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Abstract

We study the problem of nonparametric estimation of a multivariate function g :
Rd → R that can be represented as a composition of two unknown smooth functions
f : R → R and G : Rd → R. We suppose that f and G belong to some known
smoothness classes of functions and we construct an estimator of g which is optimal in a
minimax sense for the sup-norm loss. The proposed methods are based on aggregation of
linear estimators associated to appropriate local structures, and the resulting procedures
are nonlinear with respect to observations.

Keywords multidimensional nonparametric estimation, minimax estimation, adap-
tive estimation, composite functions, single index model

1 Introduction

In this paper we study the problem of nonparametric estimation of an unknown function
g : Rd → R in the multidimensional gaussian white noise model described by the stochastic
differential equation

Xε(dt) = g(t)dt + εW (dt), t = (t1, . . . , td) ∈ D (1)

where D is an open interval in Rd containing [−1, 1]d, W is the standard Brownian sheet
in Rd and 0 < ε < 1 is a known noise level. Our goal is to estimate the function g
on the set [−1, 1]d from the observation {Xε(t), t ∈ D}. For d = 2 this corresponds to
the problem of image reconstruction from observations corrupted by additive noise. We
consider observation set D which is larger than [−1, 1]d in order to avoid the discussion of
boundary effects.

To measure the performance of estimators, we will use the risk function determined by
the sup-norm ‖ · ‖∞ on [−1, 1]d: for g : Rd → R, 0 < ε < 1, p > 0, and for an arbitrary
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estimator g̃ε based on the observation {Xε(t), t ∈ D} we consider the risk

Rε

(
g̃ε, g

)
= Eg

(
‖g̃ε − g‖p

∞
)
.

Here and in what follows Eg denotes the expectation w.r.t. the distribution Pg of the
observation {Xε(t), t ∈ D} satisfying (1).

We will suppose the g ∈ Gs, where {Gs, s ∈ S} is a collection of functional classes
indexed by s ∈ S. The functional classes Gs that we will consider consist of smooth composite
functions and below we discuss in detail this choice.

For a given class Gs we define the maximal risk

Rε

(
g̃ε,Gs

)
= sup

g∈Gs

Rε

(
g̃ε, g

)
. (2)

Our first aim is to study the asymptotics, as the noise level ε tends to 0, of the minimax
risk

inf
g̃ε

Rε

(
g̃ε,Gs

)

where inf g̃ε denotes the infimum over all estimators of g. We suppose that parameter s is
known, and therefore the functional class Gs is fixed. In other words, we are interested in
minimax estimation of g. We find the minimax rate of convergence φε(s) on Gs, i.e., the
rate which satisfies φp

ε(s) ≍ inf g̃ε Rε

(
g̃ε,Gs

)
and we construct an estimator attaining this

rate, called rate optimal estimator in asymptotic minimax sense. The estimator depends
on parameter s which restricts its application in practice. We discuss approaches to treat
adaptation to s and state some conjectures on this issue. We suggest a possible construction
of such an adaptive procedure. Further details will be given in a forthcoming paper.

2 Motivation

It is well known that the main difficulty in estimation of multivariate functions is the
curse of dimensionality: the best attainable rate of convergence of the estimators decreases
very fast as the dimension grows. To illustrate this effect, suppose, for example, that the
underlying function g belongs to Gs = Hd(α,L), s = (α,L), α > 0, L > 0, where Hd(α,L) is
an isotropic Hölder class of functions. We give the exact definition of this functional class
later. Here we only mention that Hd(α,L) consists of functions g with bounded partial
derivatives of order ≤ ⌊α⌋ and such that, for all x, y ∈ D,

|g(y) − Pg(x, y − x)| ≤ L‖x− y‖α,

where Pg(x, y − x) is the Taylor polynomial of order ≤ ⌊α⌋ obtained by expansion of g
around the point x, and ‖ · ‖ is the Euclidean norm in Rd. Parameter α characterizes the
isotropic (i.e., the same in each direction) smoothness of function g.

If we use the risk (2), uniformly on Hd(α,L) the rate of convergence of estimators cannot
be asymptotically better than

ψε,d(α) =
(
ε
√

ln (1/ε)
)2α/(2α+d)

(cf. (9; 10; 23; 20; 5)). This is also the minimax rate on Hd(α,L): it is achieved, for
example, by a kernel estimator with properly chosen bandwidth and kernel. More results
on asymptotics of the minimax risks in estimation of multivariate functions can be found
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in (11; 12; 2; 3). It is clear that if α is fixed and d is large enough this asymptotics is too
pessimistic to be used for real data: the value ψε,d(α) is small only if the noise level ε is
unreasonably small. On the other hand, if the noise level ε is realistically small and α is
small the above asymptotics can be of no use already in dimensions 2 or 3.

At the origin of this phenomenon is the fact that the d-dimensional isotropic Hölder
class Hd(α,L) is too massive in terms of its metric entropy. To “overcome” the curse of
dimensionality one usually considers models with slimmer functional classes (i.e., classes
with smaller metric entropy). There are several ways to do it.

• A first way is to impose a restriction on the smoothness parameter of the functional
class. For the class Hd(α,L), a convenient restriction is to assume that the smooth-
ness α increases with the dimension, and thus the class becomes smaller (its metric
entropy decreases). For instance, we can suppose that α = κd with some fixed κ > 0.
Then the dimension disappears from the expression for ψε,d(α), which means that we
escape from the curse of dimensionality. However, the condition α = κd or other sim-
ilar restrictions linking smoothness and dimension are usually difficult to motivate.
One interesting related example seems to be the class of functions with absolutely
integrable multivariate Fourier transform (1).

• Another way is to impose a structural assumption on the function g to be estimated.
Two classical examples are provided by the single index and additive structures (cf.,
e.g., (24; 6; 8)).

The single index structure is defined by the following assumption on g: there exist a
function F0 : R → R and a vector ϑ ∈ Rd with ‖ϑ‖ = 1 such that g(x) = F0(ϑ

Tx).

The additive structure is defined by the following assumption: there exist functions
Fi : R → R, i = 1, . . . , d, such that g(x) = F1(x1) + · · ·+Fd(xd), where xj is the j-th
component of x ∈ Rd.

If we suppose that Fi ∈ H1(α,L), i = 0, . . . , d, then in both cases function g can

be estimated with the rate
(
ε
√

ln (1/ε)
)2α/(2α+1)

which does not depend on the di-
mension and coincides with the minimax rate ψε,1(α) of estimation of functions on
R.

In general, under structural assumptions the rate of convergence of estimators improves,
as compared to the slow d-dimensional rate ψε,d(α). For the above examples the rate does
not depend on the dimension.

However, it is often quite restrictive to assume that g has some simple structure, such
as the single index or additive one, on the whole domain of its definition. In what follows
we refer to this assumption as global structure.

A more flexible way of modeling is to suppose that g has a local structure. For instance,
we can assume that g is well approximated by some single index or additive structure (or by
a combination both) in a small neighborhood of a given point x. Local structure depends
on x and remains unchangeable within the neighborhood. Such an approach can be used
to model much more complex objects than the global one. However, the form of the d-
dimensional neighborhood and the local structure should be chosen by the statistician in
advance, which makes the local approach rather subjective.

In the present paper we try to find a compromise between the global and local modeling.
Our idea is to consider a sufficiently general global model which would generate suitable
local structures, and thus would allow us to construct estimators with nice statistical prop-
erties. Such a global model should satisfy the following requirements.
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(i) The optimal performance of estimators under this model is better than the performance
of methods based only on the smoothness properties of the underlying function.

(ii) The model contains “global” parameters such that their choice automatically generates
interpretable local structures and associated domains of localization (neighborhoods).
Adaptation to such global parameters, if it is feasible, means adaptation to different
local models simultaneously.

(iii) The model contains a tuning parameter such that its choice allows one to reduce the
influence of the dimension.

We argue that this program can be realized for global models where the underlying
function g is a composition of two smooth functions.

3 Smooth composite functions

We now define our global structural model. We will assume that g is a composite function,
i.e., that g(t) = f(G(t)) for all t ∈ Rd where f : R → R and G : Rd → R with d ≥ 2.

We will further suppose that f and G are smooth functions such that f ∈ H1(γ, L1) and
G ∈ Hd(β,L2) where γ, L1, β, L2 are positive constants. Here and in what follows H1(γ, L1)
and Hd(β,L2) are the Hölder class on R and the isotropic Hölder class on Rd respectively
(see Definition 1 below). The class of composite functions g with such f and G will be
denoted by H(A,L), where A = (γ, β) ∈ R2

+ and L = (L1, L2) ∈ R2
+.

This model is a generalization of the single index model: instead of the linear function
we have here a general G(·).

The performance of an estimation procedure will be measured by the sup-norm risk (2)
where we set s = (A,L) and Gs = H(A,L). The global parameter of the model is s = (A,L),
and we will show that the choice of A leads to different local structures. Note also that
the value of s determines the quality of estimation associated to our model, i.e., the rate of
convergence of the minimax risk.

We start with the following definitions:

Definition 1. Fix α > 0 and L > 0. Let ⌊α⌋ be the largest integer which is strictly less
than α, and for ~k = (k1, . . . , kd) ∈ Nd set |~k| = k1 + · · · + kd. The isotropic Hölder class

Hd(α,L) is the set of all functions G : Rd → R having on Rd all partial derivatives of order
⌊α⌋ and such that

∑

0≤|~k|≤⌊α⌋

sup
x∈Rd

∣∣∣∣∣
∂|

~k|G(x)

∂xk1
1 · · · ∂xkd

d

∣∣∣∣∣ ≤ L,

∣∣∣∣∣G(y) −
∑

0≤|~k|≤⌊α⌋

∂|
~k|G(x)

∂xk1
1 · · · ∂xkd

d

d∏

j=1

(yj − xj)
kj

kj !

∣∣∣∣∣ ≤ L‖y − x‖α, ∀ x, y ∈ R
d. (3)

where xj and yj are the jth components of x and y.

Definition 2. Let G be some class of functions on Rd. We say that G is a class of
effective smoothness α > 0 if G ⊆ Hd(α,L) for some L > 0, and G 6⊆ Hd(α

′, L′) for
all α′ > α, L′ > 0.
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Observe that for any α > 0, L > 0, the effective smoothness of the single index and
additive classes is equal to α. Next, it is easy to see that for any A = (γ, β) ∈ R2

+ and
L = (L1, L2) ∈ R2

+ the effective smoothness of H(A,L) is

αγ,β ,

{
γβ if 0 < γ, β ≤ 1,
min(γ, β) otherwise.

(4)

We say that there is an improvement in statistical performance of estimators due to
the structure if the minimax rate of convergence associated to the class G is o(ψε,d(α)),
as ε → 0, where α is the effective smoothness of G. In other words, the knowledge of a
structure allows certain improvement if the best estimator, based only on the smoothness
properties, converges slower than the best estimator which takes into account the whole
structure. For example, for the classes of functions with single-index or additive structure
there is always an improvement due to the structure, because the corresponding minimax

rate is
(
ε
√

ln (1/ε)
)2α/(2α+1)

= o(ψε,d(α)).
For the class H(A,L) of composite functions this property is not always true. For

certain values of A = (γ, β) no improvement due to the structure can be expected. This
happens if our structural assumption is essentially equivalent to the fact that g belongs
to some isotropic Hölder class of functions of full dimension d, and the knowledge of the
composition structure does not help to improve the statistical analysis. Such an effect
appears in the following two zones of (γ, β).

1◦. Zone of slow rate: 0 < γ, β ≤ 1.
Clearly, in this zone H(A,L) ⊂ Hd(γβ,L3), where L3 is a positive constant depending

only on γ, β and L. Due to this inclusion a standard kernel estimator with properly chosen

bandwidth and the boxcar kernel converges with the rate ψε,d(γβ) =
(
ε
√

ln (1/ε)
)2γβ/(2γβ+d)

.
It is not hard to see (cf. Section 8) that this rate is optimal, i.e., that a lower bound on the
minimax risk holds with the same “slow” rate ψε,d(γβ) (note that γβ ≤ 1). As the effective
smoothness of H(A,L) for 0 < γ, β ≤ 1 equals to γβ, there is no improvement due to the
structure.

2◦. Zone of inactive structure: γ ≥ β, γ ≥ 1.
In this zone we easily get the inclusions Hd(β,L4) ⊂ H(A,L) ⊂ Hd(β,L5), where L4 and

L5 are positive constants depending only on β and L. To show the left inclusion it suffices
to fix a linear function f . Therefore, the asymptotics of the minimax risk on H(A,L) is the
same as for any isotropic Hölder class Hd(β, ·). In particular, a standard kernel estimator
converges with the rate ψε,d(β). Note that here we estimate as if there were no structure,
and the asymptotics of the minimax risk does not depend on γ. This explains why we refer
to this zone as that of inactive structure.

We finally remark that if β ≤ 1 the composite function g is rather nonsmooth. The
effective smoothness equals to (1∧γ)β, and in view of the above discussion, the minimax rate
of convergence of estimators on H(A,L) is the same as on the Hölder class Hd((1 ∧ γ)β, ·).
This is a very slow rate ψε,d((1 ∧ γ)β). Therefore, only for β > 1 one can expect to find
estimators with interesting statistical properties.

