold for Holder
smooth target functions with smoothness index 5 > 0. Moreover, when the smoothness index
B > 1, our approximation error bound has a prefactor depending on d polynomially.

There are several limitations in this work. First, the optimal rate of convergence under
the approximate manifold assumption remains unknown to us. It appears that one is unlikely
to obtain an error bound with rate depending only on the intrinsic dimension d4 of the
manifold, as the dimension of an approximate manifold is still d. Second, it is not clear what
are the best prefactors for the error bounds in the present setting. This is an interesting by
challenging problem in the present setting. Finally, it would be interesting to generalize
the results in this work to other problems, such as density estimation, conditional density
estimation and generative learning. These problems deserve further study in the future.
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APPENDIX A: PROOFS

In this appendix, we prove Lemmas 3.1 and 3.2, Theorems 3.3, 4.2, 6.1, 6.2 and 6.3,
Corollaries 3.1 and 5.1. Theorem 4.1 1s a direct consequence of Lemma 3.2 and Theorem 1
in Yarotsky (2018), thus we omit its proof.

A.l1. Proof of Lemma 3.1.

—

PROOF. Since f is the minimizer of quadratic functional L(-), by direct calculation we
have

A Esllfn — Jolfag) =EslLln) = LU

By the definition of the empirical risk minimizer, we have
L (fn) - Ln(fO) < Ln(f) - Ln(f0)>
S AL

where f € arginfrer, || f — fOH Takmg expectations on both side we get

(A2) Es[Ln(fn) — L(fo)] <L(f) = L(fo) = If = foll72(w)

Multiplying both sides of (A.2) by 2, adding the resulting inequality with (A.1) and rearrang-
ing the terms, we obtain Lemma 3.1. O

A.2. Proof of Lemma 3.2.

PROOF. Let S ={Z; = (Xl,Y)}Z , be a random sample form the distribution of Z =
(X,Y)and 8" ={Z] = (X] Y’) _, be another sample independent of S. Define g(f, Z;) =

1) 71

(f(X3) = Y))? — (fo(X;) — Y;)? for any f and sample Z;. Observing

“(A3)  Es[L(fo) — 2Lu(fu) + L(f2) = [ Z{—29 for Z) + Esig(fs. Z0)}].

By Lemma 3.1 and the above display, it is seen that the expected prediction error

R(fn) :=Eslllf = foll72()]

is upper bounded by the sum of the expectation of a stochastic term and the approximation
error. Next, we bound the expectation of the stochastic term with truncation and the classical
chaining technique from the empirical process theory. In the following, for ease of presenta-

tion, we write G(f, Z;) = Es {g(f, Z))} — 29(f, Z;) for f € Fy.
Let 3, > B > 1 be a positive number which may depend on the san. Denote T,

as the truncation operator atlevel f,, i.e., forany Y € R, T3 Y =Y if BnandTg Y =
Br - sign(Y’) otherwise. Let fg (x) = E{Tj, Y\X =z} be the regress o’ function of the

nca .Recall that g(f, Z;) = (f(Xi) — Y3)? — (fo(X:) — Yi)?, we define gg, (f, Zi) =
RN
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(f(Xi) = T3,Y3)? = (f5,(X;) — Tp,Y;)? and G, (f, Zi) = Eg {gs-(£. 21} = 295,(f. Z
for f € F,,. Then for any f € F,, we have

g(f,Z) 9B, fv (X )}(T,B Yi— Y)
+ (f5,(Xi) = Tp,Y3)? — (fo(Xy) — T,BnYz')Q‘ ) \7)
« W) 1 &
<‘2{f Fo(X) (T, Y; — V) L Wt
\/—\/ —_— ”

\(fm )~ To Y — (a(X0) - T, Y2|

<A4B|Tj,Y; — Yl Q
+1f8. (Xz‘l:_fé(ﬂXz;)Hfﬁn (Xi) + fo(X;) —213.Y;

<4BlY; I(D\/ﬂ > Br) +4%Xi) — Jo(Xi)|

<AB|Y;|I(|Yi| > Bn) +4Bn|T5,Y: — Y
)

<AB|Y;|I(|Yi] > Bn) + 48| Y| I([Yi] > Bn),
T ~—— —— N

and d

Es{g(f, Zi)} <Es{gs, (f, Zi)} + ABEs{|Yi[[([Yi] > 5n)} + 4BnEs{|YilI(|Yi] > 5n)}

<Es{gs, (f, Z0)} + 860 —Es | TVl exp { Z-(¥i] - )}
—~—— Y Lt

<Es{gs,(f,Zi)} + 165—Es exp(oy [Yil) exp(=oy fn/2). J

By Assumption 2, the response Y is sub—exponentlally distributed and E exp(oy|Y;|) < o0
Therefore, -

a4/ Es[ ZG fu 72)] <Es[ ZG@L fos Z)] + €180 exp(=0v B /2),

where c; is a constant not depending on n and B
Note that [T Y| < B, [|98,|loc < Bn and 3, > B > 1. Then by Theorem 11.4 of
Gyorfi et al. (2002), for eachn > 1,

P{% iGBn(fn, Zi) > t}
i=1

<P{3feF: %iagn(f,zi) >t}
=1

_P{afef :Es{gs.(f, Z }——Z%n (.2 }

t
SUNon(gg s P <——”)

513633
This leads to a tail probability bound of >, G, (fj~, Zi)/n.
Then for a,, > 0,

Bs[2 36 52 <ot [ P(ES G520 >
//_\—_L—’_i:IR/

A
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tn
< n 1 n “lloosyd n e dt
<t [ 14 (g e e 55

tn
< ' - 513648
a”/an 14/\/271(80[3 ol Hoo,fn)exp< 5136ﬂé>dt

anpmn 513634
<ap 1 n : om-’rn - -
o+ 14N (S || >exp< 5136%) :
We choose a,, = 1og(14No (L, | - [|oc, Fn)) - 51360, /n. Note that a,,/(808,) > 1/n. and

/\/’gn(%,H ooy Fn) ZNQ"(SOBW, Il “ lloos Fn)- Then we have

513635 (log(14N2p (£, || - loo, Fn)) + 1)
- .

