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a b s t r a c t 

Accurate temporal modelling of functional brain networks is essential in the quest for understanding how such networks facilitate cognition. Researchers are beginning 

to adopt time-varying analyses for electrophysiological data that capture highly dynamic processes on the order of milliseconds. Typically, these approaches, such as 

clustering of functional connectivity profiles and Hidden Markov Modelling (HMM), assume mutual exclusivity of networks over time. Whilst a powerful constraint, 

this assumption may be compromising the ability of these approaches to describe the data effectively. Here, we propose a new generative model for functional 

connectivity as a time-varying linear mixture of spatially distributed statistical “modes ”. The temporal evolution of this mixture is governed by a recurrent neural 

network, which enables the model to generate data with a rich temporal structure. We use a Bayesian framework known as amortised variational inference to learn 

model parameters from observed data. We call the approach DyNeMo (for Dynamic Network Modes), and show using simulations it outperforms the HMM when 

the assumption of mutual exclusivity is violated. In resting-state MEG, DyNeMo reveals a mixture of modes that activate on fast time scales of 100–150 ms, which is 

similar to state lifetimes found using an HMM. In task MEG data, DyNeMo finds modes with plausible, task-dependent evoked responses without any knowledge of 

the task timings. Overall, DyNeMo provides decompositions that are an approximate remapping of the HMM’s while showing improvements in overall explanatory 

power. However, the magnitude of the improvements suggests that the HMM’s assumption of mutual exclusivity can be reasonable in practice. Nonetheless, DyNeMo 

provides a flexible framework for implementing and assessing future modelling developments. 
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. Introduction 

Functional connectivity (FC, Friston, 1994 ) has traditionally been

tudied across the duration of an experiment, be it metabolic (e.g.

eckmann et al., 2005; Cole et al., 2014; Smith et al., 2009; Stevens,

016 ) or electrophysiological in nature (e.g. Brookes et al., 2011b;

e Pasquale et al., 2012; Hipp et al., 2012; Luckhoo et al., 2012 ). Such

tudies have shown that the brain forms well-defined spatio-temporal

etworks which are seen both in task ( Quinn et al., 2018 ) and at rest

 Engel et al., 2013 ). However, there is a growing body of evidence sup-

orting the idea that these networks are transient ( Baker et al., 2014;

’Neill et al., 2015; Vidaurre et al., 2016 ), and that they emerge and

issolve on sub-second time scales. It is now well established that the

ynamics of these networks underpin healthy brain activity and cogni-

ion ( Fries, 2015 ) and that the disruption of FC is implicated in disease

 Stam et al., 2009; Stoffers et al., 2008 ). 

A systematic understanding of the neuroscientific significance of

hese networks of whole-brain activity is only facilitated by accurate
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odelling across the spatial, temporal and spectral domains. Sliding

indow analyses have been used successfully to study time-varying FC

n both M/EEG ( Betti et al., 2013; Brookes et al., 2011a; 2014; Brovelli

t al., 2017; Carbo et al., 2017; De Pasquale et al., 2010; 2016; O’Neill

t al., 2015; 2017 ) and fMRI ( Allen et al., 2014; Chang et al., 2013;

lton and Gao, 2015; Hutchison et al., 2013; Kucyi and Davis, 2014;

iégeois et al., 2016; Lindquist et al., 2014; Preti et al., 2017; Sakoglu

t al., 2010; Tagliazucchi et al., 2012 ). Recent studies have calculated

ery short, or even instantaneous, time-point-by-time-point estimates of

C, which are then combined with a second stage of clustering such as

-means (e.g. O’Neill et al., 2015 ) to pool over recurrent patterns of oth-

rwise poorly estimated FC. These two-stage approaches allow access to

C on fast time scales ( Sporns et al., 2021; Tewarie et al., 2019 ). 

Although they remain popular, sliding window analyses are a heuris-

ic approach to data analysis and lack a generative model. An alter-

ative approach to studying dynamics of functional brain networks is

ia the adoption of a formal model. An Hidden Markov Model (HMM)

 Rabiner and Juang, 1986 ) is one such option. As with the two-stage
t 2022 
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2 Including the positivity constraint enables us to interpret the 𝜶𝑡 values as 

mixing coefficients and the sum to one constraint ensures the distribution of 

mixing coefficients is sufficiently non-Gaussian for the model to be identifi- 

able ( Eriksson and Koivunen, 2004 ). 
pproaches mentioned above, HMMs can pool non-contiguous periods

f data together to make robust estimations of the activity of brain

etworks, including FC. However, they do so by incorporating these

wo stages into one model. HMMs (as well as other techniques, such

s microstates Michel and Koenig, 2018 ) have been used to show that

rain networks evolve at faster time scales than previously suggested

y competing techniques (such as independent component analysis)

 Baker et al., 2014 ). In the context of M/EEG, HMMs have been used

o elucidate transient brain states ( Vidaurre et al., 2016 ), model sensor

evel fluctuations in covariance ( Woolrich et al., 2013 ) and reveal la-

ent task dynamics attributed to distributed brain regions ( Quinn et al.,

018 ). More recently, Seedat et al. applied an HMM to detect transient

ursting activity and showed it was correlated to aspects of the elec-

rophysiological connectome ( Seedat et al., 2020 ), whilst Higgins et al.

ere able to show that replay in humans coincides with activation of

he default mode network ( Higgins et al., 2021 ). 

Although very powerful, convenient, and informative, traditional

MMs are themselves limited in two key ways. Firstly, there is the mod-

lling choice that the state at any time point is only conditionally depen-

ent on the state at the previous time point (i.e. the model is Markovian).

his limits the modelling capability of the technique as there is no way

or any long-range temporal dependencies between historic state occur-

ences and the current state to be established Gschwind et al. (2015) .

hile approaches that use Hidden Semi-Markov Models have been pro-

osed, they are limited in the complexity of long-range temporal depen-

encies they can capture ( Trujillo-Barreto et al., 2019 ). Secondly, HMMs

dopt a mutually exclusive state model, meaning that data can only be

enerated by one set of observation model parameters at any given in-

tance. True brain dynamics might be better modelled by patterns that

an flexibly combine and mix over time. The mutual exclusivity con-

traint was found to lead to errors in inferred functional brain network

etrics in Pervaiz et al. (2022) . 

We set to address these two limitations in this paper and do so by in-

roducing a new generative model for neuroimaging data. Specifically,

e model the time-varying mean and covariance of the data as a linear

eighted sum of spatially distributed patterns of activity or “modes ”.

otably, we do not impose mutual exclusivity on mode activation. Sim-

larly, we drop the assumption that the dynamics of the modes are a

unction of a Markovian process. This is achieved by using a unidi-

ectional recurrent neural network (RNN) ( Géron, 2019 ) to model the

emporal evolution of the weighted sum. The memory provided by the

NN facilitates a richer context to the changes in the instantaneous

ean and covariance than what would be afforded by a traditional

MM. 

In this work, we use Bayesian methods ( Friston et al., 2007 ) to infer

he parameters of the generative model. With this method, we learn a

istribution for each parameter, which allows us to incorporate uncer-

ainty into our parameter estimates. Having observed data, we update

he distributions to find likely parameters for the model to have gen-

rated the data. In this work, we adapt a method used in variational

utoencoders ( Kingma and Welling, 2014 ) to infer the model parame-

er distributions. One component of this is amortised inference, which

orks through the deployment of an inference network. In our case the

nference network is another RNN, which is bidirectional ( Géron, 2019 )

nd learns a mapping from the observed data to the model parameter

istributions. The use of an inference network facilitates the scaling and

pplication of this technique to very large datasets, without ever needing

necessarily) to increase the number of inference network parameters to

e learnt. 

To update our model parameter distributions, we minimise the

ariational free energy (see Section 2.2 ) using stochastic gradient de-

cent ( Géron, 2019 ). We do this by sampling from the model pa-

ameter distributions using the reparameterization trick ( Kingma and

elling, 2014 ). The ability to estimate the variational free energy by

ampling enables us to use sophisticated generative models that include

ighly non-linear transformations that would not be feasible with clas-
2 
ical Bayesian methods. Taken together, we call the generative model

nd inference framework DyNeMo (Dynamic Network Modes). 

. Methods 

In this section we outline the generative model and describe the in-

erence of model parameters. We also describe the datasets and prepro-

essing steps carried out in this work. 

.1. Generative model 

Here we propose a model for generating neuroimaging data that ex-

licitly models functional brain networks, including a metric of their

C, as a dynamic quantity. The model describes time series data using

 set of modes , which are constituent elements that can be combined to

efine time-varying statistics of the data. When trained on neuroimag-

ng data, modes are simply static spatial brain activity patterns that can

verlap with each other. We refer to them as “modes ” to emphasise that

he model is not categorical, i.e. that modes should not be mistaken for

utually exclusive states (as would be the case in an HMM). Similar

o an HMM, our generative model has two components: a latent repre-

entation and a data generating process given the latent representation,

hich is referred to as an observation model . In our case, the latent repre-

entation is a set of mixing coefficients 𝜶𝑡 and the observation model is a

ultivariate normal distribution. The mean and covariance of the multi-

ariate normal distribution is determined by linearly mixing the modes’

patial models, i.e. means 𝝁𝑗 and covariances 𝑫 𝑗 , with the coefficients

𝑡 . The mixing coefficients are dynamic in nature whereas the modes

re static. Therefore, dynamics in the observed data are captured in the

ynamics of the mixing coefficients. The mixing coefficients provide a

ow-dimensional and interpretable dynamic description of the data and

odes correspond to static spatial distributions of activity/FC, where

ode-specific FC is captured by the between-brain-region correlations

n 𝑫 𝑗 . Both of these quantities are useful for understanding the data. An

verview of the generative model is shown in Fig. 1 and a mathematical

ormulation is given below. 

