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Preface to the English Edition

This is a revised and extended version of the French book. The main changes
are in Chapter 1 where the former Section 1.3 is removed and the rest of
the material is substantially revised. Sections 1.2.4, 1.3, 1.9, and 2.7.3 are
new. Each chapter now has the bibliographic notes and contains the exercises
section. I would like to thank Cristina Butucea, Alexander Goldenshluger,
Stephan Huckenmann, Yuri Ingster, Iain Johnstone, Vladimir Koltchinskii,
Alexander Korostelev, Oleg Lepski, Karim Lounici, Axel Munk, Boaz Nadler,
Alexander Nazin, Philippe Rigollet, Angelika Rohde, and Jon Wellner for their
valuable remarks that helped to improve the text. I am grateful to Centre de
Recherche en Economie et Statistique (CREST) and to Isaac Newton Insti-
tute for Mathematical Sciences which provided an excellent environment for
finishing the work on the book. My thanks also go to Vladimir Zaiats for his
highly competent translation of the French original into English and to John
Kimmel for being a very supportive and patient editor.

Alexandre Tsybakov
Paris, June 2008



Preface to the French Edition

The tradition of considering the problem of statistical estimation as that of
estimation of a finite number of parameters goes back to Fisher. However,
parametric models provide only an approximation, often imprecise, of the un-
derlying statistical structure. Statistical models that explain the data in a
more consistent way are often more complex: Unknown elements in these
models are, in general, some functions having certain properties of smooth-
ness. The problem of nonparametric estimation consists in estimation, from
the observations, of an unknown function belonging to a sufficiently large class
of functions.

The theory of nonparametric estimation has been considerably developed
during the last two decades focusing on the following fundamental topics:

(1) methods of construction of the estimators
(2) statistical properties of the estimators (convergence, rates of convergence)
(3) study of optimality of the estimators
(4) adaptive estimation.

Basic topics (1) and (2) will be discussed in Chapter 1, though we mainly
focus on topics (3) and (4), which are placed at the core of this book. We will
first construct estimators having optimal rates of convergence in a minimax
sense for different classes of functions and different distances defining the risk.
Next, we will study optimal estimators in the exact minimax sense presenting,
in particular, a proof of Pinsker’s theorem. Finally, we will analyze the problem
of adaptive estimation in the Gaussian sequence model. A link between Stein’s
phenomenon and adaptivity will be discussed.

This book is an introduction to the theory of nonparametric estimation. It
does not aim at giving an encyclopedic covering of the existing theory or an
initiation in applications. It rather treats some simple models and examples
in order to present basic ideas and tools of nonparametric estimation. We
prove, in a detailed and relatively elementary way, a number of classical re-
sults that are well-known to experts but whose original proofs are sometimes
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neither explicit nor easily accessible. We consider models with independent
observations only; the case of dependent data adds nothing conceptually but
introduces some technical difficulties.

This book is based on the courses taught at the MIEM (1991), the
Katholieke Universiteit Leuven (1991–1993), the Université Pierre et Marie
Curie (1993–2002) and the Institut Henri Poincaré (2001), as well as on mini-
courses given at the Humboldt University of Berlin (1994), the Heidelberg
University (1995) and the Seminar Paris–Berlin (Garchy, 1996). The contents
of the courses have been considerably modified since the earlier versions. The
structure and the size of the book (except for Sections 1.3, 1.4, 1.5, and 2.7)
correspond essentially to the graduate course that I taught for many years
at the Université Pierre et Marie Curie. I would like to thank my students,
colleagues, and all those who attended this course for their questions and
remarks that helped to improve the presentation.

I also thank Karine Bertin, Gérard Biau, Cristina Butucea, Laurent Cav-
alier, Arnak Dalalyan, Yuri Golubev, Alexander Gushchin, Gérard Kerky-
acharian, Béatrice Laurent, Oleg Lepski, Pascal Massart, Alexander Nazin,
and Dominique Picard for their remarks on different versions of the book. My
special thanks go to Lucien Birgé and Xavier Guyon for numerous improve-
ments that they have suggested. I am also grateful to Josette Saman for her
help in typing of a preliminary version of the text.

Alexandre Tsybakov
Paris, April 2003



Notation

�x� greatest integer strictly
less than the real number x

�x� smallest integer strictly
larger than the real number x

x+ max(x, 0)

log natural logarithm

I(A) indicator of the set A

Card A cardinality of the set A

�
= equals by definition

λmin(B) smallest eigenvalue of the symmetric
matrix B

aT , BT transpose of the vector a or of the matrix B

‖ · ‖p Lp([0, 1], dx)-norm or Lp(R, dx)-norm for
1 ≤ p ≤ ∞ depending on the context

‖ · ‖ �2(N)-norm or the Euclidean norm in Rd,
depending on the context

N (a, σ2) normal distribution on R with mean a
and variance σ2

Nd(0, I) standard normal distribution in Rd

ϕ(·) density of the distribution N (0, 1)

P 	 Q the measure P is absolutely continuous
with respect to the measure Q



x Notation

dP/dQ the Radon–Nikodym derivative of the measure P
with respect to the measure Q

an 
 bn 0< lim infn→∞(an/bn)≤ lim supn→∞(an/bn)<∞
h∗ = arg minh∈H F (h) means that F (h∗) = minh∈H F (h)

MSE mean squared risk at a point (p. 4, p. 37)

MISE mean integrated squared error (p. 12, p. 51)

Σ(β, L) Hölder class of functions (p. 5)

H(β, L) Nikol’ski class of functions (p. 13)

P(β, L) Hölder class of densities (p. 6)

PH(β, L) Nikol’ski class of densities (p. 13)

S(β, L) Sobolev class of functions on R (p. 13)

PS(β, L) Sobolev class of densities (p. 25)

W (β, L) Sobolev class of functions on [0, 1] (p. 49)

W per(β, L) periodic Sobolev class (p. 49)

W̃ (β, L) Sobolev class based on an ellipsoid (p. 50)

Θ(β,Q) Sobolev ellipsoid (p. 50)

H(P,Q) Hellinger distance between
the measures P and Q (p. 83)

V (P,Q) total variation distance between
the measures P and Q (p. 83)

K(P,Q) Kullback divergence between
the measures P and Q (p. 84)

χ2(P,Q) χ2 divergence between the measures
P and Q (p. 86)

ψn optimal rate of convergence (p. 78)

pe,M minimax probability of error (p. 80)

pe,M average probability of error (p. 111)

C∗ the Pinsker constant (p. 138)

R(λ, θ) integrated squared risk of the linear
estimator (p. 67)

Assumption (A) p. 51

Assumption (B) p. 91

Assumption (C) p. 174

Assumptions (LP) p. 37
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1

Nonparametric estimators

1.1 Examples of nonparametric models and problems

1. Estimation of a probability density

Let X1, . . . , Xn be identically distributed real valued random variables whose
common distribution is absolutely continuous with respect to the Lebesgue
measure on R. The density of this distribution, denoted by p, is a function
from R to [0,+∞) supposed to be unknown. The problem is to estimate p.
An estimator of p is a function x �→ pn(x) = pn(x,X1, . . . , Xn) measurable
with respect to the observation X = (X1, . . . , Xn). If we know a priori that
p belongs to a parametric family {g(x, θ) : θ ∈ Θ}, where g(·, ·) is a given
function, and Θ is a subset of Rk with a fixed dimension k independent of
n, then estimation of p is equivalent to estimation of the finite-dimensional
parameter θ. This is a parametric problem of estimation. On the contrary, if
such a prior information about p is not available we deal with a nonparametric
problem. In nonparametric estimation it is usually assumed that p belongs to
some “massive” class P of densities. For example, P can be the set of all the
continuous probability densities on R or the set of all the Lipschitz continuous
probability densities on R. Classes of such type will be called nonparametric
classes of functions.

2. Nonparametric regression

Assume that we have n independent pairs of random variables (X1, Y1), . . . ,
(Xn, Yn) such that

Yi = f(Xi) + ξi, Xi ∈ [0, 1], (1.1)

where the random variables ξi satisfy E(ξi) = 0 for all i and where the func-
tion f from [0, 1] to R (called the regression function) is unknown. The
problem of nonparametric regression is to estimate f given a priori that
this function belongs to a nonparametric class of functions F . For exam-
ple, F can be the set of all the continuous functions on [0, 1] or the set of

A. B. Tsybakov, Introduction to Nonparametric Estimation,
DOI 10.1007/978-0-387-79052-7 1, c© Springer Science+Business Media, LLC 2009



2 1 Nonparametric estimators

all the convex functions, etc. An estimator of f is a function x �→ fn(x) =
fn(x,X) defined on [0, 1] and measurable with respect to the observation
X = (X1, . . . , Xn, Y1, . . . , Yn). In what follows, we will mainly focus on the
particular case Xi = i/n.

3. Gaussian white noise model

This is an idealized model that provides an approximation to the nonpara-
metric regression (1.1). Consider the following stochastic differential equation:

dY (t) = f(t)dt +
1√
n

dW (t), t ∈ [0, 1],

where W is a standard Wiener process on [0, 1], the function f is an unknown
function on [0, 1], and n is an integer. We assume that a sample path X =
{Y (t), 0 ≤ t ≤ 1} of the process Y is observed. The statistical problem is to
estimate the unknown function f . In the nonparametric case it is only known
a priori that f ∈ F where F is a given nonparametric class of functions.
An estimator of f is a function x �→ fn(x) = fn(x,X) defined on [0, 1] and
measurable with respect to the observation X.

In either of the three above cases, we are interested in the asymptotic
behavior of estimators as n → ∞.

1.2 Kernel density estimators

We start with the first of the three problems described in Section 1.1. Let
X1, . . . , Xn be independent identically distributed (i.i.d.) random variables
that have a probability density p with respect to the Lebesgue measure on R.
The corresponding distribution function is F (x) =

∫ x

−∞ p(t)dt. Consider the
empirical distribution function

Fn(x) =
1
n

n∑

i=1

I(Xi ≤ x),

where I(·) denotes the indicator function. By the strong law of large numbers,
we have

Fn(x) → F (x), ∀ x ∈ R,

almost surely as n → ∞. Therefore, Fn(x) is a consistent estimator of F (x)
for every x ∈ R. How can we estimate the density p? One of the first intuitive
solutions is based on the following argument. For sufficiently small h > 0 we
can write an approximation

p(x) ≈ F (x + h) − F (x − h)
2h

.
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Replacing F by the estimate Fn we define

p̂R
n (x) =

Fn(x + h) − Fn(x − h)
2h

.

The function p̂R
n is an estimator of p called the Rosenblatt estimator. We can

rewrite it in the form:

p̂R
n (x) =

1
2nh

n∑

i=1

I(x − h < Xi ≤ x + h) =
1

nh

n∑

i=1

K0

(
Xi − x

h

)

,

where K0(u) = 1
2 I(−1 < u ≤ 1). A simple generalization of the Rosenblatt

estimator is given by

p̂n(x) =
1

nh

n∑

i=1

K

(
Xi − x

h

)

, (1.2)

where K : R → R is an integrable function satisfying
∫

K(u)du = 1. Such a
function K is called a kernel and the parameter h is called a bandwidth of the
estimator (1.2). The function x �→ p̂n(x) is called the kernel density estimator
or the Parzen–Rosenblatt estimator.

In the asymptotic framework, as n → ∞, we will consider a bandwidth h
that depends on n, denoting it by hn, and we will suppose that the sequence
(hn)n≥1 tends to 0 as n → ∞. The notation h without index n will also be
used for brevity whenever this causes no ambiguity.

Some classical examples of kernels are the following:

K(u) = 1
2 I(|u| ≤ 1) (the rectangular kernel),

K(u) = (1 − |u|)I(|u| ≤ 1) (the triangular kernel),
K(u) = 3

4 (1 − u2)I(|u| ≤ 1) (the parabolic kernel,

or the Epanechnikov kernel),

K(u) = 15
16 (1 − u2)2I(|u| ≤ 1) (the biweight kernel),

K(u) = 1√
2π

exp(−u2/2) (the Gaussian kernel),

K(u) = 1
2 exp(−|u|/

√
2) sin(|u|/

√
2 + π/4) (the Silverman kernel).

Note that if the kernel K takes only nonnegative values and if X1, . . . , Xn are
fixed, then the function x �→ p̂n(x) is a probability density.

The Parzen–Rosenblatt estimator can be generalized to the multidimen-
sional case. For example, we can define a kernel density estimator in two di-
mensions as follows. Suppose that we observe n pairs of random variables
(X1, Y1), . . . , (Xn, Yn) such that (Xi, Yi) are i.i.d. with a density p(x, y) in R2.
A kernel estimator of p(x, y) is then given by the formula
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p̂n(x, y) =
1

nh2

n∑

i=1

K

(
Xi − x

h

)

K

(
Yi − y

h

)

(1.3)

where K : R → R is a kernel defined as above and h > 0 is a bandwidth.

1.2.1 Mean squared error of kernel estimators

A basic measure of the accuracy of estimator p̂n is its mean squared risk (or
mean squared error) at an arbitrary fixed point x0 ∈ R:

MSE = MSE(x0)
�
= Ep

[
(p̂n(x0) − p(x0))2

]
.

Here, MSE stands for “mean squared error” and Ep denotes the expectation
with respect to the distribution of (X1, . . . , Xn):

Ep

[
(p̂n(x0) − p(x0))2

] �
=
∫

. . .

∫
(p̂n(x0, x1, . . . , xn) − p(x0))2

n∏

i=1

[p(xi)dxi] .

We have
MSE = b2(x0) + σ2(x0) (1.4)

where
b(x0) = Ep[p̂n(x0)] − p(x0)

and
σ2(x0) = Ep

[(
p̂n(x0) − Ep[p̂n(x0)]

)2]
.

Definition 1.1 The quantities b(x0) and σ2(x0) are called the bias and the
variance of the estimator p̂n at a point x0, respectively.

To evaluate the mean squared risk of p̂n we will analyze separately its variance
and bias.

Variance of the estimator p̂n

Proposition 1.1 Suppose that the density p satisfies p(x) ≤ pmax < ∞ for
all x ∈ R. Let K : R → R be a function such that

∫
K2(u)du < ∞. (1.5)

Then for any x0 ∈ R, h > 0, and n ≥ 1 we have

σ2(x0) ≤
C1

nh

where C1 = pmax

∫
K2(u)du.
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Proof. Put

ηi(x0) = K

(
Xi − x0

h

)

− Ep

[

K

(
Xi − x0

h

)]

.

The random variables ηi(x0), i = 1, . . . , n, are i.i.d. with zero mean and vari-
ance

Ep

[
η2

i (x0)
]
≤ Ep

[

K2

(
Xi − x0

h

)]

=
∫

K2

(
z − x0

h

)

p(z)dz ≤ pmaxh

∫
K2(u)du.

Then

σ2(x0) = Ep

⎡

⎣

(
1

nh

n∑

i=1

ηi(x0)

)2
⎤

⎦ =
1

nh2
Ep

[
η2
1(x0)

]
≤ C1

nh
. (1.6)

We conclude that if the bandwidth h = hn is such that nh → ∞ as n → ∞,
then the variance σ2(x0) goes to 0 as n → ∞.

Bias of the estimator p̂n

The bias of the kernel density estimator has the form

b(x0) = Ep[p̂n(x0)] − p(x0) =
1
h

∫
K

(
z − x0

h

)

p(z)dz − p(x0).

We now analyze the behavior of b(x0) as a function of h under some regularity
conditions on the density p and on the kernel K.

In what follows �β� will denote the greatest integer strictly less than the
real number β.

Definition 1.2 Let T be an interval in R and let β and L be two positive
numbers. The Hölder class Σ(β, L) on T is defined as the set of � = �β�
times differentiable functions f : T → R whose derivative f (�) satisfies

|f (�)(x) − f (�)(x′)| ≤ L|x − x′|β−�, ∀ x, x′ ∈ T.

Definition 1.3 Let � ≥ 1 be an integer. We say that K : R → R is a kernel
of order � if the functions u �→ ujK(u), j = 0, 1, . . . , �, are integrable and
satisfy ∫

K(u)du = 1,

∫
ujK(u)du = 0, j = 1, . . . , �.
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Some examples of kernels of order � will be given in Section 1.2.2. It is
important to note that another definition of an order � kernel is often used
in the literature: a kernel K is said to be of order � + 1 (with integer � ≥ 1)
if Definition 1.3 holds and

∫
u�+1K(u)du �= 0. Definition 1.3 is less restric-

tive and seems to be more natural, since there is no need to assume that∫
u�+1K(u)du �= 0 for noninteger β. For example, Proposition 1.2 given be-

low still holds if
∫

u�+1K(u)du = 0 and even if this integral does not exist.
Suppose now that p belongs to the class of densities P = P(β, L) defined

as follows:

P(β, L) =
{

p

∣
∣
∣
∣ p ≥ 0,

∫
p(x)dx = 1, and p ∈ Σ(β, L) on R

}

and assume that K is a kernel of order �. Then the following result holds.

Proposition 1.2 Assume that p ∈ P(β, L) and let K be a kernel of order � =
�β� satisfying ∫

|u|β |K(u)|du < ∞.

Then for all x0 ∈ R, h > 0 and n ≥ 1 we have

|b(x0)| ≤ C2h
β

where
C2 =

L

� !

∫
|u|β |K(u)|du.

Proof. We have

b(x0) =
1
h

∫
K

(
z − x0

h

)

p(z)dz − p(x0)

=
∫

K(u)
[
p(x0 + uh) − p(x0)

]
du.

Next,

p(x0 + uh) = p(x0) + p′(x0)uh + · · · + (uh)�

� !
p(�)(x0 + τuh), (1.7)

where 0 ≤ τ ≤ 1. Since K has order � = �β�, we obtain

b(x0) =
∫

K(u)
(uh)�

� !
p(�)(x0 + τuh)du

=
∫

K(u)
(uh)�

�!
(p(�)(x0 + τuh) − p(�)(x0))du

and
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|b(x0)| ≤
∫

|K(u)| |uh|�
� !

∣
∣
∣p(�)(x0 + τuh) − p(�)(x0)

∣
∣
∣du

≤ L

∫
|K(u)| |uh|�

� !
|τuh|β−� du ≤ C2h

β .

Upper bound on the mean squared risk

From Propositions 1.1 and 1.2, we see that the upper bounds on the bias and
variance behave in opposite ways as the bandwidth h varies. The variance de-
creases as h grows, whereas the bound on the bias increases (cf. Figure 1.1).
The choice of a small h corresponding to a large variance is called an un-

Bias/Variance tradeoff

h∗
n

Bias squared
Variance

Figure 1.1. Squared bias, variance, and mean squared error (solid line)
as functions of h.

dersmoothing. Alternatively, with a large h the bias cannot be reasonably
controlled, which leads to oversmoothing. An optimal value of h that balances
bias and variance is located between these two extremes. Figure 1.2 shows
typical plots of the corresponding density estimators. To get an insight into
the optimal choice of h, we can minimize in h the upper bound on the MSE
obtained from the above results.

If p and K satisfy the assumptions of Propositions 1.1 and 1.2, we obtain

MSE ≤ C2
2h2β +

C1

nh
. (1.8)
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Undersmoothing Oversmoothing

Correct smoothing

Figure 1.2. Undersmoothing, oversmoothing, and correct smoothing.
The circles indicate the sample points Xi.

The minimum with respect to h of the right hand side of (1.8) is attained
at

h∗
n =
(

C1

2βC2
2

) 1
2β+1

n− 1
2β+1 .

Therefore, the choice h = h∗
n gives

MSE(x0) = O
(
n− 2β

2β+1

)
, n → ∞,

uniformly in x0. We have the following result.
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Theorem 1.1 Assume that condition (1.5) holds and the assumptions of Pro-
position 1.2 are satisfied. Fix α > 0 and take h = αn− 1

2β+1 . Then for n ≥ 1
the kernel estimator p̂n satisfies

sup
x0∈R

sup
p∈P(β,L)

Ep[(p̂n(x0) − p(x0))2] ≤ Cn− 2β
2β+1 ,

where C > 0 is a constant depending only on β, L, α and on the kernel K.

Proof. We apply (1.8) as shown above. To justify the application of Proposi-
tion 1.1, it remains to prove that there exists a constant pmax < ∞ satisfying

sup
x∈R

sup
p∈P(β,L)

p(x) ≤ pmax. (1.9)

To show (1.9), consider K∗ which is a bounded kernel of order �, not neces-
sarily equal to K. Applying Proposition 1.2 with h = 1 we get that, for any
x0 ∈ R and any p ∈ P(β, L),

∣
∣
∣
∣

∫
K∗(z − x0)p(z)dz − p(x0)

∣
∣
∣
∣ ≤ C∗

2
�
=

L

� !

∫
|u|β |K∗(u)|du.

Therefore, for any x ∈ R and any p ∈ P(β, L),

p(x) ≤ C∗
2 +
∫

|K∗(z − x)|p(z)dz ≤ C∗
2 + K∗

max,

where K∗
max = supu∈R |K∗(u)|. Thus, we get (1.9) with pmax = C∗

2 + K∗
max.

Under the assumptions of Theorem 1.1, the rate of convergence of the es-
timator p̂n(x0) is ψn = n− β

2β+1 , which means that for a finite constant C and
for all n ≥ 1 we have

sup
p∈P(β,L)

Ep

[
(p̂n(x0) − p(x0))2

]
≤ Cψ2

n.

Now the following two questions arise. Can we improve the rate ψn by using
other density estimators? What is the best possible rate of convergence? To
answer these questions it is useful to consider the minimax risk R∗

n associated
to the class P(β, L):

R∗
n(P(β, L))

�
= inf

Tn

sup
p∈P(β,L)

Ep

[
(Tn(x0) − p(x0))2

]
,

where the infimum is over all estimators. One can prove a lower bound on
the minimax risk of the form R∗

n(P(β, L)) ≥ C ′ψ2
n = C ′n− 2β

2β+1 with some
constant C ′ > 0 (cf. Chapter 2, Exercise 2.8). This implies that under the
assumptions of Theorem 1.1 the kernel estimator attains the optimal rate
of convergence n− β

2β+1 associated with the class of densities P(β, L). Exact
definitions and discussions of the notion of optimal rate of convergence will
be given in Chapter 2.
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Positivity constraint

It follows easily from Definition 1.3 that kernels of order � ≥ 2 must take
negative values on a set of positive Lebesgue measure. The estimators p̂n

based on such kernels can also take negative values. This property is sometimes
emphasized as a drawback of estimators with higher order kernels, since the
density p itself is nonnegative. However, this remark is of minor importance
because we can always use the positive part estimator

p̂+
n (x)

�
= max{0, p̂n(x)}

whose risk is smaller than or equal to the risk of p̂n:

Ep

[
(p̂+

n (x0) − p(x0))2
]
≤ Ep

[
(p̂n(x0) − p(x0))2

]
, ∀ x0 ∈ R. (1.10)

In particular, Theorem 1.1 remains valid if we replace there p̂n by p̂+
n . Thus,

the estimator p̂+
n is nonnegative and attains fast convergence rates associated

with higher order kernels.

1.2.2 Construction of a kernel of order �

Theorem 1.1 is based on the assumption that bounded kernels of order � exist.
In order to construct such kernels, one can proceed as follows.

Let {ϕm(·)}∞m=0 be the orthonormal basis of Legendre polynomials in
L2([−1, 1], dx) defined by the formulas

ϕ0(x) ≡ 1√
2
, ϕm(x) =

√
2m + 1

2
1

2mm!
dm

dxm

[
(x2 − 1)m

]
, m = 1, 2, . . . ,

for x ∈ [−1, 1]. Then

∫ 1

−1

ϕm(u)ϕk(u)du = δmk, (1.11)

where δmk is the Kronecker delta:

δmk =

{
1, if m = k,

0, if m �= k.

Proposition 1.3 The function K : R → R defined by the formula

K(u) =
�∑

m=0

ϕm(0)ϕm(u)I(|u| ≤ 1) (1.12)

is a kernel of order �.
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Proof. Since ϕq is a polynomial of degree q, for all j = 0, 1, . . . , �, there exist
real numbers bqj such that

uj =
j∑

q=0

bqjϕq(u) for all u ∈ [−1, 1]. (1.13)

Let K be the kernel given by (1.12). Then, by (1.11) and (1.13), we have

∫
ujK(u)du =

j∑

q=0

�∑

m=0

∫ 1

−1

bqjϕq(u)ϕm(0)ϕm(u)du =

=
j∑

q=0

bqjϕq(0) =

{
1, if j = 0,

0, if j = 1, . . . , �.

A kernel K is called symmetric if K(u) = K(−u) for all u ∈ R. Observe
that the kernel K defined by (1.12) is symmetric. Indeed, we have ϕm(0) = 0
for all odd m and the Legendre polynomials ϕm are symmetric functions
for all even m. By symmetry, the kernel (1.12) is of order � + 1 for even �.
Moreover, the explicit form of kernels (1.12) uses the Legendre polynomials
of even degrees only.

Example 1.1 The first two Legendre polynomials of even degrees are

ϕ0(x) ≡
√

1
2

, ϕ2(x) =

√
5
2

(3x2 − 1)
2

.

Then Proposition 1.3 suggests the following kernel of order 2:

K(u) =
(

9
8
− 15

8
u2

)

I(|u| ≤ 1),

which is also a kernel of order 3 by the symmetry.
The construction of kernels suggested in Proposition 1.3 can be extended

to bases of polynomials {ϕm}∞m=0 that are orthonormal with weights. Indeed,
a slight modification of the proof of Proposition 1.3 yields that a kernel of
order � can be defined in the following way:

K(u) =
�∑

m=0

ϕm(0)ϕm(u)μ(u),

where μ is a positive weight function on R satisfying μ(0) = 1, the function
ϕm is a polynomial of degree m, and the basis {ϕm}∞m=0 is orthonormal with
weight μ: ∫

ϕm(u)ϕk(u)μ(u)du = δmk.
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This enables us to construct various kernels of order �, in particular, those
corresponding to the Hermite basis (μ(u) = e−u2

; the support of K is
(−∞,+∞) ) and to the Gegenbauer basis (μ(u) = (1 − u2)α

+ with α > 0;
the support of K is [−1, 1]).

1.2.3 Integrated squared risk of kernel estimators

In Section 1.2.1 we have studied the behavior of the kernel density estimator
p̂n at an arbitrary fixed point x0. It is also interesting to analyze the global
risk of p̂n. An important global criterion is the mean integrated squared error
(MISE):

MISE
�
= Ep

∫
(p̂n(x) − p(x))2dx.

By the Tonelli–Fubini theorem and by (1.4), we have

MISE =
∫

MSE(x)dx =
∫

b2(x)dx +
∫

σ2(x)dx. (1.14)

Thus, the MISE is represented as a sum of the bias term
∫

b2(x)dx and the
variance term

∫
σ2(x)dx. To obtain bounds on these terms, we proceed in the

same manner as for the analogous terms of the MSE (cf. Section 1.2.1). Let
us study first the variance term.

Proposition 1.4 Suppose that K : R → R is a function satisfying
∫

K2(u)du < ∞.

Then for any h > 0, n ≥ 1 and any probability density p we have
∫

σ2(x)dx ≤ 1
nh

∫
K2(u)du.

Proof. As in the proof of Proposition 1.1 we obtain

σ2(x) =
1

nh2
Ep[η2

1(x)] ≤ 1
nh2

Ep

[

K2

(
X1 − x

h

)]

for all x ∈ R. Therefore
∫

σ2(x)dx ≤ 1
nh2

∫ [∫
K2

(
z − x

h

)

p(z)dz

]

dx (1.15)

=
1

nh2

∫
p(z)
[∫

K2

(
z − x

h

)

dx

]

dz

=
1

nh

∫
K2(u)du.
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The upper bound for the variance term in Proposition 1.4 does not require
any condition on p: The result holds for any density. For the bias term in (1.14)
the situation is different: We can only control it on a restricted subset of
densities. As above, we specifically assume that p is smooth enough. Since
the MISE is a risk corresponding to the L2(R)-norm, it is natural to assume
that p is smooth with respect to this norm. For example, we may assume
that p belongs to a Nikol’ski class of functions defined as follows.

Definition 1.4 Let β > 0 and L > 0. The Nikol’ski class H(β, L) is defined
as the set of functions f : R → R whose derivatives f (�) of order � = �β�
exist and satisfy

[∫ (
f (�)(x + t) − f (�)(x)

)2
dx

]1/2

≤ L|t|β−�, ∀t ∈ R. (1.16)

Sobolev classes provide another popular way to describe smoothness in L2(R).

Definition 1.5 Let β ≥ 1 be an integer and L > 0. The Sobolev class
S(β, L) is defined as the set of all β−1 times differentiable functions f : R →
R having absolutely continuous derivative f (β−1) and satisfying

∫
(f (β)(x))2 dx ≤ L2. (1.17)

For integer β we have the inclusion S(β, L) ⊂ H(β, L) that can be checked
using the next lemma (cf. (1.21) below).

Lemma 1.1 (Generalized Minkowski inequality.) For any Borel func-
tion g on R × R, we have

∫ (∫
g(u, x) du

)2

dx ≤
[∫ (∫

g2(u, x) dx

)1/2

du

]2

.

A proof of this lemma is given in the Appendix (Lemma A.1).
We will now give an upper bound on the bias term

∫
b2(x)dx when p

belongs to the class of probability densities that are smooth in the sense of
Nikol’ski:

PH(β, L) =
{

p ∈ H(β, L)
∣
∣
∣
∣ p ≥ 0 and

∫
p(x)dx = 1

}

.

The bound will be a fortiori true for densities in the Sobolev class S(β, L).

Proposition 1.5 Assume that p ∈ PH(β, L) and let K be a kernel of order
� = �β� satisfying ∫

|u|β |K(u)|du < ∞.

Then, for any h > 0 and n ≥ 1,
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∫
b2(x)dx ≤ C2

2h2β ,

where
C2 =

L

� !

∫
|u|β |K(u)|du.

Proof. Take any x ∈ R, u ∈ R, h > 0 and write the Taylor expansion

p(x + uh) = p(x) + p′(x)uh + · · · + (uh)�

(� − 1) !

∫ 1

0

(1 − τ)�−1p(�)(x + τuh)dτ.

Since the kernel K is of order � = �β� we obtain

b(x) =
∫

K(u)
(uh)�

(� − 1) !

[∫ 1

0

(1 − τ)�−1p(�)(x + τuh)dτ

]

du (1.18)

=
∫

K(u)
(uh)�

(� − 1)!

[∫ 1

0

(1 − τ)�−1(p(�)(x + τuh) − p(�)(x))dτ

]

du.

Applying twice the generalized Minkowski inequality and using the fact that p
belongs to the class H(β, L), we get the following upper bound for the bias
term:
∫

b2(x)dx ≤
∫ (∫

|K(u)| |uh|�
(� − 1) !

× (1.19)

∫ 1

0

(1 − τ)�−1
∣
∣
∣p(�)(x + τuh) − p(�)(x)

∣
∣
∣dτdu

)2

dx

≤
(∫

|K(u)| |uh|�
(� − 1) !

×

[∫ (∫ 1

0

(1 − τ)�−1
∣
∣
∣p(�)(x + τuh) − p(�)(x)

∣
∣
∣dτ
)2

dx

]1/2

du

)2

≤
(∫

|K(u)| |uh|�
(� − 1) !

×
[∫ 1

0

(1 − τ)�−1
[ ∫ (

p(�)(x + τuh) − p(�)(x)
)2

dx
]1/2

dτ

]

du

)2

≤
(∫

|K(u)| |uh|�
(� − 1) !

[∫ 1

0

(1 − τ)�−1L|uh|β−�dτ

]

du

)2

= C2
2h2β .

Under the assumptions of Propositions 1.4 and 1.5 we obtain

MISE ≤ C2
2h2β +

1
nh

∫
K2(u)du,
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and the minimizer h = h∗
n of the right hand side is

h∗
n =
(∫

K2(u)du

2βC2
2

) 1
2β+1

n− 1
2β+1 .

Taking h = h∗
n we get

MISE = O
(
n− 2β

2β+1

)
, n → ∞.

We see that the behavior of the MISE is analogous to that of the mean squared
risk at a fixed point (MSE), cf. Section 1.2.1. We can summarize the above
argument in the following way.

Theorem 1.2 Suppose that the assumptions of Propositions 1.4 and 1.5 hold.
Fix α > 0 and take h = αn− 1

2β+1 . Then for any n ≥ 1 the kernel estimator p̂n

satisfies

sup
p∈PH(β,L)

Ep

∫
(p̂n(x) − p(x))2 dx ≤ Cn− 2β

2β+1 ,

where C > 0 is a constant depending only on β, L, α and on the kernel K.

For densities in the Sobolev classes we get the following bound on the
mean integrated squared risk.

Theorem 1.3 Suppose that, for an integer β ≥ 1:

(i) the function K is a kernel of order β − 1 satisfying the conditions
∫

K2(u)du < ∞,

∫
|u|β |K(u)|du < ∞;

(ii) the density p is β−1 times differentiable, its derivative p(β−1) is absolutely
continuous on R and

∫
(p(β)(x))2dx < ∞.

Then for all n ≥ 1 and all h > 0 the mean integrated squared error of the
kernel estimator p̂n satisfies

MISE ≡ Ep

∫
(p̂n(x) − p(x))2dx

≤ 1
nh

∫
K2(u)du +

h2β

(�!)2

(∫
|u|β |K(u)|du

)2 ∫
(p(β)(x))2dx. (1.20)

Proof. We use (1.14) where we bound the variance term as in Proposition 1.4.
For the bias term we apply (1.19) with � = �β� = β − 1, but we replace there
L by

(∫
(p(β)(x))2dx

)1/2
taking into account that, for all t ∈ R,



16 1 Nonparametric estimators

∫ (
p(�)(x + t) − p(�)(x)

)2
dx (1.21)

=
∫ (

t

∫ 1

0

p(�+1)(x + θt)dθ
)2

dx

≤ t2
(∫ 1

0

[ ∫ (
p(�+1)(x + θt)

)2
dx
]1/2

dθ
)2

= t2
∫

(p(β)(x))2dx

in view of the generalized Minkowski inequality.

1.2.4 Lack of asymptotic optimality for fixed density

How to choose the kernel K and the bandwidth h for the kernel density
estimators in an optimal way? An old and still popular approach is based on
minimization in K and h of the asymptotic MISE for fixed density p. However,
this does not lead to a consistent concept of optimality, as we are going to
explain now. Other methods for choosing h are discussed in Section 1.4.

The following result on asymptotics for fixed p or its versions are often
considered.

Proposition 1.6 Assume that:

(i) the function K is a kernel of order 1 satisfying the conditions
∫

K2(u)du < ∞,

∫
u2|K(u)|du < ∞, SK

�
=
∫

u2K(u)du �= 0;

(ii) the density p is differentiable on R, the first derivative p′ is absolutely
continuous on R and the second derivative satisfies

∫
(p′′(x))2dx < ∞.

Then for all n ≥ 1 the mean integrated squared error of the kernel estimator p̂n

satisfies

MISE ≡ Ep

∫
(p̂n(x) − p(x))2dx

=
[

1
nh

∫
K2(u)du +

h4

4
S2

K

∫
(p′′(x))2dx

]

(1 + o(1)), (1.22)

where the term o(1) is independent of n (but depends on p) and tends to 0 as
h → 0.
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A proof of this proposition is given in the Appendix (Proposition A.1).

The main term of the MISE in (1.22) is

1
nh

∫
K2(u)du +

h4

4
S2

K

∫
(p′′(x))2dx. (1.23)

Note that if K is a nonnegative kernel, expression (1.23) coincides with the
nonasymptotic upper bound for the MISE which holds for all n and h (cf.
Theorem 1.3 with β = 2).

The approach to optimality that we are going to criticize here starts from
the expression (1.23). This expression is then minimized in h and in nonneg-
ative kernels K, which yields the “optimal” bandwidth for given K:

hMISE(K) =
( ∫

K2

nS2
K

∫
(p′′)2

)1/5

(1.24)

and the “optimal” nonnegative kernel:

K∗(u) =
3
4
(1 − u2)+ (1.25)

(the Epanechnikov kernel; cf. bibliographic notes in Section 1.11). In particu-
lar,

hMISE(K∗) =
(

15
n
∫

(p′′)2

)1/5

. (1.26)

Note that the choices of h as in (1.24), (1.26) are not feasible since they
depend on the second derivative of the unknown density p. Thus, the basic
formula (1.2) with kernel K = K∗ and bandwidth h = hMISE(K∗) as in
(1.26) does not define a valid estimator, but rather a random variable that
can be qualified as a pseudo-estimator or oracle (for a more detailed discussion
of oracles see Section 1.8 below). Denote this random variable by pE

n (x) and
call it the Epanechnikov oracle. Proposition 1.6 implies that

lim
n→∞

n4/5Ep

∫
(pE

n (x) − p(x))2dx =
34/5

51/54

(∫
(p′′(x))2dx

)1/5

. (1.27)

This argument is often exhibited as a benchmark for the optimal choice of
kernel K and bandwidth h, whereas (1.27) is claimed to be the best achievable
MISE. The Epanechnikov oracle is declared optimal and its feasible analogs
(for which the integral

∫
(p′′)2 in (1.26) is estimated from the data) are put

forward. We now explain why such an approach to optimality is misleading.
The following proposition is sufficiently eloquent.