A3 Es[23765 (%) <
=1

Setting 3, = coBlogn and combining (A.4) and (A.5), we prove (5). Further combining
(A.3) we get —_—

1OgN2n(%> [ - “wafn)(logn)4
n

(A.6) R(fn) < c3B* +20 £ = foll 3o

N

where c3 > 0 is a constant not depending on n or B.

Lastly, we will give an upper bound on the covering number by the VC dimension of F,,
through its parameters. Denote the pseudo dimension of F,, by Pdim(F,,), by Theorem 12.2
in Anthw 1999), for 2n > Pdim(F,),

4eBn? >Pdim(fn>
Pdim(F,)

Moreover, based on Theorem 3 and 6 in Bartlett et al. (2019), there exist universal constants
¢, C such that

Non -l ) <

c-8Dlog(S/D) < Pdim(F,) < C - SDlog(S).

Combining the upper bound of the covering number and the pseudo dimension with (A.6),
we have

(A7) R(fn) < +2| £ = foll 2w

for some constant ¢4 > 0 not depending on n, d, B, S or D. Therefore, (6) follows. This
completes the proof of Lem 2.

5
185 SDlog(S)(logn)
n

O

A.3. Proof of Theorem 3.3. This approximation result improves the prefactor in d of the
network width in Theorem 2.2 in Lu et al. (2021). The main idea of our proof is to approxi-
i older smooth f By emma n Pegefsen and Voigtlaender

x—xo x—on2

lalli<s
This reminder term could be well controlled when the approximation to Taylor expansion in

implemented in a fairly small local region. Then we can focus on the approximation of the
Taylor expansion locally. The proof is divided into three parts:

o Ay )

boooh ) _—
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> * Partition [0, 1] into small cubes Uy Qo, and construct a network ¢ that approximately

mmg to a fixe € Q. Hence, ¢ approximately discretize [0, 1]%.
e For any multi-index «, construct a network ¢,, that approximates the Taylercoefficient

T € . Once [0, 1]¢ is discr d, the approxi ed to a data
fitting problem.
* Construct a network P, (z) to approximate the polynomi =zt where x =

TTrdq) €R?anda = (aq,...,a4)" € N&. In particular, we can construct a network
o« (-, ) approximating the product function of two scalar inputs.

PROOF. Without loss of generality, we assume the Holder norm of f is 1, ie. f €
#P([0,1]%,1). The reason is that we can always approximate f /By firstly by a network ¢
with approximation error e, then the scaled network Bg¢ will approximate f with error no
more than eBj. Besides, it is a trivial case when the Holder norm of @Firstly, when

Step 1
Given K € N* , foreach 6 = (0y,...9,) € {0,1,..., K — 1}%, we de-
ﬁne _b ~~—__—
0; 0;+1 _
Qo : s L) T [E’ 7 —(5'19i<K_1],z:1,...,d}.ﬁ

Jote o Qo. By the definition of Q, the region [0, 1]¢ is ap-
]E)roximately divided into-hyper€ubes. By Lemma B.1, there exists a ReLU network 1), with

idth 4| N'/¢| 4 3 and depth 4M + 5 such that T
Wl,\,l\_\J/‘i’ and dep + 5 such tha

k. E k+1
& @&LW '(ﬁl(.%'):E, lf.%'E[E,T—5'1{k<K71}],k‘:0,1,...,K—1.

=
o
-
o
S
u
/

~
We define

¢(x) = (¢1(x1)7"' xd))u xz(xl,...,xd)ERd.

Then we have ¢(z) = /K := (0, /K,...,04/K)" for x € Qg and v is a ReLU network
with width d(4| N'/| + 3) and depth 4M + 5.

Step 2: Approximation of Taylor coefficients.
Since 6 € {0,1,...,K — 1}¢ is one-to-one correspondence to ig := Z?Zl 0;K7~t e
{w_deﬁne

do(x) = (K, K% .. KY) () =Y (z;)K7, zeR’,
j=1

then

d
\ ¢0($):ZHjKj_1:i9, ifl‘EQa,@G{O,l,...,K—l}d,
d]"]. 7j=1
k/—\/" where () has width d(4| N'/¢| +3 +5. Forany o € N satisfying [|a|; <
s and each i = 7y T, K% — 1}, we denote &, ; := (0°f(0/K) + 1)/2 € [0,1]. Since
Kox
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K< N2M?2, by Lemn@lere exists a ReLU netwo@ith width 16(s + 1)(N +
1)[log,(8N)] and depth 5(M + 2)[log,(4M )] such that
Pa (i) —Eail < (NM)_Q(S'H),
—

A
foralli € {0,1,..., K% —1}. We define

ba(T) =204 —1e[-1,1], zeR<

Then ¢, can be implemented by a network with width 16d(s + 1 1 8N)| <
32d(s + 1)N[logy(8N)] and dept [logo(4M)] 4+ 4M + 5 < 15M [log,(8M) ].

d we have for any 6{0,1,.. 1} ifz €
H’/Q{ |ba(@) = 0% (/)| = 2l palin) — Eaiy| < 2(NM)2EHD,

Step 3: Approximation of f on Ugeqo1,.. x—1}4 @o-
\_/Let ©(t) = min{max{t,0},1} = o(t) —o(t — 1) for t € R where o(+) is the ReLU activation
function. With a slightly abuse of the notation, we extend its defipi d coordinate-

wisely, i.e., ¢ : R? — [0,1]¢ and ¢(x) = x for any z € [0,1]%. By ere exists a

ReLU network with width %N + 1 and depth 2(s + 1) M such th ,1],
(A.9) |tits — G (b1, 1) < 24N 2(HDM
By Lemma_B.4/for any « mism a ReLU n with width
9N + s+ 8 and depth 7(s £ 1)2M such that Pa(z) € [~1,1] and 5
(A.10) ) 2% <9(s + 1)(N 4 1) 7+DM &