At each time point 𝑡 there is a probabilistic vector of free parameters,

eferred to as a logit and denoted by 𝜽𝑡 . The logits are distributed in

ccordance with a multivariate normal distribution, 

 ( 𝜽𝑡 |𝜽1∶ 𝑡 −1 ) =  ( 𝝁𝜃𝑡 
( 𝜽1∶ 𝑡 −1 ) , 𝝈2 

𝜃𝑡 
( 𝜽1∶ 𝑡 −1 )) , (1)

here 𝜽1∶ 𝑡 −1 denotes a sequence of historic logits { 𝜽1 , … , 𝜽𝑡 −1 } , 𝝁𝜃𝑡 
is a

ean vector and 𝝈2 
𝜃𝑡 

is a diagonal covariance matrix. We use a unidi-

ectional RNN to predict future values of 𝝁𝜃𝑡 
and 𝝈𝜃𝑡 

based on previous

ogits 𝜽1∶ 𝑡 −1 . The logit at each time point 𝜽𝑡 is sampled from the distri-

ution 𝑝 ( 𝜽𝑡 |𝜽1∶ 𝑡 −1 ) . The historic values of the logits 𝜽1∶ 𝑡 −1 are fed into

he RNN: 

𝜃𝑡 
( 𝜽1∶ 𝑡 −1 ) = 𝑔 𝜇( LSTM ( 𝜽1∶ 𝑡 −1 )) , 

𝜃𝑡 
( 𝜽1∶ 𝑡 −1 ) = 𝜉( 𝑔 𝜎( LSTM ( 𝜽1∶ 𝑡 −1 ))) , (2) 

here 𝑔 𝜇 and 𝑔 𝜎 are learnt affine transformations, 𝜉 is a softplus function

ncluded to ensure the standard deviations 𝝈𝜃𝑡 
are positive, and LSTM is

 type of RNN known as a Long Short Term Memory network (). We refer

o this network as the model RNN . The logits 𝜽𝑡 are used to determine a

et of mixing coefficients, 

𝑡 = 𝜁 ( 𝜽𝑡 ) , (3)

here 𝜁 is a softmax function which assures that the 𝜶𝑡 values are pos-

tive and sum to one. 2 The mixing coefficients are then used together
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Fig. 1. Generative model employed in DyNeMo. Historic val- 

ues of a latent logit time series (solid squares, blue back- 

ground), 𝜽<𝑡 , are fed into a unidirectional model RNN. The 

output of the model RNN parameterises a normal distribution, 

𝑝 ( 𝜽𝑡 |𝜽<𝑡 ) , which we sample to predict the next logit, 𝜽𝑡 , (un- 

filled squares). These logits are transformed via a softmax op- 

eration to give the mixing coefficients, 𝜶𝑡 , (unfilled circles). 

The softmax transformation enforces the mixing coefficients 

are positive and sum to one at any instance in time. Separate 

from the dynamics are the corresponding spatial models that 

describe brain network activity as a set of modes (depicted 

in different colours here); via a mean vector, 𝝁𝑗 , and covari- 

ance matrix, 𝑫 𝑗 . The mode spatial models combine with the 

dynamic mixing coefficients (linear mixing) to parameterise 

a multivariate normal distribution with a time-varying mean 

vector, 𝒎 𝑡 , and covariance matrix, 𝑪 𝑡 . Note, we do not enforce 

any constraint on the modes means 𝝁𝑗 and covariances 𝑫 𝑗 , 

this means they can overlap in time and space and the overall 

activity ( 𝒎 𝑡 and 𝑪 𝑡 ) can vary. (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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ith a set of spatial modes to calculate a time-varying mean vector and

ovariance matrix: 

𝒎 𝑡 = 

𝐽 ∑
𝑗=1 

𝛼𝑗𝑡 𝝁𝑗 , 

 𝑡 = 

𝐽 ∑
𝑗=1 

𝛼𝑗𝑡 𝑫 𝑗 , (4) 

here 𝐽 is the number of modes, 𝝁𝑗 is the mean vector for each mode,

 𝑗 is the covariance matrix for each mode and 𝛼𝑗𝑡 are the elements of

𝑡 . 

.2. Inference 

In this section we describe the framework employed to infer the pa-

ameters of our generative model. Namely, the logits 𝜽𝑡 , mode means 𝝁𝑗 

nd covariances 𝑫 𝑗 . In this work, we use variational Bayesian inference

o learn the full posterior distribution for 𝜽𝑡 and point estimates for 𝝁𝑗 

nd 𝑫 𝑗 . 

Variational Bayes In Bayesian inference, we would like to learn a

istribution, referred to as the posterior distribution , for the variable we

re trying to estimate given some data we have observed. In variational

ayesian inference, we approximate the posterior distribution with a

imple distribution, referred to as the variational posterior distribution
3 
( 𝜽𝑡 ) , and aim to minimise the Kullback-Leibler (KL) divergence between

he variational and true posterior, which amounts to minimising the

ariational free energy (or equivalently, maximising the evidence lower

ound). In classical variational Bayes ( Bishop, 2007; Woolrich et al.,

009; Zhang et al., 2018 ), this involves formulating update rules for the

arameters of the variational posterior distribution given some observed

ata. Deriving these update rules is only made possible by limiting the

omplexity of the generative model for the observed data and restrict-

ng the variational posterior to conjugate distributions. In addition to

his, we have a separate variational distribution for each variable we

re trying to estimate. Also in classical variational Bayes, we learn the

arameters of each variational distribution separately, which becomes

roblematic in terms of computer memory requirements when we wish

o estimate a large number of variables. 

In brief, we overcome these difficulties with a technique adapted

rom variational autoencoders ( Kingma and Welling, 2014 ). This de-

loys a neural network (which we call the inference network ) to perform

mortised inference, which helps the approach to scale to large numbers

f observations over time; and a sampling technique (known as the repa-

ameterization trick ) that allows us to learn a full posterior distribution

or 𝜽𝑡 ( Kingma and Welling, 2014 ). We learn point estimates of 𝝁𝑗 and

 𝑗 using trainable free parameters. We update estimates for 𝝁𝑗 , 𝑫 𝑗 , and

he posterior distribution parameters of 𝜽𝑡 , to minimise the variational

ree energy using stochastic gradient descent. 
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Fig. 2. The full DyNeMo framework. A sequence of observed 

data, 𝒙 1∶ 𝑁 , is fed into a bidirectional RNN which parameterises 

the approximate variational posterior distribution for the logit 

time series, 𝑞( 𝜽𝑡 |𝒙 1∶ 𝑁 ) . We sample 𝜃𝑠 
𝑡 

from the variational pos- 

terior distribution using the reparameterization trick (aster- 

isks, orange background) and feed the samples into the model 

RNN to predict the prior distribution one time step in the fu- 

ture 𝑝 ( 𝜽𝑡 +1 |𝜽1∶ 𝑡 ) . The prior and posterior distribution are used 

to calculate the KL divergence term of the variational free en- 

ergy. The samples from the variational posterior distribution 

𝜃𝑠 
𝑡 

are also used to generate the observed data by first applying 

a softmax transformation to calculate the mixing coefficients, 

𝜶𝑡 , (unfilled circles, orange background). These mixing coeffi- 

cients are then combined with the spatial model of each mode, 

which is a mean vector, 𝝁𝑗 , and covariance matrix, 𝑫 𝑗 . This 

gives an estimate of the time-varying mean, 𝒎 𝑡 , and covari- 

ance, 𝑫 𝑗 , which is used to calculate the negative log-likelihood 

term of the variational free energy. 
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Logits 𝜽𝒕 Focusing on the full posterior inference of the logits 𝜽𝑡 , here,

e use amortised inference ( Zhang et al., 2018 ). This involves using an

nference network to learn a mapping from the observed data to the

arameters of the variational posterior. The rationale for this approach

s that the computation from past inferences can be reused in future

nferences. The use of an inference network fixes the number of trainable

arameters to the number of internal weights and biases in the inference

etwork. This is usually significantly smaller than the number of time

oints, which allows us to efficiently scale to bigger datasets. 

Inference network We now describe the inference network in detail.

aving observed the time series 𝒙 1∶ 𝑁 

, we approximate the variational

osterior distribution for 𝜽𝑡 as 

( 𝜽𝑡 |𝒙 1∶ 𝑁 

) =  ( 𝒎 𝜃𝑡 
( 𝒙 1∶ 𝑁 

) , 𝒔 2 
𝜃𝑡 
( 𝒙 1∶ 𝑁 

)) , (5)

here 𝒎 𝜃𝑡 
and 𝒔 2 

𝜃𝑡 
are the variational posterior mean and covariance of a

ultivariate normal distribution respectively. The variational posterior

ovariance is a diagonal matrix. We use a bidirectional RNN for the

nference network, which we refer to as the inference RNN . This network

utputs the parameters of the variational posterior distribution given the

bserved data: 

 𝜃𝑡 
( 𝒙 1∶ 𝑁 

) = 𝑓 𝑚 ( BLSTM ( 𝒙 1∶ 𝑁 

)) 

𝒔 𝜃𝑡 ( 𝒙 1∶ 𝑁 

) = 𝜉( 𝑓 𝑠 ( BLSTM ( 𝒙 1∶ 𝑁 

))) , (6) 

here 𝑓 𝑚 and 𝑓 𝑠 are affine transformations and BLSTM denotes a bidi-

ectional LSTM. The complete DyNeMo framework and interplay be-

ween the generative model and inference network is shown in Fig. 2 . 