Proposition 1.7 Let assumption (ii) of Proposition 1.6 be satisfied and let
K be a kernel of order 2 (thus, SK = 0), such that
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∫
K2(u)du < ∞.

Then for any ε > 0 the kernel estimator p̂n with bandwidth

h = n−1/5ε−1

∫
K2(u)du

satisfies

lim sup
n→∞

n4/5Ep

∫
(p̂n(x) − p(x))2dx ≤ ε. (1.28)

The same is true for the positive part estimator p̂+
n = max(0, p̂n):

lim sup
n→∞

n4/5Ep

∫
(p̂+

n (x) − p(x))2dx ≤ ε. (1.29)

A proof of this proposition is given in the Appendix (Proposition A.2).
We see that for all ε > 0 small enough the estimators p̂n and p̂+

n of Propo-
sition 1.7 have smaller asymptotic MISE than the Epanechnikov oracle, under
the same assumptions on p. Note that p̂n, p̂+

n are true estimators, not oracles.
So, if the performance of estimators is measured by their asymptotic MISE
for fixed p there is a multitude of estimators that are strictly better than the
Epanechnikov oracle. Furthermore, Proposition 1.7 implies:

inf
Tn

lim sup
n→∞

n4/5Ep

∫
(Tn(x) − p(x))2dx = 0, (1.30)

where infTn
is the infimum over all the kernel estimators or over all the positive

part kernel estimators.
The positive part estimator p̂+

n is included in Proposition 1.7 on purpose.
In fact, it is often argued that one should use nonnegative kernels because
the density itself is nonnegative. This would support the “optimality” of the
Epanechnikov kernel because it is obtained from minimization of the asymp-
totic MISE over nonnegative kernels. Note, however, that non-negativity of
density estimators is not necessarily achieved via non-negativity of kernels.
Proposition 1.7 presents an estimator p̂+

n which is nonnegative, asymptoti-
cally equivalent to the kernel estimator p̂n, and has smaller asymptotic MISE
than the Epanechnikov oracle.

Proposition 1.7 plays the role of counterexample. The estimators p̂n and
p̂+

n of Proposition 1.7 are by no means advocated as being good. They can
be rather counterintuitive. Indeed, their bandwidth h contains an arbitrarily
large constant factor ε−1. This factor serves to diminish the variance term,
whereas, for fixed density p, the condition

∫
u2K(u)du = 0 eliminates the

main bias term if n is large enough, that is, if n ≥ n0, starting from some n0

that depends on p. This elimination of the bias is possible for fixed p but not
uniformly over p in the Sobolev class of smoothness β = 2. The message of
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Proposition 1.7 is that even such counterintuitive estimators outperform the
Epanechnikov oracle as soon as the asymptotics of the MISE for fixed p is
taken as a criterion.

To summarize, the approach based on fixed p asymptotics does not lead
to a consistent concept of optimality. In particular, saying that “the choice of
h and K as in (1.24) – (1.26) is optimal” does not make much sense.

This explains why, instead of studying the asymptotics for fixed density p,
in this book we focus on the uniform bounds on the risk over classes of densities
(Hölder, Sobolev, Nikol’ski classes). We compare the behavior of estimators in
a minimax sense on these classes. This leads to a valid concept of optimality
(among all estimators) that we develop in detail in Chapters 2 and 3.

Remarks.

(1) Sometimes asymptotics of the MSE (risk at a fixed point) for fixed p is
used to derive “optimal” h and K, leading to expressions similar to (1.24) –
(1.26). This is yet another version of the inconsistent approach to optimality.
The above critical remarks remain valid when the MISE is replaced by the
MSE.

(2) The result of Proposition 1.7 can be enhanced. It can be shown that, under
the same assumptions on p as in Propositions 1.6 and 1.7, one can construct
an estimator p̃n such that

lim
n→∞

n4/5Ep

∫
(p̃n(x) − p(x))2dx = 0 (1.31)

(cf. Proposition 3.3 where we prove an analogous fact for the Gaussian se-
quence model). Furthermore, under mild additional assumptions, for exam-
ple, if the support of p is bounded, the result of Proposition 1.7 holds for the
estimator p+

n /
∫

p+
n , which itself is a probability density.

1.3 Fourier analysis of kernel density estimators

In Section 1.2.3 we studied the MISE of kernel density estimators under classi-
cal but restrictive assumptions. Indeed, the results were valid only for densities
p whose derivatives of given order satisfy certain conditions. In this section
we will show that more general and elegant results can be obtained using
Fourier analysis. In particular, we will be able to analyze the MISE of kernel
estimators with kernels K that do not belong to L1(R), such as the sinc kernel

K(u) =

{ sin u
πu , if u �= 0,

1
π , if u = 0,

(1.32)

and will see that this kernel is better than the Epanechnikov kernel, the latter
being inadmissible in the sense to be defined below.
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Consider, as above, the kernel estimator

p̂n(x) =
1

nh

n∑

i=1

K

(
Xi − x

h

)

but now we only suppose that K belongs to L2(R), which allows us to cover,
for example, the sinc kernel. We also assume throughout this section that K
is symmetric, i.e., K(u) = K(−u), ∀ u ∈ R.

We first recall some facts related to the Fourier transform. Define the
Fourier transform F [g] of a function g ∈ L1(R) by

F [g](ω)
�
=
∫ ∞

−∞
eitωg(t)dt, ω ∈ R,

where i =
√
−1. The Plancherel theorem states that

∫ ∞

−∞
g2(t)dt =

1
2π

∫ ∞

−∞
|F [g](ω)|2dω (1.33)

for any g ∈ L1(R) ∩ L2(R). More generally, the Fourier transform is defined
in a standard way for any g ∈ L2(R) using the fact that L1(R) ∩ L2(R) is
dense in L2(R). With this extension, (1.33) is true for any g ∈ L2(R).

For example, if K is the sinc kernel, a version of its Fourier transform
has the form F [K](ω) = I(|ω| ≤ 1). The Fourier transform of g ∈ L2(R) is
defined up to an arbitrary modification on a set of Lebesgue measure zero.
This will not be further recalled, in particular, all equalities between Fourier
transforms will be understood in the almost everywhere sense.

For any g ∈ L2(R) we have

F [g(·/h)/h](ω) = F [g](hω), ∀ h > 0, (1.34)

F [g(t − ·)](ω) = eitωF [g](−ω), ∀ t ∈ R. (1.35)

Define the characteristic function associated to the density p by

φ(ω) =
∫ ∞

−∞
eitωp(t)dt =

∫ ∞

−∞
eitωdF (t), ω ∈ R,

and consider the empirical characteristic function

φn(ω) =
∫ ∞

−∞
eitωdFn(t) =

1
n

n∑

j=1

eiXjω, ω ∈ R.

Using (1.34) and (1.35) we may write the Fourier transform of the estimator
p̂n, with kernel K ∈ L2(R), in the form

F [p̂n](ω) =
n∑

j=1

eiXjωF [h−1K(·/h)](−ω) = φn(ω)F [K](−hω).
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If K is symmetric, F [K](−hω) = F [K](hω). Therefore, writing for brevity

K̂(ω) = F [K](ω),

for any symmetric kernel K ∈ L2(R) we get

F [p̂n](ω) = φn(ω)K̂(hω). (1.36)

Lemma 1.2 We have

Ep[φn(ω)] = φ(ω), (1.37)

Ep[ |φn(ω)|2] =
(

1 − 1
n

)

|φ(ω)|2 +
1
n

, (1.38)

Ep[ |φn(ω) − φ(ω)|2] =
1
n

(
1 − |φ(ω)|2

)
. (1.39)

Proof. Relation (1.37) is obvious, whereas (1.39) follows immediately from
(1.37) and (1.38). To show (1.38), note that

Ep[ |φn(ω)|2] = Ep[φn(ω)φn(−ω)]

= Ep

[ 1
n2

∑

j,k :k 
=j

ei(Xk−Xj)ω
]

+
1
n

=
n − 1

n
φ(ω)φ(−ω) +

1
n

.

Assume now that both the kernel K and the density p belong to L2(R)
and that K is symmetric. Using the Plancherel theorem and (1.36) we may
write the MISE of kernel estimator p̂n in the form

MISE = Ep

∫
(p̂n(x) − p(x))2dx (1.40)

=
1
2π

Ep

∫ ∣
∣F [p̂n](ω) − φ(ω)

∣
∣2dω

=
1
2π

Ep

∫ ∣
∣φn(ω)K̂(hω) − φ(ω)

∣
∣2dω.

The following theorem gives, under mild conditions, the exact MISE of p̂n for
any fixed n.

Theorem 1.4 Let p ∈ L2(R) be a probability density, and let K ∈ L2(R) be
symmetric. Then for all n ≥ 1 and h > 0 the mean integrated squared error
of the kernel estimator p̂n has the form

MISE =
1
2π

[∫ ∣
∣1 − K̂(hω)

∣
∣2
∣
∣φ(ω)

∣
∣2dω +

1
n

∫ ∣
∣K̂(hω)

∣
∣2dω

]

(1.41)

− 1
2πn

∫ ∣
∣φ(ω)

∣
∣2
∣
∣K̂(hω)

∣
∣2dω

�
= Jn(K,h, φ).
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Proof. Since φ ∈ L2(R), K ∈ L2(R), and |φ(ω)| ≤ 1 for all ω ∈ R, all
the integrals in (1.41) are finite. To obtain (1.41) it suffices to develop the
expression in the last line of (1.40):

Ep

∫ ∣
∣φn(ω)K̂(hω) − φ(ω)

∣
∣2dω

= Ep

∫ ∣
∣(φn(ω) − φ(ω))K̂(hω) − (1 − K̂(hω))φ(ω)

∣
∣2dω

=
∫ [

Ep

[ ∣
∣φn(ω) − φ(ω)

∣
∣2
]∣
∣K̂(hω)

∣
∣2 +
∣
∣1 − K̂(hω)

∣
∣2
∣
∣φ(ω)

∣
∣2
]
dω

=
∫ ∣
∣1 − K̂(hω)

∣
∣2
∣
∣φ(ω)

∣
∣2dω +

1
n

∫ (
1 −
∣
∣φ(ω)

∣
∣2
)∣
∣K̂(hω)

∣
∣2dω,

where we used (1.37) and (1.39).

Remarks.

(1) In Theorem 1.4 we assumed that the kernel K is symmetric, so its Fourier
transform K̂ is real-valued.
(2) The expression in square brackets in (1.41) constitutes the main term of
the MISE. It is similar to the expression obtained in Theorem 1.3 where we
did not use Fourier analysis. In fact, by Plancherel’s theorem and (1.34),

1
2πn

∫ ∣
∣K̂(hω)

∣
∣2dω =

1
nh

∫
K2(u)du, (1.42)

which coincides with the upper bound on the variance term of the risk derived
in Section 1.2.3. Note that the expression (1.41) based on Fourier analysis is
somewhat more accurate because it contains a negative correction term

− 1
2πn

∫ ∣
∣φ(ω)

∣
∣2
∣
∣K̂(hω)

∣
∣2dω.

However, this term is typically of smaller order than (1.42). In fact, if K̂ ∈
L∞(R),

1
2πn

∫ ∣
∣φ(ω)

∣
∣2
∣
∣K̂(hω)

∣
∣2dω ≤ ‖K̂‖2

∞
2πn

∫ ∣
∣φ(ω)

∣
∣2dω

=
‖K̂‖2

∞
n

∫
p2(u)du

by Plancherel’s theorem, where ‖K̂‖∞ is the L∞(R)-norm of K̂. Thus, the
correction term is of order O(1/n), whereas the expression (1.42) is O(1/(nh)).
So, for small h, the variance term is essentially given by (1.42) which is the
same as the upper bound in Theorem 1.3. However, the bias term in (1.41) is
different:
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1
2π

∫ ∣
∣1 − K̂(hω)

∣
∣2
∣
∣φ(ω)

∣
∣2dω.

In contrast to Theorem 1.3, the bias term has this general form; it does not
necessarily reduce to an expression involving a derivative of p.
(3) There is no condition

∫
K = 1 in Theorem 1.4; even more, K is not

necessarily integrable. In addition, Theorem 1.4 applies to integrable K such
that
∫

K �= 1. This enlarges the class of possible kernels and, in principle, may
lead to estimators with smaller MISE. We will see, however, that considering
kernels with

∫
K �= 1 makes no sense.

It is easy to see that a minimizer of the MISE (1.41) with respect to K̂ is
given by the formula

K̂∗(hω) =

∣
∣φ(ω)

∣
∣2

ε2(ω) +
∣
∣φ(ω)

∣
∣2

, (1.43)

where ε2(ω) =
(
1 − |φ(ω)|2

)
/n. This is obtained by minimization of the ex-

pression under the integral in (1.41) for any fixed ω. Note that K̂∗(0) = 1,
0 ≤ K̂∗(ω) ≤ 1 for all ω ∈ R, and K̂∗ ∈ L1(R)∩L2(R). Clearly, K̂∗ cannot be
used to construct estimators since it depends on the unknown characteristic
function φ. The inverse Fourier transform of K̂∗(hω) is an ideal (oracle) kernel
that can be only regarded as a benchmark. Note that the right hand side of
(1.43) does not depend on h, which implies that, to satisfy (1.43), the function
K̂∗(·) itself should depend on h. Thus, the oracle does not correspond to a
kernel estimator. The oracle risk (i.e., the MISE for K̂ = K̂∗) is

MISE∗ =
1
2π

∫
ε2(ω)|φ(ω)|2

ε2(ω) + |φ(ω)|2 dω. (1.44)

Theorem 1.4 allows us to compare the mean integrated squared risks
Jn(K,h, φ) of different kernel estimators p̂n nonasymptotically, for any fixed n.
In particular, we can eliminate “bad” kernels using the following criterion.

Definition 1.6 A symmetric kernel K ∈ L2(R) is called inadmissible if
there exists another symmetric kernel K0 ∈ L2(R) such that the following
two conditions hold:

(i) for all characteristic functions φ ∈ L2(R)

Jn(K0, h, φ) ≤ Jn(K,h, φ), ∀ h > 0, n ≥ 1; (1.45)

(ii) there exists a characteristic function φ0 ∈ L2(R) such that

Jn(K0, h, φ0) < Jn(K,h, φ0), ∀ h > 0, n ≥ 1. (1.46)

Otherwise, the kernel K is called admissible.
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The problem of finding an admissible kernel is rather complex, and we will
not discuss it here. We will only give a simple criterion allowing one to detect
inadmissible kernels.

Proposition 1.8 Let K ∈ L2(R) be symmetric. If

Leb(ω : K̂(ω) �∈ [0, 1] ) > 0, (1.47)

then K is inadmissible.

Proof. Denote by K̂0(ω) the projection of K̂(ω) onto [0, 1], i.e., K̂0(ω) =
min(1,max(K̂(ω), 0)). Clearly,

∣
∣K̂0(ω)

∣
∣ ≤
∣
∣K̂(ω)

∣
∣,
∣
∣1 − K̂0(ω)

∣
∣ ≤
∣
∣1 − K̂(ω)

∣
∣, ∀ ω ∈ R. (1.48)

Since K̂ ∈ L2(R), we get that K̂0 ∈ L2(R). Therefore, there exists a function
K0 ∈ L2(R) with the Fourier transform K̂0. Since K is symmetric, the Fourier
transforms K̂ and K̂0 are real-valued, so that K0 is also symmetric.

Using (1.48) and the fact that
∣
∣φ(ω)

∣
∣ ≤ 1 for any characteristic function

φ, we get

Jn(K,h, φ) − Jn(K0, h, φ) (1.49)

=
1
2π

[∫ (∣
∣1 − K̂(hω)

∣
∣2 −
∣
∣1 − K̂0(hω)

∣
∣2
) ∣
∣φ(ω)

∣
∣2dω

+
1
n

∫
(1 −

∣
∣φ(ω)

∣
∣2)
(∣
∣K̂(hω)

∣
∣2 −
∣
∣K̂0(hω)

∣
∣2
)

dω

]

≥ 0.

This proves (1.45). To check part (ii) of Definition 1.6 we use assumption
(1.47). Let φ0(ω) = e−ω2/2 be the characteristic function of the standard
normal distribution on R. Since assumption (1.47) holds, at least one of the
conditions Leb(ω : K̂(ω) < 0) > 0 or Leb(ω : K̂(ω) > 1) > 0 is satisfied.

Assume first that Leb(ω : K̂(ω) < 0) > 0. Fix h > 0 and introduce the set

B0
h

�
= {ω : K̂(hω) < 0} = {ω/h : K̂(ω) < 0}. Note that Leb(B0

h) > 0. Indeed,
B0

h is a dilation of the set {ω : K̂(ω) < 0} of a positive Lebesgue measure.
Then

Jn(K,h, φ0) − Jn(K0, h, φ0) (1.50)

≥ 1
2πn

∫

B0
h

(1 −
∣
∣φ0(ω)

∣
∣2)
(∣
∣K̂(hω)

∣
∣2 −
∣
∣K̂0(hω)

∣
∣2
)

dω

=
1

2πn

∫

B0
h

(1 − e−ω2
)
∣
∣K̂(hω)

∣
∣2dω > 0

where the last inequality is due to the fact that (1−e−ω2
)
∣
∣K̂(hω)

∣
∣2 > 0 almost

everywhere on B0
h.
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Finally, if Leb(ω : K̂(ω) > 1) > 0, we define B1
h

�
= {ω : K̂(hω) > 1} and

reasoning in a similar way as above we obtain

Jn(K,h, φ0) − Jn(K0, h, φ0)

≥ 1
2π

∫

B1
h

(∣
∣1 − K̂(hω)

∣
∣2 −
∣
∣1 − K̂0(hω)

∣
∣2
) ∣
∣φ0(ω)

∣
∣2dω

=
1
2π

∫

B1
h

∣
∣1 − K̂(hω)

∣
∣2e−ω2

dω > 0.

Since the Fourier transform of an integrable function K is continuous and
K̂(0) =

∫
K(u)du, Proposition 1.8 implies that any integrable symmetric

kernel with
∫

K(u)du > 1 is inadmissible. This conclusion does not extend to
kernels with 0 <

∫
K(u)du < 1: Proposition 1.8 does not say that all of them

are inadmissible. However, considering such kernels makes no sense. In fact,
if K̂(0) < 1 and K̂ is continuous, there exist positive constants ε and δ such
that inf |t|≤ε |1 − K̂(t)| = δ. Thus, we get
∫ ∣
∣1 − K̂(hω)

∣
∣2|φ(ω)|2dω ≥ δ2

∫

|ω|≤ε/h

|φ(ω)|2dω → δ2

∫
|φ(ω)|2dω > 0

as h → 0. Therefore, the bias term in the MISE of such estimators (cf. (1.41))
does not tend to 0 as h → 0.

Corollary 1.1 The Epanechnikov kernel is inadmissible.

Proof. The Fourier transform of the Epanechnikov kernel has the form

K̂(ω) =

{ 3
ω3 (sin ω − ω cos ω), if ω �= 0,

1, if ω = 0.

It is easy to see that the set {ω : K̂(ω) < 0} is of positive Lebesgue measure,
so that Proposition 1.8 applies.

Suppose now that p belongs to a Sobolev class of densities defined as
follows:

PS(β, L) =
{

p
∣
∣
∣ p ≥ 0,

∫
p(x)dx = 1 and

∫
|ω|2β

∣
∣φ(ω)

∣
∣2dω ≤ 2πL2

}

,

where β > 0 and L > 0 are constants and φ = F [p] denotes, as before, the
characteristic function associated to p. It can be shown that for integer β the
class PS(β, L) coincides with the set of all the probability densities belonging
to the Sobolev class S(β, L). Note that if β is an integer and if the derivative
p(β−1) is absolutely continuous, the condition

∫ (
p(β)(u)

)2
du ≤ L2 (1.51)
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implies ∫
|ω|2β

∣
∣φ(ω)

∣
∣2dω ≤ 2πL2. (1.52)

Indeed, the Fourier transform of p(β) is (−iω)βφ(ω), so that (1.52) follows from
(1.51) by Plancherel’s theorem. Passing to characteristic functions as in (1.52)
adds flexibility; the notion of a Sobolev class is thus extended from integer β
to all β > 0, i.e., to a continuous scale of smoothness.

Theorem 1.5 Let K ∈ L2(R) be symmetric. Assume that for some β > 0
there exists a constant A such that

ess supt∈R\{0}

∣
∣1 − K̂(t)

∣
∣

|t|β ≤ A. (1.53)

Fix α > 0 and take h = αn− 1
2β+1 . Then for any n ≥ 1 the kernel estimator p̂n

satisfies

sup
p∈PS(β,L)

Ep

∫
(p̂n(x) − p(x))2 dx ≤ Cn− 2β

2β+1

where C > 0 is a constant depending only on L,α,A and on the kernel K.

Proof. In view of (1.53) and of the definition of PS(β, L) we have
∫ ∣
∣1 − K̂(hω)

∣
∣2
∣
∣φ(ω)

∣
∣2dω ≤ A2h2β

∫
|ω|2β

∣
∣φ(ω)

∣
∣2dω

≤ 2πA2L2h2β .

Plugging this into (1.41) and using (1.42) we get, for h = αn− 1
2β+1 ,

Ep

∫
(p̂n(x) − p(x))2 dx ≤ A2L2h2β +

1
nh

∫
K2(u)du

≤ Cn− 2β
2β+1 .

Condition (1.53) implies that there exists a version K̂ that is continuous at
0 and satisfies K̂(0) = 1. Note that K̂(0) = 1 can be viewed as an extension of
the assumption

∫
K = 1 to nonintegrable K, such as the sinc kernel. Further-

more, under the assumptions of Theorem 1.5, condition (1.53) is equivalent
to

∃ t0, A0 < ∞ : ess sup0<|t|≤t0

∣
∣1 − K̂(t)

∣
∣

|t|β ≤ A0. (1.54)

So, in fact, (1.53) is a local condition on the behavior of K̂ in a neighborhood
of 0, essentially a restriction on the moments of K. One can show that for
integer β assumption (1.53) is satisfied if K is a kernel of order β − 1 and∫
|u|β
∣
∣K(u)

∣
∣du < ∞ (Exercise 1.6).
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Note that if condition (1.53) is satisfied for some β = β0 > 0, then it also
holds for all 0 < β < β0. For all the kernels listed on p. 3, except for the
Silverman kernel, condition (1.53) can be guaranteed only with β ≤ 2. On the
other hand, the Fourier transform of the Silverman kernel is

K̂(ω) =
1

1 + ω4
,

so that we have (1.53) with β = 4.
Kernels satisfying (1.53) exist for any given β > 0. Two important exam-

ples are given by kernels with the Fourier transforms

K̂(ω) =
1

1 + |ω|β (spline type kernel), (1.55)

K̂(ω) = (1 − |ω|β)+ (Pinsker kernel). (1.56)

It can be shown that, for β = 2m, where m is an integer, kernel estimators with
K̂ satisfying (1.55) are close to spline estimators (cf. Exercise 1.11 that treats
the case m = 2). The kernel (1.56) is related to Pinsker’s theory discussed in
Chapter 3. The inverse Fourier transforms of (1.55) and (1.56) can be written
explicitly for integer β. Thus, for β = 2 the Pinsker kernel has the form

K(u) =

{ 2
πu3 (sin u − u cos u), if u �= 0,

2
3π , if u = 0.

Finally, there exist superkernels, or infinite power kernels, i.e., kernels that
satisfy (1.53) simultaneously for all β > 0. An example is the sinc kernel (1.32).
Note that the sinc kernel can be successfully used not only in the context
of Theorem 1.5 but also for other classes of densities, such as those with
exponentially decreasing characteristic functions (cf. Exercises 1.7, 1.8). Thus,
the sinc kernel is more flexible than its competitors discussed above: Those are
associated to some prescribed number of derivatives of a density and cannot
take advantage of higher smoothness.

1.4 Unbiased risk estimation. Cross-validation density
estimators

In this section we suppose that the kernel K is fixed and we are interested in
choosing the bandwidth h. Write MISE = MISE(h) to indicate that the mean
integrated squared error is a function of bandwidth and define the ideal value
of h by

hid = arg min
h>0

MISE(h). (1.57)

Unfortunately, this value remains purely theoretical since MISE(h) depends
on the unknown density p. The results in the previous sections do not allow
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us to construct an estimator approaching this ideal value. Therefore other
methods should be applied. In this context, a common idea is to use unbiased
estimation of the risk. Instead of minimizing MISE(h) in (1.57), it is suggested
to minimize an unbiased or approximately unbiased estimator of MISE(h).

We now describe a popular implementation of this idea given by the cross-
validation. First, note that

MISE(h) = Ep

∫
(p̂n − p)2 = Ep

[∫
p̂2

n − 2
∫

p̂np

]

+
∫

p2.

Here and often in the rest of this section we will write for brevity
∫

(. . .) instead
of
∫

(. . .)dx. Since the integral
∫

p2 does not depend on h, the minimizer hid

of MISE(h) as defined in (1.57) also minimizes the function

J(h)
�
= Ep

[∫
p̂2

n − 2
∫

p̂np

]

.

We now look for an unbiased estimator of J(h). For this purpose it is suffi-
cient to find an unbiased estimator for each of the quantities Ep

[∫
p̂2

n

]
and

Ep

[∫
p̂np
]
. There exists a trivial unbiased estimator

∫
p̂2

n of the quantity
Ep

[∫
p̂2

n

]
. Therefore it remains to find an unbiased estimator of Ep

[∫
p̂np
]
.

Write

p̂n,−i(x) =
1

(n − 1)h

∑

j 
=i

K

(
Xj − x

h

)

.

Let us show that an unbiased estimator of G = Ep

[∫
p̂np
]

is given by

Ĝ =
1
n

n∑

i=1

p̂n,−i(Xi).

Indeed, since Xi are i.i.d., we have

Ep(Ĝ) = Ep [p̂n,−1(X1)]

= Ep

⎡

⎣ 1
(n − 1)h

∑

j 
=1

∫
K

(
Xj − z

h

)

p(z) dz

⎤

⎦

=
1
h

∫
p(x)
∫

K

(
x − z

h

)

p(z) dz dx

provided that the last expression is finite. On the other hand,

G = Ep

[∫
p̂np

]

= Ep

[
1

nh

n∑

i=1

∫
K

(
Xi − z

h

)

p(z) dz

]

=
1
h

∫
p(x)
∫

K

(
x − z

h

)

p(z) dz dx,
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implying that G = Ep(Ĝ).
Summarizing our argument, an unbiased estimator of J(h) can be written

as follows:

CV (h) =
∫

p̂2
n − 2

n

n∑

i=1

p̂n,−i(Xi)

where CV stands for “cross-validation.” The function CV (·) is called the
leave-one-out cross-validation criterion or simply the cross-validation crite-
rion. Thus we have proved the following result.

Proposition 1.9 Assume that for a function K : R → R, for a probability
density p satisfying

∫
p2 < ∞ and h > 0 we have

∫ ∫
p(x)
∣
∣
∣
∣K

(
x − z

h

)∣
∣
∣
∣ p(z) dz dx < ∞.

Then
Ep[CV (h)] = MISE(h) −

∫
p2.

Thus, CV (h) yields an unbiased estimator of MISE(h), up to a shift
∫

p2

which is independent of h. This means that the functions h �→ MISE(h)
and h �→ Ep[CV (h)] have the same minimizers. In turn, the minimizers of
Ep[CV (h)] can be approximated by those of the function CV (·) which can be
computed from the observations X1, . . . , Xn:

hCV = arg min
h>0

CV (h)

whenever the minimum is attained (cf. Figure 1.3). Finally, we define the
cross-validation estimator p̂n,CV of the density p in the following way:

p̂n,CV (x) =
1

nhCV

n∑

i=1

K

(
Xi − x

hCV

)

.

This is a kernel estimator with random bandwidth hCV depending on the
sample X1, . . . , Xn. It can be proved that under appropriate conditions the
integrated squared error of the estimator p̂n,CV is asymptotically equivalent to
that of the ideal kernel pseudo-estimator (oracle) which has the bandwidth hid

defined in (1.57). Similar results for another estimation problem are discussed
in Chapter 3.

Cross-validation is not the only way to construct unbiased risk estimators.
Other methods exist: for example, we can do this using the Fourier analysis of
density estimators, in particular, formula (1.41). Let K be a symmetric kernel
such that its (real-valued) Fourier transform K̂ belongs to L1(R) ∩ L2(R).
Consider the function J̃(·) defined by
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Cross−validation

Bandwidth

hid hCV

Figure 1.3. The functions CV (h) (solid line), MISE(h) −
∫

p2 (dashed line)
and their minimizers hCV , hid.

J̃(h)
�
=
∫ (

−2K̂(hω) + K̂2(hω)
(
1 − 1

n

)) ∣
∣φn(ω)

∣
∣2dω (1.58)

+
2
n

∫
K̂(hω)dω

=
∫ (

−2K̂(hω) + K̂2(hω)
(
1 − 1

n

)) ∣
∣φn(ω)

∣
∣2dω +

4πK(0)
nh

,

where φn is the empirical characteristic function and we have used that, by the
inverse Fourier transform,

∫
K̂(ω)dω = 2πK(0). From (1.38) and Theorem 1.4

we get

Ep(Ĵ(h)) =
∫ (

−2K̂(hω) + K̂2(hω)
(
1 − 1

n

))(
1 − 1

n

)∣
∣φ(ω)

∣
∣2dω (1.59)

+
1
n

(
1 − 1

n

)∫
K̂2(hω)dω

=
(
1 − 1

n

)[∫ (
1 − K̂(hω)

)2 ∣
∣φ(ω)

∣
∣2dω −

∫ ∣
∣φ(ω)

∣
∣2dω

+
1
n

∫
(1 −

∣
∣φ(ω)

∣
∣2)K̂2(hω)dω

]
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= 2π
(
1 − 1

n

)[

MISE(h) −
∫

p2

]

.

Therefore, the functions h �→ Ep(J̃(h)) and h �→ MISE(h) have the same
minimizers. In the same spirit as above we now approximate the unknown
minimizers of MISE(·) by

h̃ = arg min
h>0

J̃(h).

This is a data-driven bandwidth obtained from an unbiased risk estimation
but different from the cross-validation bandwidth hCV . The corresponding
density estimator is given by

p̃n(x) =
1

nh̃

n∑

i=1

K

(
Xi − x

h̃

)

.

It can be proved that, under appropriate conditions, the estimator p̃n behaves
itself analogously to p̂n,CV : the MISE of p̃n is asymptotically equivalent to
that of the ideal kernel pseudo-estimator (oracle) that has the bandwidth hid

defined in (1.57). The proof of this property is beyond the scope of the book
but similar results for another estimation problem are discussed in Chapter 3.

1.5 Nonparametric regression. The Nadaraya–Watson
estimator

The following two basic models are usually considered in nonparametric re-
gression.

1. Nonparametric regression with random design

Let (X,Y ) be a pair of real-valued random variables such that E|Y | < ∞.
The function f : R → R defined by

f(x) = E(Y |X = x)

is called the regression function of Y on X. Suppose that we have a sample
(X1, Y1), . . . , (Xn, Yn) of n i.i.d. pairs of random variables having the same
distribution as (X,Y ). We would like to estimate the function f from the data
(X1, Y1), . . . , (Xn, Yn). The nonparametric approach only assumes that f ∈ F ,
where F is a given nonparametric class. The set of values {X1, . . . , Xn} is
called the design. Here the design is random.

The conditional residual ξ
�
= Y − E(Y |X) has mean zero, E(ξ) = 0, and

we may write
Yi = f(Xi) + ξi, i = 1, . . . , n, (1.60)

where ξi are i.i.d. random variables with the same distribution as ξ. In par-
ticular, E(ξi) = 0. The variables ξi can therefore be interpreted as a “noise.”
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2. Nonparametric regression with fixed design

This model is also defined by (1.60) but now Xi ∈ R are fixed and determin-
istic instead of random and i.i.d.

Example 1.1 Nonparametric regression model with regular design.

Suppose that Xi = i/n. Assume that f is a function from [0, 1] to R
and that the observations Yi are given by

Yi = f(i/n) + ξi, i = 1, 2, . . . , n,

where ξi are i.i.d. with mean zero (E(ξi) = 0). In what follows, we will
mainly focus on this model.

Given a kernel K and a bandwidth h, one can construct kernel estimators
for nonparametric regression similar to those for density estimation. There
exist different types of kernel estimators of the regression function f . The
most celebrated one is the Nadaraya–Watson estimator defined as follows:

fNW
n (x) =

n∑

i=1

YiK

(
Xi − x

h

)

n∑

i=1

K

(
Xi − x

h

) , if
n∑

i=1

K

(
Xi − x

h

)

�= 0,

and fNW
n (x) = 0, otherwise.

Example 1.2 The Nadaraya–Watson estimator with rectangular kernel.

If we choose K(u) = 1
2 I(|u| ≤ 1), then fNW

n (x) is the average of
such Yi that Xi ∈ [x − h, x + h]. For fixed n, the two extreme cases
for the bandwidth are:
(i) h → ∞. Then fNW

n (x) tends to n−1
∑n

i=1 Yi which is a constant
independent of x. The systematic error (bias) can be too large.
This is a situation of oversmoothing.

(ii) h → 0. Then fNW
n (Xi) = Yi whenever h < mini,j |Xi − Xj | and

lim
h→0

fNW
n (x) = 0, if x �= Xi.

The estimator fNW
n is therefore too oscillating: it reproduces the

data Yi at the points Xi and vanishes elsewhere. This makes the
stochastic error (variance) too large. In other words, undersmooth-
ing occurs.

An optimal bandwidth h yielding a balance between bias and variance
is situated between these two extremes.
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The Nadaraya–Watson estimator can be represented as a weighted sum of
the Yi:

fNW
n (x) =

n∑

i=1

YiW
NW
ni (x)

where the weights are

WNW
ni (x) =

K

(
Xi − x

h

)

n∑

j=1

K

(
Xj − x

h

) I

⎛

⎝
n∑

j=1

K

(
Xj − x

h

)

�= 0

⎞

⎠ .

Definition 1.7 An estimator f̂n(x) of f(x) is called a linear nonparamet-
ric regression estimator if it can be written in the form

f̂n(x) =
n∑

i=1

Yi Wni(x)

where the weights Wni(x) = Wni(x,X1, . . . , Xn) depend only on n, i, x and the
values X1, . . . , Xn.

Typically, the weights Wni(x) of linear regression estimators satisfy the equal-
ity

n∑

i=1

Wni(x) = 1

for all x (or for almost all x with respect to the Lebesgue measure).
An intuitive motivation of fNW

n is clear. Suppose that the distribution of
(X,Y ) has density p(x, y) with respect to the Lebesgue measure and p(x) =∫

p(x, y)dy > 0. Then

f(x) = E(Y |X = x) =
∫

yp(x, y)dy
∫

p(x, y)dy
=
∫

yp(x, y)dy

p(x)
.

If we replace here p(x, y) by the estimator p̂n(x, y) of the density of (X,Y )
defined by (1.3) and use the kernel estimator p̂n(x) instead of p(x), we obtain
fNW

n in view of the following result.

Proposition 1.10 Let p̂n(x) and p̂n(x, y) be the kernel density estimators
defined in (1.2) and (1.3), respectively, with a kernel K of order 1. Then

fNW
n (x) =

∫
yp̂n(x, y)dy

p̂n(x)
(1.61)

if p̂n(x) �= 0.



34 1 Nonparametric estimators

Proof. By (1.3), we have

∫
yp̂n(x, y)dy =

1
nh2

n∑

i=1

K

(
Xi − x

h

)∫
y K

(
Yi − y

h

)

dy.

Since K has order 1, we also obtain

1
h

∫
y K

(
Yi − y

h

)

dy =
∫

y − Yi

h
K

(
Yi − y

h

)

dy +
Yi

h

∫
K

(
Yi − y

h

)

dy

= −h

∫
uK(u)du + Yi

∫
K(u)du = Yi.

If the marginal density p of Xi is known we can use p(x) instead of
p̂n(x) in (1.61). Then we get the following estimator which is slightly different
from fNW

n :

f̄nh(x) =
∫

yp̂n(x, y)dy

p(x)
=

1
nhp(x)

n∑

i=1

YiK

(
Xi − x

h

)

.

In particular, if p is the density of the uniform distribution on [0, 1], then

f̄nh(x) =
1

nh

n∑

i=1

YiK

(
Xi − x

h

)

. (1.62)

Though the above argument concerns the regression model with random
design, the estimator (1.62) is also applicable for the regular fixed design
(Xi = i/n).