Forany z € Qg, 0 € {0,1,..., K — 1}¢, we can now approximate the TayTor expansion of

f(x) by combined sub-networks. Thanks to Lemma A.8 in Petersen and Voigtlaender (2018),
we have the following error control for x € Qy,

0 0*f(+=
a1y |-y - Y TR Lol <o Ly <airges
Motivated by this, we define

:¢Od<x>+ > (2 pota) - o).

do(x)i= o (do(z) +1) = o(go(w) = 1) =1 € [-1,1],

where 05 = (0,...,0) € Ng. Observe that the number of terms in the summation can be
bounded by

S =Y ¥ oas)wserne

aeNg,llalh<s  J=0a€eNG,[lali=j

Recall that width and depth of ¢ is (2d, 1), width and depth of 1 is (d(4|NY/¢| +3),4M +

5), width and depth of P, is (9N + s + 8,7(s + 1)2M), width and depth of ¢,, is width

(16d(s + ,5(M + 2)[log,y | +4M + 5) and width and depth of

Ox is (OIN WM ). Hence, by our consfruction, ¢ can be implemented by a neural

network with width 38(s + 1)2d**1 N[log,(8N)] and depth 21(s —i’—_1)2\]\4/[l()§2}8Mﬂ. The
T T ~———
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approximation error | f(z) — ¢o(x)| can be bounded as follows. For any x € Qy, p(z) ==z

and ¢(z) = 0/K. Then by the triarw.l 1),
£) ~ o(@)] < 17(@) — dof)

<[f(0/K) = ¢o, ()| + d*HPK P

N Z ‘8 f@/K)( _G/K)a_(bx(qs‘;(!x),Pa(x—@/K))‘

1<]|all: <s
=2 (MNP 8 ﬁz/e}
5

llalli<s

where we denote &, = ‘%(w —0/K)* — ¢ (¢(;(!x),Pa(1: - 9/K))‘ for each o € N

with [|a||; < s. Using the inequality |12 — ¢ (¢3, ty|+ |tsts—
¢>< (tg, % (t3,t4)‘ for any t1,%2,13,%4 € [—1, 1], and by

Ea Salaafw/K) = Ga(@)| + [(x — 0/K)* = Po(z — 0/K)|

H2D b 0/K) — 6 (2 Pt~ 0/16))

<2(NM) 24D L 9(s+ 1) (N + 1) 7HIM L g —2s+1)M
2
<(9s + 17)(NM)*2(3+1).
‘\_’_\__/_,
It is easy to check that the bound is also true when ||||; = 0 and s = 0. Therefore,

@) =o(@)[ < D (9s+1T)(NM) Y 4 @02 (N ) —20/4

1<]|lal<s

< (s 4 1)d*(9s 4 17) (N M) =26+ 4 gs+8/2(N pp)=28/4 @
o il )

& ' 17 7I{ 1} QH
we know there exiStsafu O

depth as ¢y, such that
|f(z) = < 18By(s + 1)2d* /2 (N M) 28/,

for any z € UG‘@QQ.

Lastly, whery 0 < 8 < 1,/f is a Holder continuous function with order 5 and constant
Holder By, then oreém 1.1 in Shen, Yang and Zhang (2020), there exists a function ¢y
which is implemented by a neural network with width max{4d| N'/¢| 4+ 3d,12N + 8} and
depth 12M + 14, such that

|f () — ¢o(a)| < 18VdBy(NM) =25/,

for any x € Uae{o 1o K -1} Q. Combining the results for 5 € (0, 1] and S > 1, we have for

f€HP([0,1]%, By), there exists a function ¢y implemented by a neural network with width
38(s +1)2d* T N[log,(8N)] and depth 21(s + 1)2 M [logy(8M)] such that

— o) < 18By(s + 1)2d°TBVI2(N M) =28/,

for any x € U9€{0717W7K71}d Qp where s = [ 3].

1
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A.4. Proof of Corollary 3.1. We prove Corollary 3.1 based on Theorem 3.3.

PROOF. Let & = 18By(s + 1)2d*tA/2(NM)~2#/¢ We construct a neural netwat
. Q\ % niformly approximates f on [0, 1]¢. To present the construction, we denote M}’—J‘E’)’
N \{JL% the function thatreturns the middle value of three inputs £y, ¢2,¢3 € R. It is easy to check
v ¢ that o '(,vb??B
1 s
\'\K max{tl,tg}: Q(U(tl —I—tg)—a(—tl —tQ)—i-U(tl —tg)—l—J(tQ—tl)). e lo ’
m,

t3} = max{max{t1,t2},0(t3) — o(—t3)} can be implemented by a ReLU T/ ,)/ﬂ
etwork with widt ~Simitar construction holds for min{¢1,t2,¢3}. Since L )\_7/ |
-

Hlid(tl, tg, tg) = O'(tl + t2 + t3 —o(—t1L— 19 — tg) — max{tl, tg, t3} — min{tl, tg, tg}, C b+

g \the function mi implemented g}; a ReL.U network with width 14kand depth 2. C&

et {e;}%_, be the standard orthogonal basis in R, we inductively define

(bl($) = mld(¢171($ - 56i), gzﬁi,l(x), <bi,1(x + (561)) € [—1, ].], 1= 1, e ,d,
where ¢ is defined in the proof of Theorem 3.3. Then ¢, can be implemented by a ReLU

J\

\r‘L network with width 38(s+1)23%d*** N [log,(8N)] and depth 21 (s+1)2M [log,(8M)] +2d

\;& \ 6\ recalling that ¢ has width 38(s+1)2d* T N [log,(8N)] and depth 21(s+1)2M [log, (8 M)].
<\ Denote Q(K,J) := kK:_OI[%, k—;gl — 0+ lg<p—1] and define

7 a0\
(\/\/—ﬁ ) ]
\J E; :={(x1,...,2q) €[0,1]° : z; € Q(K, ), > i},
. N~ "
fori=0,...,d. Then Ey = Uee{o,l,...,K—l}d Qg and Ey = [0, 1]¢. We assert that

|¢Z(x) —f($)| §5+ZBO(56/\17 v{EEE“Z:O,,d,

where a A b:=min{a, b} for a,b € R.