4 Main results

In this section we state the main results and outline the estimation method. The formal
description of the estimation procedure and the proofs are deferred to Sections 6 and 8 – 9
respectively.
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4.1 Lower bound for the risks of arbitrary estimators

For any A = (γ, β) ∈ R2
+ define

π(A) =
2γ

2γ + 1 + (d− 1)/β
∧ 2

2 + d/β
∧ 2

2 + d/(γβ)
, (5)

and
φε(γ, β) =

(
ε
√

ln(1/ε)
)π(A)

. (6)

In an expanded form, we may write

φε(γ, β) =






(
ε
√

ln (1/ε)
) 2γ

2γ+1+(d−1)/β if β > 1, β ≥ d(γ − 1) + 1,
(
ε
√

(ln 1/ε)
) 2

2+d/β if γ > 1, β < d(γ − 1) + 1,
(
ε
√

ln (1/ε)
) 2

2+d/(γβ) if (γ, β) ∈ (0, 1]2.

(7)

The boundaries between the zones of these three different rates in R2
+ are presented by the

dashed lines in Figure 1.
An asymptotic lower bound for the minimax risk on H(A,L) is given by the following

theorem.

Theorem 1. For any A = (γ, β) ∈ R2
+ and any p > 0 we have

lim inf
ε→0

inf
g̃ε

sup
g∈H(A,L)

Eg

[(
φ−1

ε (γ, β)‖g̃ε − g‖∞
)p]

> 0,

where inf g̃ε denotes the infimum over all estimators of g.

This theorem shows that the rate of convergence φε(γ, β) cannot be improved on any
estimators. We will next claim that for 0 < γ, β ≤ 2 there exist estimators attaining this
rate. Before stating the corresponding result, we make some remarks on the properties of
the rate φε(γ, β).

Remark 1. There is an improvement due to the structure everywhere except for
the trivial cases 1◦ and 2◦ discussed in Section 3. This corresponds to the zone {A =
(γ, β) : β > γ, β ≥ 1} which we refer to as zone of improved rate (cf. Figure 1). Indeed,
when A belongs to this zone the effective smoothness is αγ,β = γ (cf. (4)), and hence
φε(γ, β) = o(ψε,d(αγ,β)), as ε→ 0. Thus, the requirement (i) of Section 2 is met.

Remark 2. Parameter β can be viewed as a tuning parameter of the model: its choice
can reduce the impact of the dimension d on the accuracy of estimation. Indeed, as the
ratio d/β tends to 0, the rate φε(γ, β) approaches either the one-dimensional Hölder rate
ψε,1(γ) or the “almost parametric” rate ε

√
ln (1/ε). Thus, the requirement (iii) of Section

2 is met.

Remark 3. If β ≥ γ > 1, β < d(γ − 1) + 1 the rate of convergence φε(γ, β) does not
depend on γ and coincides with the minimax rate ψε,d(β) associated to the d-dimensional
Hölder class Hd(β, ·). This is rather surprising: in this zone the composite function g = f ◦G
can be estimated with the same rate as G, independently of how smooth is f . Such a
behavior cannot be explained in terms of the smoothness because in the considered case
the effective smoothness αγ,β takes the value γ and not β (cf. (4)).

Remark 4. Theorem 1 obviously implies that the lower bound
(
ε
√

ln (1/ε)
) 2γ

2γ+1+(d−1)/β

is valid for all positive γ, β. Inspection of the proof shows that this bound is attained
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at the least favorable functions that, for the particular case of d = 2, are of the form
f0(ϕ1(t1) + ϕ2(t2)) where f0 is a function of Hölder smoothness γ and both functions ϕj

are of Hölder smoothness β. So, for d = 2 the lower bound with rate
(
ε
√

ln (1/ε)
) 2γ

2γ+1+1/β

holds for such more restricted class of functions, whatever are γ and β. In particular, when

γ = β, this lower rate becomes
(
ε
√

ln (1/ε)
) 2β2

2β2+β+1 . Since 2β2

2β2+β+1
< 2β

2β+1 this is always

slower than the classical one-dimensional rate ε
2β

2β+1 . On the other hand, a recent result of
Horowitz and Mammen (7) shows that for γ = β functions of the form f0(ϕ1(t1) + ϕ2(t2))

can be estimated at the rate ε
2β

2β+1 in the L2-norm. This phenomenon is very surprising
because, in contrast to classical nonparametric estimation problems, we observe here a
significant (and not only a logarithmic) deterioration of the rate when passing from the
L2-norm to the L∞-norm.
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slow
rate

improved rate    

β=γ

β=d(γ−1)+1β

γ

inactive 
structure

Figure 1. Zones of improved rate (cyan), of slow rate (grey) and of inactive
structure (white). Dashed lines demarcate the zones of three different expressions

for the exponent π(A).

4.2 Outline of the estimation method

The exact definition of our estimator is given in Section 6. Here we only outline its construc-
tion. We suppose that A = (γ, β) ∈ (0, 2]2. The initial building block is a family of kernel
estimators. In contrast to the classical kernel construction which involves a unique band-
width parameter, the kernel KJ that we consider is determined by the triplet J = (A, ϑ, λ)
where the form parameter A is the couple (γ, β) ∈ (0, 2]2, the orientation parameter ϑ is a
unit vector in Rd and λ is a positive real which we refer to as size parameter. We denote J

the set of all such triplets J and consider a family of kernel estimators (ĝJ ,J ∈ J) where
for any x ∈ [−1, 1]d the estimator ĝJ (x) of g(x) is given by

ĝJ (x) ,

∫

D
KJ (t− x)Xε(dt).

We will see that, in general, the size parameter λ is not equivalent to the bandwidth of
classical kernel estimator. In fact, the value of λ characterizes the bias of the estimator ĝJ
when the orientation of the window ϑ is locally “correct”. Namely, the kernel KJ is chosen
in such a way that for each x ∈ [−1, 1]d the bias of ĝJ is of the order O(λ) if ϑ = ϑx

0 is
collinear to the gradient ∇G(x).
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The estimation method proceeds in three steps, and the basic device underlying the
construction of the optimal estimation method is the notion of the local model. It is an
important feature of the composition structure that different local models arise in different
subsets of the zone of improved rate.

Step 1. Specifying a collection of local models. The underlying function g with a
complicated global structure can have a simple local structure. However, the local structure
depends on the function itself. Therefore, g can be only described by a collection of local
models. In our case, this collection is indexed by a finite-dimensional parameter which can
be considered as a nuisance parameter. Specifically, we pass from the global composition
model defined in Section 3 to a family of local models {MJ (x), J ∈ J, x ∈ [−1, 1]d} where
the type of each local model MJ (x), J = (A, ϑ, λ), is determined by A, while ϑ and λ are
the local orientation and size parameters. We will show that, depending on the value of
A = (γ, β) (cf. Figure 2), our global model induces only two types of local models: a local
single index model and a combined local model. The latter combines elements of both single
index and additive models. This responds to the requirement (ii) of Section 2.

0  1  2  

1

2

single
index  

combined  

β

γ

β=γ

no local
structure

Figure 2. Types of local structures.

1◦. Local single index model: γ ≤ 1, 1 < β ≤ 2.
In this domain of γ, β, using the smoothness properties of functions f and G it is not

hard to show that in the ball Bλ,x(A) =
{
t ∈ Rd : ‖t− x‖ ≤ λ

1
γβ
}

the composite function
g(·) can be approximated with the accuracy O(λ) by the function f

(
G(x)+ϑT [·−x]

)
. Here

ϑ = ϑx
0 is a unit vector collinear to the gradient ∇G(x). Indeed, since the inner function G

belongs to Hd(β,L2), for any x, y ∈ D we have

G(t) = G(x) + ∇G(x)T (t− x) +Bx(t), with Bx(t) ≤ L2‖t− x‖β . (8)

Next, using the fact that f ∈ H1(γ, L1), we conclude that g(t) = f(G(t)) admits the
representation

g(t) = Qx(t) + Cx(t),

where

Qx(t) = f(G(x) + ∇G(x)T (t− x)) and |Cx(t)| ≤ L1|Bx(t)|γ ≤ L1L
γ
2‖t− x‖γβ .

In other words, for any kernelK with the support on the ballBλ(A) =
{
t ∈ Rd : ‖t‖ ≤ λ1/γβ

}

and such that
∫
K(y)dy = 1,

∫
K(t− x)[g(t) −Qx(t)]dt = O(λ). (9)

8



We understand the relation (9) as the definition of the local single index model Qx of g.
The choice of the approximation kernel for the function g is naturally suggested by the
form of the local model Qx together with the bound (9): the kernel KJ can be taken as
the indicator function of a hyperrectangle normalized by its volume and oriented in such a
way that ∇G(x) is collinear to the first basis vector in Rd. The sides of the hyperrectangle

are chosen to have the lengths l1 = λ
1
γ and lj = λ

1
γβ , j = 1, . . . , d− 1.

2◦. Combined local model: 1 < γ ≤ β ≤ 2.
Let Mϑ be an orthogonal matrix with the first column equal to ϑ = ϑx

0 , and let y =
MT

ϑ (t− x), t ∈ Rd. We denote with yj the jth component of y and consider the set

Xλ,x(A) =
{
t ∈ R

d : |y1| ≤ λ
1
β , ‖y‖ ≤ λ

1
γβ , |y1|γ−1‖y‖β ≤ λ

}
. (10)

We show that the estimation of the composite function g at x can be reduced to the problem
of estimation under the local model

Qx(y) = qx(y1) + Px(y2, . . . , yd),

where qx ∈ H1(γ, L1L
γ
2) and Px ∈ Hd−1(β, 2L1L2) on the set Xλ,x(A). This local model is

established in an unknown coordinate system determined by the parameter ϑ = ϑx
0 . Since

y1 is the coordinate of the projection on ϑx
0 , the component qx(y1) constitutes an element

of single index structure. An element of additive structure comes from the separation of
Qx into the sum of two functions depending on non-intersecting sets of coordinates.

The explanation of the local model represented by Qx on the set Xλ,x(A) is provided by
the following argument. Using the smoothness properties of functions f and G, we obtain
due to the inclusions f ∈ H1(γ, L1), G ∈ Hd(β,L2):

g(t) = f(G(x) + ∇G(x)T (t− x)) + f ′(G(x) + ∇G(x)T (t− x))Bx(t) + Cx(t)

= f(G(x) + ∇G(x)T (t− x)) + f ′(G(x))Bx(t) +Dx(t) + Cx(t),

where

|Cx(t)| ≤ C(L1, L2, γ)‖t − x‖γβ,

|D(x, y)| ≤ C(L1, L2)
|∇G(x)T (t− x)|

‖∇G(x)‖ ‖t− x‖β ,

and the function Bx(t), which is defined in (8), belongs to the class Hd(β, 2L2). In the
transformed coordinates (determined by the orthogonal matrix Mϑ) we may write

g(t) = g(x+Mϑy) = q(y1) + B̃x(y) + D̃x(y) + C̃x(y), (11)

where

|D̃x(y) + C̃x(y)| ≤ C(L1, L2, γ)(|y1|γ−1‖y‖β + ‖y‖γβ). (12)

and B̃x ∈ Hd(β, 2L2). The latter inclusion leads to
∣∣∣∣B̃x(y) − Px(y2, . . . , yd) − y1

∂

∂y1
B̃x(0, y2, . . . , yd)

∣∣∣∣ ≤ 2L2|y1|β, (13)

where Px(y2, . . . , yd) = B̃x(0, y2, . . . , yd). Let again K be a kernel such that
∫
K(t)dt = 1,

supported on Xλ,x(A). Then
∫
K(y − x)[g(x +Mϑy) −Qx(y)]dy = O(λ) (14)
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if K is symmetric in y1. We understand this property as the definition of the combined
local model Qx for the composite function g.

We conclude that if A belongs to the zone marked as “combined” in Figure 2, the global
structural assumption that the underlying function is a composite one leads automatically
to a local structure containing elements of both single index and additive models.

A good kernel KJ for the zone of combined local model should be supported on the
right window Xλ,x(A), possess small bias on both single-index component qx and “regular”
component Px and have a small L2-norm to ensure small variance of the stochastic term
of the estimation error. Construction of such a kernel is a rather involved task (cf. Section
7.2). Using a rectangular kernel, as for the local single-index model, does not give a solution,
since it leads to suboptimal estimation rates.

As we see, the definition of local model has two ingredients: the neighborhood (window)
and the local structure within the window. For the local single index model the window is
just an Euclidean ball, whereas for the combined local model the window is the set Xλ,x(A)
which has quite a nonstandard form (cf. Figure 3).

x

λ1/γβ

Figure 3. Window for the combined local model, d = 2.

Step 2.Optimizing the size parameter and specifying candidate estimators.

Once the local model is determined and the corresponding kernel is constructed we can
chose the size parameter λ = λε(A) in an optimal way. To do it we optimize our sup-norm
risk with respect to λ, i.e., we get the value λ which realizes the balance of bias and variance
terms of the risk in the ideal case where the orientation ϑ = ϑx

0 is “correct” for all x.
Recall that the kernel KJ supported on the window is chosen in such a way that the

bias of the kernel estimator ĝJ , for the “correct” orientation ϑ, is of the order O(λ) on
every local model. Thus, the bias-variance balance relation for the sup-norm loss can be
written in the form

λ ≍ ε
√

ln 1/ε‖KJ ‖2. (15)

We will see that ‖KJ ‖2 depends on A and λ but does not depend on ϑ. This will allow us
to choose the optimal value λε(A) independent of ϑ. For instance, for the local single index
model the kernel KJ is just a properly scaled and rotated indicator of a hyperrectangle. In
this particular case the bias-variance balance (15) can be written in the form

λ ≍ ε
√

ln 1/ε√
volume of hyperrectangle

= ε

(
ln 1/ε

λ
1
γ
+ d−1

γβ

)1/2

.