Loss function Having outlined the inference network for the logits, we

urn our attention to the loss function used in DyNeMo. In variational
4 
ayesian inference we infer a parameter, in this case 𝜽𝑡 , by minimising

he variational free energy ( Friston et al., 2006 ), 

 = − ∫ 𝑞( 𝜽1∶ 𝑁 

|𝒙 1∶ 𝑁 

) log 
( 

𝑝 ( 𝒙 1∶ 𝑁 

|𝜽1∶ 𝑁 

) 𝑝 ( 𝜽1∶ 𝑁 

) 
𝑞( 𝜽1∶ 𝑁 

|𝒙 1∶ 𝑁 

) 

) 

d 𝜽1∶ 𝑁 

, (7)

here 𝑝 ( 𝜽1∶ 𝑁 

) is the prior and 𝑝 ( 𝒙 1∶ 𝑁 

|𝜽1∶ 𝑁 

) is the likelihood. With this

pproach the inference problem is cast as an optimisation problem,

hich can be efficiently solved with the use of stochastic gradient de-

cent ( Géron, 2019 ). Here, we make stochastic estimates of a loss func-

ion, and use the gradient of the loss function to update the trainable

arameters in our model. However, to estimate the loss function we

ust calculate the integral in Eq. (7) . In DyNeMo, this is done using

 sampling technique (i.e. the reparameterization trick) to give Monte

arlo estimates of the loss function. 

Insight into the loss function is gained by re-writing Eq. (7) as two

erms (see SI 1.1): 

 = − LL + KL . (8)

he first term is referred to as the log-likelihood term and the second

erm is referred to as the KL divergence term . The log-likelihood term

cts to give the most probable estimate for the logits that could gen-

rate the training data and the KL divergence term acts to regularise

he estimate. Relating this to components of DyNeMo, it is the inference

NN that infers the logits, which together with the learnt mode means

nd covariances determine the log-likelihood term, whilst the model

NN regularises the inferred logits through its role as the prior in the

L divergence term. It is the temporal regularisation provided by the

odel RNN that distinguishes DyNeMo from a Gaussian mixture model
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Table 1 

Hyperparameters (see SI 1.2) used in simulation and real data studies. 

Hyperparameter Simulation 1 Simulation 2 MEG Data 

Number of modes, 𝐽 3 6 10 

Sequence length, 𝑁 200 200 200 

Inference RNN hidden units 64 64 64 

Model RNN hidden units 64 64 64 

KL annealing sharpness, 𝐴 𝑆 10 10 10 

KL annealing epochs, 𝑛 AE 100 100 300 

Training epochs 𝑛 E 200 200 600 

Batch size 16 16 32 

Learning rate, 𝜂 0.01 0.01 0.0025 

Gradient clip (norm.) - - 0.5 

Number of multi-starts - - 10 

Multi-start epochs - - 20 
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GMM). The benefit of including a model RNN for temporal regularisa-

ion is discussed in SI 1.4. 

We now detail the calculation used to estimate the loss function. The

og-likelihood term is given by 

L = 

𝑁 ∑
𝑡 =1 

log ( 𝑝 ( 𝒙 𝑡 |𝜽1 𝑡 )) , (9)

here 𝑝 ( 𝒙 𝑡 |𝜽1 𝑡 ) is the likelihood of generating data 𝒙 𝑡 at time point 𝑡

iven the latent variable is 𝜽1 
𝑡 
, which is a sample from the variational

osterior 𝑞( 𝜽𝑡 |𝒙 1∶ 𝑁 

) . The superscript in 𝜽1 
𝑡 

indicates that it is the first

ample from 𝑞( 𝜽𝑡 |𝒙 1∶ 𝑁 

) . Only one sample from the variational posterior

t each time point is used to estimate the log-likelihood term. Note that

he likelihood is a multivariate normal whose mean and covariance is

etermined by Eq. (4) . Therefore, the likelihood depends on the logits

𝑡 , mode means 𝝁𝑗 and covariances 𝑫 𝑗 . The KL divergence term is given

y 

L = 

𝑁 ∑
𝑡 =2 

𝐷 KL ( 𝑞( 𝜽𝑡 |𝒙 1∶ 𝑁 

) || 𝑝 ( 𝜽𝑡 |𝜽1 1∶ 𝑡 −1 )) , (10)

here 𝑝 ( 𝜽𝑡 |𝜽1 1∶ 𝑡 −1 ) is the prior distribution for 𝜽𝑡 given a single sam-

le for the previous logits 𝜽1 1 , … , 𝜽1 
𝑡 −1 from their respective varia-

ional posteriors 𝑞( 𝜽1 |𝒙 1∶ 𝑁 

) , … , 𝑞( 𝜽𝑡 −1 |𝒙 1∶ 𝑁 

) and 𝐷 KL is the KL diver-

ence ( Bishop, 2007 ) between the variational posterior and prior. A full

erivation of the loss function is given in SI 1.1. 

Reparameterization trick Next, we outline the method used to sample

rom the variational posterior distribution 𝑞( 𝜽𝑡 |𝒙 1∶ 𝑁 

) . This is a multi-

ariate normal distribution with mean vector 𝒎 𝜃𝑡 
( 𝒙 1∶ 𝑁 

) and diagonal

ovariance matrix 𝒔 2 
𝜃𝑡 
( 𝒙 1∶ 𝑁 

) . To obtain a sample 𝜽𝑠 
𝑡 

from 𝑞( 𝜽𝑡 |𝒙 1∶ 𝑁 

) , we

se the reparameterization trick ( Kingma and Welling, 2014 ), where we

ample from a normal distribution, 

∼  (0 , 𝑰 ) , (11)

here 𝑰 is the identity matrix. 𝝐𝑠 denotes the 𝑠 th sample from  (0 , 𝑰 ) .
e calculate the samples for the logits as 

𝑠 
𝑡 
= 𝒎 𝜃𝑡 

( 𝒙 1∶ 𝑁 

) + 𝒔 𝜃𝑡 ( 𝒙 1∶ 𝑁 

) 𝝐𝑠 , (12)

here 𝒔 𝜃𝑡 ( 𝒙 1∶ 𝑁 

) is a vector containing the square root of the diagonal

rom 𝒔 2 
𝜃𝑡 
( 𝒙 1∶ 𝑁 

) . The use of the reparameterization trick allows us to di-

ectly minimise the loss function using stochastic gradient descent. 

Mode means 𝝁𝒋 and covariances 𝑫 𝒋 Having detailed the inference of

he logits 𝜽𝑡 and the calculation of the loss function, we now turn our

ttention to the spatial models described by the means 𝝁𝑗 and covari-

nces 𝑫 𝑗 . We performed fully Bayesian inference on the logits, as they

re temporally local parameters, and hence will have reasonably large

mounts of uncertainty in their estimation which needs to be propa-

ated to the inference of 𝜽𝑡 over time. By contrast, the mode means 𝝁𝑗 

nd covariances 𝑫 𝑗 are global parameters whose inference can draw on

nformation over all time points. As a result we choose to use point es-

imates for 𝝁𝑗 and 𝑫 𝑗 , which are learnt using trainable free parameters.

dditionally, learning point estimates when they are sufficient has the

dvantage of simplifying inference. 

The time-varying mean vector 𝒎 𝑡 constructed from the mode means

𝑗 can take on any value, and can therefore be treated as free parame-

ers. However, the time-varying covariance 𝑪 𝑡 constructed from the 𝑫 𝑗 

atrices is required to be positive definite. We enforce this by parame-

erising the 𝑫 𝑗 ’s using the Cholesky decomposition, 

 𝑗 = 𝑳 𝑗 𝑳 

′
𝑗 
, (13)

here 𝑳 𝑗 is a lower triangular matrix known as a Cholesky factor and ′

enotes the matrix transpose. We learn 𝑳 𝑗 as a vector of free parameters

hat is used to fill a lower triangular matrix. We also apply a softplus

peration and add a small positive value to the diagonal of the Cholesky

actor to improve training stability. Using this approach, we learn point

stimates for the mode means and covariances. 
5 
Hyperparameters, initialisation and training The full DyNeMo model

ontains several hyperparameters, for example the number of layers and

idden units in the RNNs, the batch size, the learning rate, and many

ore. These all must be specified before training the model. DyNeMo

lso contains a large number of trainable parameters, which must be

nitialised. A description of the hyperparameters and the initialisation

f trainable parameters is given in SI 1.2. Hyperparameters for each

ataset used in this work are summarised in Table 1 . There are also

everal techniques that can be used to improve model training, such as

L annealing ( Bowman et al., 2015 ) and using multiple starts. These are

lso discussed in detail in SI 1.2. 

.3. Datasets 

In this section, we describe the data used to train DyNeMo. This in-

ludes simulated data, described in Sections 2.3.1 and 2.3.2 , which was

sed to evaluate DyNeMo’s modelling and inference capabilities, and

eal MEG data, described in Section 2.3.3 , which was used for neurosci-

ntific studies. 