We prove the assertion by induction. Firstly, it is true for ¢ = 0 by construction. Assume
the assertion is true for some 4, we will prove that it is also holds for 7 + 1. Note that for any
x € E;yq, at least two of © — de; 41, x and x + de;; are in ;. Therefore, by assumption
and the inequality | f(x) — f(x % de;y1)| < BodP!, at least two of the following inequalities
hold, e

\pi(x — deiv1) — f(2)] <|¢i(x — deir1) — f(x — deipr)| + BodP N < € + (i + 1) Byd?M,
|6i(x) — f ()| <E +iBos™",
|63 + deipr) — f(2)] <|i(x + ei1) — f(a+ deig)| + Bod™ <& + (i + 1) Bod™M.

In other words, at least two of ¢;(x — de;+1), ¢i(z) and ¢;(x + Je;41) are in the interval
[f(z) =& — (i+1)BgdPM, f(x) + & + (i + 1) Bod”]. Hence, their middle value ¢;41(z) =
mid(¢;(x — dejy1, ¢i(x), ¢i(x + dej1))) must be in the same interval, which means

[Gis1() = F(@)] < €+ (i + 1)Byd?".
So the assertion is true for i + 1. We take 6 = 3K ~#V1, then

5 = ( ! )ﬁ“_{%Kﬁ B>1,
~ \3K8V1 TlRK) A<,

and K = [ (NM)%]. Since E; = [0,1]%, let ¢ := ¢4, we have
¢ = fllLe(o,0) <€+ dByd°Mt
<18By(s + 1)°d"HYOR(N M) 720/ - dBo (N M)~/

where s = | 5, which completes the proof. O

)
)
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A.5. Proof of Theorem 4.2.

PROOF. Let K € N* and 6 € (0,1/K), define a region Q([0, 1]¢, K, §) of [0,1]% as

d K-1
00,19, K,0) = | J{z = [z1,22, ... 2" s 2 € | (k/K - 6,k/K)}.
=1 k=1

By Theorem 3.3, for any M, N € N, there exists a function f;} € F,, = Fpwu.s5 With
width W = 38(s + 1)2d*T N [logy(8N)] and depth D = 21(s + 1)2M [log,(8M)], such
that

| (@) = fo(a)] < 18Bo(s +1)2d* T PVD/2(N M) =20/,

for any x € [0,1]7\Q([0,1]¢, K, 6) where K = | N'/4|2| M?/?| and § is an arbitrary number
in (0, 3%]. Note that the Lebesgue measure of ([0,1]¢, K, §) is no more than dK§ which
can be arbitrarily small if § is arbitrarily small. Since v is absolutely continuous with respect
to the Lebesgue measure, we have

£ = foll 2y < 187 B (s + 1) d> TPV (N M) =0/,
By Lemma 3.2, finally we have
< CBQSD log(S)(logn)?
o n

EHf; - fOH%z(Z,) + 3243(2)(8 4 1)4d25+ﬁv1 (]\7]\4),45/517

where C does not depend on n,d, N, M, s, 3, By, D,Bor S, and s = | 3|. This completes the
proof of Theorem 4.2. U

A.6. Proof of Corollary 5.1. We prove Corollary 5.1. Corollaries 5.2 and 5.3 can be
proved similarly.

PROOF. Under the assumptions in Theorem 4.2, for any N, M € N7, the function class of
ReLU multi-layer perceptrons F,, = Fp 1.s,58 With width W = 38(s+1)2d* "L N [log, (8N)]
and depth D = 21(s + 1)2M [log,(8M)], the prediction error of the ERM f,, satisfies

El|fn = foll72(,) < CB*(logn)? %sp log(S) + 324B2(s + 1)*d?+AVL (N M) =4/4,

for 2n > Pdim(F,,), where C' > 0 is a constant not depending on n,d, 3,S, D, By,
B,s,7, N or M.
For deep with fixed width networks, given any N € N7, the network width is fixed

W =38(s + 1)2d* T N Tlog,(8N)].
Recall that for any multilayer neural network in J,,, its parameters naturally satisfy
max{W, D} <S <W(d+ 1)+ W? + W)(D — 1) + W+ 1 < 2W?D.
Then by plugging S < 2W?D and D = 21(s + 1)> M [log,(8M)], we have

Ellfo — folliay < OB (logn)® - W2 (M [loga(8M)]) log(221(s + 1)* M [logy(8M)]W?)