Note that in this case λε(A) ≍ φε(γ, β), where φε(γ, β) is defined in (7). On the other
hand, to guarantee that the same relation λε(A) ≍ φε(γ, β) holds in the zone of combined
local model need a rather sophisticated construction of the kernel KJ (cf. Section 7.2).
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With λε(A) being chosen, we obtain a family of kernel estimators

{
ĝJ (x), J = (A, ϑ, λε(A)) ∈ J, x ∈ [−1, 1]d

}
. (16)

For a fixed x ∈ [−1, 1]d this family only depends on two parameters, A and ϑ.

Step 3. Aggregating the estimators. We now choose an estimator from the family
(16) which corresponds to some Ĵ ∈ J selected in a data-dependent way, and define our
final estimator as a piecewise-constant approximation of the function x 7→ ĝĴ (x). To choose

Ĵ we apply an aggregation procedure which is a special case of the method of aggregation
of linear estimators proposed in (17).

We introduce a discrete grid on the unit sphere {ϑ ∈ Rd : ‖ϑ‖ = 1}, and we divide
the domain of definition of x into small blocks. For each block, we consider a finite set of
estimators ĝJ (x) extracted from the family (16), with x which is fixed as the center x0 of
the block and all the ϑ on the grid. We then select a data-dependent ϑ̂ in the grid applying
our aggregation procedure to this finite set. The value of our final estimator g∗A,ε on this
block is constant and is defined as g∗A,ε(x) ≡ ĝ(A,ϑ̂,λε(A))(x0). We thus get a piecewise-

constant estimator g∗A,ε on [−1, 1]d which depends only on A and on the observations (the
exact definition of g∗A,ε is given in Section 6).

Remark 5. If A is unknown we need simultaneous adaptation to A and to ϑ, i.e.,
to the smoothness and to the local structure of the underlying function. Note, however,
that parameters A and ϑ are not independent. In particular, A determines the form of the
neighborhood where we have an unknown local structure depending on ϑ. This is important
because our construction of the family of estimators {ĝJ ,J ∈ J} heavily relates on the local
representation of the model. For example, if the family {ĝJ ,J ∈ J} does not contain an
estimator corresponding to the correct local structure, the choice from this family cannot
even guarantee consistency. Another difficulty is that different values of A can correspond
to different types of local models (cf. Figure 2). Therefore, if A is totally unknown (fully
adaptive estimation) then both the type of local structure and the form of the corresponding
window are unknown. So, we see that adaptive estimation of composite functions is more
difficult than classical adaptation to the unknown smoothness as considered, for example,
in (14–16). In a forthcoming paper we will show that it is possible to adapt to unknown
type of the local structure (including adaptation to the local orientation ϑ) under certain
known restrictions on A. We will call this partial adaptation. Partial adaptive procedure
can be constructed in a similar way as discussed above. A difference is that we need to
introduce a grid not only on the values of ϑ, but also on those of A, and we aggregate
estimators corresponding to the product of both grids.

4.3 Upper bounds on the risk of the estimators

Define the following three domains of values of A = (γ, β) contained in (0, 2]2 (cf. Figure
4).

P1 =
{
A : γ ≤ 1, 1 < β ≤ 2

}
,

P2 =
{
A : 1 < γ ≤ β ≤ 2, β ≥ d(γ − 1) + 1

}
,

P3 =
{
A : 1 < γ ≤ β ≤ 2, β < d(γ − 1) + 1

}
.

(17)

In view of the above discussion, these are exactly the zones where improved rates occur
and where the local structure is active. For the sake of completeness, we consider also the
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remainder zone (zone of no local structure):

P4 = (0, 1]2 ∪ {(γ, β) : 1 ≤ β < γ ≤ 2}.

As we will see it later, the optimal kernels KJ are defined differently for each of these zones.

0 1 2

1

2
P

1
P

2

β=d(γ−1)+1

P
3

β=γ

β

γ

P
4

Figure 4. Classification of zones within (0, 2]2.

Theorem 2. Let φε(γ, β) be as in (7). For any A = (γ, β) ∈ (0, 2]2 \P2 and any p > 0 the
estimator g∗A,ε satisfies

lim sup
ε→0

sup
g∈H(A,L)

Eg

[(
φ−1

ε (γ, β)‖g∗A,ε − g‖∞
)p]

<∞.

For any A = (γ, β) ∈ P2 and any p > 0 the estimator g∗A,ε satisfies

lim sup
ε→0

sup
g∈H(A,L)

Eg

[([
ln ln (1/ε)

]−1
φ−1

ε (γ, β)‖g∗A,ε − g‖∞
)p]

<∞.

Combining Theorems 1 and 2 we conclude that φε(γ, β) is the minimax rate of conver-
gence for the class H(A,L) if A = (γ, β) ∈ (0, 2]2 \ P2, and that it is near minimax (up to
the ln ln(1/ε) factor) if A = (γ, β) ∈ P2. Therefore, our estimator g∗A,ε is respectively rate
optimal or near rate optimal on H(A,L).

Theorem 2 can be viewed as a result on adaptation to the unknown local structure of
the function to be estimated: the estimator g∗A,ε locally adapts to the “correct” orientation
ϑ which is a vector collinear to the gradient ∇G(x) in a neighborhood of x.

5 Extensions

5.1 Related statistical models

1. We consider here the Gaussian white noise model because its analysis requires a
minimum of technicalities. Composition structures can be studied for more realistic
models, such as nonparametric regression with random design, nonparametric density
estimation and classification. Note that our theorems can be directly transposed
to gaussian nonparametric regression model with fixed equidistant design using the
equivalence of experiments argument (cf. (4; 21)). Note also that results similar
to ours have been recently obtained for the problem of testing hypotheses about
composite functions in the Gaussian white noise model (18).
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2. We restrict our study to the sup-norm loss and to the Hölder smoothness classes. A
natural extension would be to consider models where the risk is described by other
norms and other smoothness classes. Typical candidates here are Sobolev and Besov
classes, the classes of monotone or convex functions. The case of functional classes
with anisotropic smoothness is of interest as well. Estimation in other norms may
lead to unexpected effects (cf. Remark 4).

3. We consider only the simplest composition f(G), where f : R → R and G : Rd → R.
A more general description could be f(G1, . . . , Gk), where f : Rk → R and Gs : Rds →
R, s = 1, . . . , k, and d1 + · · · + dk = d.

4. A related more complex modeling can be based on Kolmogorov’s theorem of repre-
sentation of a continuous function of several variables by compositions and sums of
functions of one variable addition (13; 22).

5.2 Possible refinements

1. In this paper we treat only the case A ∈ (0, 2]2. Extension to A /∈ (0, 2]2 remains an
open problem. However, our lower bound (Theorem 1) is valid for all A ∈ R2

+. We
believe that it cannot be improved. This conjecture is supported by recent results on
a hypothesis testing problem with composite functions (18) which is closely related
to our estimation problem. The upper bound proved in (18) for all A ∈ R2

+ in the
problem of testing hypotheses coincides with our lower bound.

2. The rate of convergence of the minimax procedure (cf. Theorem 2) in the zone P2

contains an additional ln ln(1/ε) factor, as compared to the lower bound of Theorem 1.
This deterioration of the rate is due to the method of aggregation of linear estimators
that we use and does not seem to be unavoidable.

3. In Remark 5 we discussed a possible construction for partial adaptation. The ultimate
goal of adaptation is, however, to find an estimator which is totally parameter free.
Such an estimator should achieve the minimax rate (6) simultaneously for all A ∈ R2

+.

6 Definition of the estimator

We first introduce some notation. For a bounded function K ∈ L1(R
d) and p ≥ 1 we denote

by ‖K‖p its Lp-norm and by K ∗ g its convolution with a bounded function g:

‖K‖p =

(∫
|K(t)|pdt

)1/p

, [K ∗ g](x) =

∫
K(t− x)g(t)dt, x ∈ R

d

(here and in the sequel
∫

=
∫

Rd). We denote J , (A, ϑ, λ) where A = (γ, β) ∈ (0, 2]2, ϑ is
a unit vector in Rd and λ > 0. The class of all such triplets J is denoted by J.

Given a unit vector ϑ, let Mϑ ∈ Rd×d stand for an orthogonal matrix with the first
column equal to ϑ. The collection of the kernels we consider in the sequel is defined as

KJ (x) = K(A,λ)(M
T
ϑ x)
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where K(A,λ) : Rd → R is a kernel that will be defined in Section 7. Next, for any J ′,J ,∈ J

and all t ∈ Rd we define the convoluted kernel

KJ ′∗J (t) =

∫
KJ ′(t− y)KJ (y)dy

and the difference
∆J ′KJ ′∗J = KJ ′∗J −KJ ′.

Note that, by definition, the kernel KJ is symmetric, i.e., KJ (t) = KJ (−t), and

KJ ′∗J = KJ∗J ′. (18)

For all J ∈ J and all x ∈ [−1, 1]d set

ĝJ (x) =

∫

D
KJ (t− x)Xε(dt),

and for all J ′,J ∈ J define the convoluted estimator

ĝJ ′∗J (x) =

∫

D
KJ ′∗J (t− x)Xε(dt).

In what follows we assume that ε is small enough so that ln ln(1/ε) > 0 and that in the
above expressions and in all the subsequent expressions containing convolutions with the
kernels we can replace

∫
D by

∫
Rd (this is possible for small ε since all the kernels that we

consider are compactly supported). We also define

∆J ′ ĝJ ′∗J (x) = ĝJ ′∗J (x) − ĝJ ′(x)

and set
THε(J ′,J ) = C(p, d) (‖KJ ′‖1 + ‖KJ ‖1) ‖KJ ′‖2 ε

√
ln (1/ε),

where C(p, d) = 2 +
√

4p + 8d.
To define the estimator we first introduce a discrete grid on the set of indices J. We

discretize only the ϑ-coordinate of J . Recall that ϑ takes values on the Euclidean unit
sphere S in Rd.

Discretization Let Sε ⊂ S be an ε2-net on S, i.e., a finite set such that

∀ϑ ∈ S ∃ϑ′ ∈ Sε : ‖ϑ − ϑ′‖ ≤ ε2,

and card(Sε) ≤ (
√
dε−2)d. W.l.o.g. we will assume that (1, 0, . . . , 0) ∈ Sε.

Fix A ∈ (0, 2]2 and define λε(A) as a solution in λ of the bias-variance balance equation

c11λ = ε
√

ln (1/ε)‖K(A,λ)‖2 (19)

where c11 is a constant in Proposition 1 below, depending only on A, L and d. Finally we
define the following grid on the values of J :

Jgrid ,
{
J = (A, ϑ, λε(A)) : ϑ ∈ Sε

}
⊂ J.
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Acceptability For a given x ∈ [−1, 1]d we define a subset T̂x of Jgrid as follows:

J ∈ T̂x ⇐⇒
∣∣∆J ′ ĝJ ′∗J (x)

∣∣ ≤ THε(J ′,J ), ∀J ′ ∈ Jgrid.

Any value J belonging to T̂x is called acceptable.
Note that the threshold THε(J ′,J ) can be bounded from above and replaced in all the

definitions by a value that does not depend on J ,J ′ ∈ Jgrid. In fact, either THε(J ′,J ) ≍
λε(A) if A ∈ P1 ∪ P3 or THε(J ′,J ) ≍ ln ln (1/ε)λε(A) if A ∈ P2.

Estimation at a fixed point For any x ∈ [−1, 1]d such that T̂x 6= ∅ we select an
arbitrary Ĵx from the set T̂x. Note that the set T̂x is finite, so a measurable choice of Ĵx

is always possible; we assume that such a choice is effectively done. We then define the
estimator g∗∗(x) as follows:

g∗∗(x) ,

{
ĝĴx

(x) if T̂x 6= ∅,
0 if T̂x = ∅. (20)

Global estimator The estimator g∗∗ is defined for all x ∈ [−1, 1]d and we could consider
x 7→ g∗∗(x), x ∈ [−1, 1]d, as an estimator of the function g. However, the measurability of
this mapping is not a straightforward issue. To skip the analysis of measurability, we use
again a discretization. Introduce the following cubes in Rd:

Πε(z) =

d⊗

k=1

[
ε2(zk − 1), ε2zk

]
, z = (z1, . . . , zd) ∈ Z

d.

For any x ∈ [−1, 1]d we consider z(x) ∈ Zd such that x belongs to the cube Πε(z(x)),
and a piecewise constant estimator g∗∗(z(x)). Our final estimator is a truncated version of
g∗∗(z(x)):

g∗A,ε(x) ,

{
g∗∗(z(x)) if |g∗∗(z(x))| ≤ ln ln(1/ε),
ln ln(1/ε) sign(g∗∗(z(x))) if |g∗∗(z(x))| > ln ln(1/ε).

(21)

Thus, the resulting procedure g∗A,ε is piecewise constant on the cubes Πε(z) ⊂ [−1, 1]d, z ∈
Zd.