.3.1. Simulation 1: Long-range dependencies 

The first simulation dataset was used to examine DyNeMo’s abil-

ty to learn long-range temporal dependencies in the underlying log-

ts. In simulation 1, data were generated using a Hidden Semi-Markov

odel (HSMM) ( Yu, 2010 ). Unlike an HMM, state lifetimes are explic-

tly modelled in an HSMM. This enables us to specify a lifetime distri-

ution where long-lived states are probable. We train DyNeMo on this

ata and examine samples from the generative model, in this case we

ample the model RNN. The lifetime distribution of the sampled states

ndicates the memory of the model RNN, i.e. the time scale of tempo-

al dependencies it has learnt. If samples from DyNeMo show long-lived

tates that cannot be generated with an HMM, we say DyNeMo has learnt

ong-range temporal dependencies. In simulation 1, we used a gamma

istribution (with shape and scale parameters of 5 and 10 respectively)

o sample state lifetimes. We use a transition probability matrix with

elf-transitions excluded to determine the sequence of states to sam-

le a lifetime for. The transition probability matrix and ground truth

ode covariances are shown in Fig. 4 a and b respectively. A multivari-

te time series with 11 channels, 25,600 samples and 3 hidden states

as generated using an HSMM simulation with a multivariate normal

bservation model. A zero mean vector was used for each mode and co-

ariances were generated randomly. The ground truth state time course

nd lifetime distribution of this simulation is shown in Fig. 4 c and d

espectively. 

.3.2. Simulation 2: Linear mode mixing 

The second simulation dataset was used to examine DyNeMo’s abil-

ty to infer a linear mixture of co-activating modes. Here, we simulated

 set of 𝐽 sine waves with different amplitudes, frequencies and initial

hases to represent the logits 𝜽 . We applied a softmax operation at each
𝑡 
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l  

3 Note, standardisation was also performed before PCA. 
4 We only use the maximum a posteriori probability estimate post-hoc, during 

training we sample from the variational posterior distribution using the repa- 

rameterization trick. 
ime point to calculate the ground truth mixing coefficients 𝜶𝑡 . A mul-

ivariate normal distribution with zero mean and randomly generated

ovariances was used for the observation model. A multivariate time

eries with 80 channels, 25,600 samples and 6 hidden modes was sim-

lated. The first 2000 time points of the simulated logits and mixing

oefficients are shown in Fig. 5 a and b respectively. 

.3.3. MEG data 

In addition to the simulation datasets, we trained DyNeMo on two

eal MEG datasets: a resting-state and a (visuomotor) task dataset. The

EG datasets were source reconstructed to 42 regions of interest. The

aw data, preprocessing and source reconstruction are described below.

Raw data and preprocessing Data from the UK MEG Partnership were

sed in this study. The data were acquired using a 275-channel CTF

EG system operating in third-order synthetic gradiometry at a sam-

ling frequency of 1.2 kHz. Structural MRI scans were acquired with a

hillips Achieva 7 T. MEG data were preprocessed using the OHBA soft-

are library (OSL) . The time series was downsampled to 250 Hz before

 notch filter at 50 Hz (and harmonics) was used to remove power line

oise. The data were then bandpass filtered between 1 and 98 Hz. Fi-

ally, an automated bad segment detection algorithm in OSL was used

o remove particularly noisy segments of the recording. No independent

omponent analysis was applied to identify artefacts. 

Source reconstruction Structural data were coregistered with the MEG

ata using an iterative close-point algorithm; digitised head points ac-

uired with a Polhemous pen were matched to individual subject’s

calp surfaces extracted with FSL’s BET tool ( Jenkinson et al., 2005;

mith, 2002 ). We used the local spheres head model in this work

uang et al. (1999) . Preprocessed sensor data were source reconstructed

nto an 8 mm isotropic grid using a linearly constrained minimum vari-

nce beamformer ( Van Veen and Buckley, 1988 ). Voxels were then

arcellated into 42 anatomically defined regions of interest, before a

ime series for each parcel was extracted by applying Principal Com-

onent Analysis (PCA) to each region of interest. We use the same 42

egions of interest as Vidaurre et al. (2018) , see the supplementary in-

ormation of Vidaurre et al. (2018) for a list of the regions used and

heir MNI coordinates. Source reconstruction can lead to artefactual

orrelations between parcel time courses, referred to as source leak-

ge . This is a static effect so it should not affect the inference of dy-

amics. However, it can affect the inferred FC. We minimise source

eakage using the symmetric multivariate leakage reduction technique

escribed in Colclough et al. (2015) , which unlike pairwise methods

as the benefit of reducing leakage caused by so-called ghost interac-

ions ( Palva et al., 2018 ). We will refer to each parcel as a channel . 

Resting-state dataset The resting-state dataset is formed from the MEG

ecordings of 55 healthy participants (mean age 38.3 years, maximum

ge 62 years, minimum age 19 years, 27 males, 50 right handed). The

articipants were asked to sit in the scanner with their eyes open while

0 min of data were recorded. 

Task dataset The task dataset is formed from MEG recordings of 51

ealthy participants (mean age 38.4 years, maximum age 62 years, 24

ales, 46 right handed). The recordings were taken while the partici-

ants performed a visuomotor task ( Hunt et al., 2019 ). Participants were

resented with a high-contrast grating (visual stimulus). The grating re-

ained on screen for a jittered duration between 1.5 and 2 s. When the

rating was removed, the participants performed an abduction using

he index finger and thumb of the right hand. This abduction response

as measured using an electromyograph on the back of the hand. From

he grating removal, an 8 s inter trial interval is incorporated until the

rating re-appeared on the screen. The structure of the task is shown in

ig. 3 . A total of 1837 trials are contained in this dataset. The majority

f participants in the UK MEG Partnership study have both resting-state

nd task recordings. 48 of the participants in the resting-state and task

ataset are the same. 

Data preparation Before training DyNeMo, we further prepare the pre-

rocessed data by performing the following steps. The first step is used to
6 
ncode spectral information into the observation model (see Figure S1),

hereas the other two are to help train the model. These steps are op-

ional and were only performed on the MEG datasets. The steps are: 

1. Time-delay embedding. This involves adding extra channels with

time-lagged versions of the original data. We use 15 embeddings,

which results in a total of 630 channels. By doing this, we introduce

additional off-diagonal elements to the covariance matrix, which

contains the covariance of a channel with a time-lagged version

of itself. This element of the covariance matrix is the autocorrela-

tion function of the channel for a given lag ( Papoulis and Saun-

ders, 1989 ). As the autocorrelation function captures the spectral

properties of a signal, this allows the model to learn spectral fea-

tures of the data as part of the covariance matrix. 

2. PCA. After time-delay embedding we are left with 630 channels. This

is too much for modern GPUs to hold in memory. Therefore, we use

PCA for dimensionality reduction down to 80 channels. 

3. Standardisation (z-transform) across the time dimension. This is a

common transformation that has been found to be essential in many

optimisation problems ( Géron, 2019 ). Standardisation is the final

step in preparing the training data. 3 

Time-delay embedding and PCA are summarised in Figure S1. We

rain DyNeMo to generate the prepared MEG data, i.e. the 80 channel

ime series after time-delay embedding and PCA, rather than the 42

hannel time series of source reconstructed data. 

.4. Post-hoc analysis of learnt latent variables 

In this work, we set each mode’s mean vector, 𝝁𝑗 , to zero and do not

pdate its value during training. This is due to our choice of training

ata. In the simulation datasets, we simulated modes with a zero mean

ector so there is no need to model the mean. In the MEG datasets,

e train on time-delay embedded data. Here, we want all the spectral

nformation to be contained in the mode covariance matrices, therefore

e set the means to zero. Additionally, we would like to compare our

esults to those presented in Vidaurre et al. (2018) , which trained an

MM without learning the mean. In this work, we use DyNeMo to learn

he mixing coefficients, 𝜶𝑡 , (via the logits, 𝜽𝑡 ) and the mode covariances,

 𝑗 . 

DyNeMo provides a variational posterior distribution 𝑞( 𝜽𝑡 |𝒙 1∶ 𝑁 

) at

ach time point. To simplify analysis we take the most probable value

or 𝜽𝑡 (this is known as the maximum a posteriori probability estimate ) and

se this to calculate the inferred mode mixing coefficients, 𝜶𝑡 , which

ontain a description of latent dynamics in the training data. 4 

We can use the inferred mode mixing coefficients to estimate quanti-

ies that characterise the training data. We describe such analyses in de-

ail in SI 1.3. Quantities calculated in the post-hoc analyses include: sum-

ary statistics that characterise the temporal properties of each mode,

uch as activation lifetimes, interval times and fractional occupancies;

ower spectra that characterise the spectral properties of each mode

nd power/FC maps that characterise the spatial pattern of each mode.

ote, we only use the the inferred mixing coefficients (and the source

econstructed data) in the post-hoc analysis, the mode covariances are

ot used. 

. Results 

.1. Simulation 1: Long-range dependencies 

A simulation dataset was used to examine DyNeMo’s ability to learn

ong-range temporal dependencies. DyNeMo was trained on the simu-
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Fig. 3. The structure of the visuomotor task. Participants are presented with a visual stimulus, which is an onscreen grid. After a period of between 1.5 and 2 s, the 

grid is removed. Upon grid removal, the participant performs a right-hand index finger abduction. Between the removal of the grid and its reappearance for the next 

trial, there is an 8 s inter-trial interval. 