+324B5 (s + 1)*d> TPV (N M) /4,

Note that the first term on the right hand side is increasing in M while the second term is
decreasing in M . To achieve the optimal rate with respect to n, we need a balanced choice of
M such that

(logn)®M?log(M)? /n ~ M~48/4,
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in terms of their order. This leads to the choice of M = |n%/2(4+25) | and the network depth
and size where

W =38(s + 1)2d* T N[log,(8N)],
S = 0(n??(@+28) (1og n)),
the ERM f, € arg minscr, L, (f) satisfies
Ellfn — foll 320 §{0132 (logn)® + 324B§d25+5V1N’45/d}(s + 1)1~ 28/(d+25)

§C282N—46/d(8 + 1)4d2s+6\/1n—26/(d+26) (logn)5,

for 2n > Pdim(F,,), where c1, co > 0 are constants which do not depend on n, B, By, 3, s or
‘D W NN . This completes the proof. U

MQQ 7. Proof of Theorem 6.1. [/!L
K"U" 8 PR(')g F% 7
e project the data to a low-dimensional space and then use DNN to do ap-
proximation the low-dimensional function where the idea is similar to that of Theorem & ~
1.2 in Shen, Yang and Zhang (2020). Based on Theorem(3.1 i Baraniuk and Wakin (2009),
there exists a linear projector A € ]Rd5 *d that x@ps a low-dimensional manifold in a high-
[ dimensional space-to a low- dimensional space nearly preserving the distance. Specifically,
O there exists a le Rd5 xd such that(AA% (d/ds)14, where 14, is an identity matrix

of size ds x dg, and L0l

m

L 20§ o (zlles =l < 4z - Avals <
7
for any z1,x9 € M. And it is easy to chec

A(M,) CA(0,11%) €[/
A N\

Note that for any z € A(M), there exists a Ungue e x = 2. To prove
is, let 2’ € M be another point on M satisfying Aa: =z, then (1 —0)||lxz — az’H2 < HA:U —
— =

. that SL: A(M) — M is a differentiable function with the norm 1 of its derivative locates in

[1/(1+6), I7TT—8)]. since s Lo g O hy=F AXTT

1 -
Ay ) 3ol =2l < xt/\/\,
/\) s )Y b P = .
v \ ’ for“any 21,29 € A(M) C E where E := [— . For the high-dimensional <\
% function fo : [0,1]¢ — R, we define its low-dimensional representation f; : R% — R by ﬁ :
9 ~
fo(2) = fo(x.), forany ze A(M)CR%,

that fo € HP([0,1]%, By), then fo € HP(A(M), By/(1 — §)?). Note that M is com-
is a linear mapping, then by the extended version of Whitney’ extension the-
an (2006), there exists a function Fy € HP (E,By/(1 — 6)#) such that

) = fo(2) f any z € A(M). With E = [—\/d/ds, \/d/ds|% by Theorem 3.3, for any
- ) R sz ) B /4/*3 /W/
\_(//“ v -~
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N, M e N, there exists a function f,, : R% — R! implemented by a ReLU FNN with width
W =38(s + 1)2d5 " N [log,(8N)] and depth D = 21(s + 1)2M [log,(8M)] such that

[Fa(2) = Fo(2)] < 36 7 (s 4+ 1) 2™ 2 (V) 200,
) (gl T

for all z € E\Q(FE) where Q(F) is a subset of E with an arbitrarily small Lebesgue measure
as well as Q:={z € M, : Az € Q(E)} does.

If we define f) = f, o A which is f}(z) = fn(Az) for any z € [0, 1]9, then fr €
Fpwu,s,s is also a ReLU FNN with the same parameter as f,,. For any x € M\ and
z = Auw, there exists a ¥ € M such that ||z — Z||2 < p, then

o [} 1£3(@) — fol@)] = |Fu(Az) - Fo(AI)JrFo(Ax) Fo(Ax)JrFo(A) fo(x)]
y < |fal Aw) Fo(Ax)\+\Fo(m_F’fA$) +\F0(Aﬂf) fo(z)]

s B
(s +1)2d"/2d’ B (VM) 25/ 20| Az — A + 1fo(®) — folw)]
W

Bo 1/2 j35/2 28/ds  PBo [ d
(1_5)B(s+1)d 4 (N M)~ +1_5\/d5+p30

By
(1-0)P

v

<
_36(1_5)5

<36

=36 (s +1) 20232 (N MY~/ 4 pBo{(1—6) " \/dds + 1}

< (36 4 Cs) (s + 1)2d"2d>* (N M) =28/ %

By
(1= 0)°
where Cs > 0 is a constant not depending on any parameter The last inequality follows from

p < Co(NM)=28/ds (5 4 1)2d1/2d35/2{\/d/d5 +1—6}71(1 —6)'P. Since the probability
measure v of X is absolutely continuous with respect to the Lebesgue measure, we have

B2
(1-06)%
where ds = O(dqlog(d/§)/5?) is assumed to satisfy ds < d. B@Z we have
Ellfo = foll 220

SDlog(S)(logn)? B2

2 2 0
36 +Co) —57
_— —

where C7, Cy > 0 are constants that do not depend on n, B,S,D, By, 3,9, N or M, |5] =s
is the biggest integer strictly smaller than 3. This completes the proof of Theorem 6.1.

(A.12) 1fr = foll72() < (36 4 Ca)? (s + 1) dd (N M) ~46/ds,

<C1B

(18] + 1)*ddg ) (v ag) 49/,

O

A.8. Proof of Theorem 6.2. To facilitate the proof, we first briefly review manifolds,
partition of unity, and function spaces defined on smooth manifolds. Details can be found in
Chen et al. (2019), Tu (2011), Lee (2006), Federer (1959) and Aamari et al. (2019).

DEFINITION A.1 (Chart). Let M be a d -dimensional Riemannian manifold isomet-
rically embedded in R?. A chart for M is a pair (U, ¢) such that U C M is open and
¢ : U R, where ¢ is a homeomorphism, i.e., bijective, ¢ and ¢! are both continu-
ous.
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We say two charts (U, ¢) and (V1)) on M are C* compatible if and only if the transition
functions,

pop L p(UNV)=»op(UNV) and Yoo l:0p(UNV)—p(UNV)
are both C*.

DEFINITION A.2 (C* Atlas). A C* atlas for M is a collection of pairwise C'* compatible
charts {(U;, ¢;) }ica such that | J;c 4 U; = M.

DEFINITION A.3 (Smooth manifold). A smooth manifold is a manifold together with a
C° atlas.