7 Construction of the kernel

In this section, as well as in the Appendix, we will distinguish between the couple of “true”
parameters A0 = (γ, β) and a variable couple of parameters A = (a, b) ∈ (0, 2]2. This is
done to state the lemmas in a form convenient to be applied in the context of adaptation
to unknown (γ, β) which will be treated in our forthcoming work.

Depending on the value of A we use different constructions of K(A,λ). Our objective is
to obtain KJ with suitable approximation properties for each J ∈ J. Let us summarize
here the main requirements on the kernel:

1. Convolution of the kernel K(A,λ) with the “local model” of g corresponding to A should
approximate g with the accuracy O(λ). Furthermore, the kernel should be localized,
i.e., it should vanish outside of the window where the local structure is valid.
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2. A basic characteristic of the kernel is its L2-norm which determines the variance of
the kernel estimator. Our objective is to achieve its minimal value.

3. As we will see it later, the L1-norm of the kernel is also an important parameter of
the proposed estimation procedure. Our objective will be to keep the L1-norm as
small as possible.

We use different kernels K(A,λ) for A belonging to different zones Pi (cf. Figure 4). The
construction of K(A,λ) is trivial when A is in the zone P4 of no local structure. In this case
a basic boxcar kernel tuned to the effective smoothness of the composite function can be
used. Observe that when A ∈ (0, 1]2 the effective smoothness of the composite function
equals to ab, and when A = (a, b) satisfies 1 < b ≤ a ≤ 2 the effective smoothness is b. So,
we define the kernel K(A,λ) for the zone P4 as follows:

K(A,λ)(y) =






(
2λ

1
ab

)−d
I[

−λ
1
ab ,λ

1
ab

]d(y) if A = (a, b) ∈ (0, 1]2,

(
2λ1/b

)−d
I[−λ1/b,λ1/b]d(y) if 1 < b < a ≤ 2.

Here IA(·) stands for the indicator function of a set A. The following lemma is straightfor-
ward.

Lemma 1. For any A0 = (a, b) ∈ P4, λ > 0 and x ∈ [−1, 1]d, we have

sup
g∈H(A,L)

|[K(A,λ) ∗ g](x) − g(x)| ≤ c0λ,

where the constant c0 depends only on L and d. Furthermore,

‖K(A,λ)‖1 = 1 and ‖K(A,λ)‖2 =






(
2λ

1
ab

)−d/2
, (a, b) ∈ (0, 1]2

(
2λ

1
b

)−d/2
, 1 < b < a ≤ 2.

We turn now to the analysis of cases with active local structure. We start with the zone
P1 of local single model.

7.1 Kernel for the local single index model

The zone of local single-index model is P1 = {A = (a, b) : a ≤ 1, 1 < b ≤ 2
}
. For any

A ∈ P1 and λ > 0 consider the hyperrectangle

Πλ(A) =
[
−λ1/a, λ1/a

]
×
[
−λ 1

ab , λ
1
ab
]d−1

and define the kernel K(A,λ) as follows:

K(A,λ) =
(
2dλ

1
a
+ d−1

ab

)−1
IΠλ(A)(y), y ∈ R

d. (22)

Approximation property of the kernel K(A,λ) Let q : R → R and B : Rd → R be
functions such that, for given a ∈ (0, 1],

|q(x) − q(y)| ≤ L|x− y|a, ∀x, y ∈ Rd,

supx∈Rd |B(x)| ≤ c1
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where c1 > 0, L > 0 are constants. We denote by A(a) the set of all pairs of functions
(q,B) satisfying these restrictions. Define

Q(y) = q(y1) +B(y)‖y‖ab, ∀ y ∈ R
d.

We have the following evident result:

Lemma 2. For any A = (a, b) ∈ P1 and λ > 0 we have

(i) sup(q,B)∈A(a)

∣∣[K(A,λ) ∗Q
]
(0) − q(0)

∣∣ ≤ c2λ

where c2 is a constant depending only on L, c1 and d. Moreover,

(ii) ‖K(A,λ)‖1 = 1 and ‖K(A,λ)‖2 =
(
2dλ

1
a
+ d−1

ab

)−1/2
.

7.2 Kernels for the combined local model

The zone of combined local model is P2∪P3 = {A = (a, b) : 1 < a ≤ b ≤ 2}. The definition
of the kernel in this case is more involved. Indeed, taking K(A,λ) as a simple product of
boxcar kernels (22) results for A ∈ P2 ∪ P3 in too large approximation error.

Our aim is to construct a smoothing kernel K(A,λ) : Rd → R with the following proper-
ties:

– for some c > 0, it should vanish outside the set (cf. (10))

{
y ∈ R

d : |y1| ≤ cλ
1
b , ‖y‖ ≤ cλ

1
ab , |y1|a−1‖y‖b ≤ cλ

}
.

– for a function q(y1) of the first component y1 of y ∈ Rd, the “characteristic size” of K(A,λ)

should be λ
1
a ; for a function Q(y2, ..., yd) of the remaining components y2, ..., yd it

should be λ
1
b . Namely, we want to ensure the relations

∫
K(A,λ)(y)q(y1)dy = (2λ

1
a )−1

∫ λ
1
a

−λ
1
a

q(y1)dy1,

and

∫
K(A,λ)(y)Q(y2, ..., yd)dy = (2λ

1
b )−(d−1)

∫ λ
1
b

−λ
1
b

...

∫ λ
1
b

−λ
1
b

Q(y2, ..., yd)dy2...dyd.

These properties are crucial to guarantee that the bias of kernel approximation is of the
order O(λ) (cf. Lemma 3 below). Note that the simple rectangular kernel (22) used for the
local single index model can attain such a bias, but only at the price of too large L2-norm
(which characterizes the variance). We now give an example showing how a kernel with the
required properties can be constructed in a particular case.
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The two-step kernel Set

u1 = λ
1
a , u2 = λ

1
b , v1 = λ

b−a+1

b2 , v2 =
1

2
λ

1
b , (23)

Π1,1 = [0, u1] × [v2, v1]
d−1, µ1,1 = u1(v1 − v2)

d−1;

Π2,2 = [u1, u2] × [0, v2]
d−1, µ2,2 = (u2 − u1)v

d−1
2 ;

Π2,1 = [u1, u2] × [v2, v1]
d−1, µ2,1 = (u2 − u1)(v1 − v2)

d−1.

Next, we define, for y ∈ Rd
+,

Λ(y) = µ−1
1,1IΠ1,1(y) − µ−1

2,1IΠ2,1(y) + µ−1
2,2IΠ2,2(y). (24)

−

+

+

v
1

v
2

u
1 u

2

Π
1,1

Π
2,2

Π
2,1

y
2

y
1

Figure 5. Pavement Πi,j for the two-step kernel, d = 2. The kernel vanishes in the blanc zones.

For y = (y1, . . . , yd) ∈ Rd we write |y| = (|y1|, . . . , |yd|) and define the kernel K(A,λ) for

y ∈ Rd by the relation

K(A,λ)(y) = 2−dΛ(|y|). (25)

We will call this kernel the two-step kernel (cf. Figure 5). Its key property is as follows.
First, for any integrable function q(y1) of the first coordinate y1 we have

∫
K(A,λ)(y)q(y1)dy =

1

2u1

∫ u1

−u1

q(y1)dy1,

since the integral of q over Π2,1 is exactly the same as that over Π2,2. Further, for any
integrable function Q(y2, ..., yd) of y2, ..., yd,

∫
K(A,λ)(y)Q(y2, ..., yd)dy = (2v2)

−(d−1)

∫ v2

−v2

...

∫ v2

−v2

Q(y2, ..., yd)dy2...dyd,

since the integral of Q over Π2,1 is exactly the same as that over Π1,1. In words, the negative
term −µ−1

2,1IΠ2,1(y) in (24) allows us to compensate the excess of the bias introduced by the
two other terms, so that the resulting bias remains of the order O(λ) (cf. Lemma 3 below).

For the two-step kernel (25) we have

∫
K(A,λ)(y)dy = 1, ‖K(A,λ)‖1 = 3, ‖K(A,λ)‖2

2 = µ−1
1,1 + µ−1

2,2 + µ−1
2,1.
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We now define

ρ =
(d− 1)(a− 1)

b

and consider the subset {A = (a, b) : ρ ≥ (b − a)/a} of P3. It is easy to see that for
ρ ≥ (b− a)/a we have

‖K(A,λ)‖2
2 = O(λ−

d
b ).

Since a ≤ b for A ∈ P3, this result is better than part (ii) of Lemma 2 where K(A,λ) is a
rectangular kernel. But we need the condition ρ ≥ (b − a)/a. It is clearly satisfied when
ρ ≥ 1 (recall that a > 1, b ≤ 2). For smaller values of ρ we need to add extra “steps” in the
construction, i.e., to introduce piecewise constant kernels with more and more pieces of the
pavement, in order to get the bias compensation property as discussed above. For instance,

if ρ + ρ2 ≥ b−a
a (since (b − a)/a < 1, this is certainly the case when ρ ≥

√
5−1
2 ) we need a

pavement of five sets Πi,j in order to obtain a piecewise constant kernel with the required
statistical properties, and so on. We come to the following construction of the kernel.

Generic construction Define a piecewise constant kernel K(A,λ) as follows. Fix an inte-
ger r that we will further call number of steps (of kernel construction). Let (uj)j=1,...,r and
(vj)j=1,...,r+1 be, respectively, a monotone increasing and a monotone decreasing sequence

of positive numbers with u1 = λ
1
a , vr = λ

1
b /2 and vr+1 = 0. We set

Π1,1 = [0, u1] × [v2, v1]
d−1, µ1,1 = u1(v1 − v2)

d−1.

For i = 2, . . . , r and j = i− 1, i we define

Πi,j = [ui−1, ui] × [vj+1, vj ]
d−1, µi,j = (ui − ui−1)(vj − vj+1)

d−1.

For y ∈ Rd
+ consider

Λ1(y) =
1

µ1,1
IΠ1,1(y);

Λi(y) =
1

µi,i
IΠi,i(y) −

1

µi,i−1
IΠi,i−1(y), i = 2, ..., r.

The kernel K(A,λ) is defined for y = (y1, . . . , yd) ∈ Rd as follows:

K(A,λ)(y) = 2−d
r∑

i=1

Λi(|y|) (26)

where |y| = (|y1|, . . . , |yd|). Clearly,
∫

K(A,λ)(y)dy = 1, ‖K(A,λ)‖1 = 2r − 1.

Construction of the kernel for A ∈ P3 = {A : 1 < a ≤ b ≤ 2, b < d(a − 1) + 1} If
ρ ≥ b−a

a we define K(A,λ) as a two-step kernel, i.e., we set r = 2 and take (uj) and (vj) as
in (23).

If ρ < b−a
a we use another definition. We introduce the sequence (αk)k≥0 as follows:

α0 = b−1, αk+1 = αkρ+ b−1 = b−1
k+1∑

i=0

ρi , k = 1, 2, . . . . (27)
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The sequence (αk) is monotone increasing and, since b < d(a− 1) + 1, we have

lim
k→∞

αk = ∞ if ρ ≥ 1, lim
k→∞

αk = (b− (a− 1)(d− 1))−1 >
1

a
if ρ < 1. (28)

Thus we can define an integer r ≥ 2 such that

αr−1 ≥ 1

a
> αr−2 . (29)

Note that r depends only on A = (a, b) and d. Now we set

u1 = λ
1
a , ui = λαr−i , i = 2, . . . , r;

vi = λ
1
b u

− a−1
b

i+1 , i = 1, . . . , r − 1.
(30)

Recall that vr = 1
2λ

1
b and vr+1 = 0. If ρ < b−a

a define the kernel K(A,λ) by (26), with the
sequences (uj) and (vj) as in (30).

Properties of the kernel K(A,λ) Let q : R → R and p : Rd → R, B : Rd → R be
functions such that p is continuously differentiable and, for given A = (a, b) ∈ P2 ∪P3 and
λ > 0,

∣∣∣q(0) − 1

2λ1/a

∫ λ1/a

−λ1/a
q(z)dz

∣∣∣ ≤ c3λ, (31)

∣∣p(z′) − p(z) − [∇p(z)]T (z′ − z)
∣∣ ≤ L‖z′ − z‖b, ∀ z, z′ ∈ R

d, (32)

sup
x∈Rd

|B(x)| ≤ c4 (33)

where c3, c4 and L are positive constants. Let B(A, λ) denote the set of triplets (q, p,B)
satisfying (31) – (33). Define

Q(y) = q(y1) + p(y) +B(y)|y1|a−1‖y‖b, ∀ y ∈ R
d.

Lemma 3. Let A = (a, b) ∈ P3. Let the kernel K(A,λ) be defined by (26), with the sequences

(ui) and (vi) as in (30) if ρ < b−a
a , and with r = 2, (ui) and (vi) as in (23) if ρ ≥ b−a

a .
Then, for any λ > 0 small enough,

sup
(q,p,B)∈B(A,λ)

∣∣[K(A,λ) ∗Q
]
(0) −Q(0)

∣∣ ≤ cλ, (34)

∫ ∣∣K(A,λ)(y)|
∥∥y‖mdu ≤ c′λ

m
ab , ∀m ∈ R, (35)

where the constant c depends only on c3, c4, L, d and A, and c′ depends only on m, d and
A. Furthermore,

‖K(A,λ)‖1 ≤ c′′ and ‖K(A,λ)‖2 ≤ c(3)λ−
d
2b (36)

where the constants c′′ and c(3) only depend on A and d.