Fig. 4. DyNeMo is able to learn long-range temporal dependencies in the latent dynamics of simulated data. Parameters of an HSMM simulation are shown along 

with the parameters inferred by DyNeMo and an HMM. While both DyNeMo and the HMM were able to accurately infer the hidden state time course and their 

lifetime distributions, actual samples from each model show that only DyNeMo was able to learn the lifetime distribution of the states within its generative model, 

demonstrating its ability to learn long-range temporal dependencies. a) Transition probability matrix used in the simulation. b) Covariances: simulated (top), inferred 

by DyNeMo (middle) and inferred by an HMM (bottom). c) State time courses: simulated (top), inferred by DyNeMo (middle) and inferred by an HMM (bottom). Each 

colour corresponds to a separate state. d) Lifetime distribution of inferred state time courses. e) Lifetime distribution of sampled state time courses. The fractional 

occupancy of each state is shown as a percentage in each histogram plot. 
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fi  
ation dataset described in Section 2.3.1 . An HMM was also trained on

he simulated data for comparison. In this simulation, a mutually ex-

lusive hidden state was used to generate the training data. The ground

ruth hidden state time course is shown in Fig. 4 c. DyNeMo was able

o correctly infer mutually exclusive modes, which we can think of
7 
s states. The DyNeMo and HMM inferred state time courses are also

hown in Fig. 4 c. Both DyNeMo and the HMM are able to infer the pres-

nce of long-range dependencies by matching the ground truth, non-

xponential, state lifetime distributions (shown in Fig. 4 d). A dice coef-

cient (model inferred vs ground truth) of greater than 0.99 is achieved
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Fig. 5. DyNeMo is able to accurately infer a linear mixture of modes. DyNeMo was trained on a simulation with co-activating modes. The mixing coefficients 

inferred by DyNeMo follow the same pattern as the ground truth. The failure of an HMM in modelling this type of simulation due to its inherent assumption of 

mutual exclusivity is also shown. a) Logits used to simulate the training data. b) Mixing coefficients of the simulation (top) and inferred by DyNeMo (bottom). c) 

State time course inferred by an HMM. d) Riemannian distance between the reconstruction of the time-varying covariance, 𝑪 𝑡 , (via Eq. (4) ) and the ground truth for 

DyNeMo and the HMM. Only the first 2000 time points are shown in each plot. 
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or both models. However, this does not mean that the HMM or DyNeMo

enerative models have necessarily learnt long-range dependencies, as

he inferred state time courses could be a result of purely data-driven

nformation. To test this, we can sample state time courses from the

rained HMM and DyNeMo generative models and examine their life-

ime distributions. Fig. 4 e shows the lifetime distribution sampled state
8 
ime courses. The state lifetime distribution of the sample from DyNeMo

aptures the non-exponential ground truth distribution, demonstrating

ts ability to learn long-range temporal dependencies over the scale of

t least 50 samples. Contrastingly, the HMM was not able to generate

ny long-range temporal dependencies, indicating that, as expected, it

s only able to capture short-range dependencies. 
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.2. Simulation 2: Linear mode mixing 

In contrast to the mutual exclusivity assumption of the HMM,

yNeMo has the ability to infer a linear a mixture of modes. To test

his we trained DyNeMo and the HMM for comparison on the simu-

ation dataset described in Section 2.3.2 . Fig. 5 b shows the simulated

ixing coefficients and those inferred by DyNeMo. For comparison, the

tate time course inferred by an HMM is also shown in Fig. 5 c. As the

MM is a mutually exclusive state model, it is unable to infer a linear

ixture of modes, whereas DyNeMos mixing coefficients estimate the

round truth very well, demonstrating its ability to learn a mixture of

odes. Using the inferred mixing coefficients or state time course along

ith the inferred covariances, we can reconstruct the time-varying co-

ariance, 𝑪 𝑡 , of the training data. The Riemannian distance between

he reconstruction and ground truth is shown in Fig. 5 d. The mean Rie-

annian distance for DyNeMo is 1.5, whereas it is 11.9 for the HMM.

sing a paired 𝑡 -test the difference is significant with a 𝑝 -value < 10 −5 .
he smaller Riemannian distance indicates DyNeMo is a more accurate

odel for the time-varying covariance. 

.3. Resting-State MEG data 

DyNeMo identifies plausible resting-state networks Fig. 6 shows the

ower maps, FC maps and power spectral densities (PSDs) of 10 modes

nferred by DyNeMo when trained on the resting-state MEG dataset de-

cribed in Section 2.3.3 . For the PSDs, we plot the regression coefficients

 𝑗 ( 𝑓 ) to highlight differences relative to the mean PSD 𝑷 0 ( 𝑓 ) common

o all modes. Mode 1 appears to be a low-power background network

nd does not show any large deviations in power from the mean PSD

or any frequency. Modes 2–10 show high power localised to specific

egions associated with functional activity (see Laird et al., 2011 for

n overview of the functional association of different brain networks).

egions with high power also appear to have high FC. Modes 2 and 3

how power in regions associated with visual activity. Mode 4 shows

ower in parietal regions and can be associated with the posterior de-

ault mode network (see Fig. 11 ). Mode 5 shows power in the sensorimo-

or region. Modes 6–8 show power in auditory/language regions. Modes

–8 show power in the alpha band (8–12 Hz) and modes 4–6 and 8 in-

lude power at higher frequencies in the beta band (15–30 Hz). Mode

 shows power in fronto-parietal regions and is recognised as an exec-

tive control network. Mode 10 shows power in frontal regions which

an be associated with the anterior default mode network. Modes 9 and

0 exhibit low-frequency oscillations in the delta/theta band (1–7 Hz).

he PSD of each mode is consistent with the expected oscillations at the

igh-power regions in each mode ( Capilla et al., 2022 ). A comparison

ith states inferred with this dataset using an HMM is presented in the

ection “Large-scale resting-state networks can be formed from a linear

ixture of modes ”. 

Power maps are reproducible across two split-halves of the dataset To as-

ess the reproducibility of modes across datasets, we split the full dataset

nto two halves of 27 subjects. We assess the reproducibility of the modes

cross halves using the RV coefficient ( Yang et al., 2008 ), which is a gen-

ralisation of the squared Pearson correlation coefficient. We match the

odes across halves in a pairwise fashion using the RV coefficient as

 measure of similarity. Fig. 7 shows the power maps of the matched

odes. In general, the same regions are active in each pair of modes

nd the functional networks are reproducible across datasets. The main

ifference is small changes in how power is distributed across the vi-

ual network modes (mode 4) and across the temporal/frontal regions

mode 9). 

Mode activations are anti-correlated with a background mode and modes

ith activity in similar regions co-activate A subset of the inferred mixing

oefficients is shown in Fig. 8 . Fig. 8 a shows the raw mixing coefficients

nferred directly from DyNeMo. However, these mixing coefficients do

ot account for a difference in the relative magnitude of each mode co-

ariance. For example, a mode with a small mixing coefficient may still
9 
e a large contributor to the time-varying covariance if the magnitude

f its mode covariance is large. We can account for this by obtaining a

eighted mixing coefficient mode time course by multiplying the raw

ixing coefficients with the trace of its mode covariance. We also nor-

alise the weighted mixing coefficient time course by dividing by the

um over all modes at each time point to maintain the sum-to-one con-

traint. Fig. 8 b and c show these normalised weighted mixing coeffi-

ients. Once we account for the magnitude of the mode covariances, we

ee each mode’s contribution to the time-varying covariance is roughly

qual. We show the state time course inferred by an HMM in Fig. 8 d for

omparison. Fig. 8 e shows the correlation between the raw mixing coef-

cients 𝛼𝑗𝑡 for each mode. Modes 2–10 appear to be anti-correlated with

ode 1. This arises due to the softmax operation (Eq. (23 in SI 1.2) that

onstrains the mixing coefficients to sum to one. For a mode to activate

y contributing more to the time-varying covariance, another mode’s

ontribution must decrease. The anti-correlation of mode 1 with every

ther mode suggests that it is primarily this mode’s contribution that is

ecreased. This suggests that mode 1 can be thought of as a background

ode that is deactivated by the other modes. 

DyNeMo reveals short-lived (100–150 ms) mode activations Using a

MM to define when a mode is active we calculate summary statistics

uch as lifetimes, intervals and fractional occupancies. Mode activation

ime courses and summary statistics are shown in Fig. 9 . Mode 1 appears

o have long activation lifetimes and a high fractional occupancy, which

s consistent with the description of it being a background network that

s largely present throughout. Modes 2–10 have mean lifetimes approx-

mately over the range 100–150 ms, which is slightly longer than the

tate lifetimes obtained from an HMM, which are over the range 50–

00 ms ( Vidaurre et al., 2018 ). Both models reveal transient networks

ith lifetimes on the order of 100 ms, suggesting that this is a plausible

ime scale for these functional networks in resting-state MEG data, con-

rming that the short lifetimes previously found by the HMM are not

ikely to be caused by the mutual exclusivity assumption. 