DEFINITION A.4 (Holder functions on M). Let M be a da-dimensional Riemannian
manifold isometrically embedded in R?. Let {(U;, P;)}ic.4 be an atlas of M where the P/s
are orthogonal projections onto tangent space. For a positive number 5 > 0, a function f :
M — R belonging to Holder class H? (M, By) is -Holder smooth with constant By if for
each chart (U;, P;) in the atlas, we have

1. fo Pi_1 € C* with max||o||, <, |0% f (7)| < By for any = € U;.

2. Forany |||y = s and z,y € U,

0% () — 0 f(y)|

sup . < By,
T#y Hx _y||2

where s is the largest integer strictly smaller than 5 and r =3 — s.

DEFINITION A.5 (Partition of Unity, Definition 13.4 in Tu (2011)). A C® partition of
unity on a manifold M is a collection of nonnegative C* functions p; : M — RY fori € A
such that

1. The collection of the supports, {supp(p;)}ic4 is locally finite, i.e., every point on M
has a neighborhood that meets only finitely many of supp(p;)’s.

By Theorem 13.7 in Tu (2011), a C'*° partition of unity always exists for a smooth man-
ifold. This gives a decomposition f =) .., f; with f; = fp; and each f; has the same
regularity as f since f; o qb;l =(fo qﬁ;l) X (p; o qﬁ;l) for a chart (U;, ¢;). And the decom-
position means that we can express f as a sum of the f;’s with each f; is only supported in a
single chart.

Our approach builds on the methods of Schmidt-Hieber (2019); Chen, Jiang and Zhao
(2019) and Chen et al. (2019) but there are some noteworthy new aspects: (a) we apply linear
coordinate maps instead of smooth coordinate maps, where the linear coordinate maps can
be exactly represented by shallow ReLLU networks without error; (b) we do not require the
smoothness index of each coordinate map and each function in the partition of unity to be no
less than Bd/dxq, which depends on the ambient dimension d and can be large; (c) we ap-
ply our new approximation result when approximating the low-dimensional Holder smooth
functions on each projected chart, which leads to a better prefactor of error compared to most
existing results

PROOF. We prove Theorem 6.2 in three steps: (1) we first construct an finite atlas that
covers the manifold M; (2) we project each chart linearly to a d r-dimensional hypercube on
which we approximate the low-dimensional Holder smooth functions respectively; (3) lastly,



34

we combine the approximation results on all charts to get a error bound of the approximation
on the whole manifold.
Step 1: Atlas Construction and Projection.

Let B(x,r) denote the open Euclidean ball with radius r > 0 and center = € R, Given any
r > 0, we have an open cover { B(z,7) }zem of M. By the compactness of M, there exists a
finite cover { B(x;,7)}i=1,....c,, for some finite integer C'r4 such that M C |J, B(x;,7). Let
(1/7) denote the condition number of M, then we can choose proper radius r < 7/2 such
that U; = M N B(x;,7) is diffeomorphic to a ball in R (Niyogi, Smale and Weinberger,
2008). The definition and detailed introduction of condition number (or its inverse called
“reach") can be found in Federer (1959) and Aamari et al. (2019). Besides, the number of
charts C satisfies

Cmt < [Siy Tape /77,

where S, is the area of the surface of M and T}, is the thickness of U;’s, which is defined
as the average number of U;’s that contain a point on M. By equation (19) in Chapter 2 of
Conway and Sloane (2013), the thickness 7};,, scales approximately linear in d4 and there
exist coverings such that T;,, < daqlog(dag) + daqloglog(da) + 5da < Tdaglog(da).
Let the tangent space of M at x; be denoted by 7)., (M) and let V; € R?*%* be the matrix
concatenating the orthonormal basis of the tangent space as column vectors. Then for any
x € U; we can define the projection

¢i(x) = ai(V;' (x — 2) + by),

where a; € (0, 1] and b; are proper scalar and vector such that ¢;(z) € [0, 1]9* for any = € U;.
Note that each projection ¢; is a linear function, which can be computed by a one-hidden
layer ReLLU network.

Step 2: Appr0x1mate low-dimensional functions.
For charts {(U;, qbl) i 1, we can approximate the function on each chart by approximation
the projected function in the low-dimensional space. By Theorem 13.7 in Tu (2011), the
target function f can be written as

Cnm Cnm
f=) fri=)_ 1
1=1 1=1

where p;’s are elements in C'*° partition of unity on M being supported in U;’s. Note that
the manifold M is compact and smooth and p;’s are C*°, then f;’s have the same smooth-
ness as f itself for i = 1,...,C. Note that the collection of the supports, {supp(p;)}ic4
is locally finite, and let C), denote the maximum number of supp(p;)’s that a point on M
can belong to. Besides, since each ¢; is linear projection operator, it is not hard to show
that each fZ ) gb_ is a Ht‘)lder smooth function with order 3 > 0 on ¢;(U;) C [0,1]%,
ie., f;o (j)i € HP(¢;(U;),\/d/dpBy) for i =1,...,Cpq. A detailed proof can be found
in Lemma 2 of Chen et al (2019). By the extended version of Whitney’ extension the-
orem in Fefferman (2006), we can approximate the smooth extension of f; o (bi_l on
[0,1]%, By Corollary 3.1, for any M, N € N*, there exists a function g; implemented
by a ReLU network with width W = 38(| 8] + 1)23% (dn) P11 Nlogo(8N)] and depth
D=21(|8] + 1)2Mﬂog2(8M)1 + 2d A4 such that

\fi 067 H(z) — gi(2)| <19v/d/dpBo(| 12(dpg) BIHBYD/2 ()~ 28/

for any x € ¢;(U;) C [(), 1]dm,
Step 3: Approximate the target function on the manifold.
By construction of subnetworks, the projected target functions f; o (;52._1 on each region ¢;(U;)