Note that for ρ ≥ b−a
a the kernel K(A,λ) in this lemma is just the two-step kernel. The

corresponding pavement {Πi,j} only contains three sets (cf. Figure 5).
The kernel K(A,λ) depends on A = (a, b) in such a way that the constants in the bounds

(34) – (36) diverge when A approaches the boundary d(a− 1) + 1 = b of the zone P3. So,
Lemma 3 cannot be extended to A ∈ P2.
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Construction of the kernel for A ∈ P2 We consider now another choice of the se-
quences (ui) and (vi) which provides the kernel K(A,λ) with the properties similar to those
of Lemma 3 but satisfied for all A ∈ P2 ∪ P3 and, what is more, uniformly over this set.
The price to pay for the uniformity is an extra log log(1/λ) factor in the bound for the
L1-norm of K(A,λ).

If (b− a)/a ≤ (1 + ρ)ρ we define the kernel as in Lemma 3. If (b− a)/a > (1 + ρ)ρ we
use another definition of sequences (ui) and (vi). For any 0 < λ < 1 we define

V (λ) = ln

{
(a− 1)(b− a)

ab2
ln (1/λ)

}
. (37)

If V (λ) ≤ 0 we define K(A,λ) as a two-step kernel, i.e., we set r = 2 and take (uj) and (vj)
as in (23). If V (λ) > 0 we define r = r(λ) > 1 by

r = min

{

s ∈ N : s > 1,
V (λ)

s− 1
<

1

2
ln

(√
5 + 1

2

)}

.

Next, set α = V (λ)
r−1 , ν =

(√
5+1
2

)1/2
and define the sequences (ui) and (vi) as follows

ui = λ
1
a exp

{
b

a−1 exp(α(i − 1))
}
, i = 1, ..., r,

vi = λ
1
ab exp {−ν exp(αi)} , i = 1, . . . , r − 1, vr = 1

2λ
1
b .

(38)

Note that ur = λ
1
b .

Lemma 4. Let A = (a, b) ∈ P2 ∪ P3. Let the kernel K(A,λ) be defined by (26), with the

sequences (ui), (vi) as in Lemma 3 if (1+ρ)ρ ≥ b−a
a , with the sequences (ui), (vi) as in (38)

if (1 + ρ)ρ < b−a
a and V (λ) > 0, and with r = 2, (ui) and (vi) as in (23) if (1 + ρ)ρ < b−a

a
and V (λ) ≤ 0. Then, for any λ > 0 small enough,

sup(q,p,B)∈B(A,λ)

∣∣[K(A,λ) ∗Q
]
(0) −Q(0)

∣∣ ≤ c5λ, (39)
∫ ∣∣K(A,λ)(y)

∣∣ ‖y‖m du ≤ c6λ
m
ab , ∀m ∈ R, (40)

where the constant c5 depends only on c3, c4, L and d, and c6 > 0 depends only on m and
d (both constants are explicit in the proof of the lemma). Furthermore,

‖K(A,λ)‖1 ≤ c7 ln lnλ−1 and ‖K(A,λ)‖2 ≤ c8λ
− b+d−1

2ab (41)

where the constants c7 and c8 only depend on d.

Some remarks are in order here.

1. The number of steps r in the construction of the kernel is typically small. In particular,
r = 2 if ρ ≥ b−a

a , and r = 3 if (1 + ρ)ρ ≥ b−a
a > ρ (cf. (29)). Moreover, for

1 < a ≤ b ≤ 2 we have
(a− 1)(b− 1)

ab2
≤ (b− 1)2

b3
≤ 1

8
.

Hence, V (λ) ≤ ln
(√

5+1
2

)
for all λ > 3 · 10−6 which means that, for (1 + ρ)ρ < b−a

a ,

no more than 3 steps of the construction are needed if λ > 3 · 10−6. In other words,
unless we are not “extremely far” in the asymptotics, the number of steps r does not
exceed 3 and thus the L1-norm of the resulting kernel K(A,λ) is bounded by 5.
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2. In the asymptotics when λ → 0 the number of steps r = r(λ) in the construction
and thus the L1-norm of the kernel K(A,λ) is at most O(ln lnλ−1). As discussed in
the previous remark, this behavior starts “extremely far” in the asymptotics, so it
has essentially a theoretical interest. In the theory, it results in an extra ln ln ε−1

factor in the upper bound for the adaptive estimation procedure, as compared to the
lower bound in (7). It can be shown that for A ∈ P2 a kernel with the required
approximation properties cannot have the L1-norm growing slower than ln lnλ−1, as
λ → 0. On the other hand, as we have seen in Lemma 3, for A ∈ P3 solely, there is
a choice of sequences (uj) and (vj) such that the L1-norm of the kernel is bounded
by a constant independent of λ. This constant, however, depends on A = (a, b) and
explodes as A approaches the boundary of P3.

7.3 Basic approximation results

We can now describe the approximation properties of the kernel KJ which serve as a main
tool in the proof of the properties of the estimator g∗A,ε(x).

Let x ∈ [−1, 1]d and A0 = (γ, β) ∈ (0, 2]2 be fixed and let g = f ◦ G ∈ H(A0,L). We
define

ϑx
0 ,






(1, 0, . . . , 0) if β > 1 and ∇G(x) = 0, or β ≤ 1,

∇G(x)/‖∇G(x)‖ if β > 1, ∇G(x) 6= 0.
(42)

The following statement is an immediate consequence of Lemmas 1 – 4.

Corollary 1. For all A0 = (γ, β) ∈ (0, 2]2, and all λ > 0 we have

sup
x∈[−1,1]d

sup
g∈H(A0,L)

∣∣[KJ x
0
∗ g
]
(x) − g(x)

∣∣ ≤ c10λ

where J x
0 =

(
A0, ϑ

x
0 , λ
)

and c10 is a constant depending only on A0, L and d.

In other words, the collection {KJ , J ∈ J} of the kernels contains an element KJ x
0

such that the quality of approximation of g(x) by the “ideal” smoother
[
KJ x

0
∗ g
]
(x) is of

the order O(λ). Here we use the term “ideal” because J x
0 = (A0, ϑ

x
0 , λ) depends on the

gradient ∇G(x), and thus on the unknown function g.
In what follows we also need another property of kernels KJ .

Proposition 1. For all A0 = (γ, β) ∈ (0, 2]2, x ∈ [−1, 1]d, λ0 > 0 and all J =
(
A, ϑ, λ

)
∈ J

such that λ
1
ab ≤ 2λ

1
γβ

0 ∧ 1 we have

sup
A∈(0,2]2

sup
g∈H(A0,L)

∣∣[∆JKJ ∗J x
0
∗ g
]
(x)
∣∣ ≤ c11

{(
‖KJ ‖1 + ‖KJ x

0
‖1

)
λ0 (43)

+ ‖KJ ‖1‖KJ x
0
‖1 ε

2
}
,

where J x
0 =

(
A0, ϑ

x, λ0

)
, ϑx is any element of the unit sphere S such that ‖ϑx − ϑx

0‖ ≤ ε2

and c11 is a constant depending only on A0, L and d. Furthermore, for any J ,J ′ ∈ J we
have

‖∆J ′KJ ′∗J ‖2 ≤
(
‖KJ ′‖1 + ‖KJ ‖1

)
‖KJ ′‖2. (44)
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8 Proof of Theorem 1

For any β > 0, γ > 0 and any 0 < ε < 1 define the integers

q1 = ⌈
(
ε
√

ln(1/ε)
)− 2

2γβ+β+(d−1) ⌉ .

Consider the regular grid Γq1 on [0, 1]d−1 defined by

Γq1 ,

{(
2k1 + 1

2q1
, . . . ,

2kd−1 + 1

2q1

)
: ki ∈ {0, . . . , q1 − 1}, i = 1, . . . , d− 1

}
.

Denote by x1, . . . , xm, where m = card(Γq1) = qd−1
1 , the elements of Γq1 numbered in an

arbitrary order.
Let u : R → R+ be an infinitely differentiable function such that u(0) = 1, u(t) = u(−t)

for all t ∈ R, suppu = [−1/2, 1/2] and u(t) is strictly monotone decreasing on [0, 1/2]. Set
f0(t) = u(t),∀ t ∈ R, and

ϕ0(t2, . . . , td) =
1

2

d∏

j=2

u(tj), ∀ t ∈ R.

Define the following infinitely differentiable functions of t = (t1, . . . , td) ∈ [−1, 1]d:

g0(t) = L0h
γf0

( t1
h

)
,

gk(t) = L0h
γf0

( t1
h

+
L0h

β
1

h
ϕ0

(t2 − xk,2

h1
, . . . ,

td − xk,d

h1

))
, k = 1, . . . ,m,

where h = hβ
1 , h1 = 1/q1, 0 < L0 < 1 is a constant to be chosen small enough, and xk,j

stands for the jth component of xk. We note that, in view of the above definitions, the sets
where the functions gl and gk differ from g0 are disjoint for l 6= k, k 6= 0, l 6= 0.

It is easy to see that if L0 is small enough, gk ∈ H(A,L), k = 0, . . . ,m. In what follows,
we assume that L0 is chosen in this way. To prove Theorem 1, we follow the scheme of
proving lower bounds based on reduction to the problem of distinguishing between m+ 1
hypotheses (cf., e.g., (25)). We choose the hypotheses to be determined by g0, . . . , gm

and we apply Theorem 2.5 of (25), where we consider the sup-norm distance d(gl, gk) =
‖gl − gk‖∞ = supt∈[−1,1]d |gl(t)− gk(t)|, l, k = 1, . . . ,m. Since the functions gl and gk differ
from g0 on disjoint sets, for any l 6= k, l, k = 1, . . . ,m, we have

d(gl, gk) = d(g0, gk) ≥ L0h
γ |f0(0) − f0(L0h

β
1ϕ0(0)/h)|

= L0h
γ |f0(0) − f0(L0(1 + oε(1))/2)|,

where oε(1) → 0, as ε→ 0. Since L0 > 0 and f0 is strictly decreasing on [0,∞), there exists
a constant L∗ > 0 such that, for ε small enough,

d(gl, gk) ≥ L∗hγ ≍
(
ε
√

ln(1/ε)
) 2γ

2γ+1+(d−1)/β
, l 6= k, l, k = 0, . . . ,m. (45)

Thus, assumption (i) of Theorem 2.5 in (25) is satisfied with s = L∗hγ/2. It remains to
check assumption (ii) of that theorem. The probability measures Pgk

are gaussian, and the
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Kullback-Leibler divergence between Pgk
and Pg0 has the form

K(Pgk
,Pg0) = ε−2

∫

D
(g0(t) − gk(t))2dt

= ε−2L2
0h

2γ

∫

D

∣∣∣f0

( t1
h

)
− f0

( t1
h

+ w(t2, . . . , td)
)∣∣∣

2
dt

where we write for brevity

w(t2, . . . , td) ,
L0h

β
1

h
ϕ0

( t2 − xk,2

h1
, . . . ,

td − xk,d

h1

)
.

Since, for any w ∈ R,

∣∣∣f0

(t1
h

)
− f0

(t1
h

+ w
)∣∣∣

2
= w2

∣∣∣
∫ 1

0
f ′0
(t1
h

+ uw
)
du
∣∣∣
2
≤ w2

∫ 1

0

∣∣∣f ′0
( t1
h

+ uw
)∣∣∣

2
du

we find

K(Pgk
,Pg0) ≤ ε−2L2

0h
2γ

∫
w2(t2, . . . , td)dt2 . . . dtd ×

∫ 1

0

[∫ ∣∣∣f ′0
(t1
h

+ uw(t2, . . . , td)
)∣∣∣

2
dt1

]
du

= L4
0ε

−2h2γ+1hd−1
1

∫

Rd−1

ϕ2
0(v)dv

∫

R

|f ′0(v1)|2dv1

≤ c∗L
4
0 ln(1/ε)

where c∗ > 0 is an absolute constant. Next, m = qd−1
1 , so that lnm ≍ ln(1/ε). This and

the previous inequality imply that if L0 is chosen small enough, we have

K(Pgk
,Pg0) ≤ (1/16) lnm. (46)

Using (45), (46) and applying Theorem 2.5 in (25) we get the lower bound

lim inf
ε→0

inf
g̃ε

sup
g∈H(A,L)

Eg

[((
ε
√

ln (1/ε)
)− 2γ

2γ+1+(d−1)/β ‖g̃ε − g‖∞
)p]

> 0, (47)

which is valid for all β > 0, γ > 0 and all p > 0.
We now show that for the trivial cases discussed in Section 2 we can obtain better lower

bounds. Consider first the case where 0 < β, γ ≤ 1. Then we use the same technique as

above, but we set now q1 = ⌈
(
ε
√

ln(1/ε)
)− 2

2γβ+d ⌉. We then introduce a regular grid Γ∗
q1

on [0, 1]d defined by

Γ∗
q1

,

{(
2k1 + 1

2q1
, . . . ,

2kd + 1

2q1

)
: ki ∈ {0, . . . , q1 − 1}, i = 1, . . . , d

}

and denote by x1, . . . , xm, where m = card(Γ∗
q1

) = qd
1 , the elements of Γ∗

q1
numbered in an

arbitrary order. We set

ϕ0(t) ,

d∏

j=1

u(tj), ∀ t ∈ R,
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and we choose the functions gk in a different way:

g0(t) = |t|γ ,
gk(t) =

∣∣∣t+ L0h
βϕ0

( t− xk

h

)∣∣∣
γ
, k = 1, . . . ,m,

where h = 1/q1. With this choice, clearly,

d(gl, gk) ≥ Lγ
0h

γβϕγ
0(0) ≍

(
ε
√

ln(1/ε)
) 2γβ

2γβ+d
, l 6= k, l, k = 0, . . . ,m. (48)

Next,

K(Pgk
,Pg0) = ε−2

∫

D
(g0(t) − gk(t))

2dt

≤ L2γ
0 ε

−2h2γβ+d

∫

Rd

ϕ2γ
0 (v)dv

= O
(
ln(1/ε)

)
, as ε→ 0. (49)

Using (48), (49) and Theorem 2.5 in (25), the proof is completed as in the previous case,
so that we get the lower bound

lim inf
ε→0

inf
g̃ε

sup
g∈H(A,L)

Eg

[((
ε
√

ln (1/ε)
)− 2γβ

2γβ+d ‖g̃ε − g‖∞
)p]

> 0, (50)

which is valid for all 0 < β, γ ≤ 1 and all p > 0.
Finally, the second trivial case where (47) can be improved corresponds to γ ≥ β ∨ 1.