DyNeMo learns long-range temporal correlations Latent temporal cor-

elations in MEG data can be seen by examining the inferred mixing

oefficients, which are shown in Fig. 8 . A process is considered to pos-

ess long-range temporal correlations if its autocorrelation function de-

ays sufficiently slowly (usually measured relative to an exponential de-

ay) ( Linkenkaer-Hansen et al., 2001; Meisel et al., 2017 ). The autocor-

elation function and PSD form a Fourier transform pair, therefore, we

an examine the presence of long-range temporal correlations by looking

t the PSD. Fig. 10 b (top left) shows the PSD of the inferred mixing co-

fficients. The PSDs are rapidly decaying with a 1∕ 𝑓 -like spectrum. This

ndicates the autocorrelation function must have a slow decay, suggest-

ng the presence of long-range temporal correlations. As in Section 3.1 ,

his does not mean that DyNeMo’s generative model has necessarily

earnt long-range dependencies, as the presence of long-range tempo-

al correlations could be a result of purely data-driven information. We

an examine if the generative model in DyNeMo was able to learn these

ong-range temporal correlations by sampling a mixing coefficient time

ourse from the model RNN. Fig. 10 a shows a sampled mixing coeffi-

ient time course. The PSD of the mixing coefficient time course sampled

rom the model RNN, Fig. 10 b (bottom left), shows the same 1∕ 𝑓 -like

pectrum as the inferred mixing coefficient time course, demonstrating

t was able to learn long-range temporal correlations in the data. This is

n contrast to an HMM, where the PSD of the inferred state time course,

ig. 10 b (top right), shows long-range temporal correlations, but the

SD of a sampled state time course, Fig. 10 b (bottom right), does not. It

s also worth noting that the inferred long-range temporal correlations

or the HMM are also less strong than for DyNeMo. This implies that the

yNeMo inferred long-range temporal correlations are not purely data

riven, but also come from knowledge about long-range temporal corre-

ations captured by DyNeMo through gathering information across the

hole dataset. Note, although the HMM was not able to learn long-range

emporal correlations, it was still able to infer them. This is because the

nference depends on both the model and the data. Despite the limited



C. Gohil, E. Roberts, R. Timms et al. NeuroImage 263 (2022) 119595 

Fig. 6. DyNeMo infers modes that form plausible resting-state MEG networks. Ten modes were inferred using resting-state MEG data from 55 subjects. Mode 1 

appears to be a low-power background network, whereas modes 2–10 show high power in areas associated with functional networks. Modes are grouped in terms of 

their functional role. Each box shows the power map (left), FC map (middle) and PSD relative to the mean averaged over regions of interest (right) for each group. 

The top two views on the brain in the power map plots are lateral surfaces and the bottom two are medial surfaces. The shaded area in the PSD plots shows the 

standard error on the mean. 

Fig. 7. Power maps are reproducible across two split-halves of a dataset. Each half of the dataset contains the resting-state MEG data of 27 subjects. Power maps 

are shown for the the first half of the dataset (top) and second half of the dataset (middle). The RV coefficient of the inferred covariances from each half for a given 

mode (bottom) is also shown. The modes were matched in terms of their RV coefficient. Pairing the modes from each half we see the same functional networks are 

inferred. These networks also match the modes inferred on the full dataset of 55 subjects, suggesting these networks are reproducible across datasets. The top two 

views on the brain in each power map plot are lateral surfaces and the bottom two are medial surfaces. 

m  

d

 

m  

p  

t  

w  

H  

m  

n  

m  

1  

g  

t  

t  

s  

f  

p  

I  

s  
emory in the HMM, there is sufficient information coming from the

ata to infer long-range temporal correlations in the states. 

Large-scale resting-state networks can be formed from a linear mixture of

odes The mixture model in DyNeMo allows it to construct large-scale

atterns of covariance using a combination of modes with localised ac-

ivity. This can be seen by comparing the modes inferred by DyNeMo

ith states that reveal large-scale networks inferred by an HMM. An

MM was trained on the same resting-state dataset. Power maps, FC

aps and PSDs of the HMM states are shown in Fig. S7. Two important

etworks identified by the HMM are the anterior and posterior default
10 
ode networks (states 1 and 2). The power map for DyNeMo mode

0 (see Fig. 6 ) resembles the anterior state, however, there is no sin-

le mode that resembles the posterior state. Fig. 11 a shows the correla-

ion of HMM state time courses with DyNeMo mode mixing coefficient

ime courses. We can see the modes that are correlated most with a

tate time course have activity in similar locations. Focusing on the de-

ault mode network states, DyNeMo mode 4 is the most correlated the

osterior state and mode 10 is most correlated with the anterior state.

n Vidaurre et al. (2018) , it was shown that the default mode networks

tates have a high power in the alpha band for the posterior state and
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Fig. 8. DyNeMo provides a mode description of resting-state MEG data. a) Raw mixing coefficients 𝛼𝑗𝑡 inferred by DyNeMo for one subject. b) Mixing coefficients 

𝛼𝑗𝑡 weighted by the trace of each mode covariance and normalised to sum to one at each time point. c) Zoomed in normalised weighted mixing coefficients 𝛼NW 

𝑗𝑡 
for 

the first 5 s. d) HMM state time course for the first 5 s for comparison. The power/FC maps and PSDs for the HMM states are shown in Figure S7. e) Correlation 

between the raw mixing coefficients 𝛼𝑗𝑡 for different modes 𝑗. Ordering is the same as Fig. 6 . We see DyNeMo’s description of the data is a set of co-existing modes 

whose contribution to the time-varying covariance fluctuates. Once weighted by the covariance matrices we see each mode has a more equal contribution. We also 

see modes 2–10 are anti-correlated with the mode 1 and modes with activation in similar regions, e.g. modes 2, 3 and 4, are correlated. 

i  

4  

a  

m  

T  

p  

n  

r  

t  

p  

t  

w  

m  

d  

a  

a  

m

3

 

a  

t  

V  

d  

t  

a  

o  

m

 

e  

s  

s  

m  
n the delta/theta band for the anterior state. The PSDs of the modes

 and 10 also show this, providing further evidence that these modes

re an alternative perspective on these states. The contribution of each

ode to the default mode network HMM states is shown in Fig. 11 b.

his shows the ratio of the total power in a mode relative to the total

ower in an HMM state. We can see that the power in the default mode

etwork states is explained by many modes, i.e. DyNeMo has found a

epresentation of these states that combines many modes. This is also

rue for the other HMM states. Fig. 11 shows the fraction of power ex-

lained by a certain number of modes for each HMM state. The frac-

ion of power explained increases monotonically with number of modes

ith no one particular mode explaining a large fraction of power. The

ode description provided by DyNeMo appears to be fundamentally

ifferent to the HMM, no segments of time where one mode dominates

re found. Instead, it is a representation where multiple modes co-exist

nd dynamics are captured by changes in the relative activation of each
ode. s  

11 
.4. Task MEG data 

Resting-state networks are recruited in task The power maps, FC maps

nd PSDs of 10 modes inferred by DyNeMo trained from scratch on

he task MEG dataset described in Section 2.3.3 are shown in Fig. 12 .

ery similar functional networks are found in task and resting-state MEG

ata (see Section 3.3 ). The main difference between the resting-state and

ask power maps is that the sensorimotor network has split into two

symmetric modes. This could be due to the more frequent activation

f this area in the task dataset, which incentivizes the model to infer

odes that best describe power at this location. 

Modes show an evoked response to task When the inferred mixing co-

fficient time courses are epoched around task events, an evoked re-

ponse is seen. With the window around the presentation of the vi-

ual stimulus ( Fig. 13 a, left), DyNeMo shows a strong activation in

ode 2 which corresponds to activity in the visual cortex. It also shows

maller peaks in modes 4 (posterior default mode network) and 8 (au-
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Fig. 9. DyNeMo reveals short-lived mode activations with lifetimes of 100–150 ms. a) Mode activation time courses. Turquoise regions show when a mode is 

“active ”. Only the first 5 s of each mode activation time course for the first subject is shown. b) GMM fits used to identify mode “activations ”. Distribution over 

activations and subjects of c) mode activation lifetimes and d) intervals. e) Distribution over subjects of fractional occupancies. We see mode 1 has a significantly 

longer mean lifetime (approximately 400 ms) compared to the other modes (approximately 100–150 ms). There is also a wide distribution of fractional occupancies 

across subjects. 
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i  
itory/language) followed by another larger peak in mode 9 (fronto-

arietal network). These represent neural activity moving from the vi-

ual cortex to a broader posterior activation and finally to an anterior ac-

ivation. With the window around the abduction event ( Fig. 13 a, right),

yNeMo shows a strong peak in mode 5, which corresponds to activity

n the motor cortex. This is accompanied by a broader suppression of

ode 4 which represents the posterior default mode network. The pres-

nce of task-related activations in the mixing coefficient time courses

hen DyNeMo is unaware of the task structure of the data demon-

trates its ability to learn modes that are descriptive of underlying brain

ctivity. 

When considering the individual trials, rather than the average re-

ponse across trials, we see that the visual mode is consistently activated

hen the visual stimulus is presented ( Fig. 13 b, left) and the sensorimo-

or mode is consistently activated when the abduction occurs ( Fig. 13 b,

ight), which suggests the evoked response is not just an aggregated

ffect. An HMM trained on the same dataset also shows trial-wise ac-

ivation (Figure S10), although the binary nature of its state activa-

ions means that the contribution of a given state can be either wiped

ut by another state or falsely activated by reduced activity elsewhere.
12 
yNeMo avoids this by allowing a mixture of states to be active at a

iven time. 