DEEP NONPARAMETRIC REGRESSION 35

can be approximated by ReL.U networks g;. Note that each projection ¢; is a linear function
can be computed by a one-hidden layer ReLLU network. Then we stack two more layer to g;
and get g; = g; o ¢; such that for any = € U;,

(@) = Gi(@)] = 1fi(w) — gi 0 &i(w)| <19Bo(LB] +1)°d"?(dpg) P2 (N ) =20/,

where §; is a ReLU activated network with width W = 38(| 8] +1)23% (daq)PJ+1 N log,(8N)]
and depth D = 21(| 8] + 1)?M [logy(8M)] + 2d s + 2. Since there are C¢ charts, we par-
allel these subnetworks g; to get g = ZICZA{ g; such that

o Cm
Zfz‘(l") - Zéz‘(fﬁ)

<G, max |fi(w) =)

[f(z) = g(z)| =

<19C,Bo(|8] + 1)2d2(d p ) BIHB/2(N V) =28/ A
for any & € M. Such a neural network § has width W = 38C (| 8] +1)23% (d ) P11 NTlog, (8N)]
and depth D = 21(| 8] +1)? M [logy (8M )] +2d ¢ 4 2. Recall that C g < [S( gy T, /] <
[7SAydm log(dag)/ri+] < ClS(M)(Q/T)dM dnlog(dpg) for some universal constant
Cy > 0, then width W < 266(| 8] + 1)2[Sa((6/7)% 7 (dag)P1T2N [logy(8N)]. Then we
have

|f(x) — §(x)| < CaBo(|B] 4+ 1)2dY?(dpg 3P/ 212 (N M) =28/ da

where Cs > 0 is some constant not depending on n,d, dnr, N, M, 3, By and 7. And combin-
ing Lemma 3.2, we have

5 SDlog(S)(logn)?
n

Ellfa— fol3) < 1B + Ca B3]+ 1) d(d g P (N M) 4870,

where C > 0 is some constant not depending on n,d, dnq, B, S, D, N, M, 3, By, T and Sp4.
This completes the proof of Theorem 6.2. O

A.9. Proof of Theorem 6.3.

PROOF. Let E C R? be the support of X with Minkowski dimension d* = dim(E). Let
T = {(w1 — x3)/||x1 — 2||2 : 71, 72 € E'} be the standardized difference of set £ where E is
the closure of . By Lemma B.5, there exists an absolute constant x, a realization of random
projection with entries i.i.d from Rademacher random variableg’ A4 3 R? — R% such that for
all 7,6 € (0,1)ifd>do > k(y*(T) + log(2/7)) /6%,

(1= )lla1 — 223 < | Ay — Aza |3 < (1 +6)l|21 — 22]l3,

for all x1, 29 € E, where v(T) is defined in'Lemma B)5. Note that every covering (by closed
balls) of E is also a covering of E, which implies-dim;(E) = dimy(E) = d*. And y(T)
is also related to d* the intrinsic dimension of E. More exactly, let No =N(e, |- |2, F)
be the covering number of E with radius ¢ and Cp = {:cl} Yo, C E be the set of anchor
pomts Then for any = € E, there exists a x; such that ||z — ;|2 < e. For the difference set
E - ={z1 —x9: 71,29 € E} we can construct a 2e- coverlng with No anchor pomts
{z1 —x9: 21,29 € Cp}.Forany y € E — E, there exists x, 2’ € E such thaty =z — 2’. And
there exists 21, z9 € Cp such that ||x — z1]|2 < e and ||z’ — z2|]2 < e. Then let y = x1 — xo,
we have ||y —/|l2 = ||(x —2) — (x1 — x2)||2 < ||x — z1]|2 + |2’ — z2]|2 < 2. This shows that
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N (2| - ||l2, E = E) <N (e, || - |2, E)* = N§, and dimp; (E — E) < 2d*. Let T denote the
bounded set ¥ — E. Now we derive the relationship between the covering number of T and
that of 7'. Firstly, given any real number § > 0, we consider the subset Ts := {t € T : ||£]]2 >
9} and T5 ={t/lItl2:t € Ts}. We scale up the set Ts := {t € Ty : ||t||2 > 6} by 1/6 times
to get 375 := {¢/0 : T € Ty}. By the definition of the Minkowski dimension (with respect the
covering number) and the property of scaling, it is easy to see that the e-covering number of
Ty is no more than (1/6)?" times larger than that of Ty since dimy;(Ts) < dimp(T') <
2d*, i.e. for each 6 > 0 we have,

NIz, Ta) (1/8)* " N (e, - 12, T5)

< (1/8) " N(e - [l2,T)
<co(1/0)*" (1/e)*",

where cg > 0 is a constant not depending on d*, e and §. This implies dim M(% 5) <2d* +
dlmM(T(g) for § > 0.

Now ¢ > 0, we link the Minkowski dimension of T5 to that T5. Given any ¢, suppose
t1,...,tn, are the anchor points of a minimal e-cover of T5 By the definition of covering, for
any t € $T, there exists an anchor point #; for some i € {1,...,m} such that ||t — #;]]2 <e.
Since ¢, t € +T5, we have ||t||2 > 1, ||t ||2 >1, and

| = : o,
i~ <l T
1 L s |t — 1, |2
<l ~ e+ | H B
< | e [l +
[T+ ¢ il
< 2e.

Thus the ball around ¢;/|#;||2 with radius 2€ covers t/||t||2, which implies N'(2¢, || - ||2, T5) <
N (e, || - |l2,$T5). Then dimp (T5) < dimps(375) < 2d* + dimp (T5) < 2d* + dimp (T) <
4d*. Since limg Ts =T and lims 10 Ts =T are both bounded, then

VH(E |- l2.T) = VgV (e, [ - [l2, ))<01 d*log(1/e),

for some constant ¢; > 0. Then by the definition of ~ fo VH(e, | |2, T)de, we
know 72(T) = cd* for some constant ¢ > 0. And dg > Ii( ( ) +1log(2/7)) /6% = n(cd*
log(2/7))/5%.