1.6 Local polynomial estimators

If the kernel K takes only nonnegative values, the Nadaraya–Watson estimator
fNW

n satisfies

fNW
n (x) = arg min

θ∈R

n∑

i=1

(Yi − θ)2K
(

Xi − x

h

)

. (1.63)

Thus fNW
n is obtained by a local constant least squares approximation of the

outputs Yi. The locality is determined by a kernel K that downweights all
the Xi that are not close to x whereas θ plays the role of a local constant
to be fitted. More generally, we may define a local polynomial least squares
approximation, replacing in (1.63) the constant θ by a polynomial of given
degree �. If f ∈ Σ(β, L), β > 1, � = �β�, then for z sufficiently close to x we
may write
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f(z) ≈ f(x) + f ′(x)(z − x) + · · · + f (�)(x)
�!

(z − x)� = θT (x)U
(

z − x

h

)

where

U(u) =
(
1, u, u2/2!, . . . , u�/�!

)T

,

θ(x) =
(
f(x), f ′(x)h, f ′′(x)h2, . . . , f (�)(x)h�

)T

.

We can therefore generalize (1.63) in the following way.

Definition 1.8 Let K : R → R be a kernel, h > 0 be a bandwidth, and � ≥ 0
be an integer. A vector θ̂n(x) ∈ R�+1 defined by

θ̂n(x) = arg min
θ∈R�+1

n∑

i=1

[

Yi − θT U

(
Xi − x

h

)]2
K

(
Xi − x

h

)

(1.64)

is called a local polynomial estimator of order � of θ(x) or LP(�) esti-
mator of θ(x) for short. The statistic

f̂n(x) = UT (0)θ̂n(x)

is called a local polynomial estimator of order � of f(x) or LP(�) esti-
mator of f(x) for short.

Note that f̂n(x) is simply the first coordinate of the vector θ̂n(x). Compar-
ing (1.64) and (1.63) we see that the Nadaraya–Watson estimator fNW

n with
kernel K ≥ 0 is the LP(0) estimator. Furthermore, properly normalized co-
ordinates of θ̂n(x) provide estimators of the derivatives f ′(x), . . . , f (�)(x) (cf.
Exercise 1.4).

For a fixed x the estimator (1.64) is a weighted least squares estimator.
Indeed, we can write θ̂n(x) as follows:

θ̂n(x) = arg min
θ∈R�+1

(−2θT anx + θTBnxθ), (1.65)

where the matrix Bnx and the vector anx are defined by the formulas

Bnx =
1

nh

n∑

i=1

U

(
Xi − x

h

)

UT

(
Xi − x

h

)

K

(
Xi − x

h

)

,

anx =
1

nh

n∑

i=1

YiU

(
Xi − x

h

)

K

(
Xi − x

h

)

.

A necessary condition for θ̂n(x) to satisfy (1.65) is that the following system
of normal equations hold:

Bnxθ̂n(x) = anx. (1.66)
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If the matrix Bnx is positive definite (Bnx > 0), the LP(�) estimator is unique
and is given by θ̂n(x) = B−1

nx anx (equation (1.66) is then a necessary and
sufficient condition characterizing the minimizer in (1.65)). In this case

f̂n(x) =
n∑

i=1

Yi W ∗
ni(x) (1.67)

where

W ∗
ni(x) =

1
nh

UT (0)B−1
nx U

(
Xi − x

h

)

K

(
Xi − x

h

)

proving the following result.

Proposition 1.11 If the matrix Bnx is positive definite, the local polynomial
estimator f̂n(x) of f(x) is a linear estimator.

The local polynomial estimator of order � has a remarkable property: It
reproduces polynomials of degree ≤ �. This is shown in the next proposition.

Proposition 1.12 Let x be a real number such that Bnx > 0 and let Q be a
polynomial of degree ≤ �. Then the LP(�) weights W ∗

ni are such that

n∑

i=1

Q(Xi)W ∗
ni(x) = Q(x)

for any sample (X1, . . . , Xn). In particular,

n∑

i=1

W ∗
ni(x) = 1 and

n∑

i=1

(Xi − x)kW ∗
ni(x) = 0 for k = 1, . . . , �. (1.68)

Proof. Since Q is a polynomial of degree ≤ �, we have

Q(Xi) = Q(x) + Q′(x)(Xi − x) + · · · + Q(�)(x)
� !

(Xi − x)�

= qT (x)U
(

Xi − x

h

)

where q(x) = (Q(x), Q′(x)h, . . . , Q(�)(x)h�)T ∈ R�+1. Set Yi = Q(Xi). Then
the LP(�) estimator satisfies

θ̂n(x) = arg min
θ∈R�+1

n∑

i=1

(

Q(Xi) − θT U

(
Xi − x

h

))2

K

(
Xi − x

h

)

= arg min
θ∈R�+1

n∑

i=1

(

(q(x) − θ)T U

(
Xi − x

h

))2

K

(
Xi − x

h

)

= arg min
θ∈R�+1

(q(x) − θ)T Bnx(q(x) − θ).
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Therefore, if Bnx > 0, we have θ̂n(x) = q(x) and we obtain f̂n(x) = Q(x),
since f̂n(x) is the coordinate of θ̂n(x). The required result follows immediately
by taking Yi = Q(Xi) in (1.67).

1.6.1 Pointwise and integrated risk of local polynomial estimators

In this section we study statistical properties of the LP(�) estimator con-
structed from observations (Xi, Yi), i = 1, . . . , n, such that

Yi = f(Xi) + ξi, i = 1, . . . , n, (1.69)

where ξi are independent zero mean random variables (E(ξi) = 0), the Xi are
deterministic values belonging to [0, 1], and f is a function from [0, 1] to R.

Let f̂n(x0) be an LP(�) estimator of f(x0) at point x0 ∈ [0, 1]. The bias
and the variance of f̂n(x0) are given by the formulas

b(x0) = Ef

[
f̂n(x0)

]
− f(x0), σ2(x0) = Ef

[
f̂2

n(x0)
]
−
(
Ef

[
f̂n(x0)

])2
,

respectively, where Ef denotes expectation with respect to the distribution
of the random vector (Y1, . . . , Yn) whose coordinates satisfy (1.69). We will
sometimes write for brevity E instead of Ef . The mean squared risk of f̂n(x0)
at a fixed point x0 is

MSE = MSE(x0)
�
= Ef

[
(f̂n(x0) − f(x0))2

]
= b2(x0) + σ2(x0).

We will study separately the bias and the variance terms in this representation
of the risk. First, we introduce the following assumptions.

Assumptions (LP)

(LP1) There exist a real number λ0 > 0 and a positive integer n0 such that
the smallest eigenvalue λmin(Bnx) of Bnx satisfies

λmin(Bnx) ≥ λ0

for all n ≥ n0 and any x ∈ [0, 1].

(LP2) There exists a real number a0 > 0 such that for any interval A ⊆ [0, 1]
and all n ≥ 1

1
n

n∑

i=1

I(Xi ∈ A) ≤ a0 max(Leb(A), 1/n)

where Leb(A) denotes the Lebesgue measure of A.

(LP3) The kernel K has compact support belonging to [−1, 1] and there exists
a number Kmax < ∞ such that |K(u)| ≤ Kmax, ∀u ∈ R.
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Assumption (LP1) is stronger than the condition Bnx > 0 introduced in
the previous section since it is uniform with respect to n and x. We will see
that this assumption is natural in the case where the matrix Bnx converges
to a limit as n → ∞. Assumption (LP2) means that the points Xi are dense
enough in the interval [0, 1]. It holds for a sufficiently wide range of designs.
An important example is given by the regular design: Xi = i/n, for which
(LP2) is satisfied with a0 = 2. Finally, assumption (LP3) is not restrictive
since the choice of K belongs to the statistician.

Since the matrix Bnx is symmetric, assumption (LP1) implies that, for all
n ≥ n0, x ∈ [0, 1], and v ∈ R�+1,

‖B−1
nx v‖ ≤ ‖v‖/λ0 (1.70)

where ‖ · ‖ denotes the Euclidean norm in R�+1.

Lemma 1.3 Under Assumptions (LP1) – (LP3), for all n ≥ n0, h ≥ 1/(2n),
and x ∈ [0, 1], the weights W ∗

ni of the LP(�) estimator are such that:

(i) sup
i,x

|W ∗
ni(x)| ≤ C∗

nh
;

(ii)
n∑

i=1

|W ∗
ni(x)| ≤ C∗;

(iii) W ∗
ni(x) = 0 if |Xi − x| > h,

where the constant C∗ depends only on λ0, a0, and Kmax.

Proof. (i) By (1.70) and by the fact that ‖U(0)‖ = 1, we obtain

|W ∗
ni(x)| ≤ 1

nh

∥
∥
∥
∥B

−1
nx U

(
Xi − x

h

)

K

(
Xi − x

h

)∥
∥
∥
∥

≤ 1
nhλ0

∥
∥
∥
∥U

(
Xi − x

h

)

K

(
Xi − x

h

)∥
∥
∥
∥

≤ Kmax

nhλ0

∥
∥
∥
∥U

(
Xi − x

h

)∥
∥
∥
∥ I

(∣
∣
∣
∣
Xi − x

h

∣
∣
∣
∣ ≤ 1

)

≤ Kmax

nhλ0

√

1 + 1 +
1

(2!)2
+ · · · + 1

(�!)2
≤ 2Kmax

nhλ0
.

(ii) In a similar way, by (LP2), we have

n∑

i=1

|W ∗
ni(x)| ≤ Kmax

nhλ0

n∑

i=1

∥
∥
∥
∥U

(
Xi − x

h

)∥
∥
∥
∥ I

(∣
∣
∣
∣
Xi − x

h

∣
∣
∣
∣ ≤ 1

)



1.6 Local polynomial estimators 39

≤ 2Kmax

nhλ0

n∑

i=1

I(x − h ≤ Xi ≤ x + h)

≤ 2Kmaxa0

λ0
max
(

2,
1

nh

)

≤ 4Kmaxa0

λ0
.

To complete the proof, we take C∗ = max{2Kmax/λ0, 4Kmaxa0/λ0} and ob-
serve that (iii) follows from the fact that the support of K is contained
in [−1, 1].

Proposition 1.13 Suppose that f belongs to a Hölder class Σ(β, L) on [0, 1],
with β > 0 and L > 0. Let f̂n be the LP(�) estimator of f with � = �β�.
Assume also that:

(i) the design points X1, . . . , Xn are deterministic;
(ii)Assumptions (LP1)–(LP3) hold;
(iii) the random variables ξi are independent and such that for all i = 1, . . . , n,

E(ξi) = 0, E(ξ2
i ) ≤ σ2

max < ∞.

Then for all x0 ∈ [0, 1], n ≥ n0, and h ≥ 1/(2n) the following upper bounds
hold:

|b(x0)| ≤ q1 hβ , σ2(x0) ≤
q2

nh
,

where q1 = C∗L/�! and q2 = σ2
max C2

∗ .

Proof. Using (1.68) and the Taylor expansion of f we obtain that, for f ∈
Σ(β, L),

b(x0) = Ef

[
f̂n(x0)

]
− f(x0) =

n∑

i=1

f(Xi)W ∗
ni(x0) − f(x0)

=
n∑

i=1

(f(Xi) − f(x0))W ∗
ni(x0)

=
n∑

i=1

f (�)(x0 + τi(Xi − x0)) − f (�)(x0)
� !

(Xi − x0)� W ∗
ni(x0),

where 0 ≤ τi ≤ 1. This representation and statements (ii) and (iii) of
Lemma 1.3 imply that

|b(x0)| ≤
n∑

i=1

L|Xi − x0|β
� !

|W ∗
ni(x0)|

= L

n∑

i=1

|Xi − x0|β
� !

|W ∗
ni(x0)|I(|Xi − x0| ≤ h)

≤ L
n∑

i=1

hβ

�!
|W ∗

ni(x0)| ≤
LC∗
� !

hβ = q1 hβ .
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The variance satisfies

σ2(x0) = E

⎡

⎣

(
n∑

i=1

ξi W ∗
ni(x0)

)2
⎤

⎦ =
n∑

i=1

(W ∗
ni(x0))2E(ξ2

i )

≤ σ2
max sup

i,x
|W ∗

ni(x)|
n∑

i=1

|W ∗
ni(x0)| ≤

σ2
maxC

2
∗

nh
=

q2

nh
.

Proposition 1.13 implies that

MSE ≤ q2
1h2β +

q2

nh

and that the minimizer h∗
n with respect to h of this upper bound on the risk

is given by

h∗
n =
(

q2

2βq2
1

) 1
2β+1

n− 1
2β+1 .

Therefore we obtain the following result.

Theorem 1.6 Under the assumptions of Proposition 1.13 and if the band-
width is chosen to be h = hn = αn− 1

2β+1 , α > 0, the following upper bound
holds:

lim sup
n→∞

sup
f∈Σ(β,L)

sup
x0∈[0,1]

Ef

[
ψ−2

n |f̂n(x0) − f(x0)|2
]
≤ C < ∞, (1.71)

where ψn = n− β
2β+1 is the rate of convergence and C is a constant depending

only on β, L, λ0, a0, σ
2
max,Kmax, and α.

Corollary 1.2 Under the assumptions of Theorem 1.6 we have

lim sup
n→∞

sup
f∈Σ(β,L)

Ef

[
ψ−2

n ‖f̂n − f‖2
2

]
≤ C < ∞, (1.72)

where ‖f‖2
2 =
∫ 1

0
f2(x)dx, ψn = n− β

2β+1 and where C is a constant depending
only on β, L, λ0, a0, σ

2
max,Kmax, and α.

We now discuss Assumption (LP1) in more detail. If the design is regular
and n is large enough, Bnx is close to the matrix B =

∫
U(u)UT (u)K(u)du,

which is independent of n and x. Therefore, for Assumption (LP1) to hold we
only need to assure that B is positive definite. This is indeed true, except for
pathological cases, as the following lemma states.

Lemma 1.4 Let K : R → [0,+∞) be a function such that the Lebesgue
measure Leb(u : K(u) > 0) > 0. Then the matrix

B =
∫

U(u)UT (u)K(u)du

is positive definite.
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Proof. It is sufficient to prove that for all v ∈ R�+1 satisfying v �= 0 we have

vTBv > 0.

Clearly,

vTBv =
∫

(vT U(u))2K(u)du ≥ 0.

If there exists v �= 0 such that
∫

[vT U(u)]2K(u) du = 0, then vT U(u) = 0 for
almost all u on the set {u : K(u) > 0}, which has a positive Lebesgue measure
by assumption of the lemma. But the function u �→ vT U(u) is a polynomial of
degree ≤ � which cannot be equal to zero except for a finite number of points.
Thus, we come to a contradiction showing that

∫
[vT U(u)]2K(u) du = 0 is

impossible for v �= 0.

Lemma 1.5 Suppose that there exist Kmin > 0 and Δ > 0 such that

K(u) ≥ KminI(|u| ≤ Δ), ∀ u ∈ R, (1.73)

and that Xi = i/n for i = 1, . . . , n. Let h = hn be a sequence satisfying

hn → 0, nhn → ∞ (1.74)

as n → ∞. Then Assumption (LP1) holds.

Proof. Let us show that

inf
‖v‖=1

vTBnxv ≥ λ0

for sufficiently large n. By (1.73), we have

vTBnxv ≥ Kmin

nh

n∑

i=1

(vT U(zi))2I(|zi| ≤ Δ) (1.75)

where zi = (Xi − x)/h. Observe that zi − zi−1 = (nh)−1 and

z1 =
1

nh
− x

h
≤ 1

nh
, zn =

1 − x

h
≥ 0.

If x < 1 − hΔ, then zn > Δ and the points zi form a grid with step (nh)−1

on an interval covering [0,Δ]. Moreover, nh → ∞ and therefore

1
nh

n∑

i=1

(vT U(zi))2I(|zi| ≤ Δ) ≥ 1
nh

n∑

i=1

(vT U(zi))2I(0 ≤ zi ≤ Δ) (1.76)

→
∫ Δ

0

(vT U(z))2dz as n → ∞,
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since the Riemann sum converges to the integral.
If x ≥ 1 − hΔ, then (1.74) implies that z1 < −Δ for sufficiently large n

and that the points zi form a grid with step (nh)−1 on an interval covering
[−Δ, 0]. As before, we obtain

1
nh

n∑

i=1

(vT U(zi))2I(|zi| ≤ Δ) ≥ 1
nh

n∑

i=1

(vT U(zi))2I(−Δ ≤ zi ≤ 0)

→
∫ 0

−Δ

(vT U(z))2dz as n → ∞. (1.77)

It is easy to see that convergence in (1.76) and (1.77) is uniform on {‖v‖ = 1}.
This remark and (1.75)–(1.77) imply that

inf
‖v‖=1

vTBnxv ≥ Kmin

2
min

{

inf
‖v‖=1

∫ Δ

0

(vT U(z))2dz, inf
‖v‖=1

∫ 0

−Δ

(vT U(z))2dz

}

for sufficiently large n. To complete the proof, it remains to apply Lemma 1.4
for K(u) = I(0 ≤ u ≤ Δ) and K(u) = I(−Δ ≤ u ≤ 0), respectively.

Using Theorem 1.6, Corollary 1.2, and Lemma 1.5 we obtain the following
result.

Theorem 1.7 Assume that f belongs to the Hölder class Σ(β, L) on [0, 1]
where β > 0 and L > 0. Let f̂n be the LP(�) estimator of f with � = �β�.
Suppose also that:

(i) Xi = i/n for i = 1, . . . , n;
(ii) the random variables ξi are independent and satisfy

E(ξi) = 0, E(ξ2
i ) ≤ σ2

max < ∞

for all i = 1, . . . , n;
(iii) there exist constants Kmin > 0, Δ > 0 and Kmax < ∞ such that

KminI(|u| ≤ Δ) ≤ K(u) ≤ KmaxI(|u| ≤ 1), ∀ u ∈ R;

(iv) h = hn = αn− 1
2β+1 for some α > 0.

Then the estimator f̂n satisfies (1.71) and (1.72).

1.6.2 Convergence in the sup-norm

Define the L∞-risk of the estimator f̂n as Ef‖f̂n − f‖2
∞ where

‖f‖∞ = sup
t∈[0,1]

|f(t)|.

In this section we study the rate at which the L∞-risk of the local polynomial
estimator tends to zero. We will need the following preliminary results.
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Lemma 1.6 Let η1, . . . , ηM be random variables such that, for two constants
α0 > 0 and C0 < ∞, we have max

1≤j≤M
E[exp(α0η

2
j )] ≤ C0. Then

E
[

max
1≤j≤M

η2
j

]

≤ 1
α0

log(C0M).

Proof. Using Jensen’s inequality we obtain

E
[
max

j
η2

j

]
=

1
α0

E
[
max

j
log
(
exp(α0η

2
j )
) ]

=
1
α0

E
[
log
(

max
j

exp(α0 η2
j )
)]

≤ 1
α0

log E
[
max

j
exp(α0 η2

j )
]
≤ 1

α0
log E

⎡

⎣
M∑

j=1

exp(α0 η2
j )

⎤

⎦

≤ 1
α0

log
(

M max
j

E
[
exp(α0 η2

j )
])

≤ 1
α0

log(C0M).

Observe that Lemma 1.6 does not require the random variables ηj to be
independent.

Corollary 1.3 Suppose that η1, . . . , ηM are Gaussian random vectors on Rd

such that E(ηj) = 0 and max
1≤j≤M

max
1≤k≤d

E(η2
jk) ≤ σ2

max < ∞ where ηjk is the

kth component of the vector ηj. Then

E
[

max
1≤j≤M

‖ηj‖2

]

≤ 4dσ2
max log(

√
2Md),

where ‖ · ‖ denotes the Euclidean norm on Rd.

Proof. We have

E
[

max
1≤j≤M

‖ηj‖2

]

≤ d E
[

max
1≤j≤M

max
1≤k≤d

η2
jk

]

,

The random variables ηjk are Gaussian, have zero means and variances σ2
jk =

E(η2
jk) ≤ σ2

max. Therefore

E
[
exp(α0η

2
jk)
]
≤ 1√

2πσjk

∫
exp

(

− x2

4σ2
jk

)

dx =
√

2

for α0 = 1/(4σ2
max). To complete the proof it remains to apply Lemma 1.6

with C0 =
√

2.

The following theorem establishes an upper bound on the L∞-risk of local
polynomial estimators.
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Theorem 1.8 Suppose that f belongs to a Hölder class Σ(β, L) on [0, 1]
where β > 0 and L > 0. Let f̂n be the LP(�) estimator of order � = �β�
with bandwidth

hn = α

(
log n

n

) 1
2β+1

(1.78)

for some α > 0. Suppose also that:

(i) the design points X1, . . . , Xn are deterministic;
(ii) Assumptions (LP1)–(LP3) hold;
(iii) the random variables ξi are i.i.d. Gaussian N (0, σ2

ξ ) with 0 < σ2
ξ < ∞;

(iv) K is a Lipschitz kernel: K ∈ Σ(1, LK) on R with 0 < LK < ∞.

Then there exists a constant C < ∞ such that

lim sup
n→∞

sup
f∈Σ(β,L)

Ef

[
ψ−2

n ‖f̂n − f‖2
∞

]
≤ C,

where

ψn =
(

log n

n

) β
2β+1

. (1.79)

Proof. Using Proposition 1.13 and writing for brevity E = Ef we get

E‖f̂n − f‖2
∞ ≤ E

[
‖f̂n − Ef̂n‖∞ + ‖Ef̂n − f‖∞

]2

≤ 2E‖f̂n − Ef̂n‖2
∞ + 2

(
sup

x∈[0,1]

|b(x)|
)2

≤ 2E‖f̂n − Ef̂n‖2
∞ + 2q2

1h2β
n . (1.80)

On the other hand,

E‖f̂n − Ef̂n‖2
∞ = E

[

sup
x∈[0,1]

∣
∣
∣f̂n(x) − E

[
f̂n(x)

] ∣
∣
∣
2
]

= E

⎡

⎣ sup
x∈[0,1]

∣
∣
∣
∣
∣

n∑

i=1

ξi W ∗
ni(x)

∣
∣
∣
∣
∣

2
⎤

⎦ , (1.81)

where

W ∗
ni(x) =

1
nh

UT (0)B−1
nx U

(
Xi − x

h

)

K

(
Xi − x

h

)

=
1

nh
UT (0)B−1

nx Si(x)

and

Si(x) = U

(
Xi − x

h

)

K

(
Xi − x

h

)

.
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In view of (1.70), we have
∣
∣
∣
∣
∣

n∑

i=1

ξi W ∗
ni(x)

∣
∣
∣
∣
∣
≤ 1

nh

∥
∥
∥
∥
∥
B−1

nx

n∑

i=1

ξiSi(x)

∥
∥
∥
∥
∥
≤ 1

λ0nh

∥
∥
∥
∥
∥

n∑

i=1

ξiSi(x)

∥
∥
∥
∥
∥

,

where ‖ · ‖ denotes the Euclidean norm. Set M = n2 and xj = j/M for
j = 1, . . . ,M . Then

A
�
= sup

x∈[0,1]

∣
∣
∣
∣
∣

n∑

i=1

ξi W ∗
ni(x)

∣
∣
∣
∣
∣
≤ 1

λ0nh
sup

x∈[0,1]

∥
∥
∥
∥
∥

n∑

i=1

ξiSi(x)

∥
∥
∥
∥
∥

≤ 1
λ0nh

(

max
1≤j≤M

∥
∥
∥
∥
∥

n∑

i=1

ξi Si(xj)

∥
∥
∥
∥
∥

+ sup
x,x′: |x−x′|≤1/M

∥
∥
∥
∥
∥

n∑

i=1

ξi (Si(x) − Si(x′))

∥
∥
∥
∥
∥

)

.

Since K ∈ Σ(1, LK) and the support of the kernel K belongs to [−1, 1], and
since U(·) is a vector function with polynomial coordinates, there exists a
constant L̄ such that ‖U(u)K(u) − U(u′)K(u′)‖ ≤ L̄|u − u′|, ∀ u, u′ ∈ R.
Thus

A2 ≤
(

1
λ0nh

)2
(

max
1≤j≤M

∥
∥
∥
∥
∥

n∑

i=1

ξiSi(xj)

∥
∥
∥
∥
∥

+
L̄

Mh

n∑

i=1

|ξi|
)2

≤ 2
λ2

0nh

[

max
1≤j≤M

‖ηj‖2

]

+
2L̄2

λ2
0n

2h4M2

(
n∑

i=1

|ξi|
)2

,

where the random vectors ηj are given by

ηj =
1√
nh

n∑

i=1

ξi Si(xj).

Therefore we have

E(A2) ≤ 2
λ2

0nh
E
[

max
1≤j≤M

‖ηj‖2

]

+
2L̄2

λ2
0n

2h4M2
E

⎡

⎣

(
n∑

i=1

|ξi|
)2
⎤

⎦ . (1.82)

Further,

1
M2n2h4

E

⎡

⎣

(
n∑

i=1

|ξi|
)2
⎤

⎦ ≤ E(ξ2
1)

M2h4
=

σ2
ξ

(nh)4
= o

(
1

nh

)

. (1.83)

Since ηj are zero mean Gaussian vectors, we repeat the argument of the proof
of Lemma 1.3 to obtain
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E[‖ηj‖2] =
1

nh

n∑

i=1

σ2
ξ

∥
∥
∥
∥U

(
Xi − xj

h

)∥
∥
∥
∥

2

K2

(
Xi − xj

h

)

(1.84)

≤
4K2

maxσ
2
ξ

nh

n∑

i=1

I (|Xi − xj | ≤ h)

≤ 4K2
maxσ

2
ξa0 max

(

2,
1

nh

)

.

Then, by Corollary 1.3, we have

E
[

max
1≤j≤M

‖ηj‖2

]

= O(log M) = O(log n) as n → ∞. (1.85)

From (1.81)–(1.85) we get

E‖f̂n − Ef̂n‖2
∞ ≤ q3 log n

nh
,

where q3 > 0 is a constant independent of f and n. This upper bound com-
bined with (1.80) implies that

E‖f̂n − f‖2
∞ ≤ q3 log n

nh
+ 2q2

1 h2β .

Choose the bandwidth according to (1.78) to complete the proof.

Theorem 1.8 states that the rate ψn given by (1.79) is a uniform conver-
gence rate of f̂n with respect to the L∞-norm on the class Σ(β, L). In contrast
to the rate of convergence at a fixed point x0 or in the L2-norm, an additional
logarithmic factor appears, slowing down the convergence. We will prove in
Chapter 2 that (1.79) is the optimal rate of convergence in the L∞-norm on
the class Σ(β, L).

1.7 Projection estimators

Here we continue to consider the nonparametric regression model

Yi = f(Xi) + ξi, i = 1, . . . , n,

where ξi are independent random variables, E(ξi) = 0, the values Xi ∈ [0, 1]
are deterministic and f : [0, 1] → R. We will mainly focus on a particular
case, Xi = i/n.

Suppose that f ∈ L2[0, 1]. Let θj be the Fourier coefficients of f with
respect to an orthonormal basis {ϕj}∞j=1 of L2[0, 1]:

θj =
∫ 1

0

f(x)ϕj(x)dx.
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Assume that f can be represented as

f(x) =
∞∑

j=1

θjϕj(x), (1.86)

where the series converges for all x ∈ [0, 1].
Projection estimation of f is based on a simple idea: approximate f by

its projection
∑N

j=1 θjϕj on the linear span of the first N functions of the
basis ϕ1, . . . , ϕN and replace θj by their estimators. Observe that if Xi are
scattered over [0, 1] in a sufficiently uniform way, which happens, e.g., in
the case Xi = i/n, the coefficients θj are well approximated by the sums

n−1

n∑

i=1

f(Xi)ϕj(Xi). Replacing in these sums the unknown quantities f(Xi)

by the observations Yi we obtain the following estimators of θj :

θ̂j =
1
n

n∑

i=1

Yiϕj(Xi). (1.87)

Definition 1.9 Let N ≥ 1 be an integer. The statistic

f̂nN (x) =
N∑

j=1

θ̂jϕj(x)

is called a projection estimator (or an orthogonal series estimator) of
the regression function f at the point x.

Let us emphasize that this definition only makes sense if the points Xi

are scattered over [0, 1] in a sufficiently uniform way, e.g., if Xi = i/n or Xi

are i.i.d. uniformly distributed on [0, 1]. A generalization to arbitrary Xi is
given, for example, by the nonparametric least squares estimator discussed in
Section 1.7.3.

The parameter N (called the order of the projection estimator) plays the
same role as the bandwidth h for kernel estimators: similarly to h it is a
smoothing parameter, i.e., a parameter whose choice is crucial for establishing
the balance between bias and variance. The choice of very large N leads to
undersmoothing, whereas for small values of N oversmoothing occurs. These
effects can be understood through the results of Section 1.7.2 below.

Note that f̂nN is a linear estimator, since we may write it in the form

f̂nN (x) =
n∑

i=1

YiW
∗∗
ni (x)

with

W ∗∗
ni (x) =

1
n

N∑

j=1

ϕj(Xi)ϕj(x). (1.88)
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The bases {ϕj} that are most frequently used in projection estimation are the
trigonometric basis and the wavelet bases.

Example 1.3 Trigonometric basis.

This is the orthonormal basis in L2[0, 1] defined by

ϕ1(x) ≡ 1,

ϕ2k(x) =
√

2 cos(2πkx),

ϕ2k+1(x) =
√

2 sin(2πkx), k = 1, 2, . . . ,

where x ∈ [0, 1].

Example 1.4 Wavelet bases.

Let ψ : R → R be a sufficiently smooth function with a compact
support. Define an infinite set of functions as follows:

ψjk(x) = 2j/2ψ(2jx − k), j, k ∈ ZZ . (1.89)

It can be shown that, under certain assumptions on ψ, the system
(1.89) is an orthonormal basis in L2(R) and, for all f ∈ L2(R),

f =
∞∑

j=−∞

∞∑

k=−∞
θjkψjk, θjk =

∫
fψjk,

where the series converges in L2(R). We can view this expansion as
a particular case of (1.86) if we switch from the double index at θjk

and ψjk to a single one. Basis (1.89) is called a wavelet basis. There
exists a similar construction for L2[0, 1] instead of L2(R) where the
functions ψjk are corrected at the extremes of the interval [0, 1] in
order to preserve orthonormality.

The main difference between the trigonometric basis and wavelet bases
consists in the fact that the trigonometric basis “localizes” the function f in
the frequency domain only, while the wavelet bases “localize” it both in the
frequency domain and time domain if we interpret x as a time variable (the
index j corresponds to frequency and k characterizes position in time).

Projection estimators of a probability density are defined in a similar way.
Let X1, . . . , Xn be i.i.d. random variables with Lebesgue density p ∈ L2(A)
where A ⊆ R is a given interval. Consider the Fourier coefficients cj =

∫
pϕj

of p with respect to an orthonormal basis {ϕj}∞j=1 of L2(A). Introduce the
following estimators of cj :

ĉj =
1
n

n∑

i=1

ϕj(Xi).
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Definition 1.10 Let N ≥ 1 be an integer. The statistic

p̂nN (x) =
N∑

j=1

ĉjϕj(x)

is called a projection estimator (or an orthogonal series estimator) of
the probability density p at the point x.

It is straightforward to see that ĉj is an unbiased estimator of cj what-
ever are the interval A and the orthonormal basis {ϕj}∞j=1 of L2(A). For the
trigonometric basis, more detailed properties can be established (cf. Exer-
cise 1.9).

In the rest of this section, we consider only projection estimators of a
regression function f using the trigonometric basis and we study their con-
vergence in the L2[0, 1] norm.

1.7.1 Sobolev classes and ellipsoids

We will assume that the regression function f is sufficiently smooth, or more
specifically, that it belongs to a Sobolev class of functions. Several definitions
of Sobolev classes will be used below. First, we define the Sobolev class for
integer smoothness β.

Definition 1.11 Let β ∈ {1, 2, . . .} and L > 0. The Sobolev class W (β, L) is
defined by

W (β, L) =
{

f ∈ [0, 1] → R : f (β−1) is absolutely continuous and
∫ 1

0

(f (β)(x))2dx ≤ L2
}

.

The periodic Sobolev class W per(β, L) is defined by

W per(β, L) =
{

f ∈ W (β, L) : f (j)(0) = f (j)(1), j = 0, 1, . . . , β − 1
}

.

It is easy to see that for all β ∈ {1, 2, . . .} and all L > 0 the Sobolev class
W (β, L) contains the Hölder class Σ(β, L) on the interval [0, 1].

Recall that any function f ∈ W per(β, L) admits representation (1.86)
where the sequence θ = {θj}∞j=1 of its Fourier coefficients belongs to the
space

�2(N) =
{

θ :
∞∑

j=1

θ2
j < ∞

}

and {ϕj}∞j=1 is the trigonometric basis defined in Example 1.3. We now give
a necessary and sufficient condition on θ under which the function
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f(x) = θ1ϕ1(x) +
∞∑

k=1

(θ2kϕ2k(x) + θ2k+1 ϕ2k+1(x))

belongs to the class W per(β, L). Define

aj =

{
jβ , for even j,

(j − 1)β , for odd j.
(1.90)

Proposition 1.14 Let β ∈ {1, 2, . . .}, L > 0, and let {ϕj}∞j=1 be the trigono-

metric basis. Then the function f =
∞∑

j=1

θjϕj belongs to W per(β, L) if and

only if the vector θ of the Fourier coefficients of f belongs to an ellipsoid in
�2(N) defined as follows:

Θ(β,Q) =
{

θ ∈ �2(N) :
∞∑

j=1

a2
jθ

2
j ≤ Q

}
(1.91)

where Q = L2/π2β and aj is given by (1.90).

A proof of this proposition is given in the Appendix (Lemma A.3).

The set Θ(β,Q) defined by (1.91) with β > 0 (not necessarily an integer),
Q > 0, and aj satisfying (1.90) is called a Sobolev ellipsoid. We mention the
following properties of these ellipsoids.

(1) The monotonicity with respect to inclusion:

0 < β′ ≤ β =⇒ Θ(β,Q) ⊆ Θ(β′, Q).

(2) If β > 1/2, the function f =
∑∞

j=1 θjϕj with the trigonometric basis
{ϕj}∞j=1 and θ ∈ Θ(β,Q) is continuous (check this as an exercise). In what
follows, we will basically consider this case.

(3) Since a1 = 0, we can write

Θ(β,Q) =
{

θ ∈ �2(N) :
∞∑

j=2

a2
jθ

2
j ≤ Q

}
.

The ellipsoid Θ(β,Q) is well-defined for all β > 0. In this sense Θ(β,Q) is
a more general object than the periodic Sobolev class W per(β, L) , where β
can only be an integer. Proposition 1.14 establishes an isomorphism between
Θ(β,Q) and W per(β, L) for integer β. It can be extended to all β > 0 by
generalizing the definition of W per(β, L) in the following way.
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Definition 1.12 For β > 0 and L > 0 the Sobolev class W̃ (β, L) is defined
as follows:

W̃ (β, L) = {f ∈ L2[0, 1] : θ = {θj} ∈ Θ(β,Q)}

where θj =
∫ 1

0
fϕj and {ϕj}∞j=1 is the trigonometric basis. Here Θ(β,Q) is

the Sobolev ellipsoid defined by (1.91), where Q = L2/π2β and the coefficients
aj are given in (1.90).

For all β > 1/2, the functions belonging to W̃ (β, L) are continuous. On the
contrary, they are not always continuous for β ≤ 1/2; an example is given
by the function f(x) = sign(x − 1/2), whose Fourier coefficients θj are of
order 1/j.

1.7.2 Integrated squared risk of projection estimators

Let us now study the mean integrated squared error (MISE) of the projection
estimator f̂nN :

MISE
�
= Ef‖f̂nN − f‖2

2 = Ef

∫ 1

0

(f̂nN (x) − f(x))2dx.

We will need the following assumption.

Assumption (A)

(i) We consider the nonparametric regression model

Yi = f(Xi) + ξi, i = 1, . . . , n,

where f is a function from [0, 1] to R. The random variables ξi are inde-
pendent with

E(ξi) = 0, E(ξ2
i ) = σ2

ξ < ∞
and Xi = i/n for i = 1, . . . , n.

(ii) {ϕj}∞j=1 is the trigonometric basis.
(iii) The Fourier coefficients θj =

∫ 1

0
fϕj of f satisfy

∞∑

j=1

|θj | < ∞.

It follows from parts (ii) and (iii) of Assumption (A) that the series
∞∑

j=1

θj ϕj(x) is absolutely convergent for all x ∈ [0, 1], and thus the point-

wise representation (1.86) holds.
We will use the following property of the trigonometric basis.