DyNeMo is a more accurate model of dynamic spectral properties com-

ared to an HMM Epoching the spectrogram of the source reconstructed

ata we can see the evoked response to task as a function of frequency

 Fig. 14 ). For the visual task ( Fig. 14 a, left), immediately after the stim-

lus we can see a sharp increase in power around 5 Hz followed by

 reduction in power around 10 Hz and above. This is repeated again

round 2 s into the epoch, which is when the visual stimulus is removed.

or the abduction task ( Fig. 14 a, right), immediately after the task we

lso see a sharp increase in power at 5 Hz followed by a reduction in

ower at 10 Hz and above. However, this is followed by an increase

n power at 10 Hz and above, commonly known as a post-movement

eta rebound ( Jurkiewicz et al., 2006; Salmelin et al., 1995 ). We can

econstruct a model estimate for the spectrogram of the data from a

yNeMo (HMM) fit by multiplying the inferred mode (state) time course

y the estimate of the mode (state) PSD. Model estimate spectrograms

re shown for DyNeMo and the HMM in Fig. 14 b and c respectively,

long with their reconstruction errors (i.e. the residual, 𝝐𝑡 ( 𝑓 ) , in Eq. (26)

n SI 1.3). The absolute value of the reconstruction error averaged over
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Fig. 10. DyNeMo learns long-range temporal correlations in resting-state MEG data. a) Normalised weighted mixing coefficients sampled from the DyNeMo model 

RNN trained on resting-state MEG data. b) PSD of the sampled and inferred normalised weighted mixing coefficients from DyNeMo and sampled and inferred state 

time courses from an HMM. The red dashed line in b) shows statistically significant frequencies ( 𝑝 -value < 0 . 05 ) when comparing the inferred time courses with a 

sample from the HMM using a paired 𝑡 -test. The mixing coefficient time course sampled from the DyNeMo model RNN resembles the inferred mixing coefficient 

time course and shows a similar PSD. Contrastingly, the sampled state time course from an HMM does not have the same temporal correlations as the inferred state 

time course, which is demonstrated by the flat PSD for the sample. Each mixing coefficient time course was standardised (z-transformed) across the time dimension 

before calculating the PSD. The fractional occupancy in a 200 ms window was used to calculate the PSD of the HMM state time courses, see Baker et al. (2014) . (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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networks which exist on time scales between 50 and 100 ms. We find 
requency for DyNeMo and the HMM is shown in Fig. 14 d. Both DyNeMo

nd the HMM are able to model dynamics in spectral content of the data,

owever, DyNeMo shows a modest improvement in the time-averaged

econstruction error of 5.0% (4.0%) for the visual (abduction) task com-

ared to 5.2% (4.7%) for the HMM. A paired 𝑡 -test shows the difference

etween the DyNeMo and HMM reconstruction error is significant with

 𝑝 -value < 0 . 01 . 

. Discussion 

We have shown that MEG data can be described using multiple

odes of spatiotemporal patterns that form large-scale brain networks

 Figs. 6 and 12 ). Recently, other models that provide a mode descrip-

ion of neuroimaging data have been proposed. Ponce-Alvarez et al.

nd Tewarie et al. used non-negative tensor factorisation to identify dy-

amic overlapping spatial patterns of connectivity ( Ponce-Alvarez et al.,

015; Tewarie et al., 2019 ). Núñez et al. used community detection

n a time series of FC matrices to identify repeated patterns of con-

ectivity ( Núñez et al., 2021 ). Atasoy et al. propose ‘connectome har-
13 
onics’, where an eigendecomposition of the Laplacian of a structural

onnectivity matrix is calculated, which results in a set of harmonic

odes that represent spatial patterns of connectivity ( Atasoy et al.,

016 ). Atasoy et al. showed that these modes predict resting-state net-

orks ( Atasoy et al., 2016 ). Glomb et al. and Rué-Queralt et al. used the

odes as a basis set to obtain a spatiotemporal description of EEG data,

hich revealed fast dynamics ( Glomb et al., 2020; Rue-Quéralt et al.,

021 ). Although, these technique provide a dynamic description of the

ata using a set of overlapping spatial modes, they all lack a generative

odel. Furthermore, connectome harmonics are determined from the

tructural connectivity matrix. In DyNeMo, a mode description of the

C is learnt directly from the data (see Section 2 ). 

The modes inferred by DyNeMo have distinct spectral properties and

orrespond to plausible FC systems, such as visual, sensorimotor, audi-

ory or other higher-order cognitive activity. These modes are more lo-

alised and can be more lateralized than the spatial patterns attributed

ith HMM states. Previous analysis of resting-state MEG data using an

MM ( Vidaurre et al., 2018 ) was able to identify large-scale transient
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Fig. 11. HMM states can be represented as a linear mixture of modes. a) Correlation of HMM state time courses with DyNeMo mode mixing coefficient time courses. 

The dynamics of multiple mode time courses correlate with each HMM state time course. In particular, many modes co-activate with the posterior default mode 

network (DMN) state. All elements are significant with a 𝑝 -value < 0.05. b) Percentage of HMM state power explained by each DyNeMo mode for the posterior and 

anterior DMN. This was calculated as < 𝛼𝑗𝑡 > Tr ( 𝐷 𝑗 )∕ Tr ( 𝐻 𝑖 ) , where 𝐷 𝑗 ( 𝐻 𝑖 ) is the DyNeMo (HMM) covariance for mode 𝑗 (state 𝑖 ) and < 𝛼𝑗𝑡 > is the time average 

mixing coefficient for mode 𝑗 when state 𝑖 is active. This shows all modes contribute to some extent to the power in these HMM states. c) The cumulative explained 

power for each HMM state. The modes were re-ordered in terms of increasing contribution before calculating the cumulative sum. Error bars are too small to 

be seen. 
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yNeMo infers transient networks at similar time scales of 100–150 ms

 Fig. 9 ). The implies the fast dynamics inferred by an HMM are not due

o the assumption of mutually exclusive states. 

An HMM trained on the resting-state MEG dataset used in this work

uggested the default mode network was split into an anterior and pos-

erior component ( Vidaurre et al., 2018 ). In DyNeMo, the default mode

etwork is further split up into many modes that combine to represent

his network ( Fig. 11 b). The modes that represent the default mode net-
14 
ork show power in the same regions and frequency bands as the HMM

tates, supporting the fact that the modes represent an alternative per-

pective on the data. 

Training DyNeMo on task MEG data, we find similar functional net-

orks as inferred with resting-state data ( Fig. 12 ). This finding is sup-

orted in literature for other neuroimaging modalities, where the same

etworks are found in resting-state and task fMRI data ( Smith et al.,

009 ). The similarity in the functional networks could also be due to
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Fig. 12. Resting-state networks are recruited in task. Ten modes were inferred using task MEG data from 51 subjects. Very similar functional networks are inferred 

as the resting-state data fit shown in Fig. 6 . Modes are grouped in terms of their functional role. Each box shows the power map (left), FC map (middle) and PSD 

relative to the mean averaged over regions of interest (right) for each group. The top two views on the brain in the power map plots are lateral surfaces and the 

bottom two are medial surfaces. The shaded area in the PSD plots shows the standard error on the mean. 
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he fact that the majority of the subjects in the task dataset are also

resent in the resting-state dataset. 

In an unsupervised fashion, DyNeMo was able to infer modes as-

ociated with the task. This is seen as an evoked response in the mix-

ng coefficients of a mode to a task ( Fig. 14 ). This demonstrates that

he modes inferred by DyNeMo meaningfully represent brain activity.

he modes also reflect the expected time-frequency response to visual

nd motor tasks, which builds confidence in the description provided by

yNeMo. We find DyNeMo provides a more accurate model compared to

n HMM of time-varying spectral features in the training data ( Fig. 14 ).

owever, both DyNeMo and the HMM show errors in modelling high-

requency spectral content in the task MEG dataset. We believe this

rises from the PCA step in the data preparation, which retains compo-

ents that explain large amounts of variance. In this data, lower frequen-

ies have larger amplitudes and are able to explain more variance than

igh frequencies with smaller amplitudes, leading to high-frequency

pectral content being filtered out. Avoiding the loss of this informa-

ion could be investigated in future work with spectral pre-whitening

echniques. 

The smaller reconstruction error for the spectrogram of task MEG

ata from DyNeMo is due to the linear mixture affording the model a

reater flexibility to precisely model dynamics. The fact that the recon-

truction error is only slightly reduced compared to the HMM suggests

hat despite the constraint of mutual exclusivity the HMM was still able

o provide a good description of dynamics. 
15 
.1. Methodological advancements 

We believe that DyNeMo improves upon alternative unsupervised

echniques in four key ways: the use of amortised inference; the use

f the reparameterization trick; the ability to model data as a linear

ixture of modes (opposed to mutually exclusive states) and the ability

o model long-range temporal dependencies in the data. 

The amortised inference framework used in DyNeMo (described in

ection 2 ) contains a fixed number of trainable parameters (inference

NN weights and biases). This means DyNeMo is readily trainable on

atasets of varying size. Usually, the number of trainable parameters in

he inference network is significantly smaller than the size of a dataset,

aking this approach very efficient when scaling to bigger datasets. As

he availability of larger datasets grows, so does the need for models

hat can utilise them. Here, we believe deep learning techniques will

lay an important role, where with more data, models with a deep ar-

hitecture begin to outperform shallower ones. Although, in this work

e have studied a relatively small dataset (51–55 subjects) using a

hallow model (one RNN layer), DyNeMo is readily scalable in terms

f model complexity to include multiple RNN layers and more hidden

nits. In combination with bigger datasets this can reveal new insights

nto brain data. For example, previous modelling of a large resting-state

MRI dataset (Human Connectome Project, Smith et al., 2013 ) using

n HMM revealed a link between FC dynamics and heritable and psy-

hological traits ( Vidaurre et al., 2017 ). The training time for DyNeMo
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Fig. 13. A consistent task-dependent response to the visuomotor task is seen for a number of modes. a) Trial-averaged mode timecourses weighted by the trace of 

their mode covariances epoched around the visual (left) and abduction (right) task. The red background shows significant time points ( 𝑝 -value < 0 . 05 ) calculated 

using a sign-flip permutation 𝑡 -test with the family-wise error rate being controlled by using the maximum statistic. b) Individual trial responses (mode mixing 

coefficients weighted by the trace of their covariance) for mode 2 (visual, left) and mode 5 (sensorimotor, right). The visual stimulus/abduction task occurs at 

Time = 0 s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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l  
nd the computational expense of the analysis presented in this work

s comparable to the HMM training time and analysis performed with

he HMM-MAR toolbox 5 presented in Vidaurre et al. (2018) . We believe

ue to the use of amortised inference, DyNeMo will be a more efficient

ption for larger datasets compared to the HMM-MAR toolbox. 