As observed in Section 2, in this case we have the inclusion Hd(β,L4) ⊂ H(A,L) with some
constant L4 > 0, and we can use the standard lower bound for Hd(β,L4) (cf. (20; 5; 3)):

lim inf
ε→0

inf
g̃ε

sup
g∈H(A,L)

Eg

[((
ε
√

ln (1/ε)
)− 2β

2β+d‖g̃ε − g‖∞
)p]

> 0. (51)

Combining the bounds (47), (50) and (51) we obtain the result of Theorem 1.

9 Proof of Theorem 2

We need the following technical result.

Lemma 5. Let ζ = (ζ1, . . . , ζM) be a gaussian random vector defined on a probability space
(Ω,F ,P) and such that Eζm = 0, Eζ2

m = σ2
m, m = 1, . . . ,M. Let m be a random variable

with the values in (1, . . . ,M) defined on the same probability space. Then for all A > 1 and
all s > 0 we have

E (|ζm|s) ≤
(√

2A ln (M)
)s{

E
(
σs

m

)
+ c12(A, s)M1−A max

m=1,...,M
σs

m

}

where c12(A, s) > 0 is a constant depending only on A and s.

Proof is standard (see, e.g., (11)).

To prove Theorem 2 we proceed in steps.

25



1◦.Reduction to the discrete norm. Fix A = (γ, β) ∈ (0, 2]2, and suppose that g ∈
H(A,L). Let, for brevity, ḡ∗ε = g∗A,ε. In view of the construction of the global estimator (cf.
(21)) we get, for all g ∈ H(A,L),

‖ḡ∗ε − g‖∞ ≤ sup
z∈Zd

max
x∈Πε(z)∩[−1,1]d

∣∣ḡ∗ε(x) − g(x)
∣∣

≤ |ḡ∗ε − g|∞ + Cε2γ(β∧1)
(52)

where
|ḡ∗ε − g|∞ , max

z∈Zε

∣∣∣ḡ∗ε(z) − g(z)
∣∣∣ with Zε =

(
ε2Z
)d ∩ [−1, 1]d.

Here and in what follows we will use the same notation C for possibly different positive
constants depending only on A,L and d. Since ε2γ(β∧1) = o(φε(γ, β)), ε → 0, for all
(γ, β) ∈ R2

+, it is sufficient to prove Theorem 2 with the loss given by the maximum norm
| · |∞ on the finite set Zε. Thus, w.l.o.g. in what follows we will replace ‖ · ‖∞ by | · |∞.

2◦.Control of large deviations. To any z ∈ Zε we assign a vector θz ∈ Sε such that
‖θz − θz

0‖ ≤ ε2 where θz
0 is defined in (42). Next, we set J z

0 , (A, θz, λε(A)). Introduce the
random event

F =
{
∃z ∈ Zε : J z

0 /∈ T̂z

}
,

where T̂z is the set of acceptable triplets J defined in Section 6. We now show that for all
ε > 0 small enough

sup
g∈H(A,L)

Pg(F) ≤ c12ε
2p (53)

where the constant c12 depends only on d. Indeed, in view of the definition of the random
set T̂z,

F ⊆
⋃

z∈Zε

⋃

J ′∈Jgrid

{∣∣∣∆J ′ ĝJ ′∗J z
0
(z)
∣∣∣ > THε

(
J ′,J z

0

)}

and therefore

Pg(F) ≤
∑

z∈Zε

∑

J ′∈Jgrid

Pg

{∣∣∣∆J ′ ĝJ ′∗J z
0
(z)
∣∣∣ > THε

(
J ′,J z

0

)}
. (54)

Note that
Eg∆J ′ ĝJ ′∗J z

0
(z) =

[
∆J ′KJ ′∗J z

0
∗ g
]
(z).

Applying Proposition 1 with A0 = A, J z
0 = (A, θz, λε(A)) and λ = λ0 = λε(A) we obtain,

sup
g∈H(A,L)

∣∣Eg∆J ′ ĝJ ′∗J z
0
(z)
∣∣ ≤ c11

{
λε(A)

(
‖KJ ′‖1 + ‖KJ z

0
‖1

)

+ ‖KJ ′‖1‖KJ z
0
‖1 ε

2
} (55)

Now, due to the construction of the kernel K(A,λ) and the fact that ‖KJ ‖1 = ‖K(A,λε(A))‖1

for all J ∈ Jgrid, there exists a constant c13 depending only on A and d such that K∗
A ,

maxJ∈Jgrid
‖KJ ‖1 satisfies

K∗
A ≤ c13 if A ∈ (0, 2]2 \ P2,

K∗
A ≤ c13 ln ln(1/ε) if A ∈ P2.
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Since also ‖KJ ‖1 ≥ 1 and λε(A)/(ε ln ln(1/ε)) → ∞, as ε → 0, we have, for ε > 0 small
enough,

sup
g∈H(A,L)

∣∣Eg∆J ′ ĝJ ′∗J z
0
(z)
∣∣ ≤ 2c11λε(A)

(
‖KJ ′‖1 + ‖KJ z

0
‖1

)

= 2ε
√

ln(1/ε)‖K(A,λε(A))‖2

(
‖KJ ′‖1 + ‖KJ z

0
‖1

) (56)

where we used that λε(A) is a solution of (19). Note also that in Pg-probability

∆J ′ ĝJ ′∗J z
0
(z) − Eg∆J ′ ĝJ ′∗J z

0
(z) ∼ N

(
0, ε2‖∆J ′KJ ′∗J z

0
‖2
2

)
. (57)

Using (44), (54) – (57) and the definition of the threshold THε(·, ·) we obtain that, for
ε > 0 small enough,

Pg(F) ≤ card(Zε)card(Sε)P
{
|ξ| >

√
(4p + 8d) ln(1/ε)

}
≤ card(Zε)card(Sε)ε

2p+4d

where ξ ∼ N (0, 1). This proves (53) since card(Zε) ≤ (2ε−2 +1)d and card(Sε) ≤ (
√
dε−2)d.

3◦.Two intermediate bounds on the risks. Using that |ḡ∗ε | ≤ ln ln(1/ε) and g ∈ H(A,L)
is uniformly bounded we deduce from (53) that, for all A = (γ, β) ∈ (0, 2]2,

lim sup
ε→0

sup
g∈H(A,L)

Eg

(
φ−p

ε (γ, β)|ḡ∗ε − g|p∞I{F}
)

= 0. (58)

We now control the bias of ĝJ z
0

via Corollary 1, its stochastic error via the bounds on
‖K(A,λε(A))‖2 in Lemmas 2 – 4 and apply (19) to get that, for all A = (γ, β) ∈ (0, 2]2,

lim sup
ε→0

sup
g∈H(A,L)

Eg

(
φ−p

ε (γ, β)|ĝJ z
0
− g|p∞

)
<∞. (59)

4◦.Final argument. Note that on the event Fc the set T̂z of acceptable triplets J is
non-empty for every z ∈ Zε, so that Ĵz exists. Thus, on Fc we can write, for all z ∈ Zε,

∣∣∣ĝĴz
(z) − g(z)

∣∣∣ ≤
∣∣∣∆Ĵz

ĝĴz∗J z
0
(z)
∣∣∣+
∣∣∣∆J z

0
ĝJ z

0 ∗Ĵz
(z)
∣∣∣+
∣∣∣ĝJ z

0
(z) − g(z)

∣∣∣. (60)

Further, on Fc the triplet J z
0 is acceptable for all z ∈ Zε. This and the acceptability (by

definition) of Ĵz imply that on Fc, for all z ∈ Zε,
∣∣∣∆J z

0
ĝJ z

0 ∗Ĵz
(z)
∣∣∣ ≤ THε

(
J z

0 , Ĵz

)
,

∣∣∣∆Ĵz
ĝĴz∗J z

0
(z)
∣∣∣ ≤ THε

(
Ĵz,J z

0

)
.

(61)

This, the definition of the threshold THε and the fact that ‖KJ ‖2 = ‖K(A,λε(A))‖2 for all
J ∈ Jgrid yield that on Fc, for all z ∈ Zε,

∣∣∣ĝĴz
(z) − g(z)

∣∣∣ ≤ 4C(p, d)K∗
A ‖K(A,λε(A))‖2 ε

√
ln(1/ε) +

∣∣∣ĝJ z
0
(z) − g(z)

∣∣∣

= 4C(p, d)c−1
11 K

∗
A λε(A) +

∣∣∣ĝJ z
0
(z) − g(z)

∣∣∣.
(62)

We combine (59) and (62) to get, with some constants c14 − c16 independent of ε,

sup
g∈H(A,L)

Eg

(
|ḡ∗ε − g|p∞I{Fc}

)
≤ c14(K

∗
A λε(A))p + c15φ

p
ε(γ, β)

≤ c16(K
∗
Aφε(γ, β))p.

(63)

Theorem 2 follows now from (58) and (63).
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A Proofs of auxiliary results

A.1 Proof of Proposition 1

1◦. Preliminary remarks.
For any J ∈ J and any x ∈ [−1, 1]d we may write

[
∆JKJ∗J x

0
∗ g
]
(x) =

[
KJ∗J x

0
∗ g
]
(x) −

[
KJ ∗ g

]
(x) (64)

=

∫ (∫
KJ (y − x)KJ x

0
(t− y)dy

)
g(t)dt −

[
KJ ∗ g

]
(x)

=

∫
KJ (y − x)

(∫
KJ x

0
(t− y)g(t)dt

)
dy −

[
KJ ∗ g

]
(x)

=

∫
KJ (y − x)g(y)dy −

[
KJ ∗ g

]
(x)

+

∫
KJ (y − x)

(∫
KJ x

0
(t− y)

[
g(t) − g(y)

]
dt

)
dy

=

∫
KJ (y − x)

(∫
KJ x

0
(t− y)

[
g(t) − g(y)

]
dt

)
dy

=

∫
KJ (v)

[∫
KJ x

0
(z)
(
g(z + v + x) − g(v + x)

)
dz

]
dv

=

∫
K(A,λ)(M

T
ϑ v)

∫
K(A0,λ0)(M

T
ϑxz)(g(z + v + x) − g(v + x))dzdv.

Define Gx(·) = G(· + x) and fx(·) = f(· + G(x)). Then g(z + v + x) = f(Gx(z + v)) and
g(v + x) = f(Gx(v)). Note that, for all x ∈ [−1, 1]d,

Gx ∈ Hd(β,L2), fx ∈ H1(γ, L1). (65)

If 1 < γ ≤ 2, the second property in (65) implies

f ′x ∈ H1(γ − 1, 2L1). (66)

In the case where 1 < β ≤ 2, for all u ∈ Rd, x ∈ [−1, 1]d we define G̃x(u) = Gx(u)−Gx(0)−
[∇Gx(0)]Tu. In view of (65), for all x ∈ [−1, 1]d we have

‖∇G̃x(u)‖ ≤ 2L2, ∀u ∈ R
d, (67)

∣∣∣G̃x(t) − G̃x(u) − [∇G̃x(u)]T (t− u)
∣∣∣ ≤ L2‖t− u‖β, ∀ t, u ∈ R

d, (68)

⇒ |G̃x(u)| ≤ L2‖u‖β , u ∈ R
d.

It follows from the definition of K(A,λ) and Lemmas 1 – 4 that
∫

‖v‖γβ
∣∣K(A,λ)(v)

∣∣dv ≤ c′6λ
γβ
ab , ∀ A ∈ (0, 2]2, λ > 0, (69)

where c′6 > 0 is a constant depending only on L and d. Furthermore, for any A = (a, b) ∈
(0, 2]2 and any λ ≤ 1 the support of K(A,λ) is contained in a ball {u ∈ Rd : ‖u‖ ≤ cKλ

1
ab }

where the constant cK > 0 depends only on d. Therefore,

K(A,λ)

(
MT

ϑ u
)

= 0, ∀ u, ϑ ∈ R
d : ‖u‖ > cKλ

1
ab , ‖ϑ‖ = 1. (70)
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2◦. Proof for the zone of combined local model: 1 < γ ≤ β ≤ 2.
Using (65) and the Taylor expansion for Gx we obtain, for all x ∈ [−1, 1]d, z, v ∈ Rd,

g(z + v + x) = f
(
Gx(0) +

[
∇Gx(0)

]T
(z + v) + G̃x(z + v)

)
(71)

= fx

([
∇Gx(0)

]T
(z + v) + G̃x(z + v)

)
.