52 1 Nonparametric estimators

Lemma 1.7 Let {ϕj}∞j=1 be the trigonometric basis. Then

1
n

n∑

s=1

ϕj(s/n)ϕk(s/n) = δjk, 1 ≤ j, k ≤ n − 1, (1.92)

where δjk is the Kronecker delta.

Proof. For brevity we consider only the case ϕj(x) =
√

2 cos(2πmx),
ϕk(x) =

√
2 sin(2πlx) where j = 2m, k = 2l + 1, j ≤ n − 1, k ≤ n − 1,

n ≥ 2 and m ≥ 1, l ≥ 1 are integers. Other cases can be studied along similar
lines. Put

a
�
= exp{i2πm/n}, b

�
= exp{i2πl/n}.

Then

S
�
=

1
n

n∑

s=1

ϕj(s/n)ϕk(s/n) =
2
n

n∑

s=1

(as + a−s)(bs − b−s)
4i

=
1

2in

n∑

s=1

[
(ab)s − (a/b)s + (b/a)s − (ab)−s

]
.

Since ab �= 1 and (ab)n = 1, we have

n∑

s=1

(ab)s = ab
(ab)n − 1
ab − 1

= 0.

By the same argument,
n∑

s=1

(ab)−s = 0. If m �= l, then
n∑

s=1

(a/b)s =
n∑

s=1

(b/a)s =

0, whereas for m = l we have
n∑

s=1

(a/b)s =
n∑

s=1

(b/a)s = n. Thus, S = 0.

Lemma 1.7 implies that the projection estimator fnN with the trigono-
metric basis {ϕj}∞j=1 has the property of reproduction of polynomials similar
to that of the local polynomial estimator (cf. Proposition 1.12). However, here
we deal with trigonometric, rather than algebraic, polynomials of degree ≤ N ,
i.e., with functions of the form

Q(x) =
N∑

k=1

bkϕk(x)

where {ϕj}∞j=1 is the trigonometric basis and bk are some coefficients. In fact,
the following proposition holds.

Proposition 1.15 Let N ≤ n − 1 and let Xi = i/n for i = 1, . . . , n. If Q is
a trigonometric polynomial of degree ≤ N , we have
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n∑

i=1

Q(Xi)W ∗∗
ni (x) = Q(x)

for all x ∈ [0, 1].

Proof follows immediately from Lemma 1.7 and from the definition of W ∗∗
ni .

The next result gives the bias and the squared risk of the estimators θ̂j .

Proposition 1.16 Under Assumption (A) the estimators θ̂j defined in (1.87)
satisfy

(i) E(θ̂j) = θj + αj,

(ii) E[(θ̂j − θj)2] = σ2
ξ/n + α2

j , 1 ≤ j ≤ n − 1,

where

αj =
1
n

n∑

i=1

f(i/n)ϕj(i/n) −
∫ 1

0

f(x)ϕj(x)dx.

Proof. We have

θ̂j =
1
n

n∑

i=1

Yi ϕj(i/n) =
1
n

(
n∑

i=1

f(i/n)ϕj(i/n) +
n∑

i=1

ξi ϕj(i/n)

)

.

Therefore

E(θ̂j) =
1
n

n∑

i=1

f(i/n)ϕj(i/n) = αj + θj .

Then

E[(θ̂j − θj)2] = E[(θ̂j − E(θ̂j))2] + (E(θ̂j) − θj)2 = E[(θ̂j − E(θ̂j))2] + α2
j .

Moreover,

θ̂j − E(θ̂j) =
1
n

n∑

i=1

ξiϕj(i/n),

and, by Lemma 1.7,

E[(θ̂j − E(θ̂j))2] =
1
n2

n∑

i=1

ϕ2
j (i/n)σ2

ξ =
σ2

ξ

n
.

The quantities αj in Proposition 1.16 are the residuals coming from the
approximation of sums by integrals. We will see in the sequel that the contri-
bution of these residuals is negligible with respect to the main terms of the
squared risk on the Sobolev classes if n is large. Let us first give some bounds
for αj .
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Lemma 1.8 For the trigonometric basis {ϕj}∞j=1 the residuals αj are such
that:

(i) if
∞∑

j=1

|θj | < ∞, then max
1≤j≤n−1

|αj | ≤ 2
∞∑

m=n

|θm|, for all n ≥ 2;

(ii) if θ ∈ Θ(β,Q), β > 1/2, then max
1≤j≤n−1

|αj | ≤ Cβ,Qn−β+1/2 for all n ≥ 2

and for a constant Cβ,Q < ∞ depending only on β and Q.

Proof. Using Lemma 1.7 we obtain, for 1 ≤ j ≤ n − 1,

αj =
1
n

n∑

i=1

f(i/n)ϕj(i/n) − θj

=
1
n

n∑

i=1

( ∞∑

m=1

θm ϕm(i/n)

)

ϕj(i/n) − θj

=
n−1∑

m=1

θm
1
n

n∑

i=1

ϕm(i/n)ϕj(i/n) − θj

+
1
n

n∑

i=1

∞∑

m=n

θm ϕm(i/n)ϕj(i/n)

=
1
n

n∑

i=1

∞∑

m=n

θm ϕm(i/n)ϕj(i/n).

Thus,

|αj | =

∣
∣
∣
∣
∣

∞∑

m=n

θm

(
1
n

n∑

i=1

ϕm(i/n)ϕj(i/n)

)∣
∣
∣
∣
∣
≤ 2

∞∑

m=n

|θm|.

Assume now that θ ∈ Θ(β,Q). Then

∞∑

m=n

|θm| =
∞∑

m=1

|θm|I(m ≥ n)

≤
( ∞∑

m=1

a2
m θ2

m

)1/2( ∞∑

m=n

a−2
m

)1/2

≤ Q1/2
( ∞∑

m=n

(m − 1)−2β
)1/2

≤ Cβ,Qn−β+1/2.

Proposition 1.17 Under Assumption (A) the risk of the projection estima-
tor f̂nN has the form

MISE = E‖f̂nN − f‖2
2 = AnN +

N∑

j=1

α2
j ,
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where

AnN =
σ2

ξ N

n
+ ρN with ρN =

∞∑

j=N+1

θ2
j .

Proof. Using the expansions f̂nN =
N∑

j=1

θ̂jϕj , f =
∞∑

j=1

θjϕj and part (ii) of

Proposition 1.16 we obtain:

E‖f̂nN − f‖2
2 = E

∫ 1

0

(f̂nN (x) − f(x))2dx

= E
∫ 1

0

⎛

⎝
N∑

j=1

(θ̂j − θj)ϕj(x) −
∞∑

j=N+1

θjϕj(x)

⎞

⎠

2

dx

=
N∑

j=1

E[(θ̂j − θj)2] +
∞∑

j=N+1

θ2
j = AnN +

N∑

j=1

α2
j .

Theorem 1.9 Suppose that Assumption (A) holds, β ≥ 1, and L > 0. For
α > 0, define an integer as follows:

N = �αn
1

2β+1 �.

Then the projection estimator f̂nN satisfies:

lim sup
n→∞

sup
f∈W̃ (β,L)

Ef

[
n

2β
2β+1 ‖f̂nN − f‖2

2

]
≤ C

where C < ∞ is a constant depending only on β, L, and α.

Proof. By Proposition 1.17,

Ef‖f̂nN − f‖2
2 = AnN +

N∑

j=1

α2
j . (1.93)

Assume that n is sufficiently large to satisfy 1 ≤ N ≤ n − 1. By Proposition
1.14, Lemma 1.8 and by the fact that β ≥ 1, we obtain

N∑

j=1

α2
j ≤ N max

1≤j≤n−1
α2

j ≤ C2
β,QNn1−2β (1.94)

= O
(
n

1
2β+1−2β+1

)
= O
(
n− 2β

2β+1

)
,

where the O(·) terms are uniform in f ∈ W̃ (β, L). Therefore

AnN ≤ σ2
ξαn− 2β

2β+1 + ρN . (1.95)
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Finally, since the sequence aj is monotone, we have

ρN =
∞∑

j=N+1

θ2
j ≤ 1

a2
N+1

∞∑

j=1

a2
jθ

2
j ≤ Q

a2
N+1

= O
(
n− 2β

2β+1

)
, (1.96)

where the O(·) term is uniform in f ∈ W̃ (β, L). The theorem follows from
(1.93)–(1.96).

Remarks.

(1) It is easy to see that, for β > 1, formula (1.94) can be improved to
∑N

j=1 α2
j = o

(
n− 2β

2β+1

)
. Thus, the residual term

∑N
j=1 α2

j is negligible with
respect to the upper bound on AnN in Theorem 1.9. More accurate but tech-
nical calculations show that this is also true for β = 1 and for a much more
general choice of N than that in Theorem 1.9. Therefore, the quantity AnN

constitutes the leading part of the MISE of the projection estimator f̂nN . The
terms σ2

ξ N/n and ρN appearing in the definition of AnN are approximately
the variance term and the bias term, respectively, in the L2 risk of the esti-
mator f̂nN . From the inequalities in (1.96) we obtain sup

f∈W̃ (β,L)

ρN ≤ CN−2β

for a constant C and any N ≥ 1. Therefore, the choice N 
 n1/(2β+1) used in
Theorem 1.9 comes from minimization with respect to N of the upper bound
on the maximum risk of f̂nN on the class of functions W̃ (β, L).
(2) Theorem 1.9 states that if N is chosen optimally, the rate of convergence of
the projection estimator f̂nN in the L2-norm over the Sobolev class W̃ (β, L)
is

ψn = n− β
2β+1 .

So, we have again the same rate of convergence as for the Hölder class. More-
over, an analogous result is obtained if we replace W̃ (β, L) by W (β, L) and
choose a basis {ϕj} different from the trigonometric one. We do not study
this case here since it requires somewhat different tools.
(3) The random sequence θ̂ = (θ̂1, . . . , θ̂N , 0, 0, . . .) is an estimator of θ =
(θ1, θ2, . . .) ∈ �2(N). If we denote the norm of �2(N) by ‖·‖, then Theorem 1.9,
Proposition 1.14, and the isometry between �2(N) and L2 imply

lim sup
n→∞

sup
θ∈Θ(β,Q)

E
[
n

2β
2β+1 ‖θ̂ − θ‖2

]
≤ C < ∞.
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1.7.3 Generalizations

We now briefly discuss some generalizations of the projection estimators f̂nN .

1. Nonparametric least squares estimators

So far we have studied a particular regression model with the regular design
Xi = i/n, and the projection estimators have been constructed using the
trigonometric basis. Suppose now that the values Xi ∈ [0, 1] are arbitrary
and {ϕj} is an arbitrary orthonormal basis in L2[0, 1]. Introduce the vectors
θ = (θ1, . . . , θN )T and ϕ(x) = (ϕ1(x), . . . , ϕN (x))T , x ∈ [0, 1]. The least
squares estimator θ̂LS of the vector θ is defined as follows:

θ̂LS = arg min
θ∈RN

n∑

i=1

(Yi − θT ϕ(Xi))2.

If the matrix

B = n−1
n∑

i=1

ϕ(Xi)ϕT (Xi) (1.97)

is invertible, we can write

θ̂LS = B−1
( 1

n

n∑

i=1

Yiϕ(Xi)
)
.

Then the nonparametric least squares estimator of f(x) is given by the for-
mula:

f̂LS
nN (x) = ϕT (x)θ̂LS .

If {ϕj}∞j=1 is the trigonometric basis, N ≤ n−1 and Xi = i/n, then B reduces
to the identity matrix of size N in view of Lemma 1.7. In this particular
case the projection estimators and the nonparametric least squares estimators
coincide: f̂LS

nN = f̂nN .

2. Weighted projection estimators

For a sequence of coefficients λ = {λj}∞j=1 ∈ �2(N) define the weighted pro-
jection estimator in the following way:

fn,λ(x) =
∞∑

j=1

λj θ̂j ϕj(x). (1.98)

Here, as before,

θ̂j =
1
n

n∑

i=1

Yi ϕj(Xi)
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and the random series in (1.98) is interpreted in the sense of mean square
convergence. The projection estimator f̂nN studied so far is a particular ex-
ample of fn,λ corresponding to the weights λj = I(j ≤ N). From now on, we
will call f̂nN the simple projection estimator. Another example is given by
the Pinsker-type weights that we will consider in Chapter 3:

λj = (1 − κjβ)+,

where κ > 0, β > 0, and a+ = max(a, 0). In these two examples, we have λj �=
0 for a finite number of integers j only. If λj �= 0 for all j, the estimator fn,λ

cannot be computed from (1.98). We may then consider truncating the sum
at sufficiently large values of j, for example, at j = n, and introduce the finite
approximation

fn,λ(x) =
n∑

j=1

λj θ̂j ϕj(x). (1.99)

Since the class of weighted projection estimators is wider than that of simple
projection estimators, one can expect to have a smaller value of the mean
integrated squared error for fn,λ (with an appropriate choice of λ) than for
simple projection estimators (cf. Exercise 1.10 below).

The mean integrated squared error of estimator (1.99) has the following
form:

MISE = Ef

∫ 1

0

⎛

⎝
n∑

j=1

(λj θ̂j − θj)ϕj(x) −
∞∑

j=n+1

θjϕj(x)

⎞

⎠

2

dx (1.100)

= Ef

[ n∑

j=1

(λj θ̂j − θj)2
]

+ ρn.

The last expectation typically constitutes the leading term of the MISE,
whereas ρn is asymptotically negligible. For example, if f ∈ W per(β, L), β ≥ 1,
we have

ρn =
∞∑

j=n+1

θ2
j = O(n−2β) = O(n−2).

3. Penalized least squares estimators

Penalized least squares (PLS) estimators provide a generalization of both
nonparametric least squares and weighted projection estimators. A popular
version of the PLS is given by the Tikhonov regularization. The coefficients
θ̂TR of the Tikhonov regularization estimators are defined as a solution of the
minimization problem:

θ̂TR = arg min
θ∈RN

{ 1
n

n∑

i=1

(Yi − θT ϕ(Xi))2 +
N∑

j=1

bjθ
2
j

}
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where bj are some positive constants. Equivalently,

θ̂TR =
(
B + diag(b1, . . . , bN )

)−1( 1
n

n∑

i=1

Yiϕ(Xi)
)

where the matrix B is defined in (1.97) and diag(b1, . . . , bN ) is the diagonal
N × N matrix whose diagonal elements are b1, . . . , bN . Then the Tikhonov
regularization estimator of the value of the regression function f(x) is given
by

f̂TR
nN (x) = ϕT (x)θ̂TR.

If B is the identity matrix and N = n, the components of vector θ̂TR take the
form

θ̂TR
j =

θ̂j

1 + bj
=

1
n(1 + bj)

n∑

i=1

Yi ϕj(Xi),

and f̂TR
nN reduces to a weighted projection estimator

f̂TR
nN (x) =

N∑

j=1

θ̂jϕj(x)
1 + bj

.

In particular, if bj ∼ j2β for an integer β, this estimator is approximately
equivalent to the spline estimator (cf. Exercise 1.11, which considers the case
β = 2).

Another important member of the PLS family is the �1-penalized least
squares, or the Lasso estimator. Its coefficients are defined as a solution of the
minimization problem:

θ̂L = arg min
θ∈RN

{ 1
n

n∑

i=1

(Yi − θT ϕ(Xi))2 +
N∑

j=1

bj |θj |
}

.

For large N , the computation of Tikhonov estimators becomes problematic,
since it involves inversion of an N ×N matrix. On the other hand, the Lasso
estimator remains numerically feasible for dimensions N that are much larger
than the sample size n.

1.8 Oracles

Several examples of oracles have been already discussed in this chapter. Our
aim now is to give a general definition that we will use in Chapter 3.

We start by considering the projection estimator of regression f̂nN . Recall
that f̂nN is entirely determined by the integer tuning parameter N . Therefore,
it is interesting to choose N in an optimal way. Since we study f̂nN under the
L2-risk, the optimal N is naturally defined by
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N∗
n = arg min

N≥1
Ef‖f̂nN − f‖2

2.

Unfortunately, the value N∗
n = N∗

n(f) depends on the unknown function f ,
and thus it is not accessible. For the same reason f̂nN∗

n
is not an estimator:

it depends on the unknown function f . We will call f̂nN∗
n

the oracle. This is
the “best forecast” of f , which is, however, inaccessible: in order to construct
it, we would need an “oracle” that knows f . Since we deal with projection
estimators, we call f̂nN∗

n
more specifically the projection oracle. In the same

way we can define oracles for other classes of nonparametric estimators: we
have already done this above (cf. (1.57)). Let us now give a general definition
of the oracle.

Assume that we would like to estimate a parameter θ in a statistical model
{Pθ, θ ∈ Θ} where Θ is an arbitrary set and Pθ is a probability measure
indexed by θ ∈ Θ. For example, θ may be the regression function f , Θ may be
a Sobolev class, and Pθ may be the distribution of the vector (Y1, . . . , Yn) in
the regression model (1.69). Suppose also that we have a family of estimators
θ̂τ of θ indexed by τ ∈ T :

K = {θ̂τ , τ ∈ T }

where T is an arbitrary set and θ̂τ takes values in a set Θ′ such that Θ ⊆ Θ′.
Usually τ is interpreted as a smoothing parameter and T as the set of possible
values of τ . For example, θ̂τ may be the kernel estimator with a fixed kernel
and bandwidth τ = h. Then it is natural to take T = {h : h > 0}. Another
example is given by the projection estimator; in this case we have τ = N and
T = {1, 2, . . .}.

Introduce a risk function r : Θ′ ×Θ → [0,∞) such that r(θ̂τ , θ) character-
izes the error of estimation of θ by θ̂τ . Two typical examples of r(·, ·) are the
mean squared error MSE and the mean integrated squared error MISE.

Assume that for any θ ∈ Θ there exists an optimal value τ∗(θ) of the pa-
rameter τ such that

r(θ̂τ∗(θ), θ) = min
τ∈T

r(θ̂τ , θ). (1.101)

Observe that θ̂τ∗(θ) is not a statistic since it depends on the unknown param-
eter θ.

Definition 1.13 Assume that the class of estimators K is such that for any
θ ∈ Θ there exists a value τ∗(θ) ∈ T satisfying (1.101). Then the random func-
tion θ �→ θ̂τ∗(θ) is called the oracle for K with respect to the risk r(·, ·).

Let us emphasize that the oracle is determined not only by the class of
estimators under consideration, but also by the choice of the risk (MSE or
MISE, for example).

Instead of minimizing the exact risk as in (1.101), it is sometimes con-
venient to minimize an asymptotic approximation of the risk, as the sample
size n tends to infinity. For example, Proposition 1.17 and Remark (1) after
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Theorem 1.9 suggest that for the simple projection estimator the value AnN

constitutes the leading term of the risk

r(f̂nN , f)
�
= Ef‖f̂nN − f‖2

2

as n → ∞. Therefore, instead of the exact oracle N∗
n, it makes sense to consider

an approximate oracle that minimizes AnN . Since AnN → ∞ as N → ∞ for
any fixed n, there always exists a minimizer of AnN :

Ñn = arg min
N≥1

AnN .

Then an approximate oracle can be defined as f̂nÑn
.

An important question is the following: Can we construct an estimator f∗
n

such that

Ef‖f∗
n − f‖2

2 ≤ Ef‖f̂nN∗
n
− f‖2

2(1 + o(1)), n → ∞, (1.102)

for any f in a sufficiently large class of functions? In other words, can we con-
ceive a true estimator that mimics the asymptotic behavior of the oracle f̂nN∗

n
?

We will see in Chapter 3 that the answer to this question is positive for a model
that is close to the regression model considered here. Such estimators f∗

n will
be called adaptive to the oracle, in a precise sense defined in Chapter 3. In-
equalities of the form (1.102) are known under the name of oracle inequalities.
Construction of adaptive estimators is often based on the idea of unbiased risk
estimation. The next section explains how to apply this idea in the problem
of nonparametric regression.

1.9 Unbiased risk estimation for regression

In Section 1.4 we used unbiased estimation of the risk to obtain data-driven
bandwidth selectors for the kernel density estimator. Similar methods exist
for regression estimators, and we are going to describe some of them in this
section. For example, they can be used to select the bandwidth h of the local
polynomial estimator or the order N of the projection estimator. However, for
the regression model, only approximately unbiased estimators of the MISE
are, in general, available, with an approximation error due to the discreteness
of the design. On the other hand, we can get exactly unbiased estimators of
a discretized version of the MISE.

Consider the regression model (1.69). Let {fτ , τ ∈ T } be a family of esti-
mators based on the sample (X1, Y1), . . . , (Xn, Yn) and depending on a param-
eter τ ∈ T . The dependence of fτ on n is skipped for brevity. We assume that
fτ is entirely determined by (X1, Y1), . . . , (Xn, Yn) and τ . Define a discretized
version of the MISE by

rD
n,τ (f) = Ef‖fτ − f‖2

2,n
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where

‖fτ − f‖2,n
�
=

(
1
n

n∑

i=1

(fτ (Xi) − f(Xi))2
)1/2

.

Let fτ be a linear nonparametric regression estimator indexed by τ , i.e.,

fτ (x) =
n∑

i=1

Yi Wni(x, τ)

where the weights Wni(x, τ) = Wni(x, τ,X1, . . . , Xn) depend only on n, i, τ, x
and on the observations X1, . . . , Xn.

Throughout this section we will assume that

Ef (ξi|X1, . . . , Xn) = 0 and Ef (ξiξk|X1, . . . , Xn) = σ2δjk (1.103)

for i, k = 1, . . . , n, where ξi = Yi − f(Xi). Note that

rD
n,τ (f) = Ef

[

‖fτ‖2
2,n − 2

n

n∑

i=1

fτ (Xi)f(Xi)

]

+ Ef

[
‖f‖2

2,n

]
.

Since the value ‖f‖2
2,n does not depend on τ , the minimizer of rD

n,τ (f) in τ ∈ T
also minimizes the function

J(τ)
�
= Ef

[

‖fτ‖2
2,n − 2

n

n∑

i=1

fτ (Xi)f(Xi)

]

.

We now look for an unbiased estimator of J(τ). A trivial unbiased estimator
of Ef

[
‖fτ‖2

2,n

]
being ‖fτ‖2

2,n, it remains to find an unbiased estimator of

Ef

[
2
n

n∑

i=1

fτ (Xi)f(Xi)

]

.

Such an estimator can be obtained in the form

Ĝ =
2
n

n∑

i=1

Yifτ (Xi) −
2σ2

n

n∑

i=1

Wni(Xi, τ) .

Indeed, conditioning on X1, . . . , Xn we find

Ef

[
n∑

i=1

Yifτ (Xi)
∣
∣
∣X1, . . . , Xn

]

−
n∑

i=1

fτ (Xi)f(Xi)

= Ef

[
n∑

i=1

ξifτ (Xi)
∣
∣
∣X1, . . . , Xn

]

= Ef

[
n∑

i=1

ξi

n∑

k=1

ξkWnk(Xi, τ)
∣
∣
∣X1, . . . , Xn

]

= σ2
n∑

i=1

Wni(Xi, τ)
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and therefore, after taking expectations with respect to X1, . . . , Xn we find

Ef (Ĝ) = Ef

[
2
n

n∑

i=1

fτ (Xi)f(Xi)

]

.

Consequently,

Ĵ(τ) = ‖fτ‖2
2,n − 2

n

n∑

i=1

Yifτ (Xi) +
2σ2

n

n∑

i=1

Wni(Xi, τ)

is an unbiased estimator of J(τ). Define now the Cp-criterion:

Cp(τ)
�
=

1
n

n∑

i=1

(Yi − fτ (Xi))2 +
2σ2

n

n∑

i=1

Wni(Xi, τ) .

Using the relation Ef [Ĵ(τ)] = J(τ) and (1.103) we get

Ef [Cp(τ)] = rD
n,τ (f) + σ2. (1.104)

Thus, Cp(τ) yields an unbiased estimator of the discretized MISE rD
n,τ , up

to a shift σ2, which does not depend on τ . This suggests to approximate the
minimizers of rD

n,τ by those of the Cp-criterion:

τ̂ = arg min
τ∈T

Cp(τ),

which provides a data-driven choice of parameter τ , since the function Cp(·)
can be computed from the data. The Cp-estimator of the regression function
is then defined as fτ̂ .

Consider now some examples. For the orthogonal series (projection) re-
gression estimators f̂nN , we take τ = N and define the weights Wni(x, τ) by
the formula (cf. (1.88)):

Wni(x, τ) =
1
n

N∑

j=1

ϕj(Xi)ϕj(x).

Then
n∑

i=1

Wni(Xi, τ) =
1
n

n∑

i=1

N∑

j=1

ϕ2
j (Xi),

so that the Cp-criterion for the projection regression estimators takes the form

Cp(N) =
1
n

n∑

i=1

(Yi − f̂nN (Xi))2 +
2σ2

n

N∑

j=1

‖ϕj‖2
2,n .
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If {ϕj} is the trigonometric basis and Xi = i/n, for N ≤ n − 1, we have
‖ϕj‖2

2,n = 1 (cf. Lemma 1.7), and the Cp-criterion can be written in a partic-
ularly simple form:

Cp(N) =
1
n

n∑

i=1

(Yi − f̂nN (Xi))2 +
2σ2N

n
. (1.105)

As a second example, consider the kernel regression estimator f̄nh defined in
(1.62). Then τ = h, the weights Wni(x, τ) are given by

Wni(x, τ) =
1

nh
K

(
Xi − x

h

)

,

and the Cp-criterion takes the form

Cp(h) =
1
n

n∑

i=1

(Yi − f̄nh(Xi))2 +
2σ2K(0)

nh
.

We finally discuss the cross-validation techniques. The leave-one-out cross-
validation criterion for regression is defined by

CV ∗(τ) =
1
n

n∑

i=1

(Yi − fτ,−i(Xi))2.

Here fτ,−i is the estimator of the same form as fτ based on the sam-
ple (X1, Y1), . . . , (Xi−1, Yi−1), (Xi+1, Yi+1), . . . , (Xn, Yn), with the observation
(Xi, Yi) left out. Assume that

∫
f2

τ,−i(x)PX(dx) < ∞, (1.106)

where PX is the marginal distribution of X. Then, under the assumptions
(1.103) we easily get that Ef [ξifτ,−i(Xi)] = 0, and

Ef

[
(Yi − fτ,−i(Xi))2

]
= Ef

[
(fτ,−i(Xi) − f(Xi))2

]
(1.107)

+ 2Ef

[
ξi(fτ,−i(Xi) − f(Xi))

]
+ σ2

= Ef

[
(fτ,−i(Xi) − f(Xi))2

]
+ σ2,

so that

Ef [CV ∗(τ)] = Ef

[
1
n

n∑

i=1

(fτ,−i(Xi) − f(Xi))2
]

+ σ2.

We see that the cross-validation criterion does not provide an unbiased esti-
mator even for rD

n,τ (the discretized version of the MISE). In order to justify
that CV ∗ is a meaningful criterion, we would need to show that
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Ef

[
1
n

n∑

i=1

(fτ,−i(Xi) − f(Xi))2
]

≈ Ef‖fτ − f‖2
2,n ,

where the approximation is understood in a suitable sense. This would re-
quire more conditions and could be achieved only in specific contexts. A more
general result is obtained if we modify the risk by passing to a weighted MISE,

rn−1,τ (f)
�
= Ef

∫
(fτ,−i(x) − f(x))2PX(dx),

and assume that the pairs (Xi, Yi) are i.i.d. and that fτ,−i(x) has the same
distribution as fτ,−1(x) for all i, x. This assumption is satisfied for some ex-
amples. Then from (1.107) we get

Ef

[
(Yi − fτ,−i(Xi))2

]
= Ef [(fτ,−1(X1) − f(X1))2] + σ2

= rn−1,τ (f) + σ2,

so that

Ef [CV ∗(τ)] = rn−1,τ (f) + σ2. (1.108)

Therefore, for the regression model with random design (i.i.d. observations)
the cross-validation criterion CV ∗(τ) yields an unbiased estimator of the risk
rn−1,τ (f), up to a constant shift σ2. Note that this result is valid for estimators
fτ that are not necessarily linear, but such that fτ,−i has the same distribution
as fτ,−1. On the other hand, the pairs (Xi, Yi) should be i.i.d., which is not
a necessary requirement for the unbiased estimation of the discretized MISE
via the Cp-criterion.

1.10 Three Gaussian models

In this chapter we have studied only two statistical models: the model of
density estimation and that of nonparametric regression. Recall that in Sec-
tion 1.1 we also introduced the third one, namely the Gaussian white noise
(GWN) model. It is often defined in a slightly more general form than in
Section 1.1:

dY (t) = f(t)dt + εdW (t), t ∈ [0, 1]. (1.109)

Here 0 < ε < 1, f : [0, 1] → R and W (·) is the standard Wiener process
on [0,1]. We mentioned in Section 1.1 that for ε = 1/

√
n this is an “ideal”

model that gives a suitable approximation of nonparametric regression. Our
aim here is to explain this remark and to go a bit further. More specifically, we
will argue that the following three Gaussian models are closely related to each
other: the Gaussian white noise model, the Gaussian nonparametric regression
and the Gaussian sequence model. We will see that the study of these models
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is essentially the same, up to a control of asymptotically negligible residual
terms. For this reason we will consider in Chapter 3 only the two technically
simplest models: the Gaussian sequence model and the GWN one. This will
allow us to reduce the technicalities and to focus on the main ideas. The results
of Chapter 3, with suitable modifications, are also valid for the regression
model but this material is left beyond the scope of the book.

1. Connection between Gaussian white noise model and
nonparametric regression

Suppose that we observe the process Y in the Gaussian white noise model
(1.109). Let us now discretize (1.109) as follows. Integrating over [t, t + Δ]
where Δ > 0 we get

Y (t + Δ) − Y (t)
Δ

=
1
Δ

∫ t+Δ

t

f(s)ds +
ε

Δ
(W (t + Δ) − W (t)).

Define

y(t)
�
=

Y (t + Δ) − Y (t)
Δ

, ξ(t)
�
=

ε

Δ
(W (t + Δ) − W (t)).

For any t ∈ [0, 1] the random variable ξ(t) is Gaussian with mean zero and
variance

E(ξ2(t)) =
ε2

Δ2
E[(W (t + Δ) − W (t))2] =

ε2

Δ
.

Take now ε = 1/
√

n and Δ = 1/n. Then for all t we have ξ(t) ∼ N (0, 1) and

y(t) ≈ f(t) + ξ(t),

where the symbol ≈ denotes equality up to the deterministic residual

1
Δ

∫ t+Δ

t

f(s)ds − f(t),

which is small for sufficiently small Δ and sufficiently smooth f . In particular,
for Yi = y(i/n) and ξi = ξ(i/n) we have

Yi ≈ f(i/n) + ξi.

We recognize the nonparametric regression model with regular design and
i.i.d. errors ξi distributed according to N (0, 1). Thus, the two models under
consideration are closely related to each other. We used here only heuristic
arguments but they can be turned into a rigorous proof.
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2. Connection between Gaussian white noise model and Gaussian
sequence model

Suppose again that we observe the process Y in the Gaussian white noise
model. Let {ϕj}∞j=1 be an orthonormal basis in L2[0, 1]. Then (1.109) implies
that
∫ 1

0

ϕj(t)dY (t) = θj + ε

∫ 1

0

ϕj(t)dW (t) with θj =
∫ 1

0

f(t)ϕj(t)dt.

Define

yj
�
=
∫ 1

0

ϕj(t)dY (t), ξj
�
=
∫ 1

0

ϕj(t)dW (t).

Since the functions ϕj are orthonormal in L2[0, 1], the variables ξj are i.i.d.
with distribution N (0, 1). Therefore, observing a continuous process Y in the
Gaussian white noise model (1.109) the statistician has access to the following
infinite sequence of Gaussian observations:

yj = θj + εξj , j = 1, 2, . . . . (1.110)

Formula (1.110) defines the Gaussian sequence model.
Estimation of f ∈ L2[0, 1] in Gaussian white noise model (1.109) is equiv-

alent to estimation of the sequence {θj}∞j=1 of its Fourier coefficients. Thus,
it is sufficient to consider estimation of θj in the model (1.110). In particular,
yj is an unbiased estimator of θj . One can consider yj as an analog of the
unbiased estimator θ̂j of θj in the regression model. In the spirit of (1.98), we
can define the weighted projection estimator of f (called the linear estimator
of f):

fε,λ(x) =
∞∑

j=1

λjyjϕj(x), (1.111)

where λ = {λj}∞j=1 is a sequence belonging to �2(N); the series in (1.111) is
interpreted in the sense of mean square convergence. The statistic λjyj is a
linear estimator of θj .

The mean squared risk of fε,λ is

MISE = Ef‖fε,λ − f‖2
2 =

∞∑

j=1

Ef

[
(λjyj − θj)2

]

=
∞∑

j=1

[(1 − λj)2θ2
j + ε2λ2

j ]
�
= R(λ, θ). (1.112)

Minimizing this expression with respect to the weights λj we obtain

min
λ∈�2(N)

R(λ, θ) = R(λ∗, θ) =
∞∑

j=1

ε2θ2
j

ε2 + θ2
j

, (1.113)
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with the optimal weights λ∗ = {λ∗
j}∞j=1 given by

λ∗
j =

θ2
j

ε2 + θ2
j

. (1.114)

Finally, fε,λ∗ is the corresponding oracle called the linear oracle. Note that
the expressions for the oracle risk (1.113) and oracle weights (1.114) can be
viewed as analogs of those obtained in (1.44) and (1.43), respectively, for the
problem of density estimation.

3. Connection between nonparametric regression and Gaussian
sequence model

Suppose now that we observe Y1, . . . , Yn in the nonparametric regression
model

Yi = f(i/n) + ξi, i = 1, . . . , n, (1.115)

where ξi are i.i.d. random variables distributed according to N (0, 1). Let
{ϕj}∞j=1 be the trigonometric basis or any other basis satisfying (1.92). Set

θ̂j = n−1
n∑

i=1

Yiϕj(i/n),

fj = n−1
n∑

i=1

f(i/n)ϕj(i/n),

ηj =
n∑

i=1

ξiϕj(i/n)/
√

n,

and ε = 1/
√

n. Then (1.115) implies

θ̂j = fj + εηj , j = 1, . . . , n,

which is close to the Gaussian sequence model (1.110) since the random vari-
ables ηj are i.i.d. with distribution N (0, 1). A difference from (1.110) is in
the fact that here we deal with a finite sequence {fj}n

j=1 of dimension n
and fj are not the true Fourier coefficients but rather their approximations.
However, there is no significant asymptotic difference from the Gaussian se-
quence model as n → ∞. For example, if {ϕj}∞j=1 is the trigonometric basis,
Lemma 1.8 yields that the residuals αj = fj −θj are sufficiently small, so that
we approximately have

θ̂j ≈ θj + εηj , j = 1, . . . , n,

where θj =
∫ 1

0
fϕj . If we set here yj = θ̂j we get a truncated version of model

(1.110), up to small residual terms.
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Similarly to (1.111), a linear estimator of regression function f can now
be defined in the form

fn,λ(x) =
n∑

j=1

λj θ̂jϕj(x),

where {λj}∞j=1 ∈ �2(N). This is exactly the weighted projection estimator
(1.99).

1.11 Notes

The literature on kernel density estimation is very extensive. Some basic ideas
can be traced back to Fix and Hodges (1951) and Akaike (1954). Influential
papers of Rosenblatt (1956) and Parzen (1962) initiated the mathematical
theory and stimulated further interest to the subject. For an overview of the
literature on kernel density estimation we refer to the books of Devroye and
Györfi (1985), Silverman (1986), Devroye (1987), Scott (1992), Wand and
Jones (1995), Hart (1997), and Devroye and Lugosi (2000).

A detailed account on orthogonal polynomials is given by Szegö (1975).
The derivation of the Epanechnikov kernel from optimization arguments is due
to Bartlett (1963) and Epanechnikov (1969). Hodges and Lehmann (1956) did
it even earlier, although not in the context of density estimation. A short proof
implying that the Epanechnikov kernel minimizes (1.23) in K ≥ 0 is given,
e.g., by Devroye and Györfi (1985), Lemma 18 of Chapter 5. The approach
to optimality based on asymptotics of the risk for fixed density dates back
to Bartlett (1963) and Epanechnikov (1969). The inconsistency of this ap-
proach was brought to light as late as in the 1990s (cf. Brown et al. (1997),
Johnstone (1998)).

The notions of Fourier analysis used in Section 1.3 can be found in stan-
dard textbooks, for instance, in Katznelson (2004) or Folland (1999). Fourier
analysis of kernel density estimators was used already by Parzen (1962). The
formula for the exact MISE (1.41) is due to Watson and Leadbetter (1963).
They also obtained the expressions (1.43) and (1.44) for the kernel oracle and
its risk. Admissibility has been studied by Cline (1988) within a more general
class of kernels than in Definition 1.6. In particular, he showed that asymmet-
ric and multimodal kernels are inadmissible. For the equivalence of conditions
(1.51) and (1.52) when β is an integer see Malliavin (1995), Section 3.5, or
Folland (1999), Section 9.3. The sinc kernel density estimator dates back to
Konakov (1972); see also Davis (1975), who calls it the Fourier integral esti-
mator. Various examples of superkernels are given in Chapter 5 of Devroye
and Györfi (1985) and in Devroye (1987).