Sineeeachrentry of A is either 1 or —1, then A(E) C A([0,1]%) C H :=[—+/ddy, \/ddo)™.
Note that for any z € A(E), there exists a unique = € E such that Ax = z. To prove this, let
2’ € E be another point in E satisfying Az’ = z, then (1 — 0|z — 2'||3 < || Az — A2'||3 <
(14 6)||z — 2|3 implies that ||z — 2’|| = 0. Then we can define a one-one map SL from
A(E)to E,ie. v, =SL({x € E: Av = z}). And we can see that SL : A(E) — E is a
differentiable function with the norm of its derivative locates in [1/1/(1 + ), /1/(1 — §)],
since

1 2
sl = 2B < e, — 2 B < sl — 2B,
for any z1, 22 € A(E). For the high-dimensional function f; : [0,1]¢ — R, we define its

low-dimensional representation f; : R% — R! by
fO(Z):fO(:CZ)v for anyzeA(E)ngo,
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with fo € HP(A(E),By/(1 — 6)P/2) recalling that fy € H?([0,1]¢, By). By the ex-
tended version of Whitney’ extension theorem in Fefferman (2006), there exists a func-
tion Fy € HP(H, By/(1 — 6)P/?) such that Fy(z) = fo(z) for any z € A(E). With H =
[—/ddy, \/ddy]%, by Corollary 3.1, for any N, M € N*, there exists a function frn R —

R! implemented by a ReLU FNN with width W = 38(| 3] 4 1)23% déﬂHl NTlog,(8N)] and
depth D = 21(| 8] + 1)2M [logy(8M)] + 2dy such that

for any z € H where ¢y is a constant not dependlng ond,dy,3, N or M. If we define f; =
fno Awhichis f(z) = fn(Ax) for any = € [0,1]¢, then f € Fp . s 5 is also a ReLU FNN
with the same parameter as fn Forany z € E,

[fr(@) = fo(@)| = | fa(Az) — Fo(Az))|
By 2 51/2 41 B]+(BV1+1)/2 —28/do
Sczmqﬁj*‘l) d~'"dy (NM) :
Combining with Lemma 3.2, since X is supported on F/, we have
5 SDlog(S)(logn)3 LC B?
(107

where dy > kd* /5% = O(d* /6?) for some constants x > 0 and Cy, Cy > 0 are constants that
do not depend on n,d,dyB,S, D, By, 3,k,9, N or M, || = s is the biggest integer strictly
smaller than 3. This completes the proof of Theorem 6.3. U

Ean—fOH%z(,,) <CB (18] +1)4dd(2)w+’8\/1+1(NM)*4/5/do,

APPENDIX B: SUPPORTING LEMMAS

For ease of reference, we collect several existing results that we used in our proofs.

LEMMA B.1 (Proposmon 4.3. in Luetal. (2021)). For any N,M,d € N* and § €
(0,3K] with 1/ /ﬁ | M?/?), there exists a onesdimensional function ¢ implemented

NY4| + 3 and depth AM ~+ 5 such that ~
’K - 1' @

kE k+1

V2, i XET, %—5 lheie 1, for k=0,1,...
/M

% ¥

\éLEMMA B.2 (Proposition 4.4. in Lu et al. (2021)). Given any N,M,s € NT and &; €

[0,1] fori=0,1,..., N?2L? — 1, there exists a function ¢ implemented by a ReLU FNN with

width 16s(N + 1) [logQ (8N)| and depth 5(M + 2)[logy(4M)| such that

|p(i) — & < N"2M 2% fori=0,1,...,N?M?* -1,
and 0 < ¢(x) <1 forany x € R.

The next lemma demonstrate that the production function and polynomials can be ap-
proximated by ReLLU neural networks. The basic idea is firstly to approximate the square
function using “sawtooth" functions then the production function, which is firstly raised in
Yarotsky (2017). A general polynomial can be further approximated combining the approxi-
mated square function and production function. The following two lemmas are more general
results than those in Yarotsky (2017).
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LEMMA B.3 (Lemma 4.2. in Lu et al. (2021)). For any N, M € NT, and a,b € R with
a < b, there exists a function ¢ implemented by a ReLU FNN with width 9N + 1 and depth
M such that

(62, y) — 2y <6(b—a)’N~M
for any x,y € [a, b].
LEMMA B.4 (Theorem 4.1 in Lu et al. (2021)).  Assume P(x) =2 = x{"x5” - - - x5 for

a € N4 with |||y < k € NT. For any N, M € N¥, there exists a function ¢ implemented by
a ReLU FNN with width 9(N + 1) + k — 1 and depth Tk* M such that

|p(x) — P(x)] <9k(N + 1) for any z € [0,1]<.

The next lemma is a generalization of Johnson-Lindenstrauss theorem for embedding a set
with infinitely many elements, which is firstly proved in Klartag and Mendelson (2005).

LEMMA B.5 (Theorem 13.15 in Boucheron, Lugosi and Massart (2013)). Lédr A C R?
and consider the random projection W): R® — R% with jfs entries \are independent either
standard Gaussian or Rademacher—random yariables. LetT-="{(a1 — a2)/|la1 — az||2 :
ay,as € A} and define

1
AT) = /0 VEGE T2 T)e,

where\H (¢, || - ||2, ) is the c-entropy of T' with respect to the norm || - ||2. There exists an
absolute constanf ¥/, such that for all 7,6 € (0,1) if dy > k' (v*(T) + log(2/7))/8?, then
with probability at least 1 — T,

(1=6)llar — az)|3 < [Way — Waslls < (1+6)lax — aslf3,
forall a1,ay € A.
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