Note that, by definition, ∇Gx(0) = ∇G(x) = ϑx
0‖∇G(x)‖. Set ∇G∗ = ϑx‖∇G(x)‖ and

define
g∗(z + v + x) = fx

([
∇G∗

]T
(z + v) + G̃x(z + v)

)
.

We now approximate g(z + v + x) by g∗(z + v + x) in the last line of (64). In view of (70),
it suffices to consider there only the values z, v satisfying ‖z‖, ‖v‖ ≤ cK . For such z, v and
all x ∈ [−1, 1]d, the condition ‖ϑx

0 − ϑx‖ ≤ ε2 and (65) imply

|g(z + v + x) − g∗(z + v + x)| ≤ 2cKL1‖∇G(x)‖ε2 ≤ 2cKL1L2 ε
2. (72)

Using (65) – (68), the Taylor expansion for fx and (66), we get that for all x ∈ [−1, 1]d,
z, v ∈ Rd the following representation holds:

g∗(z + v + x) = fx

([
∇G∗

]T
(z + v)

)

+ f ′x
([

∇G∗
]T

(z + v)
)
G̃x(z + v) +Bx,1(z, v)‖z + v‖γβ

= fx

([
∇G∗

]T
(z + v)

)

+
[
f ′x
([

∇G∗
]T

(z + v)
)
− f ′x

([
∇G∗

]T
v
)]

×
(
G̃x(v) +

[
∇G̃x(v)

]T
z
)

+ f ′x
([
∇G∗

]T
v
) (
G̃x(z + v) − G̃x(v)

)

+ f ′x
([
∇G∗

]T
v
)
G̃x(v)

+Bx,2(z, v)
∣∣∣
[
∇G∗

]T
z
∣∣∣
γ−1

‖z‖β +Bx,1(z, v)‖z + v‖γβ ,

(73)

where, for all x ∈ [−1, 1]d, z, v ∈ Rd, Bx,1(·, ·) and Bx,2(·, ·) are functions satisfying
∣∣Bx,1(z, v)

∣∣ ≤ L1L
γ
2 ,

∣∣Bx,2(z, v)
∣∣ ≤ 2L1L2. (74)

Putting z = 0 in (73) we obtain

g∗(v + x) = fx

([
∇G∗

]T
v
)

+ f ′x
([

∇G∗
]T
v
)
G̃x(v) +Bx,1(0, v)‖v‖γβ . (75)

From (73) and (75) we get, for all x ∈ [−1, 1]d, z, v ∈ Rd,

g∗(z + v + x) − g∗(v + x)

= fx

([
∇G∗

]T
(z + v)

)
− fx

([
∇G∗

]T
v
)

+
[
f ′x
([

∇G∗
]T

(z + v)
)
− f ′x

([
∇G∗

]T
v
)](

G̃x(v) +
[
∇G̃x(v)

]T
z
)

+ f ′x
([

∇G∗
]T
v
)(
G̃x(z + v) − G̃x(v)

)

+Bx,2(z, v)
∣∣∣
[
∇G∗

]T
z
∣∣∣
γ−1

‖z‖β +Bx,1(z, v)‖z + v‖γβ

−Bx,1(0, v)‖v‖γβ .

(76)

29



Put u = MT
ϑxv, s = MT

ϑxz. We get from (76) that

g∗(Mϑxs+Mϑxu+ x) − g∗(Mϑxu+ x)

=
(
f̃x(s1 + u1) − f̃x(u1)

)

+Au,x(s1)
(
Gx(u) +

[
∇Gx(u)

]T
s
)

+ f ′x
(
‖∇G(x)‖u1

)(
Gx(s + u) −Gx(u)

)
+ B̃x,2(s, u)|s1|γ−1‖s‖β

+ B̃x,1(s, u)‖s + u‖γβ − B̃x,1(0, u)‖u‖γβ ,

(77)

where s1 and u1 are the first components of s ∈ Rd and u ∈ Rd respectively,

f̃x(u1) = fx(‖∇G(x)‖u1), Gx(u) = G̃x(Mϑxu),

B̃x,1(s, u) = Bx,1(Mϑxs,Mϑxu)

B̃x,2(s, u) = ‖∇G(x)‖γ−1Bx,2(Mϑxs,Mϑxu),

and
Au,x(s1) = f ′x

(
‖∇G(x)‖(s1 + u1)

)
− f ′x

(
‖∇G(x)‖u1

)
.

It is easy to see that inequalities (67) and (68) remain valid with Gx in place of G̃x.
Now for all x ∈ [−1, 1]d, s, u ∈ Rd we introduce

qu,x(s1) =
(
f̃x(s1 + u1) − f̃x(u1)

)
+Au,x(s1)

(
Gx(u) +

[
∇Gx(u)

]T
ϑxs1

)

+f ′x
(
‖∇G(x)‖u1

)[
∇Gx(u)

]T
ϑxs1,

pu,x(s) = f ′x
(
‖∇G(x)‖u1

)(
Gx(s+ u) −Gx(u) −

[
∇Gx(u)

]T
s
)
,

Bu,x(s) = B̃x,2(s, u), Qu,x(s) = qu,x(s1) + pu,x(s) + B̃x,2(s, u)|s1|γ−1‖s‖β ,

Pu,x(s) = f ′x
(
‖∇G(x)‖(s1 + u1)

)[
∇Gx(u)

]T
s⊥

where s⊥ = s− s1ϑ
x. With this notation (77) can be written as

g∗(Mϑxs+Mϑxu+ x) − g∗(Mϑxu+ x) = Qu,x(s) + Pu,x(s) (78)

+B̃x,1(s, u)‖s + u‖γβ − B̃x,1(0, u)‖u‖γβ .

We now prove that, for all x ∈ [−1, 1]d and all u ∈ Rd such that ‖u‖ ≤ cKλ
1
ab (cf. (70)),

where λ
1
ab ≤ 2λ

1
γβ

0 , the triplet (qu,x, pu,x, B
u,x) belongs to the set B(A0, λ0) (cf. definition

before Lemma 3), and thus Lemmas 3 or 4 can be applied. We need to check (31) – (33).

Checking (31). In view of (65) we have

|f̃x(s1 + u1) − f̃x(u1) − f̃ ′x(u1)s1| ≤ L1L2|s1|γ .

Therefore,

∣∣∣∣∣
1

2λ
1/γ
0

∫ λ
1/γ
0

−λ
1/γ
0

(
f̃x(s1 + u1) − f̃x(u1)

)
ds1

∣∣∣∣∣ ≤
L1L2

2λ
1/γ
0

∫ λ
1/γ
0

−λ
1/γ
0

|s1|γ ds1 ≤ L1L2

2
λ0. (79)

Next, remark that (66) implies |Au,x(s1)| ≤ 2L1L
γ−1
2 |s1|γ−1. Furthermore, (68) with Gx in

place of G̃x yields |Gx(u)| ≤ L2‖u‖β . Now, qu,x(0) = 0 and using these remarks, (79) and
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(67) we get, for ‖u‖ ≤ cKλ
1
ab , λ

1
ab ≤ 2λ

1
γβ

0 ,

∣∣∣∣∣
1

2λ
1/γ
0

∫ λ
1/γ
0

−λ
1/γ
0

qu,x(s1)ds1

∣∣∣∣∣ (80)

≤ L1L2

2
λ0 +

1

2λ
1/γ
0

∫ λ
1/γ
0

−λ
1/γ
0

|Au,x(s1)|
(
|Gx(u)| + ‖∇Gx(u)‖|s1|

)
ds1

≤ L1L2

2
λ0 + 2L1L

γ
2

(
1

γ
λ

(γ−1)/γ
0 ‖u‖β +

2

γ + 1
λ0

)

≤
[
L1L2

2
+ 2L1L

γ
2

(
(2cK)β

γ
+

2

γ + 1

)]
λ0 ≤ c3λ0

where the constant c3 depends only on L and d. It can be taken as a maximum of the last
expression in square brackets over (γ, β) ∈ [1, 2]2.

Checking (32) and (33). It suffices to note that, for all x ∈ [−1, 1]d, the first property
in (68) with Gx in place of G̃x and the second property in (65) yield

∣∣pu,x(s
′) − pu,x(s) − [∇pu,x(s)]

T (s′ − s)
∣∣ ≤

∣∣f ′x
(
‖∇G(x)‖u1

)∣∣L2‖s′ − s‖β

≤ L1L2‖s′ − s‖β, ∀ s, s′ ∈ R
d.

This proves (32) with b = β and L = L1L2. Finally, (33) with B = Bu,x, c4 = 2L1L
γ
2

follows from (74).
We are now in a position to apply Lemmas 3 and 4. We demonstrate this, for example,

for Lemma 4. Take there q = qu,x, p = pu,x, B = Bu,x for any ‖u‖ ≤ cKλ
1
ab and

x ∈ [−1, 1]d. Since Qu,x(0) = 0, the result (39) of Lemma 4 yields

∣∣∣∣
∫

K(A0,λ0)(s)Qu,x(s)ds

∣∣∣∣ ≤ c5λ0 (81)

where c5 depends only on L and d. Furthermore, by construction the kernel K(A0,λ0) is
symmetric, i.e., K(A0,λ0)(s) = K(A0,λ0)(−s) and hence

∫
K(A0,λ0)(s)Pu,x(s)ds = 0. (82)

Next, using (74) we find
∣∣∣B̃x,1(s, u)‖s + u‖γβ − B̃x,1(0, u)‖u‖γβ

∣∣∣ ≤ 2γβL1L
γ
2

(
‖s‖γβ + ‖u‖γβ

)
.

Combining this inequality and (81) – (82) with (78) we get, for all x ∈ [−1, 1]d, u ∈ Rd,
∣∣∣∣

∫
K(A0,λ0)(s)(g∗(Mϑxs+Mϑxu+ x) − g∗(Mϑxu+ x))ds

∣∣∣∣

≤ c5λ0 + 2γβL1L
γ
2

[∫ ∣∣∣K(A0,λ0)(s)
∣∣∣‖s‖γβds +

∥∥K(A0,λ0)

∥∥
1
‖u‖γβ

]
.

We finally get (43) from this inequality invoking (69), (64), (72) and the condition λ
1
ab ≤

2λ
1

γβ

0 and recalling that
∥∥K(A,λ)

∥∥
1

=
∥∥KJ

∥∥
1

for all A ∈ (0, 2]2, λ > 0, and
∥∥K(A0,λ0)

∥∥
1

=∥∥KJ x
0

∥∥
1
.
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3◦. Proof of (43) for the local single index zone: γ ≤ 1, 1 < β ≤ 2.
Using (68) and the second property in (65), for all z, v ∈ Rd, x ∈ [−1, 1]d we may write

g∗(z + v + x) = fx

([
∇G∗

]T
(z + v)

)
+Bx,1(z, v)‖z + v‖γβ ,

where Bx,1 satisfies (74). This can be viewed as a simplified version of (73). Following
almost the same argument as in 2◦ (the main difference is that now we drop all the terms
containing f ′x and Bx,2) and applying Lemma 2 we obtain (43).

4◦. Proof of (43) for the zone of slow rate: (γ, β) ∈ (0, 1]2.
Using the Hölder condition on f and Gx we obtain, for all z, v ∈ Rd, x ∈ [−1, 1]d,

g(z + v + x) ≡ f
(
Gx(z + v)

)
= f

(
Gx(0)

)
+Bx,1(z, v)‖z + v‖γβ

whereBx,1 satisfies (74). Now, (43) easily follows from this relation, (64), (69), the definition

of K(A0,λ0) for the zone of slow rate and the condition λ
1
ab ≤ 2λ

1
γβ

0 .

5◦. Proof of (43) for the zone of inactive structure: 1 < β ≤ γ ≤ 2.
Since f ∈ H1(γ, L1) and ‖∇Gx(·)‖ ≤ L2, for all z, v ∈ Rd, x ∈ [−1, 1]d we may write

f
(
Gx(z + v)

)
= f

(
Gx(v)

)
+ f ′

(
Gx(v)

)(
Gx(z + v) −Gx(v)

)
+Bx,1(z, v)‖z‖γ

= f
(
Gx(v)

)
+ f ′

(
Gx(v)

)(
Gx(z + v) −Gx(v) −

[
∇Gx(v)

]T
z
)

+f ′
(
Gx(v)

)
[∇Gx(v)

]T
z +Bx,1(z, v)‖z‖γ

= f
(
Gx(v)

)
+ f ′

(
Gx(v)

)
[∇Gx(v)

]T
z +Bx,2(z, v)‖z‖β +Bx,1(z, v)‖z‖γ

where Bx,1 satisfies (74) and |Bx,2(·, ·)| ≤ L1L2. Since the kernel K(A0,λ0) is symmetric,

∫
K(A0,λ0)(M

T
ϑxz)f ′

(
Gx(v)

)
[∇Gx(v)

]T
z dz = 0.

Now, (43) easily follows from these relations, (64), the definition of K(A0,λ0) for the zone of
inactive structure and the condition λ ≤ 1.