Cross-validation in the form considered in Section 1.4 was first suggested
by Rudemo (1982). Stone (1984) proved that the integrated squared error of
the estimator p̂n,CV is asymptotically equivalent to that of the kernel oracle
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with bandwidth hid defined in (1.57). A similar property is established in the
form of oracle inequality by Dalelane (2005). Analogous results hold for the
data-driven kernel estimator whose bandwidth minimizes the Fourier-based
unbiased criterion (1.58) (cf. Golubev (1992)).

The Nadaraya-Watson estimator is proposed by Nadaraya (1964) and Wat-
son (1964). An overview of the literature on this estimator and on its modifi-
cations can be found, for example, in the books of Härdle (1990), Wand and
Jones (1995), Hart (1997), and Györfi et al. (2002).

Local polynomial fitting has a long history: It was used in the analy-
sis of time series as early as in the 1930s. Stone (1977) was the first to in-
voke local polynomials in the context of nonparametric regression. He consid-
ered local linear estimators with nearest neighbor weights. The now common
Definition 1.8 of local polynomial estimator appeared in Katkovnik (1979).
Stone (1980, 1982) established rates of convergence of LP(�) estimators with
rectangular kernel for regression with random design. For general LP(�) esti-
mators and their robust versions, asymptotics of the MSE and rates of con-
vergence on the Hölder classes were obtained in Tsybakov (1986); see also Ko-
rostelev and Tsybakov (1993). Local polynomial estimators are discussed in
the books by Wand and Jones (1995), Fan and Gijbels (1996), Loader (1999),
and Györfi et al. (2002).

The idea of projection (orthogonal series) estimation belongs to Čen-
cov (1962), who introduced the orthogonal series estimators of a probability
density and studied their rates of convergence in L2. Orthogonal series den-
sity estimation is discussed in detail in the books by Čencov (1972), Devroye
and Györfi (1985), Efromovich (1999), and Massart (2007). Projection esti-
mators of nonparametric regression started receiving attention only from the
1980s. Important early references are Shibata (1981) and Rice (1984). The
model in Rice (1984) is the same as in Section 1.7.2: regression under regu-
lar design and (weighted) projection estimators with the trigonometric basis.
Projection estimators in regression and in the Gaussian white noise model
are discussed in the books by Eubank (1988), Efromovich (1999), Wasser-
man (2006), and Massart (2007). The literature on projection estimators has
been rapidly growing since the 1990s, boosted by the invention of wavelets by
Meyer (cf. Meyer (1990)). For a detailed account on wavelet bases we refer to
the books by Hernández and Weiss (1996) and Härdle et al. (1998). Modifying
the function ψ leads to wavelet bases with different approximation properties.
An overview and references on statistical properties of wavelet estimators can
be found in Johnstone (1998), Härdle et al. (1998), and in Chapter 18 of Györfi
et al. (2002).

A more general version of the material of Section 1.7.2 (cf. Remark (1)
after Theorem 1.9) is given in Polyak and Tsybakov (1990). A key technical
fact is that Lemma 1.7 extends to j, k ≥ n modulo small correction terms.

Nemirovskii et al. (1983, 1984, 1985) studied the convergence rates of non-
parametric least squares estimators on the Lp Sobolev classes of functions.
A survey of more recent work on nonparametric least squares estimators can
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be found, for example, in van de Geer (2000), Györfi et al. (2002), and Ba-
raud (2002). These estimators have nice MISE properties for the regression
model with random design where the study of local polynomial estimators is
more involved and needs additional assumptions.

For the connection between Tikhonov regularization and spline smooth-
ing we refer to the books by Eubank (1988) and Wahba (1990). An analysis
of the convergence rates of spline estimators can be found, for example, in
Speckman (1985), and Golubev and Nussbaum (1992).

Rates of convergence and oracle inequalities for the �1-penalized least
squares are given by Bickel et al. (2007), Bunea et al. (2007a,b), Koltchin-
skii (2008), and van de Geer (2008).

The words “oracle” and “oracle inequalities” were brought into use by
Donoho and Johnstone in the 1990s (cf. Johnstone (1998)).

The idea of unbiased risk estimation can be traced back to Akaike (1969)
and Mallows (1973), who both considered the choice of integer τ (the di-
mension) in parametric models. Stein (1981) developed a method of unbiased
estimation of the risk for a rather general class of estimators in Gaussian shift
models (cf. Section 3.4). The Cp-criterion is due to Mallows (1973). There is
a whole family of closely related criteria. Akaike’s information criterion (AIC)
in its general form is applicable for any parametric model where the number
N of parameters is to be estimated (cf. Akaike (1974)). The AIC is defined as
follows: Choose N to minimize −2(LN − N) where LN is the maximal value
of the log-likelihood for the model with N parameters. We mention here two
particular cases of the AIC. In the first case, the log-likelihood is computed for
the Gaussian linear regression model with N parameters and unknown vari-
ance of the noise. Then the AIC reduces to minimization in N of the residual
sum of squares multiplied by exp(2N/n). In the context of Section 1.9, this
version of the AIC leads to the choice of N that minimizes

AIC(N) =
1
n

n∑

i=1

(Yi − f̂nN (Xi))2 exp(2N/n). (1.116)

The second example of the AIC is obtained if we consider the log-likelihood
of the Gaussian linear model with known variance of the noise σ2. Then the
AIC coincides with the Cp-criterion. Note that the paper of Akaike (1974) does
not mention this fact. Moreover, Akaike (1974) criticizes the Cp of Mallows
because it requires the knowledge of σ2.

More generally, we can consider a family of criteria

C(N) =
1
n

n∑

i=1

(Yi − f̂nN (Xi))2ν(2N/n)

where ν(·) is a monotone increasing function on [0,∞) such that ν(0) = 1
and limt→0(ν(t) − 1)/t = 1 (cf. Polyak and Tsybakov (1992)). For ν(t) =
exp(t) we get the AIC. Other famous examples are ν(t) = 1 + t, yielding
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Shibata’s criterion (cf. Shibata (1981)); ν(t) = 1/(1− t/2)2, corresponding to
the GCV (Generalized cross-validation criterion, Craven and Wahba (1979));
and ν(t) = (1 + t/2)/(1 − t/2), corresponding to the FPE (Final prediction
error criterion, Akaike (1969)). They can be compared with the Cp-criterion
(1.105). For instance, Shibata’s criterion can be viewed as an analog of (1.105)
where the unknown σ2 is estimated by the residual sum of squares 1

n

∑n
i=1(Yi−

f̂nN (Xi))2. These criteria can be extended to general linear estimators of
regression. For example, in the notation of Section 1.9, the GCV criterion for
an arbitrary linear estimator fτ is defined in the following form: choose τ that
minimizes

GCV(τ) =
1
n

n∑

i=1

(Yi − fτ (Xi))2
(

1 − 1
n

n∑

i=1

Wni(Xi, τ)

)−2

.

More details about these and some other related criteria are given, for exam-
ple, in the books by McQuarrie and Tsai (1998) and Ruppert et al. (2003).

The Gaussian white noise model and the Gaussian sequence model were
first introduced in the context of nonparametric estimation by Ibragimov and
Has’minskii in the 1970s (cf. Ibragimov and Has’minskii (1977, 1981)). The
importance of these models is motivated by the equivalence arguments that
were, however, not properly formalized until the late 1990s. Section 1.10 gives
a sketch of such arguments. They reflect, in a very heuristic manner, the prop-
erty of equivalence of experiments in the sense of Le Cam (cf. Le Cam and
Yang (2000)). Brown and Low (1996) give a rigorous proof of the equivalence
of nonparametric regression and Gaussian white noise models. An extension
covering the multivariate case and random design regression was recently ob-
tained by Reiss (2008). Nussbaum (1996) showed that, under suitable con-
ditions, the density estimation model is equivalent to a Gaussian diffusion
model, which is somewhat different from (1.109). More recent references on
the equivalence of experiments are Brown et al. (2004) and Grama and Neu-
mann (2006).

1.12 Exercises

Exercise 1.1 Prove that any symmetric kernel K is a kernel of order 1 whenever
the function u �→ uK(u) is integrable. Find the maximum order of the Silverman
kernel. Hint: Apply the Fourier transform and write the Silverman kernel as

K(u) =
∫ ∞

−∞

cos(2πtu)
1 + (2πt)4

dt.

Exercise 1.2 Kernel estimator of the sth derivative p(s) of a density p ∈ P(β, L),
s < β, can be defined as follows:
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p̂n,s(x) =
1

nhs+1

n∑

i=1

K

(
Xi − x

h

)

.

Here h > 0 is a bandwidth and K : R → R is a bounded kernel with support
[−1, 1] satisfying for � = �β�:

∫
ujK(u)du = 0, j = 0, 1, . . . , s − 1, s + 1, . . . , �, (1.117)

∫
usK(u)du = s! (1.118)

(1) Prove that, uniformly over the class P(β, L), the bias of p̂n,s(x0) is bounded
by chβ−s and the variance of p̂n,s(x0) is bounded by c′(nh2s+1)−1 where c > 0
and c′ > 0 are appropriate constants and x0 is a given point in R.

(2) Prove that the maximum of the MSE of p̂n,s(x0) over P(β, L) is of order

O
(
n− 2(β−s)

2β+1

)
as n → ∞ if the bandwidth h = hn is chosen optimally.

(3) Let {ϕm}∞m=0 be the orthonormal Legendre basis on [−1, 1]. Show that the
kernel

K(u) =
�∑

m=0

ϕ(s)
m (0)ϕm(u)I(|u| ≤ 1)

satisfies conditions (1.117) and (1.118).

Exercise 1.3 Consider the estimator p̂n defined in (1.3). Assume that the density
p(·, ·) belongs to the class of all the probability densities on R2 satisfying

|p(x, y) − p(x′, y′)| ≤ L(|x − x′|β + |y − y′|β), ∀(x, y), (x′, y′) ∈ R2,

with given constants 0 < β ≤ 1 and L > 0. Let (x0, y0) be a fixed point in R2.
Derive upper bounds for the bias and the variance of p̂n(x0, y0) and an upper
bound on the mean squared risk at (x0, y0). Find the minimizer h = h∗

n of the
upper bound on the risk and the corresponding rate of convergence.

Exercise 1.4 Define the LP(�) estimators of the derivatives f (s)(x), s = 1, . . . , �,
by

f̂ns(x) = (U (s)(0))T θ̂n(x)h−s

where U (s)(u) is the vector whose coordinates are the sth derivatives of the
corresponding coordinates of U(u).

(1) Prove that if Bnx > 0, then the estimator f̂ns(x) is linear and it reproduces
polynomials of degree ≤ � − s.

(2) Prove that, under the assumptions of Proposition 1.13, the maximum of the

MSE of f̂ns(x) over Σ(β, L) is of order O
(
n− 2(β−s)

2β+1

)
as n → ∞ if the bandwidth

h = hn is chosen optimally.

Exercise 1.5 Show that the rectangular and the biweight kernels are inadmissible.
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Exercise 1.6 Let K ∈ L2(R) be symmetric and such that K̂ ∈ L∞(R). Show
that:

(1) condition (1.53) is equivalent to (1.54),

(2) for integer β assumption (1.53) is satisfied if K is a kernel of order β − 1 and∫
|u|β
∣
∣K(u)

∣
∣du < ∞.

Exercise 1.7 Let P be the class of all probability densities p on R such that

∫
exp
(
α|ω|r

)∣
∣φ(ω)

∣
∣2dω ≤ L2,

where α > 0, r > 0, L > 0 are given constants and φ = F [p]. Show that for
any n ≥ 1 the kernel density estimator p̂n with the sinc kernel and appropriately
chosen bandwidth h = hn satisfies

sup
p∈P

Ep

∫
(p̂n(x) − p(x))2 dx ≤ C

(log n)1/r

n
,

where C > 0 is a constant depending only on r, L and α.

Exercise 1.8 Let Pa, where a > 0, be the class of all probability densities p on
R such that the support of the characteristic function φ = F [p] is included in a
given interval [−a, a]. Show that for any n ≥ 1 the kernel density estimator p̂n

with the sinc kernel and appropriately chosen bandwidth h satisfies

sup
p∈Pa

Ep

∫
(p̂n(x) − p(x))2 dx ≤ a

πn
.

This example, due to Ibragimov and Has’minskii (1983b), shows that it is possible
to estimate the density with the

√
n rate on sufficiently small nonparametric

classes of functions.

Exercise 1.9 Let (X1, . . . , Xn) be an i.i.d. sample from a density p ∈ L2[0, 1].
Consider the projection estimator p̂nN of p given in Definition 1.10.

(1) Show that ĉj are unbiased estimators of the Fourier coefficients cj =
∫ 1

0
p(x)ϕj(x)dx and find the variance of ĉj .

(2) Express the mean integrated squared error (MISE) of the estimator p̂nN as a
function of p(·) and {ϕj}∞j=1. Denote it by MISE(N).
(3) Derive an unbiased risk estimation method. Show that

Ep(Ĵ(N)) = MISE(N) −
∫

p2,

where

Ĵ(N) =
1

n − 1

N∑

j=1

[
2
n

n∑

i=1

ϕ2
j (Xi) − (n + 1)ĉ2

j

]

.
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Propose a data-driven selector of N .

(4) Suppose now that {ϕj}∞j=1 is the trigonometric basis. Show that the MISE
of p̂nN is bounded by

N + 1
n

+ ρN

where ρN =
∑∞

j=N+1 c2
j . Use this bound to prove that uniformly over the class

of all the densities p belonging to W per(β, L), β > 0, and L > 0, the MISE of

p̂nN is of order O
(
n− 2β

2β+1

)
for an appropriate choice of N = Nn.

Exercise 1.10 Consider the nonparametric regression model under Assump-
tion (A) and suppose that f belongs to the class W per(β, L) with β ≥ 2. The
aim of this exercise is to study the weighted projection estimator

fn,λ(x) =
n∑

j=1

λj θ̂j ϕj(x).

(1) Prove that the risk MISE of fn,λ is minimized with respect to {λj}n
j=1 at

λ∗
j =

θj(θj + αj)
ε2 + (θj + αj)2

, j = 1, . . . , n,

where ε2 = σ2
ξ/n (λ∗

j are the weights corresponding to the weighted projection
oracle).

(2) Check that the corresponding value of the risk is

MISE({λ∗
j}) =

n∑

j=1

ε2θ2
j

ε2 + (θj + αj)2
+ ρn.

(3) Prove that

n∑

j=1

ε2θ2
j

ε2 + (θj + αj)2
= (1 + o(1))

n∑

j=1

ε2θ2
j

ε2 + θ2
j

.

(4) Prove that

ρn = (1 + o(1))
∞∑

j=n+1

ε2θ2
j

ε2 + θ2
j

.

(5) Deduce from the above results that

MISE({λ∗
j}) = A∗

n(1 + o(1)), n → ∞,

where

A∗
n =

∞∑

j=1

ε2θ2
j

ε2 + θ2
j

.

(6) Check that
A∗

n < min
N≥1

AnN .
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Exercise 1.11 (Equivalence between different types of estimators.)
Consider the nonparametric regression model under Assumption (A). The smooth-
ing spline estimator fsp

n (x) is defined as a solution of the following minimization
problem (cf. Wahba (1990), Eubank (1988)):

fsp
n = arg min

f∈W

[
1
n

n∑

i=1

(Yi − f(Xi))2 + κ

∫ 1

0

(f ′′(x))2dx

]

, (1.119)

where κ > 0 is a smoothing parameter and W is one of the sets of functions
defined below.

(1) First suppose that W is the set of all the functions f : [0, 1] → R such that
f ′ is absolutely continuous. Prove that the estimator fsp

n reproduces polynomials
of degree ≤ 1 if n ≥ 2.

(2) Suppose next that W is the set of all the functions f : [0, 1] → R such
that (i) f ′ is absolutely continuous and (ii) the periodicity condition is satisfied:
f(0) = f(1), f ′(0) = f ′(1). Prove that the minimization problem (1.119) is
equivalent to:

min
{bj}

∞∑

j=1

(
− 2θ̂jbj + b2

j (κπ4a2
j + 1)[1 + O(n−1)]

)
, (1.120)

where bj are the Fourier coefficients of f , the term O(n−1) is uniform in {bj},
and aj are defined according to (1.90).

(3) Assume now that the term O(n−1) in (1.120) is negligible. Formally replacing
it by 0, find the solution of (1.120) and conclude that the periodic spline estimator
is approximately equal to a weighted projection estimator:

fsp
n (x) ≈

∞∑

j=1

λ∗
j θ̂j ϕj(x)

with the weights λ∗
j written explicitly.

(4) Use (3) to show that for sufficiently small κ the spline estimator fsp
n is ap-

proximated by the kernel estimator (1.62):

fn(x) =
1

nh

n∑

i=1

YiK

(
Xi − x

h

)

,

where h = κ1/4 and K is the Silverman kernel (cf. Exercise 1.1).
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Lower bounds on the minimax risk

2.1 Introduction

The examples of models studied in Chapter 1 show that the problem of non-
parametric estimation is characterized by the following three ingredients:

• A nonparametric class of functions Θ containing the function θ that
we want to estimate, for example, Θ = Σ(β, L) (the Hölder class) or
Θ = W (β, L) (the Sobolev class).

• A family {Pθ, θ ∈ Θ} of probability measures, indexed by Θ, on a
measurable space (X ,A) associated with the data. For example, in the
density model, Pθ is the probability measure associated with a sample
X = (X1, . . . , Xn) of size n when the density of Xi is p(·) = θ. For
brevity, we do not indicate in our notation that Pθ, X , and A depend
on the number of observations n.

• A distance (or, more generally, a semi-distance) d on Θ used to
define the risk.

We will call the semi-distance on Θ any function d : Θ × Θ → [0,+∞)
satisfying d(θ, θ′) = d(θ′, θ), d(θ, θ′) + d(θ′, θ′′) ≥ d(θ, θ′′) and d(θ, θ) = 0. In
Chapter 1 we considered the following examples of semi-distances:

d(f, g) =

⎧
⎪⎪⎨

⎪⎪⎩

|f(x0) − g(x0)| for some fixed x0,

‖f − g‖2,

‖f − g‖∞.

Throughout this chapter we will also suppose that the function d(·, ·) is a semi-
distance. However, this assumption will often be redundant since the general
results are valid for functions d(·, ·) satisfying only the triangle inequality.

A. B. Tsybakov, Introduction to Nonparametric Estimation,
DOI 10.1007/978-0-387-79052-7 2, c© Springer Science+Business Media, LLC 2009



78 2 Lower bounds on the minimax risk

Given a semi-distance d, the performance of an estimator θ̂n of θ is mea-
sured by the maximum risk of this estimator on Θ :

r(θ̂n)
�
= sup

θ∈Θ
Eθ

[
d2(θ̂n, θ)

]
,

where Eθ denotes expectation with respect to Pθ. In Chapter 1 we established
upper bounds on the maximum risk, that is, inequalities of the form

sup
θ∈Θ

Eθ

[
d2(θ̂n, θ)

]
≤ Cψ2

n

for certain estimators θ̂n, certain positive sequences ψn → 0, and constants
C < ∞. The aim of this chapter is to complement these upper bounds by the
corresponding lower bounds:

∀ θ̂n : sup
θ∈Θ

Eθ

[
d2(θ̂n, θ)

]
≥ c ψ2

n

(for sufficiently large n) where c is a positive constant. In this context, it is use-
ful to define the minimax risk associated with a statistical model {Pθ, θ ∈ Θ}
and with a semi-distance d:

R∗
n

�
= inf

θ̂n

sup
θ∈Θ

Eθ

[
d2(θ̂n, θ)

]
,

where the infimum is over all estimators. The upper bounds established in
Chapter 1 imply that there exists a constant C < ∞ such that

lim sup
n→∞

ψ−2
n R∗

n ≤ C (2.1)

for a sequence ψn converging to zero. The corresponding lower bounds claim
that there exists a constant c > 0 such that, for the same sequence ψn,

lim inf
n→∞

ψ−2
n R∗

n ≥ c. (2.2)

Definition 2.1 A positive sequence {ψn}∞n=1 is called an optimal rate of
convergence of estimators on (Θ, d) if (2.1) and (2.2) hold. An estimator
θ∗n satisfying

sup
θ∈Θ

Eθ

[
d2(θ∗n, θ)

]
≤ C ′ ψ2

n,

where {ψn}∞n=1 is the optimal rate of convergence and C ′ < ∞ is a constant,
is called a rate optimal estimator on (Θ, d).

Definition 2.2 An estimator θ∗n is called asymptotically efficient on (Θ, d)
if

lim
n→∞

r(θ∗n)
R∗

n

= 1.
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Remarks.

(1) Optimal rates of convergence are defined to within a multiplicative con-
stant (or up to a bounded factor dependent on n). Indeed, if ψn is an optimal
rate of convergence, then any sequence ψ′

n satisfying

0 < lim inf
n→∞

(ψn/ψ′
n) ≤ lim sup

n→∞
(ψn/ψ′

n) < ∞

is again an optimal rate of convergence. Sequences ψn and ψ′
n satisfying the

above relation are said to have equivalent orders of magnitude. Any sequence
belonging to the class of equivalent sequences can be taken as an optimal rate.
Traditionally, the power sequences are convenient for use, e.g., n−1/3, n−2/5,
in some cases (where appropriate) with an extra logarithmic factor, e.g.,
(n/ log n)−1/3, (n/ log n)−2/5.
(2) We can consider a more general framework where the maximum risk is
defined as follows:

rw(θ̂n) = sup
θ∈Θ

Eθ

[
w(ψ−1

n d(θ̂n, θ))
]

with a loss function w such that

w : [0,∞) → [0,∞) is monotone increasing, w(0) = 0, and w �≡ 0. (2.3)

Some classical examples of loss functions are:

w(u) = up, p > 0, w(u) = I(u ≥ A), A > 0

(in the latter case, the risk represents the probability to overshoot the fixed
level A). In this general framework, lower bounds are formulated as inequali-
ties of the following form:

lim inf
n→∞

inf
θ̂n

sup
θ∈Θ

Eθ

[
w(ψ−1

n d(θ̂n, θ))
]
≥ c > 0. (2.4)

2.2 A general reduction scheme

A general scheme for obtaining lower bounds is based on the following three
remarks:

(a) Reduction to bounds in probability. Observe that it is sufficient to consider
the loss function w0(u) = I(u ≥ A) since, by the Markov inequality, for any
loss function w and any A > 0 satisfying w(A) > 0 we have

Eθ

[
w(ψ−1

n d(θ̂n, θ))
]
≥ w(A)Pθ(ψ−1

n d(θ̂n, θ) ≥ A) (2.5)

= w(A)Pθ(d(θ̂n, θ) ≥ s)
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with s = sn = Aψn. Therefore, instead of searching for a lower bound on
the minimax risk R∗

n, it is sufficient to find a lower bound on the minimax
probabilities of the form

inf
θ̂n

sup
θ∈Θ

Pθ(d(θ̂n, θ) ≥ s).

This is a first simplification.

(b) Reduction to a finite number of hypotheses. It is clear that

inf
θ̂n

sup
θ∈Θ

Pθ(d(θ̂n, θ) ≥ s) ≥ inf
θ̂n

max
θ∈{θ0,...,θM}

Pθ(d(θ̂n, θ) ≥ s) (2.6)

for any finite set {θ0, . . . , θM} contained in Θ. In the examples, we will select
M ≥ 1 and θ0, . . . , θM in an appropriate way. We will call hypotheses the M+1
elements θ0, θ1, . . . , θM of Θ chosen to obtain lower bounds on the minimax
risk. We will call a test any A-measurable function ψ : X → {0, 1, . . . ,M}.

(c) Choice of 2s-separated hypotheses. If

d(θj , θk) ≥ 2s, ∀ k, j : k �= j, (2.7)

then for any estimator θ̂n

Pθj
(d(θ̂n, θj) ≥ s) ≥ Pθj

(ψ∗ �= j), j = 0, 1, . . . , M, (2.8)

where ψ∗ : X → {0, 1, . . . ,M} is the minimum distance test defined by

ψ∗ = arg min
0≤k≤M

d(θ̂n, θk).

Inequality (2.8) follows immediately from (2.7) and the triangle inequality.
It follows from (2.8) and (2.6) that if we can construct M + 1 hypotheses

satisfying (2.7), then

inf
θ̂n

sup
θ∈Θ

Pθ(d(θ̂n, θ) ≥ s) ≥ inf
θ̂n

max
θ∈{θ0,...,θM}

Pθ(d(θ̂n, θ) ≥ s) ≥ pe,M , (2.9)

where
pe,M

�
= inf

ψ
max

0≤j≤M
Pj(ψ �= j), Pj

�
= Pθj

and infψ denotes the infimum over all tests.

Conclusion: In order to obtain lower bounds as in (2.2) and (2.4), it is suf-
ficient to check that

pe,M
�
= inf

ψ
max

0≤j≤M
Pj(ψ �= j) ≥ c′, (2.10)

where the hypotheses θj satisfy (2.7) with s = Aψn and where the constant
c′ > 0 is independent of n. The quantity pe,M is called the minimax probability
of error for the problem of testing M + 1 hypotheses θ0, θ1, . . . , θM .
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2.3 Lower bounds based on two hypotheses

Consider first the simplest case, M = 1. This means that we take only two
hypotheses θ0 and θ1 belonging to Θ. We will write for brevity P0 = Pθ0 , P1 =
Pθ1 , θ̂ = θ̂n. We will first find lower bounds for the minimax probability of
error pe,1 and then for the minimax risk

inf
θ̂

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ s)

with s > 0. Consider the decomposition P0 = P a
0 + P s

0 where P a
0 and P s

0

denote the absolutely continuous component and the singular component of
the measure P0 with respect to the measure P1. When no ambiguity is caused,

we will use a short notation
dP a

0

dP1
for the Radon–Nikodym derivative

dP a
0

dP1
(X).

Proposition 2.1

pe,1 ≥ sup
τ>0

{
τ

1 + τ
P1

(
dP a

0

dP1
≥ τ

)}

.

Proof. Fix τ > 0. For any test ψ : X → {0, 1},

P0(ψ �= 0) = P0(ψ = 1) ≥ P a
0 (ψ = 1)

=
∫

I(ψ = 1)
dP a

0

dP1
dP1

≥ τ

∫
I

(

{ψ = 1} ∩
{

dP a
0

dP1
≥ τ

})

dP1 ≥ τ(p − α1),

where p = P1(ψ = 1) and α1 = P1

(
dP a

0

dP1
< τ

)

. Then

pe,1 = inf
ψ

max
j=0,1

Pj(ψ �= j) ≥ min
0≤p≤1

max{τ(p − α1), 1 − p} =
τ(1 − α1)

1 + τ
.

We see that, in order to obtain a lower bound for the minimax probability
of error pe,1, it is sufficient to find constants τ > 0 and 0 < α < 1 independent
of n and satisfying

P1

(
dP a

0

dP1
≥ τ

)

≥ 1 − α. (2.11)

Proposition 2.1 implies the following lower bound on the minimax risk.

Theorem 2.1 Assume that Θ contains two elements θ0 and θ1 satisfying
d(θ0, θ1) ≥ 2s > 0. Then

inf
θ̂

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ s) ≥ sup
τ>0

{
τ

1 + τ
P1

(
dP a

0

dP1
≥ τ

)}

.
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Proof: Straightforward in view of Proposition 2.1 and (2.9).

Remarks.

(1) Let P0 	 P1 (then P a
0 = P0). In this case, the random variable

dP0

dP1
(X)

is called the likelihood ratio.
(2) Condition (2.11) means that two probabilities P0 and P1 are not “very
far” from each other. In other words, the closer P0 is to P1, the greater is the
lower bound given in Theorem 2.1. If P0 = P1, condition (2.11) holds for τ =
1, α = 0, and the best lower bound that we can obtain using Proposition 2.1
is pe,1 ≥ 1/2. Observe that this lower bound is not always sharp. Indeed, since
P0 = P1, we have

pe,1 = inf
ψ

max{P0(ψ = 1), P0(ψ = 0)},

and we can make the right hand side as close to 1 as we like by taking P0

to be a suitably chosen Bernoulli distribution. In another extreme case, the
measures P0 and P1 are mutually singular and Theorem 2.1 is trivial since
the bound is equal to zero. Moreover, in this case we have pe,1 = 0 and the
minimum with respect to ψ of the minimax probability of error is attained at
the test taking value 1 on the support of P1 and value 0 on the support of P0.
(3) Even if P0 = P1, which may seem the most favorable case for obtaining
lower bounds, the hypotheses θ0 and θ1 can be such that Theorem 2.1 would
not give good results. The choice of the hypotheses is indeed very important,
as illustrated by the following example.

Example 2.1 A bad choice of the hypotheses θ0 and θ1.

Consider the regression model

Yi = f(i/n) + ξi, i = 1, . . . , n,

where f ∈ Σ(1, 1) and where we would like to obtain a lower bound
on the minimax risk over Θ = Σ(1, 1). Assume that we have chosen
the hypotheses

θ0 = f0(·) ≡ 0 and θ1 = f1(·),

where f1(x) = (2πn)−1 sin(2πnx). Then f0(i/n) = f1(i/n) for all i. It
follows that the observations (Y1, . . . , Yn) are the same for f = f0 and
f = f1. Then P0 = P1 and, by Proposition 2.1, we have pe,1 ≥ 1/2
for any random errors ξi. Take the distance d(f, g) = ‖f − g‖∞. Then
d(f0, f1) = (2πn)−1 and, since f0, f1 ∈ Σ(1, 1), we can use Theorem
2.1 and (2.5) with s = (4πn)−1 to obtain inequality (2.2) for the class
Θ = Σ(1, 1) with rate ψn 
 1/n. This result is not satisfactory since
1/n is much smaller than the rate (log n/n)1/3 given by the upper
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bound in Theorem 1.8. Indeed, we will see later (cf. Corollary 2.5)
that (log n/n)1/3, and not 1/n, is the optimal rate of convergence on
(Σ(1, 1), ‖ · ‖∞).

2.4 Distances between probability measures

Let (X ,A) be a measurable space and let P and Q be two probability measures
on (X ,A). Suppose that ν is a σ-finite measure on (X ,A) satisfying P 	 ν
and Q 	 ν. Define p = dP/dν, q = dQ/dν. Observe that such a measure ν
always exists since we can take, for example, ν = P + Q.

Definition 2.3 The Hellinger distance between P and Q is defined as fol-
lows:

H(P,Q) =
(∫

(
√

p −√
q)2dν

)1/2
�
=
(∫ [√

dP −
√

dQ
]2)1/2

. (2.12)

It is easy to see that H(P,Q) does not depend on the choice of the dominating
measure ν. This explains the symbolic notation on the right hand side of
(2.12). The following properties are straightforward.

Properties of the Hellinger distance

(i) H(P,Q) satisfies the axioms of distance.

(ii) 0 ≤ H2(P,Q) ≤ 2.

(iii) H2(P,Q) = 2
(

1 −
∫ √

pq dν

)
�
= 2
(

1 −
∫ √

dPdQ

)

.

(iv) If P and Q are product measures, P = ⊗n
i=1Pi, Q = ⊗n

i=1 Qi, then

H2(P,Q) = 2

(

1 −
n∏

i=1

(

1 − H2(Pi, Qi)
2

))

.

We now introduce another distance between probability measures that will
be useful in the sequel.

Definition 2.4 The total variation distance between P and Q is defined
as follows:

V (P,Q) = sup
A∈A

|P (A) − Q(A)| = sup
A∈A

∣
∣
∣
∣

∫

A

(p − q)dν

∣
∣
∣
∣ .

The following two properties of the total variation distance are easy to
prove.
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Properties of the total variation distance

(i) V (P,Q) satisfies the axioms of distance.

(ii) 0 ≤ V (P,Q) ≤ 1.

Indeed, these properties follow from the next lemma. Write
∫

min(dP, dQ)
�
=
∫

min(p, q)dν.

Lemma 2.1 (Scheffé’s theorem).

V (P,Q) =
1
2

∫
|p − q|dν = 1 −

∫
min(dP, dQ).

Proof. Observe that A0 = {x ∈ X : q(x) ≥ p(x)}. Then
∫

|p − q|dν = 2
∫

A0

(q − p)dν

and

V (P,Q) ≥ Q(A0) − P (A0) =
1
2

∫
|p − q|dν = 1 −

∫
min(p, q)dν.

On the other hand, for all A ∈ A,
∣
∣
∣
∣

∫

A

(q − p)dν

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∫

A∩A0

(q − p)dν +
∫

A∩Ac
0

(q − p)dν

∣
∣
∣
∣
∣

≤ max
{∫

A0

(q − p)dν,

∫

Ac
0

(p − q)dν
}

=
1
2

∫
|p − q|dν

where Ac
0 is the complement of A0. Then

V (P,Q) = Q(A0) − P (A0) (2.13)

implying the required result.

Definition 2.5 The Kullback divergence between P and Q is defined by

K(P,Q) =

⎧
⎪⎨

⎪⎩

∫
log

dP

dQ
dP, if P 	 Q,

+∞, otherwise.

The following lemma shows that this definition always makes sense, that

is, the integral
∫

log
dP

dQ
dP is well-defined (it can be equal to +∞) if P 	 Q.



2.4 Distances between probability measures 85

Lemma 2.2 If P 	 Q, then
∫ (

log
dP

dQ

)

−
dP ≤ V (P,Q)

where a− = max{0,−a}.

Proof. If P 	 Q, we have {q > 0} ⊇ {p > 0}, {pq > 0} = {p > 0}. Therefore
we can write ∫ (

log
dP

dQ

)

−
dP =

∫

pq>0

p

(

log
p

q

)

−
dν.

Take A1 = {q ≥ p > 0} = A0 ∩ {p > 0}. We have
∫

pq>0

p

(

log
p

q

)

−
dν =

∫

A1

p log
q

p
dν ≤

∫

A1

(q − p)dν

= Q(A1) − P (A1) ≤ V (P,Q).

Thus we see that if P 	 Q, the Kullback divergence can be written as

K(P,Q) =
∫

pq>0

p log
p

q
dν (2.14)

=
∫

pq>0

p

(

log
p

q

)

+

dν −
∫

pq>0

p

(

log
p

q

)

−
dν

where a+ = max{a, 0} and where the second integral on the right hand side
is always finite.

Properties of the Kullback divergence

(i) K(P,Q) ≥ 0. Indeed, it is sufficient to consider the case where all the
integrals in (2.14) are finite. Then, by Jensen’s inequality,

∫

pq>0

p log
p

q
dν = −

∫

pq>0

p log
q

p
dν ≥ − log

(∫

p>0

qdν

)

≥ 0.

(ii) K(P,Q) is not a distance (for example, it is not symmetric). One can also
prove that its symmetrized version

K∗(P,Q) = K(P,Q) + K(Q,P ),

defined for P ∼ Q, that is for P 	 Q and Q 	 P , is not a distance either.

(iii) If P and Q are product measures, P = ⊗n
i=1Pi, Q = ⊗n

i=1 Qi, then

K(P,Q) =
n∑

i=1

K(Pi, Qi).
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The functions V (·, ·), H2(·, ·), and the Kullback divergence are particular
cases of the Csizsár f -divergences defined for P 	 Q in the following way:

D(P,Q) =
∫

f

(
dP

dQ

)

dQ,

where f is a convex function on (0,+∞) satisfying certain conditions. Indeed,
V (·, ·) and H2(·, ·) correspond to f(x) = |x−1|/2 and f(x) = (

√
x−1)2, while

the Kullback divergence K(P,Q) (if it is finite) is obtained for f(x) = x log x.
Among other f -divergences, the most famous is the χ2 divergence defined as
follows:

χ2(P,Q) =

⎧
⎪⎨

⎪⎩

∫ (
dP

dQ
− 1
)2

dQ, if P 	 Q,

+∞, otherwise.

This is a particular case of D(P,Q) corresponding to f(x) = (x − 1)2. It is
often misnamed as the χ2 “distance,” whereas χ2(·, ·) is not a distance; it is
sufficient to observe that it is not symmetric.

Properties of the χ2 divergence.

(i) If P 	 Q, then

χ2(P,Q) =
∫ (

dP

dQ

)2

dQ − 1 =
∫

pq>0

p2

q
dν − 1. (2.15)

(ii) If P and Q are two product measures, P = ⊗n
i=1Pi and Q = ⊗n

i=1 Qi, then

χ2(P,Q) =
n∏

i=1

(
1 + χ2(Pi, Qi)

)
− 1.

2.4.1 Inequalities for distances

In this subsection, we will often write for brevity
∫

(. . .) instead of
∫

(. . .)dν.