Provided we are able to apply the reparameterization trick to sam-

le from the variational posterior distribution, we are able to infer the

arameters for any generative model. This facilitates the use of more so-

histicated and non-linear observation models and opens up a range of

uture modelling opportunities. This includes the use of an autoregres-

ive model capable of learning temporal correlations in the observed

ata; the hierarchical modelling of inter-subject variability and the in-

lusion of dynamics at multiple time scales, similar to the approach used

n Pervaiz et al. (2022) . 

A key modelling advancement afforded by DyNeMo is the ability to

odel data as a time-varying linear sum of modes. The extent to which

odes mix is controlled by a free parameter referred to as the temper-

ture , 𝜏, which appears in the softmax transformation of the logits (see

quation (23) in SI 1.2). Low temperatures lead to mutually exclusive

odes whereas high temperatures lead to a soft mixture of modes. In

his work, we allow the temperature to be a trainable parameter. By

oing this, the output of the softmax transformation is able to be tuned

uring training to find the appropriate level of mixing to best describe

he data. Such a scheme can be interpreted as form of entropy regulari-

ation ( Jang, Gu, Poole; Pereyra et al., 2017 ). 

The inclusion of a model RNN in DyNeMo allows it to generate data

ith long-range temporal dependencies ( Figs. 4 and 10 ). This is because

he future value of a hidden logit is determined by a long sequence of
5 https://github.com/OHBA- analysis/HMM- MAR . 

m  

p  

t  

16 
revious values, not just the most recent value. There is significant evi-

ence for long-range temporal correlations in M/EEG data ( Botcharova

t al., 2015; He, 2014; Linkenkaer-Hansen et al., 2001 ) and an associa-

ion between altered long-range temporal correlations and disease ( Cruz

t al., 2021; Moran et al., 2019 ). Models that are capable of learning

ong-range temporal correlations are advantageous in multiple ways:

hey can be more predictive of task or disease than models with a

horter memory; they can prevent overfitting to noise in the training

ata through regularisation and finally they can be used to synthesise

ata with realistic long-range neural dynamics. 

In addition to the modelling and inference advancements discussed

bove, we also proposed a new method for calculating spectral prop-

rties for data described using a set of modes (see Section 2.4 ). With

n HMM, methods such as a multitaper ( Vidaurre et al., 2016 ) can be

sed to provide high-resolution estimates of PSDs and coherences for

ach state. This approach relies on the state time course identifying seg-

ents of the training data where only one state is active. This approach

s no longer feasible with a description of the data as a set of co-existing

odes. In this paper, we propose fitting a linear regression model to a

ross spectrogram calculated using the data. This method relies on dif-

erent time points having different ratios of mixing between the modes.

rovided this is the case, this method produces high-resolution estimates

f the PSD and coherence of each mode ( Figs. 6, 12 and 14 ). 

.2. Drawbacks 

As with most modern machine learning models, DyNeMo contains a

arge number of hyperparameters that need to be specified before the

odel can be trained. These are discussed in SI 1.2. An important hyper-

arameter that affects the interpretation of inferences from the model is

he number of modes, 𝐽 . We discuss the impact of varying the number

https://github.com/OHBA-analysis/HMM-MAR


C. Gohil, E. Roberts, R. Timms et al. NeuroImage 263 (2022) 119595 

Fig. 14. DyNeMo is a more accurate model of spectral properties compared to an HMM. a) Spectrogram of the source reconstructed data epoched around the 

visual and abduction task. The spectrogram was baseline corrected by subtracting the mean for the duration before the task (for each frequency separately). b) 

The DyNeMo model reconstruction of the spectrogram epoched around the visual and abduction task (left) and the difference from the spectrogram of the source 

reconstructed data (right). c) The HMM reconstruction of the spectrogram epoched around the visual and abduction task (left) and the difference from the spectrogram 

of the source reconstructed data (right). The spectrogram of the data and reconstruction from both models have been normalised to the range -1 to 1. The average 

spectrogram across all channels is shown. d) Absolute value of the reconstruction error for DyNeMo and the HMM averaged across frequencies for the visual (left) 

and abduction task (right). The reconstruction error is expressed as a percentage of power at each time point calculated by averaging the spectrograms in (a) 

over frequency. DyNeMo shows a smaller error in reconstructing the data spectrogram compared to the HMM, indicating it is a more accurate model of spectral 

properties. 
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f modes in SI 1.5. In short, as the number of modes is increased, the

patial activity of each mode becomes more localised and the variability

f the inferred spatial patterns increases. The variational free energy is

n approximation to the model evidence ( Friston et al., 2007 ) so can be

sed to compare models with a different number of modes. However,

igure S4 shows the variational free energy decreases monotonically up

o 30 modes. This implies more modes provide a better model for the

ata. As we increase the number of modes we lose the low-dimensional

nterpretable description of the data. Because of this trade-off we specify

he number of modes by hand rather than using the variational free en-

rgy. Additionally, we ensure any conclusions that are based on studies

sing DyNeMo are not sensitive to the number of modes chosen. We tune

ther hyperparameters by seeking the set of parameters that minimise

he value of the loss function. 

In addition to a large number of hyperparameters, we find the model

s sensitive to the initialisation of trainable parameters. This includes the

nternal weights and biases of RNN layers and the learnable free parame-

ers for the mode means and covariances. The initialisations used in this

ork are listed in SI 1.2. We found the initialisation of the mode covari-

nces to be particularly important. We overcome the issue of sensitivity

o the initialisation of trainable parameters by training the model from
17 
cratch with different initialisations and only retaining the model with

he lowest loss. 

.3. Outlook and future applications 

The model presented here has many possible future applications. For

xample, it could be used to provide a dynamic and interpretable latent

escription, as done in this work, for other datasets. Alternatively, it

ould be used to facilitate future studies, examples of which are de-

cribed below. 

A common method to study the brain is the use of temporally un-

onstrained multivariate pattern analysis ( decoding ) to predict task, dis-

ase or behavioural traits ( Vidaurre et al., 2019 ). The latent represen-

ation inferred by DyNeMo (unsupervised) provides a low-dimensional

orm of the training data, which is ideal for such analyses. This can

vercome overfitting issues that are commonly encountered in decod-

ng studies that use the raw data directly. Alternatively, the model ar-

hitecture could be easily modified to form a semi-supervised learning

roblem where the loss function used has a joint objective to learn a

ow-dimensional representation that is useful for decoding as well as

econstructing the training data. 
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A useful feature of DyNeMo is the possibility of transfer learning , i.e.

he ability to transfer information learnt from one dataset to another.

his could be exercised by simply training DyNeMo on one dataset from

cratch, before fine tuning the model on another dataset, which would

acilitate the transfer of information through all the trainable parame-

ers of the model, such as RNN weights, mode means/covariances, etc.

arge resting-state datasets are commonplace in neuroimaging. A prob-

em encountered in studies of small datasets (e.g. comprising of diseased

ohorts) is the lack of statistical power for drawing meaningful conclu-

ions ( Poldrack et al., 2017 ). Leveraging information gained from larger

esting-state datasets could improve the predictions made on smaller

atasets. For example, it has been shown resting-state data is predictive

f task response ( Becker et al., 2020; Tavor et al., 2016 ). We believe

yNeMo offers the possibility of transferring information acquired from

esting-state datasets with thousands of individuals to the individual

ubject level. 

The generative model proposed here explictly models the covariance

f the training data as a dynamic quantity. In this paper, we trained on

repared (time-delay embedded/PCA) source reconstructed data. How-

ver, the model could be trained on unprepared sensor-level data to es-

imate the sensor covariance as a function of time. Such a model could

e utilised in the field of M/EEG source reconstruction. Algorithms for

ource reconstruction often assume the sensor-level covariance is static,

hich is rarely the case ( Gómez et al., 2021 ). Using a dynamic estimate

f the covariance, we can construct time-varying reconstruction weights

or source reconstruction ( Woolrich et al., 2013 ), which can improve

ource localisation. 

Finally, whilst we focused on parcellated source reconstructed MEG

ata in this paper, DyNeMo could of course be applied to data from other

euroimaging modalities such as fMRI, sensor level MEG data and other

lectrophysiological techniques (EEG, ECOG, etc.). 

. Conclusions 

We have proposed a new generative model and accompanying infer-

nce framework for neuroimaging data that is readily scalable to large

atasets. Our application of DyNeMo to MEG data reveals fast transient

etworks that are spectrally distinct, in broad agreement with existing

tudies. We believe DyNeMo can be used to help us better understand

he brain by providing an accurate model for brain data that explicitly

odels its dynamic nature using a linear mixture of modes. The modest

mprovement in modelling dynamic spectral properties compared to an

MM shows the assumption of mutual exclusivity does not necessarily

mpact the HMM’s ability to model the data effectively. Nevertheless,

yNeMo is a novel and complementary tool that is useful for studying

euroimaging data. 
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