6◦. Proof of (44). For a function K ∈ L2(R
d), let us denote by K̂ its Fourier transform.

Using Parceval’s identity we obtain, for any J ,J ′ ∈ J,

‖∆J ′KJ ′∗J ‖2 =
1√
2π

‖∆̂J ′KJ ′∗J ‖2 =
1√
2π

‖
(
K̂J − 1

)
K̂J ′‖2

≤ 1√
2π

(
‖K̂J ‖∞ + 1

)
‖K̂J ′‖2 ≤

(
‖KJ ‖1 + 1

)
‖KJ ′‖2.

Since
∫
KJ ′ = 1, this proves (44).

A.2 Proof of Lemma 3

First, note that some cases are trivial because the number r of steps of the kernel construc-

tion is bounded by 3. In fact, if (ρ+ 1)ρ < (b− a)/a and V (λ) ≤ ln
(√

5+1
2

)
we have r ≤ 3

by definition. If (ρ+ 1)ρ ≥ (b− a)/a we use the kernel as in Lemma 3. But for this kernel
the condition (ρ+ 1)ρ ≥ (b− a)/a implies that, again, r ≤ 3.

So, we will treat only the remaining case where (ρ + 1)ρ < (b − a)/a and V (λ) >

ln
(√

5+1
2

)
. The last inequality implies that r > 3.
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Note that, by definition, α < 1
2 ln

(√
5+1
2

)
. Further, for r ≥ 3 we have also the lower

bound: α ≥ 1
4 ln

(√
5+1
2

)
. Thus for r ≥ 3,

0.786 ≤
(√

5 + 1

2

)−1/2

< e−α ≤
(√

5 + 1

2

)−1/4

≤ 0.887. (83)

1◦. Proof of (39). From the definition of K(A,λ) we find

[K(A,λ) ∗ q](0) = 2−d
r∑

i=1

∫
Λi(|y|)q(y1)dy = 2−d

∫
Λ1(|y|)q(y1)dy

=
1

u1

∫
q(y1) + q(−y1)

2
I[0,u1](y1)dy1

where u1 = λ1/a. This and (31) imply

∣∣∣
[
K(A,λ) ∗ q

]
(0) − q(0)

∣∣∣ =
∣∣∣
(
2λ1/a

)−1
∫ λ1/a

−λ1/a

q(y1)dy1 − q(0)
∣∣∣ ≤ c3λ. (84)

We now obtain a similar bound for
∣∣[K(A,λ) ∗ p

]
(0) − p(0)

∣∣. Note that, in view of (32),

for all z = (z1, . . . , zd) ∈ Rd we have

p(z) = p̃(z) + z1
∂p

∂z1
(0, z2, . . . , zd) +B1(z)z

b
1, (85)

where p̃(z) = p(0, z2, . . . , zd) and supz∈Rd |B1(z)| ≤ L. For the same reason, for all z(d−1) ,

(0, z2, . . . , zd) we have

p̃(z) = p̃(0) + [∇p̃(0)]T z(d−1) +B2(z(d−1))‖z(d−1)‖b, (86)

where as previously |B2(·)| ≤ L. Combining (85) and (86) and taking into account that the
function K(A,λ) is symmetric,

∫
K(A,λ) = 1 and p̃(0) = p(0) we get

∣∣[K(A,λ) ∗ p
]
(0) − p(0)

∣∣ =
∣∣∣
∫

K(A,λ)(z)
(
B1(z)z

b
1 +B2(z(d−1))‖z(d−1)‖b

)
dz
∣∣∣ (87)

Now
∣∣∣∣
∫

K(A,λ)(z)B2(z(d−1))‖z(d−1)‖bdz

∣∣∣∣ (88)

=

∣∣∣∣
(
2(v1 − v2)

)1−d
∫
B2(z(d−1))‖z(d−1)‖b

I[v2,v1]d−1(|z(d−1)|)dz(d−1)

+

r−1∑

i=1

[(
2(vi − vi+1)

)1−d
∫
B2(z(d−1))‖z(d−1)‖b

I[vi+1,vi]d−1(|z(d−1)|)dz(d−1)

−
(
2(vi−1 − vi)

)1−d
∫
B2(z(d−1))‖z(d−1)‖b

I[vi,vi−1]d−1(|z(d−1)|)dz(d−1)

]∣∣∣

≤
(
2vr

)1−d
∫ ∣∣B2(z(d−1))

∣∣ ‖z(d−1)‖b
I[0,vr ]d−1(|z(d−1)|)dz(d−1)

=
(
λ1/b

)1−d
∫ ∣∣B2(z(d−1))

∣∣ ‖z(d−1)‖b
I[0,λ1/b]d−1(|z(d−1)|)dz(d−1)

≤ 2d−1d
b
2Lλ ≤ 2d−1dLλ
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where |z(d−1)| = (|z2|, . . . , |zd|). Further, note that v ≥ u ≥ 1 implies e
v
u ≤ ev/u (in fact,

v(1 − 1/u) ≥ u− 1 ≥ lnu). Using this remark and the fact that b
a−1 > 1 we find

ui = λ
1
a exp

(
b

a− 1
exp (α(i− 1))

)
= λ

1
a exp

(
b

a− 1
exp (αi) e−α

)

≤ ui+1e
−α, i = 1, . . . , r − 1, (89)

and therefore ui/ur ≤ eα(i−r). This and the equality ur = λ
1
b allow us to get

∣∣∣∣
∫

K(A,λ)(z)B1(z)z
b
1dz

∣∣∣∣ ≤ L

∫ ∣∣K(A,λ)(z)
∣∣|z1|bdz (90)

=
L

u1

∫
zb
1 I[0,u1](z1)dz1 +

r∑

i=2

2L

ui − ui−1

∫
zb
1 I[ui−1,ui](z1)dz1

≤ 2L

r∑

i=1

ub
i ≤ 2Lλ

r∑

i=1

(ui

ur

)b
≤ 2λL

∞∑

l=0

e−αl = 2λL(1 − e−α)−1.

From (87), (88) and (90) we get
∣∣[K(A,λ) ∗ p

]
(0) − p(0)

∣∣ ≤ λL
[
2d−1d+ 2(1 − e−α)−1

]
. (91)

We now estimate the value
∣∣∫ K(A,λ)(y)B(y)ya−1

1 ‖y‖bdy
∣∣. In view of (38),

ua−1
1 vb

1 ≤ λ exp{b− νbeα} ≤ λ exp{(1 − ν)b},
ua−1

i vb
i ≤ ua−1

i vb
i−1 = λ exp

{
(1 − ν)b exp(α(i− 1))

}
, i = 2, . . . , r. (92)

Using (92), we get similarly to (90):

∣∣∣
∫

K(A,λ)(y)B(y)ya−1
1 ‖y‖bdy

∣∣∣ ≤ c4

∫ ∣∣∣K(A,λ)(y)
∣∣∣|y1|a−1

d∑

j=1

|yj|bdy (93)

= c4




∫ ∣∣∣K(A,λ)(y)

∣∣∣|y1|a+b−1dy +

d∑

j=2

∫ ∣∣∣K(A,λ)(y)
∣∣∣|y1|a−1|yj|bdy





≤ 2c4

[
r∑

i=1

ub+a−1
i + d

r∑

i=1

ua−1
i vb

i

]

≤ 2c4

[
λ

b+a−1
b

∞∑

l=0

e−αl(b+a−1) + λd
∞∑

l=0

exp
{

(1 − ν)b exp(αl)
}]

≤ 2c4λ

[
(1 − e−α)−1 + d

(
1 − e(1−ν)α

)−1
]

where the last inequality holds for 0 < λ ≤ 1 and we used that b exp(αl) ≥ αl, ν > 1.
Summing up the results of (84), (91), (93) and taking into account (83) we obtain (39).

2◦. Proof of (40). In the same way as above we get, for 0 < λ ≤ 1,

∫ ∣∣∣K(A,λ)(y)
∣∣∣‖y‖mdu ≤ d

m
2

∫ ∣∣∣K(A,λ)(y)
∣∣∣

d∑

j=1

|yj |mdy

≤ 2d
m
2

[
r∑

i=1

um
i + d

r∑

i=1

vm
i

]

≤ C(d)λ
m
ab

[
(1 − e−mα)−1 + (1 − emνα)−1

]
.
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Here and in what follows use the same notation C(d) for possibly different positive constants
depending only on d.

3◦. Proof of (41). Since ν < 2 < b
b−a we have, for 0 < λ ≤ 1,

vr−1 , λ
1
ab exp

{
− ν exp(α(r − 1))

}
= λ

1
ab

+ν (a−1)(b−a)

ab2 ≥ λ
1
b .

By the definition of vr this implies that vr−1 − vr ≥ λ
1
b /2. Further, as ur = λ

1
b , in view of

(89), we have

ur − ur−1 ≥ (1 − e−α)λ
1
b .

We deduce that
µr,r−1 ≥ µr,r ≥ 21−dλd/b(1 − e−α). (94)

Note that by (89),

ui+1 − ui ≥ (1 − e−α)ui+1 for i = 1, . . . , r − 1.

Also, as ν > 1, it is straightforward to check that

vi − vi+1 ≥ (1 − e−α)vi for i = 1, . . . , r − 2.

Thus, we get

µ1,1 = u1(v1 − v2)
d−1 ≥ (1 − e−α)d−1 exp(−(d− 1)νeα)λ

1
a
+ d−1

b . (95)

Recall that we are considering the case where ρ(1 + ρ) < (b− a)/a, 1 < a ≤ b ≤ 2, so that

ρ(1 + ρ) < 1, and thus ρ <
√

5−1
2 . This and the choice of parameters α, ν combined with

(83) implies

e−α − ρν ≥
(√

5 + 1

2

)−1/2

− ρν ≥
(√

5 + 1

2

)−1/2

−
√

5 − 1

2
ν , δ ≥ 0.0891.

Now,
b

a− 1
e−α − (d− 1)ν ≥ δb

a− 1
≥ 2δ.

Hence, for i = 2, . . . , r − 1 we have

µi,i−1 ≥ µi,i ≥ C(d)λ
1
a
+ d−1

ab exp

{
b

a− 1
exp(α(i − 1)) − (d− 1)ν exp(αi)

}

≥ C(d)λ
1
a
+ d−1

ab exp
{
2δ exp(αi)

}
. (96)

Note that

‖K(A,λ)‖2
2 = µ−1

1,1 +
r∑

i=2

(
µ−1

i,i−1 + µ−1
i,i

)
≤ µ−1

1,1 + 2
r∑

i=2

µ−1
i,i . (97)

We deduce from (94) – (97) that

‖K(A,λ)‖2
2 ≤ C(d)

(
λ

1
a
+ d−1

ab + λ−
d
b

)
.

This proves the second inequality in (41). The first inequality becomes obvious if we note
that V (λ) ≤ ln ln(1/λ) and so ‖K(A,λ)‖1 = 2r−1 ≤ c7 ln ln(1/λ), for λ small enough, where
c7 is an absolute constant.
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A.3 Proof of Lemma 3

Following the same lines as in the proof of (39) in Lemma 4 we obtain the bound (34) of
Lemma 3 with

c5 = C(d)(c3 + Lr + c4r).

1◦. Proof of (35). By definition, ur = λ
1
b and for 0 < λ ≤ 1 we have u2 ≥ λ

1
a , so that

v1 = λ
1
b u

− a−1
b

2 ≤ λ
1
ab . Using these remarks and acting as in the proof of (40) in Lemma 4

we obtain, for 0 < λ ≤ 1,

∫ ∣∣∣K(A,λ)(y)
∣∣∣‖y‖mdu ≤ 2d

m
2

[
r∑

i=1

um
i + d

r∑

i=1

vm
i

]

≤ 2d
m
2 r(um

r + dvm
1 ) ≤ C(d)rλ

m
ab .

2◦. Proof of (36). Observe that αj+1 − αj > 0 for j = 1, ..., r − 1, so that for λ→ 0 we
have uj/uj−1 → ∞ and vj−1/vj → ∞. In particular,

µj,j−1 = (uj − uj−1)(vj−1 − vj)
d−1 ≥ µj,j = (uj − uj−1)(vj − vj+1)

d−1 ≥ 1

2
ujv

d−1
j

for all λ small enough. Next note that, by definition,

αr−2 ≥ (αr−1 − b−1)ρ−1 ≥ b− a

abρ
.

Then u2 ≤ λ
b−a
abρ and for λ small enough we get by the definition of ρ:

µ1,1 ≥ 1

2
u1v

d−1
1 =

1

2
λ

d−1
b u1 u

−ρ
2 =

1

2
λ

d−1
b λ

1
a
− b−a

ab =
1

2
λ

d
b .

Further, as ur = λ
1
b and vr = 1

2λ
1
b , vr+1 = 0,

µr,r ≥ 2−dλ
d
b

for λ small enough. Next, for 1 < j < r,

µj,j ≥
1

2
ujv

d−1
j =

1

2
λ(d−1)/buj u

−ρ
j+1.

By the definition of the sequence (αk),

(d− 1)/b + αk − ρ/αk−1 = d/b, k = 1, . . . , r − 1.

Thus

µj,j ≥
1

2
λ

d−1
b

+αr−j−ραr−(j+1) =
1

2
λd/b, j = 2, . . . , r − 1.

Substitution of the above bounds into (97) yields

‖K(A,λ)‖2
2 ≤ C(d)λ−d/br.
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