The following lemma establishes a link between the total variation distance
and the Hellinger distance.

Lemma 2.3 (Le Cam’s inequalities).

∫
min(dP, dQ) ≥ 1

2

(∫ √
dPdQ

)2

=
1
2

(

1 − H2(P,Q)
2

)2

, (2.16)

1
2
H2(P,Q) ≤ V (P,Q) ≤ H(P,Q)

√

1 − H2(P,Q)
4

. (2.17)
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Proof. Since
∫

max(p, q) +
∫

min(p, q) = 2, we obtain

(∫ √
pq

)2

=
(∫ √

min(p, q)max(p, q)
)2

≤
∫

min(p, q)
∫

max(p, q)

=
∫

min(p, q)
[

2 −
∫

min(p, q)
]

, (2.18)

proving the inequality in (2.16). The equality in (2.16) is nothing other than
property (iii) of the Hellinger distance. The first inequality in (2.17) follows
from Lemma 2.1 and property (iii) of the Hellinger distance. Indeed,

V (P,Q) = 1 −
∫

min(p, q) ≥ 1 −
∫ √

pq = H2(P,Q)/2.

In order to prove the second inequality in (2.17), observe that (2.18) can be
written as

(

1 − H2(P,Q)
2

)2

≤ (1 − V (P,Q))(1 + V (P,Q)) = 1 − V 2(P,Q).

The next lemma links the Hellinger distance to the Kullback divergence.

Lemma 2.4

H2(P,Q) ≤ K(P,Q). (2.19)

Proof. It is sufficient to assume that K(P,Q) < +∞ (and therefore P 	 Q).
Since − log(x + 1) ≥ −x if x > −1, we have

K(P,Q) =
∫

pq>0

p

(

log
p

q

)

= 2
∫

pq>0

p

(

log
√

p

q

)

= −2
∫

pq>0

p log
([√

q

p
− 1
]

+ 1
)

≥ −2
∫

pq>0

p

[√
q

p
− 1
]

= −2
(∫ √

pq − 1
)

= H2(P,Q).

Corollary 2.1 Let ϕ be the density of the standard normal distribution
N (0, 1). Then

(i)
∫

log
ϕ(x)

ϕ(x + t)
ϕ(x)dx =

t2

2
, ∀ t ∈ R,

(ii)
∫ (√

ϕ(x) −
√

ϕ(x + t)
)2

dx ≤ t2

2
, ∀ t ∈ R.
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Combining the right hand inequality in (2.17) and Lemma 2.4 we can link
the total variation distance to the Kullback divergence:

V (P,Q) ≤ H(P,Q) ≤
√

K(P,Q). (2.20)

However, (2.20) does not give the most accurate inequality between V (P,Q)
and K(P,Q). It can be improved as stated in the following lemma.

Lemma 2.5 (Pinsker’s inequalities).
(i)First Pinsker’s inequality.

V (P,Q) ≤
√

K(P,Q)/2.

(ii) Second Pinsker’s inequality. If P 	 Q, then

∫ ∣∣
∣
∣log

dP

dQ

∣
∣
∣
∣ dP

�
=
∫

pq>0

p

∣
∣
∣
∣log

p

q

∣
∣
∣
∣ dν ≤ K(P,Q) +

√
2K(P,Q) , (2.21)

and ∫ (

log
dP

dQ

)

+

dP ≤ K(P,Q) +
√

K(P,Q)/2. (2.22)

Proof. (i) Introduce the function

ψ(x) = x log x − x + 1, x ≥ 0,

where 0 log 0
�
= 0. Observe that ψ(0) = 1, ψ(1) = 0, ψ′(1) = 0, ψ′′(x) = 1/x ≥

0, and ψ(x) ≥ 0, ∀x ≥ 0. Moreover,
(

4
3

+
2
3
x

)

ψ(x) ≥ (x − 1)2, x ≥ 0. (2.23)

Indeed, this inequality is clear for x = 0. If x > 0, the function

g(x) = (x − 1)2 −
(

4
3

+
2
3
x

)

ψ(x)

satisfies

g(1) = 0, g′(1) = 0, g′′(x) = −4ψ(x)
3x

≤ 0.

Thus, for ξ satisfying |ξ − 1| < |x − 1| we have

g(x) = g(1) + g′(1)(x − 1) +
g′′(ξ)

2
(x − 1)2 = −4ψ(ξ)

6ξ
(x − 1)2 ≤ 0,

proving (2.23). From (2.23), we obtain that if P 	 Q, then
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V (P,Q) =
1
2

∫
|p − q| =

1
2

∫

q>0

∣
∣
∣
∣
p

q
− 1
∣
∣
∣
∣ q

≤ 1
2

∫

q>0

q

√(
4
3

+
2p

3q

)

ψ

(
p

q

)

≤ 1
2

√∫ (
4q

3
+

2p

3

)√∫

q>0

qψ

(
p

q

)

(Cauchy–Schwarz)

=

√
1
2

∫

pq>0

p log
p

q
=
√

K(P,Q)/2.

If P �	 Q, the inequality is straightforward.
(ii) Equality (2.14), Lemma 2.2, and the first Pinsker inequality imply that

∫

pq>0

p

∣
∣
∣
∣log

p

q

∣
∣
∣
∣ =
∫

pq>0

p

(

log
p

q

)

+

+
∫

pq>0

p

(

log
p

q

)

−

= K(P,Q) + 2
∫

pq>0

p

(

log
p

q

)

−

≤ K(P,Q) + 2V (P,Q) ≤ K(P,Q) +
√

2K(P,Q).

This yields (2.21). Inequality (2.22) is obtained similarly.

The first Pinsker inequality is exact in the sense that there exist probability
measures P and Q for which it becomes equality. However, it is nontrivial only
if K(P,Q) ≤ 2 since we always have V (P,Q) ≤ 1. A nontrivial extension to
larger Kullback divergences is obtained using the following lemma.

Lemma 2.6
∫

min(dP, dQ) ≥ 1
2

exp(−K(P,Q)). (2.24)

Proof. It is sufficient to assume that K(P,Q) < +∞ (and therefore P 	 Q).
Using the Jensen inequality we get

(∫ √
pq

)2

= exp
(
2 log

∫

pq>0

√
pq
)

= exp
(

2 log
∫

pq>0

p

√
q

p

)

≥ exp
(

2
∫

pq>0

p log
√

q

p

)

= exp(−K(P,Q)).

By comparing this result to inequality (2.16) we obtain (2.24).

From Lemmas 2.1 and 2.6 we get

V (P,Q) ≤ 1 − 1
2

exp(−K(P,Q)). (2.25)

We finally establish a link between the Kullback and the χ2 divergences.
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Lemma 2.7

K(P,Q) ≤ log(1 + χ2(P,Q)) ≤ χ2(P,Q). (2.26)

Proof: Straightforward in view of (2.15) and Jensen’s inequality.

From (2.20) and (2.26) we get the following chain of inequalities:

V (P,Q) ≤ H(P,Q) ≤
√

K(P,Q) ≤
√

χ2(P,Q). (2.27)

These inequalities are clearly not the sharpest obtainable from the results
stated above. However, they are quite instructive since they reveal the hier-
archy existing between the divergences V , H, K, and χ2.

2.4.2 Bounds based on distances

In order to apply Theorem 2.1 and Proposition 2.1 we need the condition
(2.11) dealing directly with the distribution of the likelihood ratio of P0

and P1. This condition is quite general but not always easy to check. There-
fore, other bounds on the minimax probability of error for two hypotheses are
often used, based on the distances or divergences between P0 and P1. Some
of them are given in the following theorem.

Theorem 2.2 Let P0 and P1 be two probability measures on (X ,A).

(i) If V (P1, P0) ≤ α < 1, then

pe,1 ≥ 1 − α

2
(total variation version).

(ii) If H2(P1, P0) ≤ α < 2, then

pe,1 ≥ 1
2

(
1 −
√

α(1 − α/4)
)

(Hellinger version).

(iii) If K(P1, P0) ≤ α < ∞ (or χ2(P1, P0) ≤ α < ∞), then

pe,1 ≥ max

(
1
4

exp(−α),
1 −
√

α/2
2

)

(Kullback/χ2 version).

Proof.

pe,1 = inf
ψ

max
j=0,1

Pj(ψ �= j) ≥ 1
2

inf
ψ

(P0(ψ �= 0) + P1(ψ �= 1))

=
1
2
(P0(ψ∗ �= 0) + P1(ψ∗ �= 1)) (2.28)

where ψ∗ is the maximum likelihood test:
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ψ∗ =

{
0, if p0 ≥ p1,

1, otherwise,

and where p0 and p1 are the densities of P0 and P1 with respect to ν. Next,
Lemma 2.1 gives

1
2
(P0(ψ∗ �= 0) + P1(ψ∗ �= 1)) =

1
2

∫
min(dP0, dP1) = (1 − V (P0, P1))/2.

This result combined with (2.28) implies part (i) of the theorem. From (i) and
Lemma 2.3 we obtain part (ii). Finally, to prove part (iii) it suffices to bound
V (P0, P1) using inequality (2.24) or the first Pinsker inequality and then to
apply (2.26).

The idea of the proof of Theorem 2.2 differs from that of Theorem 2.1
since we bound the minimax probability of error from below by the average
error. The average error is always less than or equal to 1/2 and therefore the
bound also satisfies this restriction.

Theorem 2.2 sometimes enables us to obtain lower bounds that are tech-
nically more convenient than those based on Theorem 2.1. It is often easier to
check the condition on the Kullback divergence than (2.11) or the assumptions
involving other distances. However, the Kullback divergence is not finite for
all probability measures. That is why the Hellinger version is more convenient
in certain cases. An example is given in Exercise 2.7. Finally, there exist statis-
tical models where the Kullback and the χ2 divergences are not well-defined,
the Hellinger and the total variation distances are difficult to handle, while
the likelihood ratio version of Theorem 2.1 is effectively applicable.

2.5 Lower bounds on the risk of regression estimators at
a point

We now apply the technique based on two hypotheses to obtain lower bounds
in the nonparametric regression model. Assume that the following conditions
are satisfied.

Assumption (B)

(i) The statistical model is that of nonparametric regression:

Yi = f(Xi) + ξi, i = 1, . . . , n,

where f : [0, 1] → R.
(ii) The random variables ξi are i.i.d. having a density pξ(·) with respect to

the Lebesgue measure on R such that

∃p∗ > 0, v0 > 0 :
∫

pξ(u) log
pξ(u)

pξ(u + v)
du ≤ p∗v

2 (2.29)
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for all |v| ≤ v0.
(iii)The variables Xi ∈ [0, 1] are deterministic.

By Corollary 2.1, condition (ii) in Assumption (B) holds if, for example,
pξ(·) is the density of the normal distribution N (0, σ2), σ2 > 0.

We will also suppose in this section that Assumption (LP2) of Chapter 1
holds.

Our aim is to obtain a lower bound for the minimax risk on (Θ, d) where
Θ is a Hölder class:

Θ = Σ(β, L), β > 0, L > 0,

and where d is a distance at a fixed point x0 ∈ [0, 1]:

d(f, g) = |f(x0) − g(x0)|.

The rate that we would like to obtain is

ψn = n− β

2β+1 . (2.30)

Indeed, this is the same rate as in the upper bounds of Chapter 1 which will
enable us to conclude that (2.30) is optimal on (Θ, d).

By the general scheme of Section 2.2 it is sufficient to prove that

inf
θ̂n

max
θ∈{θ0,...,θM}

Pθ(d(θ̂n, θ) ≥ s) ≥ c′ > 0,

where s = Aψn, with a constant A > 0. Using the notation of this section and
taking M = 1 (two hypotheses) we can write the last display as follows:

inf
Tn

max
f∈{f0n,f1n}

Pf (|Tn(x0) − f(x0)| ≥ Aψn) ≥ c′ > 0 (2.31)

where f0n(·) = θ0 and f1n(·) = θ1 are two hypotheses, A > 0, and inf
Tn

denotes

the infimum over all estimators.
In order to obtain (2.31), we apply the Kullback version of Theorem 2.2

and (2.9). We choose the hypotheses θ0 = f0n(·) and θ1 = f1n(·) in the
following way:

f0n(x) ≡ 0, f1n(x) = Lhβ
nK

(
x − x0

hn

)

, x ∈ [0, 1],

where
hn = c0n

− 1
2β+1 , c0 > 0, (2.32)

and where the function K : R → [0,+∞) satisfies

K ∈ Σ(β, 1/2) ∩ C∞(R) and K(u) > 0 ⇐⇒ u ∈ (−1/2, 1/2). (2.33)
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There exist functions K satisfying this condition. For example, for a suffi-
ciently small a > 0 we can take

K(u) = aK0(2u), where K0(u) = exp
(

− 1
1 − u2

)

I(|u| ≤ 1). (2.34)

In order to apply Theorem 2.2 and (2.9), we need to check the following three
conditions:

(a) fjn ∈ Σ(β, L), j = 0, 1,

(b) d(f1n, f0n) ≥ 2s,

(c) K(P0, P1) ≤ α < ∞.

We now show that these conditions hold for sufficiently small c0 and suf-
ficiently large n.

(a) The condition fjn ∈ Σ(β, L), j = 0, 1.
For � = �β�, the �th order derivative of f1n is

f
(�)
1n (x) = Lhβ−�

n K(�)

(
x − x0

hn

)

.

Then, by (2.33),

|f (�)
1n (x) − f

(�)
1n (x′)| = Lhβ−�

n |K(�)(u) − K(�)(u′)| (2.35)
≤ Lhβ−�

n |u − u′|β−�/2 = L|x − x′|β−�/2

with u = (x− x0)/hn, u′ = (x′ − x0)/hn, and x, x′ ∈ R. This means that f1n

belongs to the class Σ(β, L) on R. Then it is clear that f1n restricted to [0, 1]
belongs to the class Σ(β, L) on [0, 1].

(b) The condition d(f1n, f0n) ≥ 2s.
We have

d(f1n, f0n) = |f1n(x0)| = Lhβ
nK(0) = Lcβ

0K(0)n− β

2β+1 .

Then the condition d(f1n, f0n) ≥ 2s holds with

s = sn =
1
2
Lcβ

0K(0)n− β

2β+1
�
= An− β

2β+1 = Aψn.

(c) The condition K(P0, P1) ≤ α.
Observe that Pj (the distribution of Y1, . . . , Yn for f = fjn) admits the fol-
lowing density with respect to the Lebesgue measure on Rn:

pj(u1, . . . , un) =
n∏

i=1

pξ(ui − fjn(Xi)), j = 0, 1.
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There exists an integer n0 depending only on c0, L, β,Kmax, v0 such that for
all n > n0 we have nhn ≥ 1 and Lhβ

nKmax ≤ v0 where Kmax = maxu K(u).
Then, by (2.29) and by Assumption (LP2) of Chapter 1, we obtain for n > n0

K(P0, P1) =
∫

log
dP0

dP1
dP0 (2.36)

=
∫

. . .

∫
log

n∏

i=1

pξ(ui)
pξ(ui − f1n(Xi))

n∏

i=1

[pξ(ui)dui]

=
n∑

i=1

∫
log

pξ(y)
pξ(y − f1n(Xi))

pξ(y)dy ≤ p∗

n∑

i=1

f2
1n(Xi)

= p∗L
2h2β

n

n∑

i=1

K2

(
Xi − x0

hn

)

≤ p∗L
2h2β

n K2
max

n∑

i=1

I

(∣
∣
∣
∣
Xi − x0

hn

∣
∣
∣
∣ ≤

1
2

)

≤ p∗a0L
2K2

maxh
2β
n max(nhn, 1)

= p∗a0L
2K2

maxnh2β+1
n ,

where a0 is the constant appearing in Assumption (LP2). If we choose

c0 =
(

α

p∗a0L2K2
max

) 1
2β+1

,

then, by (2.32), we obtain K(P0, P1) ≤ α.
By part (iii) of Theorem 2.2, the above argument implies that, for any

n > n0 and for any estimator Tn,

sup
f∈Σ(β,L)

Pf (|Tn(x0) − f(x0)| ≥ sn) ≥ max
j=0,1

Pj(|Tn(x0) − fj(x0)| ≥ sn)

≥ max

(
1
4

exp(−α),
1 −
√

α/2
2

)

�
= V0(α).

This yields the following result.

Theorem 2.3 Suppose that β > 0 and L > 0. Under Assumption (B) and
Assumption (LP2) of Chapter 1 we have, for all x0 ∈ [0, 1], t > 0,

lim inf
n→∞

inf
Tn

sup
f∈Σ(β,L)

Pf

(
n

β
2β+1 |Tn(x0) − f(x0)| ≥ t

β
2β+1

)
≥ V0(ct), (2.37)
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where infTn
denotes the infimum over all estimators and c > 0 depends only

on β,L, p∗, and a0. Moreover,

lim inf
n→∞

inf
Tn

sup
f∈Σ(β,L)

Ef

[
n

2β
2β+1 (Tn(x0) − f(x0))2

]
≥ c1, (2.38)

where c1 > 0 depends only on β,L, p∗, and a0.

Corollary 2.2 Consider the nonparametric regression model under the fol-
lowing conditions:

(i) Xi = i/n for i = 1, . . . , n;
(ii) the random variables ξi are i.i.d. with density pξ satisfying (2.29) and

such that
E(ξi) = 0, E(ξ2

i ) < ∞.

Then, for β > 0 and L > 0, the rate of convergence ψn = n− β
2β+1 is optimal

on (Σ(β, L), d0) where d0 is the distance at a fixed point x0 ∈ [0, 1].
Moreover, if � = �β�, the local polynomial estimator LP (�), with the ker-

nel K and the bandwidth hn satisfying assumptions (iii) and (iv) of Theo-
rem 1.7, is rate optimal on (Σ(β, L), d0).

Remarks.

(1) It follows from (2.37) that

lim inf
a→0

lim inf
n→∞

inf
Tn

sup
f∈Σ(β,L)

Pf

(
n

β
2β+1 |Tn(x0) − f(x0)| ≥ a

)
≥ 1

2
. (2.39)

Here the constant 1/2 appears again; this is the maximum value that can be
obtained for the lower bounds based on two hypotheses. However, using the
techniques of M hypotheses with M → ∞, inequality (2.39) can be improved
to make the asymptotic constant equal to 1, see Exercise 2.9.
(2) Since V0 does not depend on x0, we have in fact proved a stronger inequal-
ity than (2.37), with a uniform bound in x0:

lim inf
n→∞

inf
Tn

inf
x0∈[0,1]

sup
f∈Σ(β,L)

Pf

(
n

β
2β+1 |Tn(x0) − f(x0)| ≥ t

β
2β+1

)
≥ V0(ct).

(2.40)

The techniques described in this section can be used to obtain a bound
similar to that of Theorem 2.3 for the problem of estimation of a probability
density (cf. Exercise 2.8).

2.6 Lower bounds based on many hypotheses

The lower bounds based on two hypotheses turn out to be inconvenient when
we deal with estimation in Lp distances. Consider, for example, the L2 dis-
tance:
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d(f, g) = ‖f − g‖2 =
(∫ 1

0

(f(x) − g(x))2dx

)1/2

and suppose that Assumption (B) and Assumption (LP2) of Chapter 1 hold.
Let us try to apply the technique of two hypotheses with f0n and f1n defined
as in the previous section (taking x0 = 1/2 as an example):

f0n(x) ≡ 0,

f1n(x) = Lhβ
nK

(
x − 1/2

hn

)

.

Here, hn > 0 and K(·) is a function satisfying (2.33). Apply now the Kullback
version of Theorem 2.2. The condition K(P0, P1) ≤ α < ∞ and inequality
(2.36) impose the following restriction on hn:

lim sup
n→∞

nh2β+1
n < ∞.

In other words, we obtain hn = O
(
n− 1

2β+1

)
, as in the previous section. Now,

d(f0n, f1n) = ‖f0n − f1n‖2 =
(∫ 1

0

f2
1n(x)dx

)1/2

= Lhβ
n

(∫ 1

0

K2

(
x − 1/2

hn

)

dx

)1/2

= Lh
β+ 1

2
n

(∫
K2(u)du

)1/2

for sufficiently large n. Therefore d(f0n, f1n) 
 h
β+ 1

2
n = O(n−1/2) implying

that (2.9) can only be used for s ≤ d(f0n, f1n)/2 = O(n−1/2). To conclude, the
technique based on two hypotheses gives a lower bound with the rate n−1/2,
which is not satisfactory because it is much smaller than n− β

2β+1 appearing in
the upper bound on the L2-risk on Σ(β, L) (cf. Corollary 1.2). This problem
can be fixed by switching to M hypotheses with M tending to infinity as
n → ∞.

Proposition 2.2 Let P0, P1, . . . , PM be probability measures on (X ,A). Then

pe,M ≥ sup
τ>0

τM

1 + τM

⎡

⎣ 1
M

M∑

j=1

Pj

(
dP a

0,j

dPj
≥ τ

)
⎤

⎦ ,

where P a
0,j is the absolutely continuous component of the measure P0 with

respect to Pj.

Proof. Let ψ be a test taking values in {0, 1, . . . ,M}. Then
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M⋃

j=1

{ψ = j} = {ψ �= 0}

and
{ψ = j} ∩ {ψ = k} = ∅ for k �= j.

Introducing the random event Aj =
{

dP a
0,j

dPj
≥ τ

}

we can write

P0(ψ �= 0) =
M∑

j=1

P0(ψ = j) ≥
M∑

j=1

P a
0,j(ψ = j)

≥
M∑

j=1

τPj({ψ = j} ∩ Aj)

≥ τM

⎛

⎝ 1
M

M∑

j=1

Pj(ψ = j)

⎞

⎠− τ

M∑

j=1

Pj(Ac
j)

= τM(p0 − α),

where Ac
j is the complement of Aj and

p0 =
1
M

M∑

j=1

Pj(ψ = j), α =
1
M

M∑

j=1

Pj

(
dP a

0,j

dPj
< τ

)

.

Then

max
0≤j≤M

Pj(ψ �= j) = max
{

P0(ψ �= 0), max
1≤j≤M

Pj(ψ �= j)
}

≥ max
{

τM(p0 − α),
1
M

M∑

j=1

Pj(ψ �= j)
}

= max{τM(p0 − α), 1 − p0}
≥ min

0≤p≤1
max{τM(p − α), 1 − p}

=
τM(1 − α)

1 + τM
.

Theorem 2.4 (Main theorem on lower bounds for the risk). Assume
that Θ contains elements θ0, θ1, . . . , θM such that:

(i) d(θj , θk) ≥ 2s > 0, ∀ 0 ≤ j < k ≤ M ;

(ii) there exist τ > 0 and 0 < α < 1 satisfying
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1
M

M∑

j=1

Pj

(
dP a

0,j

dPj
≥ τ

)

≥ 1 − α, (2.41)

where P a
0,j is the absolutely continuous component of the measure P0 = Pθ0

with respect to Pj = Pθj
. Then

inf
θ̂

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ s) ≥ τM

1 + τM
(1 − α). (2.42)

The proof of this theorem follows immediately from Proposition 2.2 and (2.9).

For M = 1, Proposition 2.2 and Theorem 2.4 coincide with Proposition 2.1
and Theorem 2.1, respectively. We now derive analogs of Theorem 2.4 where
we replace condition (2.41) by appropriate assumptions on the Kullback or the
χ2 divergences between the measures Pj and P0. We first obtain the following
modification of Proposition 2.2 using the Kullback divergence.

Proposition 2.3 Let P0, P1, . . . , PM be probability measures on (X ,A) sat-
isfying

1
M

M∑

j=1

K(Pj , P0) ≤ α∗ (2.43)

with 0 < α∗ < ∞. Then

pe,M ≥ sup
0<τ<1

[
τM

1 + τM

(

1 +
α∗ +

√
α∗/2

log τ

)]

. (2.44)

Proof. We apply Proposition 2.2. It is sufficient to check that, for all 0 <
τ < 1,

1
M

M∑

j=1

Pj

(
dP a

0,j

dPj
≥ τ

)

≥ 1 − α′

with

α′ = −α∗ +
√

α∗/2
log τ

.

By (2.43), we have Pj 	 P0 and dPj/dP0 = dPj/dP a
0,j everywhere except for

a set having Pj-measure zero. Then we obtain

Pj

(
dP a

0,j

dPj
≥ τ

)

= Pj

(
dPj

dP0
≤ 1

τ

)

= 1 − Pj

(

log
dPj

dP0
> log

1
τ

)

≥ 1 − 1
log(1/τ)

∫ (

log
dPj

dP0

)

+

dPj (Markov’s inequality)

≥ 1 − 1
log(1/τ)

[

K(Pj , P0) +
√

K(Pj , P0)/2
]

(2nd Pinsker’s inequality).
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By the Jensen inequality and by (2.43),

1
M

M∑

j=1

√
K(Pj , P0) ≤

⎛

⎝ 1
M

M∑

j=1

K(Pj , P0)

⎞

⎠

1/2

≤ √
α∗.

Then

1
M

M∑

j=1

Pj

(
dP a

0,j

dPj
≥ τ

)

≥ 1 − α∗ +
√

α∗/2
log(1/τ)

= 1 − α′.

We are now in a position to obtain the following analog of Theorem 2.4
based on Kullback divergences.

Theorem 2.5 (Kullback version of the main theorem). Assume that
M ≥ 2 and suppose that Θ contains elements θ0, θ1, . . . , θM such that:

(i) d(θj , θk) ≥ 2s > 0, ∀ 0 ≤ j < k ≤ M ;

(ii) Pj 	 P0, ∀ j = 1, . . . ,M, and

1
M

M∑

j=1

K(Pj , P0) ≤ α log M (2.45)

with 0 < α < 1/8 and Pj = Pθj
, j = 0, 1, . . . ,M . Then

inf
θ̂

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ s) ≥
√

M

1 +
√

M

(

1 − 2α −
√

2α

log M

)

> 0. (2.46)

Proof. We apply Proposition 2.3 where we set α∗ = α log M and bound from
below the supremum over τ on the right hand side of (2.44) by the term with
τ = 1/

√
M . This yields

pe,M ≥
√

M

1 +
√

M

(

1 − 2α −
√

2α

log M

)

≥
√

M

1 +
√

M

(

1 − 2α −
√

2α

log 2

)

> 0

for 0 < α < 1/8, giving (2.46) in view of (2.9).

We now consider the χ2 versions of Proposition 2.2 and Theorem 2.4.

Proposition 2.4 Let P0, P1, . . . , PM be probability measures on (X ,A) sat-
isfying

1
M

M∑

j=1

χ2(Pj , P0) ≤ α∗ (2.47)
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with 0 < α∗ < ∞. Then

pe,M ≥ sup
0<τ<1

[
τM

1 + τM

(
1 − τ(α∗ + 1)

)]

. (2.48)

Proof. Again, we apply Proposition 2.2. It is sufficient to check that under
assumption (2.47), for all 0 < τ < 1,

1
M

M∑

j=1

Pj

(
dP a

0,j

dPj
≥ τ

)

≥ 1 − τ(α∗ + 1). (2.49)

As in the proof of Proposition 2.3, we find

Pj

(
dP a

0,j

dPj
≥ τ

)

= Pj

(
dPj

dP0
≤ 1

τ

)

= 1 − Pj

(
dPj

dP0
>

1
τ

)

= 1 −
∫

dPj

dP0
I

(
dPj

dP0
>

1
τ

)

dP0

≥ 1 − τ

∫ (
dPj

dP0

)2

dP0 (Markov’s inequality)

= 1 − τ
(
χ2(Pj , P0) + 1

)
,

which, together with (2.47), yields (2.49).

Theorem 2.6 (χ2 version of the main theorem). Assume that M ≥ 2
and suppose that Θ contains elements θ0, θ1, . . . , θM such that:

(i) d(θj , θk) ≥ 2s > 0, ∀ 0 ≤ j < k ≤ M ;

(ii) Pj 	 P0, ∀ j = 1, . . . ,M, and

1
M

M∑

j=1

χ2(Pj , P0) ≤ αM (2.50)

with 0 < α < 1/2 and Pj = Pθj
, j = 0, 1, . . . ,M . Then

inf
θ̂

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ s) ≥ 1
2

(

1 − α − 1
M

)

> 0. (2.51)

Proof. Use (2.9) and Proposition 2.4 setting there α∗ = αM and bounding
from below the supremum over τ on the right hand side of (2.48) by the term
with τ = 1/M .
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Comparison of (2.45) and (2.50) shows that, to derive valid lower bounds,
we can allow the χ2 divergences between Pj and P0 to be of much larger order
than the Kullback ones, as M → ∞.

The results of this section are valid for M ≥ 2. Combining them with
Theorem 2.2 that treats the case M = 1 and considering general loss functions,
which is an easy extension (cf. (2.5)), we get the following theorem.

Theorem 2.7 Let w be a loss function satisfying (2.3), and let A > 0 be such
that w(A) > 0. Assume that Θ contains elements θ0, θ1, . . . , θM , M ≥ 1, such
that:

(i) d(θj , θk) ≥ 2s > 0, ∀ 0 ≤ j < k ≤ M ;

(ii) Pj 	 P0, ∀ j = 1, . . . ,M, and

1
M

M∑

j=1

K(Pj , P0) ≤ α log M or
1
M

M∑

j=1

χ2(Pj , P0) ≤ αM, (2.52)

with 0 < α < 1/8 and Pj = Pθj
, j = 0, 1, . . . , M .

Then for ψ = s/A we have

inf
θ̂

sup
θ∈Θ

Eθ

[
w(ψ−1d(θ̂, θ))

]
≥ c(α)w(A),

where inf θ̂ denotes the infimum over all estimators and c(α) > 0 is a constant
depending only on α.

Proof. Combine (2.5), (2.9) and Theorems 2.2, 2.5, 2.6.

Remarks.

(1) In the sequel we will use the bounds (2.42), (2.46), and (2.51) with M =
Mn depending on n such that Mn → ∞ as n → ∞. Note that the right hand
side of (2.46) becomes arbitrarily close to 1 as M → ∞ and α → 0. Moreover,
it follows from the proof of Theorem 2.5 that

lim inf
M→∞

pe,M ≥ 1 − 2α. (2.53)

In other words, the right hand side of (2.44) with α∗ = α log M can be arbi-
trarily close to 1 for sufficiently large M and small α, in contrast to the bounds
based on two hypotheses obtained in Sections 2.3 and 2.4.2. An example of
application of this property is given in Exercise 2.9.
(2) For finite M , the constants in (2.46) and (2.51) are not optimal. They
can be improved, for example, by direct computation of the maximum over
0 < τ < 1 in (2.44), (2.48) (Exercise 2.6) or by taking τ = M−γ with 0 <
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γ < 1 and maximizing with respect to γ. More accurate evaluations in the
Kullback case can be obtained using Fano’s lemma (see Section 2.7.1). These
modifications are not of a great importance in the context of this chapter,
since here we are only interested in the rates of convergence. From the very
beginning, we follow the general scheme of Section 2.2 based on rather rough
inequalities. Therefore, improving bounds for pe,M will still leave the final
result inaccurate in what concerns the constants. Recall that the scheme of
Section 2.2 is quite general and can be applied to any estimation problem.
The reader will not be surprised by the fact that the corresponding bounds
are not the most accurate: this is a price to pay for generality. More refined
methods should be applied, case by case, if we would like to optimize not only
the rate of convergence but also the constants. This is only available for some
remarkable problems; an example will be given in Chapter 3.

2.6.1 Lower bounds in L2

Theorems 2.4 and 2.5 enable us to obtain lower bounds for the Lp risk with
optimal rates. To illustrate this, consider the nonparametric regression model
under Assumption (B) and let us focus on the L2 risk. Then

d(f, g) = ‖f − g‖2 =
(∫ 1

0

(f(x) − g(x))2dx
)1/2

. (2.54)

Our first aim is to prove the lower bound (2.2) on the minimax risk for the
Hölder class Θ = Σ(β, L) and the L2 distance (2.54), with the rate

ψn = n− β
2β+1 .

Let M be an integer to be specified later on. Consider the following hypotheses:

θj = fjn(·), j = 0, . . . ,M,

where fjn ∈ Σ(β, L). By the general scheme of Section 2.2, it is sufficient to
prove that

inf
θ̂n

max
θ∈{θ0,...,θM}

Pθ(d(θ̂n, θ) ≥ s) ≥ c′ > 0,

where s = Aψn and A > 0. If Θ = Σ(β, L) and if d is the L2-distance, this
inequality becomes

inf
Tn

max
f∈{f0n,...,fMn}

Pf (‖Tn − f‖2 ≥ Aψn) ≥ c′ > 0, (2.55)

where inf
Tn

denotes the infimum over all estimators Tn. We will apply Theo-

rem 2.5 to obtain (2.55). First, we define the functions fjn that will be used
in the proof.
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Construction of the hypotheses fjn

Take a real number c0 > 0 and an integer m ≥ 1. Define

m = �c0n
1

2β+1 �, hn =
1
m

, xk =
k − 1/2

m
,

ϕk(x) = Lhβ
nK

(
x − xk

hn

)

, k = 1, . . . ,m, x ∈ [0, 1], (2.56)

where K : R → [0,+∞) is a function satisfying (2.33). In what follows we
denote by �x� the smallest integer which is strictly greater than x ∈ R. In
view of (2.35), all the functions ϕk belong to Σ(β, L/2). Consider the set of
all binary sequences of length m:

Ω =
{
ω = (ω1, . . . , ωm), ωi ∈ {0, 1}

}
= {0, 1}m.

The hypotheses fjn will be chosen in the collection of functions

E =
{

fω(x) =
m∑

k=1

ωkϕk(x), ω ∈ Ω
}

.

For all ω, ω′ ∈ Ω, we have

d(fω, fω′) =
[ ∫ 1

0

(fω(x) − fω′(x))2dx
]1/2

=
[ m∑

k=1

(ωk − ω′
k)2
∫

Δk

ϕ2
k(x)dx

]1/2

= Lh
β+ 1

2
n ‖K‖2

[ m∑

k=1

(ωk − ω′
k)2
]1/2

= Lh
β+ 1

2
n ‖K‖2

√
ρ(ω, ω′), (2.57)

where ρ(ω, ω′) =
m∑

k=1

I(ωk �= ω′
k) is the Hamming distance between the binary

sequences ω = (ω1, . . . , ωm) and ω′ = (ω′
1, . . . , ω

′
m), and where Δk are the

intervals

Δ1 = [0, 1/m], Δk = ((k − 1)/m, k/m], k = 2, . . . ,m. (2.58)

The set {fjn, j = 0, . . . ,M} will be composed of certain functions fω

selected in E . In order to apply Theorem 2.5, we need that any two functions
fω, fω′ belonging to the selected set {fjn, j = 0, . . . , M} satisfy the property
d(fω, fω′) ≥ 2sn 
 n− β

2β+1 . Therefore, it suffices to choose ω, ω′ such that√
ρ(ω, ω′) 
 h

−1/2
n , which is equivalent to ρ(ω, ω′) 
 m. Then the following



104 2 Lower bounds on the minimax risk

question arises: How massive can be the set of all binary sequences ω with
pairwise separation by the Hamming distance of at least ∼ m? A lower bound
for the cardinality of this set is given by a result in information theory known
under the name of the Varshamov–Gilbert bound. In order to prove this bound,
we first introduce an exponential inequality for sums of independent bounded
random variables.

Lemma 2.8 (Hoeffding’s inequality). Let Z1, . . . , Zm be independent ran-
dom variables such that ai ≤ Zi ≤ bi. Then for all t > 0

P

(
m∑

i=1

(Zi − E(Zi)) ≥ t

)

≤ exp
(

− 2t2
∑m

i=1(bi − ai)2

)

.

The proof of this lemma is given in Appendix (Lemma A.4).

Lemma 2.9 (Varshamov–Gilbert bound). Let m ≥ 8. Then there exists
a subset {ω(0), . . . , ω(M)} of Ω such that ω(0) = (0, . . . , 0),

ρ(ω(j), ω(k)) ≥ m

8
, ∀ 0 ≤ j < k ≤ M, (2.59)

and
M ≥ 2m/8. (2.60)

Proof. It is clear that Card Ω = 2m. Take ω(0) = (0, . . . , 0) and exclude all
ω ∈ Ω belonging to the D-neighborhood of ω(0), that is, such that ρ(ω, ω(0)) ≤
D

�
= �m/8�. Set

Ω1 = {ω ∈ Ω : ρ(ω, ω(0)) > D}.
Take as ω(1) an arbitrary element of Ω1. Then exclude all ω ∈ Ω1 such that
ρ(ω, ω(1)) ≤ D, etc. In this way, we recurrently define subsets Ωj of Ω:

Ωj = {ω ∈ Ωj−1 : ρ(ω, ω(j−1)) > D}, j = 1, . . . , M,

where Ω0
�
= Ω, ω(j) is an arbitrary element of Ωj and M is the smallest

integer satisfying ΩM+1 = ∅. Let nj be the number of vectors ω excluded
from the D-neighborhood of ω(j) at the jth step of this procedure, that is,
nj = Card Aj where

Aj = {ω ∈ Ωj : ρ(ω, ω(j)) ≤ D}, j = 0, . . . ,M.

From the definition of the Hamming distance, we obtain the bound

nj ≤
D∑

i=0

(
m

i

)

, j = 0, . . . ,M.
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Since A0, . . . , AM are disjoint sets forming a partition of Ω, we have

n0 + n1 + · · · + nM = Card Ω = 2m.

Therefore,

(M + 1)
D∑

i=0

(
m

i

)

≥ 2m. (2.61)

Moreover, ρ(ω(j), ω(k)) ≥ D + 1 = �m/8� + 1 ≥ m/8,∀j �= k, by construction
of the sequence ω(j). We can write (2.61) as follows:

M + 1 ≥ 1
p∗

,

where p∗ is the binomial probability

p∗ =
D∑

i=0

2−m

(
m

i

)

= P(Bi(m, 1/2) ≤ �m/8�),

Bi(m, 1/2) =
∑m

i=1 Zi and Zi are i.i.d. Bernoulli random variables with pa-
rameter 1/2. Since 0 ≤ Zi ≤ 1 and E(Zi) = 1/2, the Hoeffding inequality
implies that

p∗ ≤ exp(−9m/32) < 2−m/4.

Therefore M + 1 ≥ 2m/4 ≥ 2m/8 + 1 for m ≥ 8.

Finally, we define

fjn(x) = fω(j)(x), j = 0, . . . , M,

where {ω(0), . . . , ω(M)} is a subset of Ω satisfying the assumptions of Lem-
ma 2.9.

Application of Theorem 2.5

Fix α ∈ (0, 1/8). In order to apply Theorem 2.5 we need to check the following
three conditions:

(a) fjn ∈ Σ(β, L), j = 0, . . . ,M,

(b) d(θj , θk) = ‖fjn − fkn‖2 ≥ 2s > 0, 0 ≤ j < k ≤ M,

(c)
1
M

M∑

j=1

K(Pj , P0) ≤ α log M.
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We will now show that these conditions are satisfied for all sufficiently
large n.

(a) The condition fjn ∈ Σ(β, L).
Since ϕk ∈ Σ(β, L/2), |ωi| ≤ 1 and the functions ϕk have disjoint supports,
we have fω ∈ Σ(β, L) for all ω ∈ Ω.

(b) The condition ‖fjn − fkn‖2 ≥ 2s.

By (2.57) and (2.59), we obtain

‖fjn − fkn‖2 = ‖fω(j) − fω(k)‖2

= Lhβ+1/2
n ‖K‖2

√
ρ(ω(j), ω(k))

≥ Lh
β+ 1

2
n ‖K‖2

√
m

16

=
L

4
‖K‖2h

β
n =

L

4
‖K‖2m

−β ,

whenever m ≥ 8. Suppose that n ≥ n∗ where n∗ = (7/c0)2β+1. Then m ≥ 8
and mβ ≤ (1 + 1/7)βcβ

0n
β

2β+1 ≤ (2c0)βn
β

2β+1 , implying

‖fjn − fkn‖2 ≥ 2s

with
s = An− β

2β+1 = Aψn, A =
L

8
‖K‖2(2c0)−β .

(c) The condition
1
M

M∑

j=1

K(Pj , P0) ≤ α log M.

As in (2.36) we have, for all n ≥ n∗,

K(Pj , P0) ≤ p∗

n∑

i=1

f2
jn(Xi) ≤ p∗

m∑

k=1

∑

i:Xi∈Δk

ϕ2
k(Xi)

≤ p∗L
2K2

maxh
2β
n

m∑

k=1

Card{i : Xi ∈ Δk}

= p∗L
2K2

maxnh2β
n ≤ p∗L

2K2
maxc

−(2β+1)
0 m.

By (2.60), m ≤ 8 log M/ log 2. Therefore if we choose

c0 =
(

8p∗L
2K2

max

α log 2

) 1
2β+1

,

then K(Pj , P0) < α log M , j = 1, . . . ,M .
We conclude that the assumptions of Theorem 2.5 are satisfied. Therefore,

for any estimator Tn,
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max
f∈{f0n,...,fMn}

Pf (‖Tn − f‖2 ≥ Aψn) ≥
√

M

1 +
√

M

(

1 − 2α −
√

2α

log M

)

,

implying the following result.

Theorem 2.8 Let β > 0 and L > 0. Under Assumption (B) we have

lim inf
n→∞

inf
Tn

sup
f∈Σ(β,L)

Ef

[
n

2β
2β+1 ‖Tn − f‖2

2

]
≥ c (2.62)

where infTn
denotes the infimum over all estimators and where the constant

c > 0 depends only on β, L and p∗.

This theorem and Theorem 1.7 imply the following corollary.

Corollary 2.3 Consider the nonparametric regression model under the fol-
lowing conditions:

(i) Xi = i/n for i = 1, . . . , n;
(ii) the random variables ξi are i.i.d. with density pξ satisfying (2.29) and

such that
E(ξi) = 0, E(ξ2

i ) < ∞.

Then, for all β > 0 and L > 0, the rate of convergence ψn = n− β
2β+1 is optimal

on (Σ(β, L), ‖ · ‖2).
Moreover, for � = �β� the local polynomial estimator LP (�) with kernel K

and bandwidth hn satisfying assumptions (iii) and (iv) of Theorem 1.7 is rate
optimal on (Σ(β, L), ‖ · ‖2).

Sobolev classes

The construction described in this section can also be used to obtain a lower
bound for the minimax risk on (W per(β, L), ‖ · ‖2) and therefore a fortiori on
(W (β, L), ‖ · ‖2) where β ∈ {1, 2, . . .}, L > 0.

Indeed, if K(·) is defined by (2.34), the functions fω as well as all their
derivatives are periodic on [0, 1]. Moreover, fω ∈ W (β, L) since fω ∈ Σ(β, L)
and Σ(β, L) ⊂ W (β, L). Therefore the functions f0n, . . . , fMn introduced
above belong to W per(β, L) and the argument of this section leads to the
following result.

Theorem 2.9 Let β ∈ {1, 2, . . .} and L > 0. Under Assumption (B) we have

lim inf
n→∞

inf
Tn

sup
f∈W per(β,L)

Ef

[
n

2β
2β+1 ‖Tn − f‖2

2

]
≥ c

where infTn
denotes the infimum over all estimators and where the constant

c > 0 depends only on β, L, and p∗.

This theorem and Theorem 1.9 imply the following corollary.



108 2 Lower bounds on the minimax risk

Corollary 2.4 Consider the nonparametric regression model under the fol-
lowing conditions:

(i) Xi = i/n for i = 1, . . . , n;
(ii) the random variables ξi are i.i.d. with density pξ satisfying (2.29) and

such that
E(ξi) = 0, E(ξ2

i ) < ∞.

Then, for β ∈ {1, 2, . . .} and L > 0, the rate of convergence ψn = n− β
2β+1 is

optimal on (W per(β, L), ‖ · ‖2).
Moreover, the simple projection estimator satisfying the assumptions of

Theorem 1.9 is rate optimal on (W per(β, L), ‖ · ‖2).

Finally note that the techniques of this section can be used to establish
lower bounds, similar to those of Theorem 2.8, for the problem of estimation
of a probability density (cf. Exercise 2.10).

2.6.2 Lower bounds in the sup-norm

We remain here in the framework of nonparametric regression under Assump-
tion (B). However, we suppose now that the semi-distance d(·, ·) is defined as
follows:

d(f, g) = ‖f − g‖∞ = sup
x∈[0,1]

|f(x) − g(x)|.

Our aim is to obtain the lower bound (2.2) for (Θ, d) = (Σ(β, L), ‖ · ‖∞) with
the rate

ψn =
(

log n

n

) β
2β+1

.

For this purpose we apply again Theorem 2.5. Define the hypotheses:

θ0 = f0n(·) ≡ 0,

θj = fjn(·), j = 1, . . . ,M,

with

fjn(x) = Lhβ
nK

(
x − xj

hn

)

, xj =
j − 1/2

M
, hn = 1/M,

where K : R → [0,+∞) is a function satisfying (2.33) and M > 1 is an
integer.

Fix α ∈ (0, 1/8). In order to apply Theorem 2.5, we have to check the
following conditions:

(a) fjn ∈ Σ(β, L), j = 1, . . . ,M,

(b) d(fjn, fkn) ≥ 2s > 0, ∀k �= j,
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(c)
1
M

M∑

j=1

K(Pj , P0) ≤ α log M.

Let us show that these conditions hold if n is sufficiently large.

(a) The condition fjn ∈ Σ(β, L): It holds in view of (2.35).

(b) The condition d(fjn, fkn) ≥ 2s. We have

d(fjn, fkn) = ‖fjn − fkn‖∞ ≥ Lhβ
nK(0)

�
= 2s,

where

s =
Lhβ

nK(0)
2

.

We need to have s 
 ψn =
(

log n
n

) β
2β+1

. Therefore we choose hn 

(

log n
n

) 1
2β+1

.
To be more explicit, we define hn = 1/M with

M =

⌈

c0

(
n

log n

) 1
2β+1
⌉

,

where c0 > 0 is a constant to be chosen later.

(c) Condition
1
M

M∑

j=1

K(Pj , P0) ≤ α log M .

By (2.36), we obtain

1
M

M∑

j=1

K(Pj , P0) ≤
1
M

M∑

j=1

p∗

n∑

i=1

f2
jn(Xi)

≤ p∗L
2K2

maxh
2β
n

1
M

M∑

j=1

Card{i : Xi ∈ supp(fjn)}

= p∗L
2K2

maxh
2β
n n/M = p∗L

2K2
maxM

−(2β+1)n

≤ p∗L
2K2

maxc
−(2β+1)
0 log n

where supp(fjn) denotes the support of the function fjn. We have

log M ≥ log

(

c0

(
n

log n

) 1
2β+1
)

=
log n

2β + 1
(1 + o(1)) ≥ log n

2β + 2

for sufficiently large n. We conclude by choosing c0 sufficiently large.
We have therefore proved the following theorem.
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Theorem 2.10 Let β > 0 and L > 0. Under Assumption (B), we have:

lim inf
n→∞

inf
Tn

sup
f∈Σ(β,L)

(
n

log n

) 2β
2β+1

Ef‖Tn − f‖2
∞ ≥ c,

where infTn
denotes the infimum over all estimators and where the constant

c > 0 depends only on β, L, and p∗.

This theorem and Theorem 1.8 imply the following corollary.

Corollary 2.5 Consider the nonparametric regression model under the fol-
lowing assumptions:

(i) Xi = i/n for i = 1, . . . , n;
(ii) the random variables ξi are i.i.d. Gaussian with distribution N (0, σ2

ξ )
where 0 < σ2

ξ < ∞.

Then for β > 0 and L > 0 the rate of convergence

ψn =
(

log n

n

) β
2β+1

is optimal on (Σ(β, L), ‖ · ‖∞).
Moreover, the local polynomial estimator LP (�) for � = �β�, with kernel K

and bandwidth hn satisfying the assumptions of Theorem 1.8, is rate optimal
on (Σ(β, L), ‖ · ‖∞).

Observe that, by Corollaries 2.3 and 2.4, optimal rates of convergence in
the L2-norm on the Sobolev classes are the same as those on the Hölder classes.
It is interesting to note that the situation becomes different for estimation in
the L∞-norm; here optimal rates on the Sobolev classes are substantially
slower (cf. Exercise 2.11).

2.7 Other tools for minimax lower bounds

We are going to present now some more techniques for proving lower bounds
on the minimax risk. This material can be omitted in the first reading.

2.7.1 Fano’s lemma

The general scheme of Section 2.2 suggests a way to prove minimax lower
bounds by switching to the minimax probability of error pe,M . Our main
efforts in this chapter have been devoted to the construction of lower bounds
for pe,M . Fano’s lemma allows us to obtain similar results in a different way: by
switching to a smaller quantity which is the average probability of error. Note
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that, for the case of two hypotheses, bounds based on the average probability
of error already appeared in Section 2.4.2.

Let P0, P1, . . . , PM be probability measures on a measurable space (X ,A).
For a test ψ : X → {0, 1, . . . ,M}, define the average probability of error and
the minimum average probability of error by

pe,M (ψ) =
1

M + 1

M∑

j=0

Pj(ψ �= j)

and
pe,M = inf

ψ
pe,M (ψ),

respectively. Introduce a probability measure P on (X ,A) in the following
way:

P =
1

M + 1

M∑

j=0

Pj .

Lemma 2.10 (Fano’s lemma). Let P0, P1, . . . , PM be probability measures
on (X ,A), M ≥ 1. Then pe,M ≤ M/(M + 1) and

g(pe,M ) ≥ log(M + 1) − 1
M + 1

M∑

j=0

K(Pj , P ) (2.63)

where, for 0 ≤ x ≤ 1,
g(x) = x log M + H(x)

with H(x) = −x log x − (1 − x) log(1 − x) and 0 log 0
�
= 0.

Proof. We have

pe,M (ψ) =
1

M + 1
EP

⎡

⎣
M∑

j=0

I(Aj)
dPj

dP

⎤

⎦ = EP

[ M∑

j=0

bjpj

]
(2.64)

with Aj = {ψ �= j}, bj = I(Aj),

pj =
dPj

(M + 1)dP
,

where EP denotes the expectation with respect to the measure P . The random
variables bj and pj satisfy P -almost surely the following conditions:

M∑

j=0

bj = M, bj ∈ {0, 1}, and
M∑

j=0

pj = 1, pj ≥ 0.

Then we have that, P -almost surely,
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M∑

j=0

bjpj =
∑

j 
=j0

pj (2.65)

where j0 is a random number, 0 ≤ j0 ≤ M . Apply now the following lemma,
which will be proved later on.

Lemma 2.11 For all j0 ∈ {0, 1, . . . ,M} and all real numbers p0, p1 . . . , pM ,

such that
∑M

j=0 pj = 1, pj ≥ 0, we have

g
(∑

j 
=j0

pj

)
≥ −

M∑

j=0

pj log pj (2.66)

where 0 log 0
�
= 0.

The function g(x) = x log M +H(x) is concave for 0 ≤ x ≤ 1. Using (2.64),
the Jensen inequality, and formulas (2.65) and (2.66) we obtain that, for any
test ψ,

g(pe,M (ψ)) = g
(
EP

[ M∑

j=0

bjpj

])
≥ EP g

( M∑

j=0

bjpj

)

≥ EP

[
−

M∑

j=0

pj log pj

]

= −EP

⎡

⎣
M∑

j=0

dPj

(M + 1)dP
log

dPj

(M + 1)dP

⎤

⎦

= log(M + 1) − 1
M + 1

M∑

j=0

K(Pj , P ).

Since there exists a sequence of tests {ψk}∞k=0 such that pe,M (ψk) → pe,M as
k → ∞, we obtain by continuity of g

g(pe,M ) = lim
k→∞

g(pe,M (ψk)) ≥ log(M + 1) − 1
M + 1

M∑

j=0

K(Pj , P ).

It remains to prove that pe,M ≤ M/(M + 1). For this purpose, we define a
degenerate test ψ∗ ≡ 1 and observe that

inf
ψ

pe,M (ψ) ≤ pe,M (ψ∗) =
1

M + 1

M∑

j=0

Pj(j �= 1) =
M

M + 1
.

Proof of Lemma 2.11. It is sufficient to prove the result under the assump-
tion
∑

j 
=j0
pj �= 0 since otherwise inequality (2.66) is clear. We have
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M∑

j=0

pj log pj = pj0 log pj0 +
(∑

j 
=j0

pj

)
log
(∑

j 
=j0

pj

)
(2.67)

+
∑

j 
=j0

pj log
pj∑

i
=j0
pi

= −H
(∑

j 
=j0

pj

)
+
(∑

j 
=j0

pj

)(∑

j 
=j0

qj log qj

)

with
qj =

pj∑
i
=j0

pi
,
∑

j 
=j0

qj = 1, qj ≥ 0.

Suppose that qj > 0; the case of qj = 0 requires a trivial modification. Since
the function − log x is convex for x > 0, we obtain by the Jensen inequality

∑

j 
=j0

qj log qj = −
∑

j 
=j0

qj log(1/qj) ≥ − log M.

Lemma 2.11 follows from this inequality and (2.67).

Using Fano’s lemma we can bound from below the minimax probability of
error pe,M in the following way:

pe,M = inf
ψ

max
0≤j≤M

Pj(ψ �= j) ≥ inf
ψ

pe,M (ψ) = pe,M

≥ g−1

⎛

⎝log(M + 1) − 1
M + 1

M∑

j=0

K(Pj , P )

⎞

⎠ , (2.68)

where g−1(t)
�
= 0 for t < 0 and, for 0 < t < log(M + 1), g−1(t) is a solution

of the equation g(x) = t with respect to x ∈ [0,M/(M + 1)]; this solution
exists since the function g is continuous and increasing on [0,M/(M +1)] and
g(0) = 0, g(M/(M + 1)) = log(M + 1). Then lower bounds on the minimax
risk can be obtained following the general scheme of Section 2.2 and using
inequality (2.68). It is sufficient to assure that the quantity

log(M + 1) − 1
M + 1

M∑

j=0

K(Pj , P )

is positive. We can check this fact in two ways. The first method is due to
Ibragimov and Has’minskii who introduced Fano’s lemma in the context of
nonparametric estimation. Suppose that the measures Pj are mutually abso-
lutely continuous; then one can readily see that

1
M + 1

M∑

j=0

K(Pj , P ) ≤ 1
(M + 1)2

M∑

j=0

M∑

k=0

K(Pj , Pk).
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Thus, in order to obtain a nontrivial lower bound, it is sufficient to choose
measures Pj satisfying max0≤j,k≤M K(Pj , Pk) ≤ α log(M +1) with 0 < α < 1.
The second method (which is more general since it does not require all the
measures Pj to be mutually absolutely continuous) is based on the elementary
equality

1
M + 1

M∑

j=0

K(Pj , P0) =
1

M + 1

M∑

j=0

K(Pj , P ) + K(P , P0). (2.69)

Since K(P , P0) ≥ 0, inequalities (2.63) and (2.69) imply that

g(pe,M ) ≥ log(M + 1) − 1
M + 1

M∑

j=1

K(Pj , P0) (2.70)

giving
pe,M ≥ g−1

(
log(M + 1) − α log M

)
(2.71)

whenever (M + 1)−1
∑M

j=1 K(Pj , P0) ≤ α log M with 0 < α < 1 and M ≥ 2.
Unfortunately, inequality (2.71) is not explicit enough, since it contains the
inverse function of g. A more explicit solution can be obtained if we simplify
(2.71) in the following way.

Corollary 2.6 Let P0, P1, . . . , PM be probability measures on (X ,A), M ≥ 2.
If

1
M + 1

M∑

j=1

K(Pj , P0) ≤ α log M

with 0 < α < 1, then

pe,M ≥ pe,M ≥ log(M + 1) − log 2
log M

− α. (2.72)

Proof. It is sufficient to use the inequality pe,M ≥ pe,M , formula (2.70) and
the fact that H(x) ≤ log 2 for 0 ≤ x ≤ 1.

For M = 1, inequality (2.70) gives

pe,1 ≥ pe,1 ≥ H−1(log 2 − α/2) (2.73)

whenever K(P1, P0) ≤ α < ∞ where

H−1(t) = min{p ∈ [0, 1/2] : H(p) ≥ t}.

Note that the bound (2.73) is coarser than the following one, obtained from
part (iii) of Theorem 2.2 under the same conditions:
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pe,1 ≥ pe,1 ≥ max

(
1
4

exp(−α),
1 −
√

α/2
2

)

. (2.74)

Indeed, the bound (2.74) is nontrivial for all α > 0 while the term on the right
hand side of (2.73) is positive for α < 2 log 2 only. Moreover, for α sufficiently
close to 0, which is the most interesting case in our context, the bound (2.73)
is less accurate than (2.74).

Remarks.

(1) By taking the limit in (2.72) as M → ∞, we come again to (2.53); in fact,
we obtain a slightly stronger inequality:

lim inf
M→∞

pe,M ≥ 1 − α. (2.75)

(2) Corollary 2.6 is essentially of the same type as Proposition 2.3, except
that it holds for the minimum average probability pe,M and not only for
the minimax probability pe,M . This property is useful in certain applications,
especially in obtaining lower bounds on the minimax risk in the nonparametric
regression model with arbitrary design X1, . . . , Xn. Indeed, assume that we
deal with the following framework.

Assumption (B1)
Conditions (i) and (ii) of Assumption (B) are satisfied and Xi are arbitrary
random variables taking values in [0, 1] such that (X1, . . . , Xn) is independent
of (ξ1, . . . , ξn).

Using (2.72) we obtain the following result.

Theorem 2.11 Let β > 0 and L > 0. Under Assumption (B1), for p = 2 or
p = ∞, and

ψn,2 = n− β
2β+1 , ψn,∞ =

(
log n

n

) β
2β+1

,

we have
lim inf
n→∞

inf
Tn

sup
f∈Σ(β,L)

Ef

[
ψ−2

n,p‖Tn − f‖2
p

]
≥ c

where infTn
denotes the infimum over all estimators and where the constant

c > 0 depends only on β, L and p∗.

Proof. Let f0n, . . . , fMn be the functions defined, for p = 2, in the proof of
Theorem 2.8 and, for p = ∞, in the proof of Theorem 2.10. By construction,
‖fjn − fkn‖p ≥ 2s, j �= k, with s = Aψn,p and A > 0. Denote by EX1,...,Xn

the expectation with respect to the joint distribution of X1, . . . , Xn and put
Pj = Pfjn

.
For any estimator Tn, we have the following sequence of inequalities:
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sup
f∈Σ(β,L)

Ef

[
ψ−2

n,p‖Tn − f‖2
p

]

≥ A2 max
f∈{f0n,...,fMn}

Pf

(
‖Tn − f‖p ≥ Aψn,p

)

≥ A2 1
M + 1

M∑

j=0

EX1,...,Xn

[
Pj

(
‖Tn − f‖p ≥ s|X1, . . . , Xn

)]

= A2EX1,...,Xn

⎡

⎣ 1
M + 1

M∑

j=0

Pj

(
‖Tn − f‖p ≥ s|X1, . . . , Xn

)
⎤

⎦

≥ A2EX1,...,Xn

⎡

⎣inf
ψ

1
M + 1

M∑

j=0

Pj

(
ψ �= j|X1, . . . , Xn

)
⎤

⎦

where the last inequality follows from (2.8).
Fix X1, . . . , Xn. The proofs of Theorems 2.8 and 2.10 imply that

1
M + 1

M∑

j=1

K(Pj , P0) ≤ α log M

with 0 < α < 1/8. Then, by (2.72), we have

pe,M = inf
ψ

1
M + 1

M∑

j=0

Pj

(
ψ �= j|X1, . . . , Xn

)

≥ log(M + 1) − log 2
log M

− α.

Since the right hand side of the last inequality is independent of X1, . . . , Xn,
we obtain the required result.

In view of the remarks preceding Theorem 2.9, the result of Theorem 2.11
remains valid for p = 2 if we replace Σ(β, L) by the Sobolev class W (β, L) or
by W per(β, L).

2.7.2 Assouad’s lemma

The construction known as Assouad’s lemma deals with a particular case
where the hypotheses constitute a cube, i.e., {P0, P1, . . . , PM} = {Pω, ω ∈ Ω}
with Ω = {0, 1}m for some integer m. Assouad’s lemma reduces the problem
of obtaining a lower bound on the minimax risk to m problems of testing two
hypotheses, in contrast to the methods presented above where the reduction
has been made to one problem of testing M + 1 hypotheses.
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Lemma 2.12 (Assouad’s lemma). Let Ω = {0, 1}m be the set of all binary
sequences of length m. Let {Pω, ω ∈ Ω} be a set of 2m probability measures
on (X ,A) and let the corresponding expectations be denoted by Eω. Then

inf
ω̂

max
ω∈Ω

Eωρ(ω̂, ω) ≥ m

2
min

ω,ω′:ρ(ω,ω′)=1
inf
ψ

(
Pω(ψ �= 0) + Pω′(ψ �= 1)

)
(2.76)

where ρ(ω, ω′) is the Hamming distance between ω and ω′, inf ω̂ denotes the
infimum over all estimators ω̂ taking values in Ω and where infψ denotes the
infimum over all tests ψ taking values in {0, 1}.
Proof. Define

ω̂ = (ω̂1, . . . , ω̂m), ω = (ω1, . . . , ωm),

where ω̂j , ωj ∈ {0, 1}. Then

max
ω∈Ω

Eωρ(ω̂, ω) ≥ 1
2m

∑

ω∈Ω

Eωρ(ω̂, ω) =
1

2m

∑

ω∈Ω

Eω

m∑

j=1

|ω̂j − ωj |

=
1

2m

m∑

j=1

⎛

⎝
∑

ω∈Ω:ωj=1

+
∑

ω∈Ω:ωj=0

⎞

⎠Eω|ω̂j − ωj |. (2.77)

All the terms in the last sum over j in (2.77) are bounded from below in a
similar way. Consider, for example, the mth term:
(

∑

ω∈Ω:ωm=1

+
∑

ω∈Ω:ωm=0

)

Eω|ω̂m − ωm| (2.78)

=
∑

(ω1,...,ωm−1)∈{0,1}m−1

(
E(ω1,...,ωm−1,1)|ω̂m − 1| + E(ω1,...,ωm−1,0)|ω̂m|

)
.

Here

E(ω1,...,ωm−1,1)|ω̂m − 1| + E(ω1,...,ωm−1,0)|ω̂m| (2.79)

= P(ω1,...,ωm−1,1)(ω̂m = 0) + P(ω1,...,ωm−1,0)(ω̂m = 1)

≥ inf
ψ

(
P(ω1,...,ωm−1,1)(ψ = 0) + P(ω1,...,ωm−1,0)(ψ = 1)

)

≥ min
ω,ω′:ρ(ω,ω′)=1

inf
ψ

(
Pω′(ψ �= 1) + Pω(ψ �= 0)

)
.

Carrying out evaluations similar to (2.78)–(2.79) for all j we obtain
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⎛

⎝
∑

ω∈Ω:ωj=1

+
∑

ω∈Ω:ωj=0

⎞

⎠Eω|ω̂j − ωj | (2.80)

≥ 2m−1 min
ω,ω′:ρ(ω,ω′)=1

inf
ψ

(
Pω′(ψ �= 1) + Pω(ψ �= 0)

)
.

We complete the proof by combining (2.77) and (2.80).

Lemma 2.12 is an intermediate result that will be developed further before
being used. The following two steps should still be accomplished:

(i) an explicit lower bound for the minimum on the right hand side of (2.76)
should be given;

(ii) the initial minimax risk should be reduced to the form

inf
ω̂

max
ω∈Ω

Eωρ(ω̂, ω).

The following theorem carries out the first task. The second one will be
explained by an example below (cf. Example 2.2).

Theorem 2.12 Let Ω = {0, 1}m be the set of binary sequences of length m.
Let {Pω, ω ∈ Ω} be a set of 2m probability measures on (X ,A) and let Eω

denote the corresponding expectations.

(i) If there exist τ > 0 and 0 < α < 1 such that

Pω

(
dP a

ω′

dPω
≥ τ

)

≥ 1 − α, ∀ ω, ω′ ∈ Ω : ρ(ω, ω′) = 1,

where P a
ω′ is the absolutely continuous component of Pω′ with respect to Pω,

then
inf
ω̂

max
ω∈Ω

Eωρ(ω̂, ω) ≥ m

2
(1 − α)min(τ, 1) (2.81)

(likelihood ratio version).

(ii) If V (Pω′ , Pω) ≤ α < 1, ∀ ω, ω′ ∈ Ω : ρ(ω, ω′) = 1, then

inf
ω̂

max
ω∈Ω

Eωρ(ω̂, ω) ≥ m

2
(1 − α) (2.82)

(total variation version).

(iii) If H2(Pω′ , Pω) ≤ α < 2, ∀ ω, ω′ ∈ Ω : ρ(ω, ω′) = 1, then

inf
ω̂

max
ω∈Ω

Eωρ(ω̂, ω) ≥ m

2

(
1 −
√

α(1 − α/4)
)

(2.83)

(Hellinger version).
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(iv) If K(Pω′ , Pω) ≤ α < ∞ or χ2(Pω′ , Pω) ≤ α < ∞, ∀ ω, ω′ ∈ Ω :
ρ(ω, ω′) = 1, then

inf
ω̂

max
ω∈Ω

Eωρ(ω̂, ω) ≥ m

2
max
(1

2
exp(−α),

(
1 −
√

α/2
))

(2.84)

(Kullback/χ2 version).

Proof. In order to prove (ii)–(iv), it is sufficient to observe that

inf
ψ

(
Pω(ψ �= 0) + Pω′(ψ �= 1)

)
=
∫

min(dPω, dPω′)

in (2.76) and to apply the same argument as in the proof of Theorem 2.2.
We now prove (i). In the same way as in the proof of Proposition 2.1 we

obtain

inf
ψ

(
Pω(ψ �= 0) + Pω′(ψ �= 1)

)
≥ min

0≤p≤1
(max{0, τ(p − α)} + 1 − p).

If τ > 1, the minimum on the right hand side is attained at p = α, while for
τ ≤ 1 it is attained at p = 1. Inequality (2.81) follows from this remark and
from Lemma 2.12.

Example 2.2 A lower bound on the minimax risk in L2 via Assouad’s lemma.

Consider the nonparametric regression model under Assumptions (B)
and Assumption (LP2) of Chapter 1. We will use the notation intro-
duced in Section 2.6.1. In particular, ω = (ω1, . . . , ωm) ∈ Ω = {0, 1}m

and fω(x) =
∑m

k=1 ωkϕk(x). The L2-risk of an estimator Tn is given
by

Eω

[
‖Tn − fω‖2

2

]
= Eω

∫ 1

0

|Tn(x) − fω(x)|2dx =
m∑

k=1

Eωd2
k(Tn, ωk),

where

dk(Tn, ωk) =
(∫

Δk

|Tn(x) − ωkϕk(x)|2dx

)1/2

and where the intervals Δk are as in (2.58). Define the statistic

ω̂k = arg min
t=0,1

dk(Tn, t).

Then
dk(Tn, ωk) ≥ 1

2
dk(ω̂k, ωk)

�
=

1
2
|ω̂k − ωk|‖ϕk‖2. (2.85)

Indeed, by the definition of ω̂k, we have dk(Tn, ω̂k) ≤ dk(Tn, ωk) and
therefore
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dk(ω̂k, ωk) =
(∫

Δk

|(ω̂k − ωk)ϕk(x)|2dx

)1/2

≤ dk(Tn, ω̂k) + dk(Tn, ωk) ≤ 2dk(Tn, ωk).

By (2.85), we obtain for all ω ∈ Ω

Eω

[
‖Tn − fω‖2

2

]
≥ 1

4

m∑

k=1

Eω

[
(ω̂k − ωk)2

]
‖ϕk‖2

2

=
1
4
L2h2β+1

n ‖K‖2
2Eωρ(ω̂, ω)

where ω̂ = (ω̂1, . . . , ω̂m). Since hn = 1/m, we conclude that, for any
estimator Tn,

max
ω∈Ω

Eω

[
‖Tn − fω‖2

2

]
≥ 1

4
L2h2β+1

n ‖K‖2
2 inf

ω̂
max
ω∈Ω

Eωρ(ω̂, ω).

A bound for the last expression is obtained using part (iv) of Theo-
rem 2.12 where the condition on the Kullback divergence is checked
in the same way as in (2.36). Observe that in this proof, in contrast
to that in Section 2.6.1, we cannot drop Assumption (LP2).

Remarks.

(1) Switching from the initial minimax risk to a risk of the form

inf
ω̂

max
ω∈Ω

Eωρ(ω̂, ω)

is possible only for some particular loss functions w and semi-distances d(·, ·).
The application of Assouad’s lemma is therefore limited by these constraints.
For example, it cannot be used if the initial risk is defined with the indicator
loss function w(u) = I(u ≥ A) or the L∞-distance.
(2) An advantage of Assouad’s lemma consists in the fact that it admits
the Hellinger version and the total variation version adapted to the case of
multiple hypotheses (M ≥ 2). Note that such versions are not available in the
framework of Section 2.6. We can apply Assouad’s lemma, for example, if the
Kullback divergence is not defined or if it is difficult to verify the condition
(2.41) on the likelihood ratios.

2.7.3 The van Trees inequality

All the methods that we discussed in this chapter started with bounding from
below the maximum risk over a functional class by the maximum (or average)
risk over a finite family of members of the class. The technique that we are
going to consider now is somewhat different. The idea is to bound from below
the maximum risk over a functional class by the Bayes risk over a parametric
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subfamily indexed by a continuous parameter t, and then to use the van Trees
inequality to bound this parametric Bayes risk.

In order to introduce the van Trees inequality we need some notation. Let
T = [t1, t2] be an interval in R such that −∞ < t1 < t2 < ∞. Let {Pt, t ∈ T}
be a family of probability measures on (X ,A). We will be interested in the
case Pt = Pθt

where the parametric family {θt, t ∈ T} is a subset of our initial
class Θ (cf. Section 2.1), though this assumption will not be needed for the
proof of the van Trees inequality. The sample space X , the σ-algebra A, and
the measure Pt typically depend on the sample size n but we do not indicate
it in the notation for the sake of brevity.

Assume that there exists a σ-finite measure ν on (X ,A) such that Pt 	 ν
for all t ∈ T . Denote by p(·, t) the density of Pt with respect to ν.

Introduce a probability distribution on T with a density μ(·) with respect
to Lebesgue measure. For an arbitrary estimator t̂(X) where X is distributed
according to Pt we consider the Bayes risk with a prior density μ:

RB(t̂)
�
=
∫

T

Et

[
(t̂(X)− t)2

]
μ(t)dt =

∫ ∫
(t̂(x)− t)2p(x, t)ν(dx)μ(t)dt (2.86)

where Et denotes expectation with respect to Pt.

Theorem 2.13 (The van Trees inequality). Assume that:

(i)The density p(x, t) is measurable in (x, t) and absolutely continuous in t
for almost all x with respect to the measure ν.

(ii)The Fisher information

I(t) =
∫ (

p′(x, t)
p(x, t)

)2

p(x, t)ν(dx) ,

where p′(x, t) denotes the derivative of p(x, t) in t, is finite and integrable
on T : ∫

T

I(t)dt < ∞. (2.87)

(iii)The prior density μ is absolutely continuous on its support T , satisfies
the condition μ(t1) = μ(t2) = 0, and has finite Fisher information

J (μ) =
∫

T

(μ′(t))2

μ(t)
dt .

Then, for any estimator t̂(X), the Bayes risk is bounded as follows:
∫

T

Et

[
(t̂(X) − t)2

]
μ(t)dt ≥ 1

∫
I(t)μ(t)dt + J (μ)

. (2.88)

Proof. It suffices to consider the case RB(t̂) < ∞ because otherwise the
result is trivial. Since p(x, t) and μ(t) are absolutely continuous and μ(t1) =
μ(t2) = 0, we have
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∫
(p(x, t)μ(t))′dt = 0

for almost all x with respect to ν. Here (p(x, t)μ(t))′ is the derivative of
p(x, t)μ(t) with respect to t. For the same reasons, after integration by parts
we get ∫

t(p(x, t)μ(t))′dt = −
∫

p(x, t)μ(t)dt .

The last two equalities imply
∫ ∫

(t̂(x) − t)(p(x, t)μ(t))′dt ν(dx) =
∫ ∫

p(x, t)μ(t)dt ν(dx) = 1. (2.89)

Let us show that the first integral in (2.89) can be considered as an integral
over B = {(x, t) : p(x, t)μ(t) �= 0}. Fix x such that t �→ p(x, t) is absolutely
continuous and consider the function f(·) = p(x, ·)μ(·) on T . Note that there
exists a set Nx of Lebesgue measure 0 such that

S
�
= {t ∈ T : f(t) = 0} ⊆ {t ∈ T : f ′(t) = 0} ∪ Nx.1 (2.90)

Now, (2.90) implies that inserting the indicator I(B) under the integral over
t on the right hand side of (2.89) does not change the value of this integral
for almost all x with respect to ν. Thus,

∫ ∫
(t̂(x) − t)(p(x, t)μ(t))′I(B)dt ν(dx) = 1.

Applying the Cauchy–Schwarz inequality to the left hand side of this equation
and using (2.86) we find

∫

T

Et

[
(t̂(X) − t)2

]
μ(t)dt

∫ ∫ (
(p(x, t)μ(t))′

)2

p(x, t)μ(t)
I(B)dt ν(dx) ≥ 1 (2.91)

Now,
∫ ∫ (

(p(x, t)μ(t))′
)2

p(x, t)μ(t)
I(B)dt ν(dx)

=
∫ ∫ (

(p(x, t)μ(t))′

p(x, t)μ(t)

)2

p(x, t)μ(t)dt ν(dx)

=
∫

I(t)μ(t)dt + J (μ) + 2
∫ ∫

p′(x, t)μ′(t)dt ν(dx). (2.92)

1 In fact, since f is absolutely continuous, the set S is closed and the derivative f ′

exists almost everywhere on S. The set of isolated points of S is at most countable
and thus has Lebesgue measure 0. Take any t0 ∈ S which is not an isolated point
of S and such that f ′(t0) exists. Take a sequence {tk}k≥1 ⊆ S such that tk → t0.
Then

f ′(t0) = lim
k→∞

f(tk) − f(t0)

tk − t0
= 0,

proving (2.90).
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Here the integral
∫
I(t)μ(t)dt is finite since μ is bounded and (2.87) holds. Tak-

ing into account that
∫
I(t)μ(t)dt < ∞, J (μ) < ∞, and using the Cauchy–

Schwarz inequality we easily obtain
∫ ∫

|p′(x, t)μ′(t)|dt ν(dx) < ∞.

In view of (2.91), to complete the proof of the theorem it suffices to show that
the last double integral in (2.92) vanishes. Write

∫ ∫
p′(x, t)μ′(t)dt ν(dx) =

∫
g(t)μ′(t)dt,

where g(t) =
∫

p′(x, t)ν(dx). Let us show that g(t) = 0 for almost all t ∈ T .
In fact, by the Cauchy–Schwarz inequality and (2.87),

∫

T

∫
|p′(x, t)|ν(dx) dt ≤

∫

T

√
I(t)dt ≤

(∫

T

I(t)dt

)1/2 √
t2 − t1 < ∞.

Therefore, we can apply the Fubini theorem, which yields

∫ b

a

g(t)dt =
∫ (∫ b

a

p′(x, t)dt

)

ν(dx)

=
∫

(p(x, b) − p(x, a))ν(dx) = 0, ∀ t1 ≤ a < b ≤ t2,

because p(·, t) is a probability density with respect to ν for any t ∈ T . Since
a and b are arbitrary, we obtain that g(t) = 0 for almost all t ∈ T . Therefore,
the last double integral in (2.92) vanishes and (2.88) follows.

The following choice of the prior density μ is often convenient:

μ(t) =
1
s
μ0

( t − t0
s

)
(2.93)

where t0 is the center of the interval T , s = (t2 − t1)/2, and

μ0(t) = cos2(πt/2)I(|t| ≤ 1), (2.94)

so that J (μ0) = π2. Clearly, the density (2.93) satisfies assumption (iii) of
Theorem 2.13. Moreover, one can show that it has the smallest Fisher infor-
mation J (μ) among all the densities μ supported on T and satisfying this
assumption.

Example 2.3 A lower bound on the minimax risk at a fixed point via the van
Trees inequality.
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Consider the nonparametric regression model under Assumption (B),
and Assumption (LP2) introduced in Chapter 1. Assume in addition
that the random variables ξi are normal with mean 0 and variance
σ2. Our aim is to obtain a lower bound for the minimax risk on (Θ, d)
where Θ is a Hölder class:

Θ = Σ(β, L), β > 0, L > 0,

and where d is the distance at a fixed point x0 ∈ [0, 1]:

d(f, g) = |f(x0) − g(x0)|.

Choose the interval T = [−1, 1] and define the following parametric
family of functions on [0, 1] indexed by t ∈ [−1, 1]:

ft(x) = tLhβ
nK

(
x − x0

hn

)

, x ∈ [0, 1],

where hn = c0n
− 1

2β+1 with c0 > 0 and K satisfies (2.33). Arguing
as in Section 2.5 we easily find that ft ∈ Σ(β, L) for all t ∈ [−1, 1].
Therefore, choosing, for example, the prior density μ = μ0 as defined
in (2.94) we obtain that, for any estimator Tn,

sup
f∈Σ(β,L)

Ef

[
(Tn(x0) − f(x0))2

]
≥ sup

t∈[−1,1]

Eft

[
(Tn(x0) − ft(x0))2

]

≥
∫ 1

−1

Eft

[
(Tn(x0) − ft(x0))2

]
μ0(t)dt

= (Lhβ
nK(0))2

∫ 1

−1

Eft

[
(t̂n − t)2

]
μ0(t)dt

= n− 2β
2β+1 (Lcβ

0K(0))2
∫ 1

−1

Eft

[
(t̂n − t)2

]
μ0(t)dt (2.95)

where t̂n = (Lhβ
nK(0))−1Tn(x0), and we used that ft(x0) = tLhβ

nK(0).
Observe that to prove the desired lower bound (cf. (2.38)) it suffices
to show that the last integral, i.e., the Bayes risk for the chosen para-
metric subfamily of Σ(β, L), is bounded from below by a constant
independent of n. This is proved using the van Trees inequality. In-
deed, the Fisher information for the parametric regression model

Yi = tLhβ
nK

(
Xi − x0

hn

)

+ ξi, i = 1, . . . , n,

is independent of the parameter t and has the form

I(t) ≡ σ2
n∑

i=1

(

Lhβ
nK

(
Xi − x0

hn

))2

, t ∈ [−1, 1]. (2.96)
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Arguing as in (2.36) we get that, under Assumption LP2,

I(t) ≤ σ2a0L
2K2

maxnh2β+1
n = σ2a0L

2K2
maxc

2β+1
0 .

Therefore, using the van Trees inequality (2.88) and the fact that
J (μ0) = π2, we obtain

∫ 1

−1

Eft

[
(t̂n − t)2

]
μ0(t)dt ≥ 1

σ2a0L2K2
maxc

2β+1
0 + π2

.

The expression on the right hand side of this inequality does not de-
pend on n. Hence, combining it with (2.95), we obtain the desired
lower bound

inf
Tn

sup
f∈Σ(β,L)

Ef

[
(Tn(x0) − f(x0))2

]
≥ c n− 2β

2β+1

where c > 0 is a constant.

Note that the result that we obtain in Example 2.3 does not improve upon
Theorem 2.3. In this example we consider only Gaussian noise. The argu-
ment can be extended to any noise with finite Fisher information. However,
Theorem 2.3 holds under a slightly less restrictive assumption (part (ii) of
Assumption (B)). Another limitation is that the van Trees inequality applies
only to the squared loss function. An advantage of the van Trees technique
seems to be its relative simplicity and the fact that it can lead in some cases
to asymptotically optimal constants in the lower bounds.

2.7.4 The method of two fuzzy hypotheses

We consider now a generalization of the technique of two hypotheses (cf.
Theorems 2.1 and 2.2). The results of this section can be used to obtain lower
bounds on the minimax risk in the problem of estimation of functionals and
in nonparametric testing. Though these problems remain beyond the scope of
the book, the corresponding lower bounds can readily be established in the
same spirit as above, and we discuss them here for completeness.

Let F (θ) be a functional defined on a measurable space (Θ,U) and tak-
ing values in (R,B(R)) where B(R) is the Borel σ-algebra on R. We would
like to estimate F (θ) from observations X associated with a statistical model
{Pθ, θ ∈ Θ} where the probability measures Pθ are defined on (X ,A). Typi-
cally, X, Pθ,X , and A depend on the sample size n, though we do not reflect
this fact in our notation for the sake of brevity. Let F̂ = F̂n be an estimator
of F (θ). For a loss function w and a rate ψn, define the maximum risk of F̂n

as follows:
sup
θ∈Θ

Eθ

[
w(ψ−1

n |F̂n − F (θ)|)
]
. (2.97)
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Our aim here is to give a nontrivial lower bound on risk (2.97) for all estima-
tors F̂n. First, by Markov’s inequality, we obtain

inf
F̂n

sup
θ∈Θ

Eθ

[
w(ψ−1

n |F̂n − F (θ)|)
]
≥ w(A) inf

F̂n

sup
θ∈Θ

Pθ(|F̂n − F (θ)| ≥ Aψn)

for all A > 0. In words, we switch to the minimax probabilities, as we did in the
general scheme of Section 2.2. However, the next step is different. Instead of
passing to a finite number of simple hypotheses, we introduce two probability
measures μ0 and μ1 on (Θ,U) and apply the bound

sup
θ∈Θ

Pθ(|F̂ − F (θ)| ≥ s) ≥ max
{∫

Pθ(|F̂ − F (θ)| ≥ s)μ0(dθ),
∫

Pθ(|F̂ − F (θ)| ≥ s)μ1(dθ)
}

(2.98)

where s > 0 and where we write for brevity F̂ instead of F̂n. The measures μ0

and μ1 will be called fuzzy hypotheses, since their masses can be spread all
over the set Θ. If μ0 and μ1 are Dirac measures, we are back to the case of
two simple hypotheses analyzed in Sections 2.3 and 2.4.2.

Define two “posterior” probability measures IP0 and IP1 on (X ,A) as fol-
lows:

IPj(S) =
∫

Pθ(S)μj(dθ), ∀ S ∈ A, j = 0, 1.

Theorem 2.14 Assume that:

(i) There exist c ∈ R, s > 0, 0 ≤ β0, β1 < 1 such that

μ0(θ : F (θ) ≤ c) ≥ 1 − β0,

μ1(θ : F (θ) ≥ c + 2s) ≥ 1 − β1.

(ii) There exist τ > 0 and 0 < α < 1 such that

IP1

(
dIP a

0

dIP1
≥ τ

)

≥ 1 − α,

where IP a
0 is the absolutely continuous component of IP0 with respect to IP1.

Then, for any estimator F̂ ,

sup
θ∈Θ

Pθ(|F̂ − F (θ)| ≥ s) ≥ τ(1 − α − β1) − β0

1 + τ
.

Proof. Observe that
∫

Pθ(|F̂ − F (θ)| ≥ s)μ0(dθ) (2.99)

≥
∫

I(F̂ ≥ c + s, F (θ) ≤ c)dPθμ0(dθ)
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≥
∫

I(F̂ ≥ c + s)dPθμ0(dθ)

−
∫

I(F (θ) > c)dPθμ0(dθ)

= IP0(F̂ ≥ c + s) − μ0(θ : F (θ) > c)
≥ IP0(F̂ ≥ c + s) − β0.

In a similar way,
∫

Pθ(|F̂ − F (θ)| ≥ s)μ1(dθ) (2.100)

≥
∫

I(F̂ < c + s, F (θ) ≥ c + 2s)dPθμ1(dθ)

≥ IP1(F̂ < c + s) − β1.

By (2.98)–(2.101), we obtain

sup
θ∈Θ

Pθ(|F̂ − F (θ)| ≥ s) (2.101)

≥ max
{

IP0(F̂ ≥ c + s) − β0, IP1(F̂ < c + s) − β1

}

≥ inf
ψ

max
{

IP0(ψ = 1) − β0, IP1(ψ = 0) − β1

}
,

where infψ denotes the infimum over all tests ψ taking values in {0, 1}. By
assumption (ii), we obtain, as in the proof of Proposition 2.1,

IP0(ψ = 1) ≥
∫

dIP a
0

dIP1
I(ψ = 1)dIP1 ≥ τ(IP1(ψ = 1) − α).

It follows that

sup
θ∈Θ

Pθ(|F̂ − F (θ)| ≥ s)

≥ inf
ψ

max
{

τ(IP1(ψ = 1) − α) − β0, 1 − IP1(ψ = 1) − β1

}

≥ min
0≤p≤1

max
{

τ(p − α) − β0, 1 − p − β1

}

=
τ(1 − α − β1) − β0

1 + τ
.

Note that if β0 = β1 = 0, the measures μ0 and μ1 have disjoint supports.
Theorem 2.14 gives a lower bound under the condition (ii) which deals directly
with the distribution of the likelihood ratio. Other versions, similar to those
of Theorem 2.2, are now immediately obtained as corollaries.
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Theorem 2.15 Suppose that assumption (i) of Theorem 2.14 holds.

(i) If V (IP1, IP0) ≤ α < 1, then

inf
F̂

sup
θ∈Θ

Pθ(|F̂ − F (θ)| ≥ s) ≥ 1 − α − β0 − β1

2
(2.102)

(total variation version).

(ii) If H2(IP1, IP0) ≤ α < 2, then

inf
F̂

sup
θ∈Θ

Pθ(|F̂ − F (θ)| ≥ s) ≥ 1 −
√

α(1 − α/4)
2

− β0 + β1

2
(2.103)

(Hellinger version).

(iii) If K(IP1, IP0) ≤ α < ∞ (or χ2(IP1, IP0) ≤ α < ∞), then

inf
F̂

sup
θ∈Θ

Pθ(|F̂ − F (θ)| ≥ s)

≥ max

(
1
4

exp(−α),
1 −
√

α/2
2

)

− β0 + β1

2
(2.104)

(Kullback/χ2 version).

Proof. By (2.101), we have

sup
θ∈Θ

Pθ(|F̂ − F (θ)| ≥ s) ≥ inf
ψ

IP0(ψ = 1) + IP1(ψ = 0)
2

− β0 + β1

2

=
1
2

∫
min(dIP0, dIP1) −

β0 + β1

2
.

The proof is completed as in Theorem 2.2.

2.7.5 Lower bounds for estimators of a quadratic functional

We now apply the method of two fuzzy hypotheses to prove lower bounds
for estimators of a quadratic functional. Consider the nonparametric regres-
sion model under Assumption (B) and Assumption (LP2). Suppose that the
random variables ξi are i.i.d. with distribution N (0, 1). Put θ = f(·) and

F (θ) =
∫ 1

0

f2(x)dx.

Suppose also that the class of functions f we are dealing with is the Hölder
class, Θ = Σ(β, L), β > 0, L > 0. To obtain a lower bound on the minimax
risk in estimation of F (θ), we apply part (iii) (χ2 version) of Theorem 2.15.
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Let μ0 be the Dirac measure concentrated on the function f ≡ 0 and let
μ1 be a discrete measure supported on a finite set of functions:

fω(x) =
m∑

k=1

ωkϕk(x) with ωk ∈ {−1, 1},

where ϕk(·) are defined in (2.56) with

hn = 1/m, m = �c0n
2

4β+1 �, c0 > 0.

Suppose that the random variables ω1, . . . , ωm are i.i.d. with μ1(ωj = 1)
= μ1(ωj = −1) = 1/2. It is easy to see that fω ∈ Σ(β, L) for all ωj ∈ {−1, 1}.
Moreover, by the same argument as in (2.57) we obtain

∫ 1

0

f2
ω(x)dx =

m∑

k=1

∫
ϕ2

k(x)dx = mL2h2β+1
n ‖K‖2

2 = L2h2β
n ‖K‖2

2.

Therefore assumption (i) of Theorem 2.14 holds with

c = 0, β0 = β1 = 0, s = L2h2β
n ‖K‖2

2/2 ≥ An− 4β
4β+1 ,

where A > 0 is a constant. Posterior measures IP0 and IP1 admit the following
densities with respect to the Lebesgue measure on Rn:

p0(u1, . . . , un) =
n∏

i=1

ϕ(ui) =
m∏

k=1

∏

i:Xi∈Δk

ϕ(ui),

p1(u1, . . . , un) =
m∏

k=1

1
2

(
∏

i:Xi∈Δk

ϕ(ui − ϕk(Xi)) +
∏

i:Xi∈Δk

ϕ(ui + ϕk(Xi))

)

,

respectively, where ϕ(·) is the density of N (0, 1). Recall that Xi are deter-
ministic and the measures IP0 and IP1 are associated with the distribution of
(Y1, . . . , Yn). Setting for brevity

∏

i∈(k)

=
∏

i:Xi∈Δk

, Sk =
∑

i:Xi∈Δk

ϕ2
k(Xi), Vk(u) =

∑

i:Xi∈Δk

uiϕk(Xi),

we can write

dIP1

dIP0
(u1, . . . , un) =

m∏

k=1

{∏
i∈(k) ϕ(ui − ϕk(Xi)) +

∏
i∈(k) ϕ(ui + ϕk(Xi))

2
∏

i∈(k) ϕ(ui)

}

=
m∏

k=1

{
1
2

exp
(

−Sk

2

)[
exp (Vk(u)) + exp (−Vk(u))

]}

.

Then the χ2 divergence between IP1 and IP0 is as follows:
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χ2(IP1, IP0) =
∫ (

dIP1

dIP0

)2

dIP0 − 1 (2.105)

where
∫ (

dIP1

dIP0

)2

dIP0 =
m∏

k=1

{1
4

exp (−Sk) ×
∫

[exp(Vk(u)) + exp(−Vk(u))]2
∏

i∈(k)

ϕ(ui)dui

}
.

Since
∫

exp(vt)ϕ(v)dv = exp(t2/2) for all t ∈ R, we obtain

∫
exp (2Vk(u))

∏

i∈(k)

ϕ(ui)dui =
∫

exp (−2Vk(u))
∏

i∈(k)

ϕ(ui)dui

= exp(2Sk).

Therefore ∫ (
dIP1

dIP0

)2

dIP0 =
m∏

k=1

exp(Sk) + exp(−Sk)
2

. (2.106)

Using Assumption (LP2) and following the lines of (2.36) we obtain

Sk =
∑

i:Xi∈Δk

ϕ2
k(Xi) (2.107)

≤ L2K2
maxh

2β
n

n∑

i=1

I

(∣
∣
∣
∣
Xi − xk

hn

∣
∣
∣
∣ ≤ 1/2

)

≤ a0L
2K2

maxnh2β+1
n ,

if nhn ≥ 1, where a0 is the constant appearing in Assumption (LP2). Since
hn 
 n− 2

4β+1 , there exists a constant c1 < ∞ such that |Sk| ≤ c1 for all n ≥ 1
and all k = 1, . . . ,m. Thus, for |x| ≤ c1 we have |ex − 1 − x| ≤ c2x

2 where c2

is a finite constant. Therefore

exp(Sk) + exp(−Sk)
2

≤ 1 + c2S
2
k ≤ exp(c2S

2
k).

From this result and (2.106), we obtain

∫ (
dIP1

dIP0

)2

dIP0 ≤ exp

(

c2

m∑

k=1

S2
k

)

. (2.108)

By (2.107),

m∑

k=1

S2
k ≤ a2

0L
4K4

max(nh2β+1
n )2m = a2

0L
4K4

maxn
2m−(4β+1).
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In view of the definition of m, it follows that the last expression is bounded
by a constant depending only on a0, L, Kmax, and c0. Using this remark,
(2.105), and (2.108), we conclude that there exists a real number α such
that χ2(IP1, IP0) ≤ α for all n. Thus, all the assumptions of part (iii) of
Theorem 2.15 are satisfied, and we obtain the lower bound

inf
F̂n

sup
f∈Σ(β,L)

Pf

(

n4β/(4β+1)

∣
∣
∣
∣F̂n −

∫ 1

0

f2

∣
∣
∣
∣ ≥ A

)

≥ c3 > 0. (2.109)

Moreover, the following additional bound can be proved:

inf
F̂n

sup
f∈Σ(β,L)

Pf

(√
n

∣
∣
∣
∣F̂n −

∫ 1

0

f2

∣
∣
∣
∣ ≥ 1

)

≥ c4 > 0. (2.110)

This inequality follows in a simple way, by choosing μ0 and μ1 to be two
Dirac measures concentrated on the constant functions f0(x) ≡ 1 and f1(x) ≡
1 + n−1/2, respectively. The details of the proof are left to the reader.

Finally, (2.109) and (2.110) imply that

inf
F̂n

sup
f∈Σ(β,L)

Ef

[

ψ−2
n

∣
∣
∣
∣F̂n −

∫ 1

0

f2

∣
∣
∣
∣

2
]

≥ c5 > 0 (2.111)

with the rate ψn = max(n−4β/(4β+1), n−1/2) which is faster than the optimal
rate n−β/(2β+1) typical for estimation of smooth functions. It can be proved
that bound (2.111) is sharp in the sense that the rate n−4β/(4β+1) is optimal
for estimation of the quadratic functional if β < 1/4, while the optimal rate
for β ≥ 1/4 is n−1/2 (see the bibliographic notes below).

2.8 Notes

The first minimax lower bound for nonparametric estimators dates back to
Čencov (1962) (see also Čencov (1972)). He considered the problem of den-
sity estimation with the L2-risk and proved his result using the integrated
Cramér–Rao bound, a technique close to the van Trees inequality. Another
early paper is due to Farrell (1972) who established a lower bound for den-
sity estimation at a fixed point. Le Cam’s (1973) paper dealing mainly with
parametric problems introduced important tools such as the inequalities of
Lemma 2.3 and the Hellinger/total variation versions of the bounds based on
two hypotheses (parts (i) and (ii) of Theorem 2.2).

Ibragimov and Has’minskii (1977) and Has’minskii (1978) pioneered the
technique of lower bounds based on many hypotheses as well as the sta-
tistical application of Fano’s lemma and of the Varshamov–Gilbert bound.
These two powerful tools are borrowed from information theory (Fano (1952),
Gilbert (1952), Gallager (1968), Cover and Thomas (2006)).
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Lower bounds based on deviations of the likelihood ratios (Theorems 2.1
and 2.4, Propositions 2.1 and 2.3) are due to Korostelev and Tsybakov (1993).
This technique is sometimes more convenient than the distance-based bounds.
For instance, it can be useful in statistics of random processes when it is
difficult to evaluate the classical distances (cf. Hoffmann (1999)).

A detailed account on the theory of f -divergences (originally introduced
by Csizsár (1967)) can be found in the book of Vajda (1986).

Lemma 2.1 is due to Scheffé (1947). Pinsker (1964) proved a weaker ver-
sion of the inequalities of Lemma 2.5. He showed the existence of constants
c1 > 0 and c2 > 0 such that V (P,Q) ≤ c1

√
K(P,Q) for K(P,Q) ≤ c2 and

proved (2.21) with an unspecified constant c3 > 0 instead of
√

2 in the second
term. The first Pinsker inequality in its final form, as stated in Lemma 2.5,
was obtained independently by Kullback (1967), Csizsár (1967), and Kemper-
man (1969). It is therefore sometimes called Kullback–Csizsár–Kemperman
inequality. The second Pinsker inequality is a simple corollary of the first one;
(2.21) can be found, for example, in Barron (1986). Lemma 2.6 is due to
Bretagnolle and Huber (1979).

Minimax lower bounds at a fixed point for density estimation (extending
those of Farrell (1972)) were obtained by Ibragimov and Has’minskii (1981)
and Stone (1980), for nonparametric regression with random design by Sto-
ne (1980), and for nonparametric regression with fixed design by Korostelev
and Tsybakov (1993). Minimax lower bounds in Lp, 1 ≤ p ≤ ∞, for den-
sity estimation are due to Čencov (1962, 1972), Has’minskii (1978), Bretag-
nolle and Huber (1979), and Ibragimov and Has’minskii (1983a). For non-
parametric regression and for the Gaussian white noise model such bounds
were obtained by Ibragimov and Has’minskii (1981, 1982, 1984). Stone (1982)
established independently similar results for regression with random design
and for density estimation. All these works proved optimal rates of the form
n−β/(2β+1) and (n/ log n)−β/(2β+1) (or their multivariate analogs n−β/(2β+d)

and (n/ log n)−β/(2β+d) where d is the dimension of the observations Xi), and
considered mainly the Hölder classes of functions, along with some examples
of Sobolev or Nikol’ski classes in the cases where such rates are optimal. Ne-
mirovskii et al. (1985) and Nemirovskii (1985), considering the nonparametric
regression problem with the Lp Sobolev classes, showed that other rates of
convergence are optimal when the norm defining the class was not “matched”
to the distance d(·, ·) defining the risk. They also showed that optimal rates
might not be attained on linear estimators. Nemirovski (1985) established a
complete description of optimal rates of convergence for the multivariate re-
gression model when d(·, ·) is the Lp distance, and the functional class is the
Lq Sobolev class. The same optimal rates of convergence are established for
the Besov classes of functions (cf. Kerkyacharian and Picard (1992), Donoho
and Johnstone (1998), Johnstone et al. (1996), Delyon and Juditsky (1996),
Lepski et al. (1997)); for an overview and further references see Härdle et
al. (1998).



2.9 Exercises 133

Birgé (1983) and Yang and Barron (1999) suggested general techniques
for derivation of minimax rates of convergence in an abstract setting. Their
lower bounds are based on Fano’s lemma. Refinements of Fano’s lemma can
be found in the papers of Gushchin (2002) and Birgé (2005).

Assouad’s lemma appeared in Assouad (1983). In a slightly less general
form it is given in the paper of Bretagnolle and Huber (1979) which contains
already the main idea of the construction.

Inequality (2.88) is due to Gill and Levit (1995), who suggested calling
it van Trees’ inequality. They pioneered its use in the problem of estimation
of functionals. Van Trees (1968, p. 72) heuristically presented a related but
different result:

E
[
(ξ − E(ξ|η))2

]
≥ 1

E [{∂/∂ξ (log f(ξ, η))}2]
,

where f(·, ·) is the joint density of two random variables ξ and η. Rigorous
derivation of (2.88) from this inequality requires an additional technical step
but Gill and Levit (1995) do not give all the details of the proof. They refer at
this point to Borovkov and Sakhanenko (1980) and Borovkov (1984) who,
however, worked under more restrictive assumptions. Borovkov and Sakha-
nenko (1980) and Borovkov (1984) assumed differentiability rather than ab-
solute continuity of t �→ p(x, t), and obtained some weighted versions of the
van Trees inequality excluding the choice of weights that leads to (2.88). Be-
litser and Levit (1995) showed that the Pinsker constant (cf. Chapter 3) can
be obtained using the van Trees inequality.

Lower bounds based on two fuzzy hypotheses are systematically used in the
literature on nonparametric testing (cf. Ingster and Suslina (2003)). Usually
it is sufficient to consider the measures μ0 and μ1 with disjoint supports. This
is also sufficient to obtain the correct lower bounds for estimators of smooth
functionals, such as the quadratic functional considered above (cf. Ibragimov
et al. (1987)). However, for some nondifferentiable functionals (cf. Lepski et
al. (1999)), the lower bounds invoke measures μ0 and μ1 whose supports are
not disjoint. The results of Section 2.7.4 are applicable in this general case.

Optimal rates of estimation of the quadratic functional and of more general
differentiable functionals were established by Ibragimov et al. (1987) and Ne-
mirovskii (1990) for the Gaussian white noise model. Bickel and Ritov (1988)
studied estimation of the quadratic functional for the density model. These
papers discovered the elbow in the rates that occurs at β = 1/4. For a com-
prehensive account on estimation of functionals in the Gaussian white noise
model see Nemirovskii (2000).

2.9 Exercises

Exercise 2.1 Give an example of measures P0 and P1 such that pe,1 is arbitrarily
close to 1. Hint: Consider two discrete measures on {0, 1}.
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Exercise 2.2 Let P and Q be two probability mesures with densities p and q
w.r.t. the Lebesgue measure on [0, 1] such that 0 < c1 ≤ p(x), q(x) < c2 < ∞
for all x ∈ [0, 1]. Show that the Kullback divergence K(P,Q) is equivalent to the
squared L2 distance between the two densities, i.e.,

k1

∫
(p(x) − q(x))2dx ≤ K(P,Q) ≤ k2

∫
(p(x) − q(x))2dx

where k1, k2 > 0 are constants. The same is true for the χ2 divergence.

Exercise 2.3 Prove that if the probability mesures P and Q are mutually abso-
lutely continuous,

K(P,Q) ≤ χ2(Q,P )/2.

Exercise 2.4 Consider the nonparametric regression model

Yi = f(i/n) + ξi, i = 1, . . . , n,

where f is a function on [0, 1] with values in R and ξi are arbitrary random
variables. Using the technique of two hypotheses show that

lim inf
n→∞

inf
Tn

sup
f∈C[0,1]

Ef‖Tn − f‖∞ = +∞,

where C[0, 1] is the space of all continuous functions on [0, 1]. In words, no rate of
convergence can be attained uniformly on such a large functional class as C[0, 1].

Exercise 2.5 Suppose that Assumptions (B) and (LP2) hold and assume that
the random variables ξi are Gaussian. Prove (2.38) using Theorem 2.1.

Exercise 2.6 Improve the bound of Theorem 2.6 by computing the maximum on
the right hand side of (2.48). Do we obtain that pe,M is arbitrarily close to 1 for
M → ∞ and α → 0, as in the Kullback case (cf. (2.53))?

Exercise 2.7 Consider the regression model with random design:

Yi = f(Xi) + ξi, i = 1, . . . , n,

where Xi are i.i.d. random variables with density μ(·) on [0, 1] such that μ(x) ≤
μ0 < ∞,∀ x ∈ [0, 1], the random variables ξi are i.i.d. with density pξ on R, and
the random vector (X1, . . . , Xn) is independent of (ξ1, . . . , ξn). Let f ∈ Σ(β, L),
β > 0, L > 0 and let x0 ∈ [0, 1] be a fixed point.

(1) Suppose first that pξ satisfies

∫ (√
pξ(y) −

√
pξ(y + t)

)2
dy ≤ p∗t

2, ∀ t ∈ R,

where 0 < p∗ < ∞. Prove the bound
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lim inf
n→∞

inf
Tn

sup
f∈Σ(β,L)

Ef

[
n

2β
2β+1 |Tn(x0) − f(x0)|2

]
≥ c,

where c > 0 depends only on β, L, μ0, p∗.

(2) Suppose now that the variables ξi are i.i.d. and uniformly distributed on
[−1, 1]. Prove the bound

lim inf
n→∞

inf
Tn

sup
f∈Σ(β,L)

Ef

[
n

2β
β+1 |Tn(x0) − f(x0)|2

]
≥ c′,

where c′ > 0 depends only on β, L, μ0. Note that the rate here is n− β
β+1 , which is

faster than the usual rate n− β
2β+1 . Furthermore, it can be proved that ψn = n− β

β+1

is the optimal rate of convergence in the model with uniformly distributed errors.

Exercise 2.8 Let X1, . . . , Xn be i.i.d. random variables on R having density
p ∈ P(β, L), β > 0, L > 0. Show that

lim inf
n→∞

inf
Tn

sup
p∈P(β,L)

Ep

[
n

2β
2β+1 |Tn(x0) − p(x0)|2

]
≥ c

for any x0 ∈ R where c > 0 depends only on β and L.

Exercise 2.9 Suppose that Assumptions (B) and (LP2) hold and let x0 ∈ [0, 1].
Prove the bound (Stone, 1980):

lim
a→0

lim inf
n→∞

inf
Tn

sup
f∈Σ(β,L)

Pf

(
n

β
2β+1 |Tn(x0) − f(x0)| ≥ a

)
= 1. (2.112)

Hint: Introduce the hypotheses

f0n(x) ≡ 0, fjn(x) = θjLhβ
nK

(
x − x0

hn

)

,

with θj = j/M , j = 1, . . . ,M .

Exercise 2.10 Let X1, . . . , Xn be i.i.d. random variables on R with density p ∈
P(β, L) where β > 0 and L > 0. Prove the bound

lim inf
n→∞

inf
Tn

sup
p∈P(β,L)

Ep

[
n

2β
2β+1 ‖Tn − p‖2

2

]
≥ c,

where c > 0 depends only on β and L.

Exercise 2.11 Consider the nonparametric regression model

Yi = f(i/n) + ξi, i = 1, . . . , n,

where the random variables ξi are i.i.d. with distribution N (0, 1) and where f ∈
W per(β, L), L > 0, and β ∈ {1, 2, . . .}. Prove the bound

lim inf
n→∞

inf
Tn

sup
f∈W per(β,L)

(
n

log n

) 2β−1
2β

Ef‖Tn − f‖2
∞ ≥ c,

where c > 0 depends only on β and L.
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Asymptotic efficiency and adaptation

3.1 Pinsker’s theorem

In contrast to Chapters 1 and 2, here we will deal not only with the rates
of convergence of estimators but with the exact asymptotic efficiency in the
sense of Definition 2.2. More specifically, we will focus on exact asymptotic
behavior of the minimax L2-risk on the Sobolev ellipsoids (Pinsker’s theorem).

Consider first the Gaussian white noise model defined in Chapter 1:

dY (t) = f(t)dt + εdW (t), t ∈ [0, 1], 0 < ε < 1. (3.1)

We observe a sample path X = {Y (t), 0 ≤ t ≤ 1} of the process Y . In this
chapter it will be mostly assumed that the function f : [0, 1] → R belongs to
a Sobolev class. Recall that in Chapter 1 we defined several types of Sobolev
classes. For L > 0 and integer β, the Sobolev classes W (β, L) and W per(β, L)
are given in Definition 1.11. Then the Sobolev classes W̃ (β, L) are introduced
in Definition 1.12 as an extension of the periodic classes W per(β, L) to all
β > 0. In this chapter we are going to deal mainly with classes W̃ (β, L).
Recall their definition:

W̃ (β, L) = {f ∈ L2[0, 1] : θ = {θj} ∈ Θ(β,Q)}, Q =
L2

π2β
,

where θj =
∫ 1

0
fϕj , {ϕj}∞j=1 is the trigonometric basis defined in Example 1.3,

and Θ(β,Q) is the ellipsoid

Θ(β,Q) =
{

θ = {θj} ∈ �2(N) :
∞∑

j=1

a2
jθ

2
j ≤ Q

}

with

aj =

{
jβ , if j is even,

(j − 1)β , if j is odd.
(3.2)

A. B. Tsybakov, Introduction to Nonparametric Estimation,
DOI 10.1007/978-0-387-79052-7 3, c© Springer Science+Business Media, LLC 2009
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If β ≥ 1 is integer, we have W per(β, L) = W̃ (β, L) (see Chapter 1).
Given the model (3.1), the following infinite sequence of Gaussian obser-

vations is available to the statistician:

yj =
∫ 1

0

ϕj(t)dY (t) = θj + ε ξj , j = 1, 2, . . . ,

where ξj =
∫ 1

0

ϕj(x)dW (x) are i.i.d. N (0, 1) random variables. Define the

following estimator of f :

f̂ε(x) =
∞∑

j=1

�∗jyjϕj(x) (3.3)

where
�∗j = (1 − κ∗aj)+, (3.4)

κ∗ =
(

β

(2β + 1)(β + 1)Q

) β
2β+1

ε
2β

2β+1 . (3.5)

Observe that f̂ε is a weighted projection estimator. The number of nonzero
terms N = max{j : �∗j > 0} in the sum (3.3) is finite, so that we can write

f̂ε(x) =
N∑

j=1

�∗jyjϕj(x).

It is easy to see that N = Nε tends to infinity with the rate ε−2/(2β+1), as
ε → 0.

Theorem 3.1 (Pinsker’s theorem). Let β > 0, L > 0. Then

lim
ε→0

sup
f∈W̃ (β,L)

ε−
4β

2β+1 Ef‖f̂ε −f‖2
2 = lim

ε→0
inf
Tε

sup
f∈W̃ (β,L)

ε−
4β

2β+1 Ef‖Tε −f‖2
2 = C∗,

where infTε
denotes the infimum over all estimators, Ef stands for the expec-

tation with respect to distribution of the observation X under the model (3.1),
‖ · ‖2 is the L2([0, 1], dx)-norm, and

C∗ = L
2

2β+1 (2β + 1)
1

2β+1

(
β

π(β + 1)

) 2β
2β+1

(3.6)

= [Q (2β + 1)]
1

2β+1

(
β

β + 1

) 2β
2β+1

with Q = L2/π2β.
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The quantity C∗ given by (3.6) is called the Pinsker constant. The proof
of Theorem 3.1 is deferred to Section 3.3.

Theorem 3.1 implies that estimator (3.3) is asymptotically efficient on
(W̃ (β, L), ‖ · ‖2) in the sense of Definition 2.2:

lim
ε→0

sup
f∈W̃ (β,L)

Ef‖f̂ε − f‖2
2

R∗
ε

= 1, (3.7)

where R∗
ε is the minimax risk

R∗
ε

�
= inf

Tε

sup
f∈W̃ (β,L)

Ef‖Tε − f‖2
2.

Observe that we use here a slightly modified version of Definition 2.2, with
the real-valued asymptotic parameter ε tending to zero instead of the integer-
valued n tending to ∞.

A result similar to Theorem 3.1 holds for the nonparametric regression
model

Yi = f(i/n) + ξi, i = 1, . . . , n, (3.8)

where ξi are i.i.d. N (0, σ2) random variables, σ2 > 0. A direct correspondence
can be obtained by simply putting ε = σ/

√
n in Theorem 3.1, as it can be

seen from the following theorem.

Theorem 3.2 There exists an estimator f̂n of f such that

lim
n→∞

sup
f∈F

Ef

(
n

2β
2β+1 ‖f̂n − f‖2

2

)
= lim

n→∞
inf
Tn

sup
f∈F

Ef

(
n

2β
2β+1 ‖Tn − f‖2

2

)

= C∗σ
4β

2β+1 ,

where infTn
denotes the infimum over all estimators, Ef stands for the expec-

tation with respect to the distribution of (Y1, . . . , Yn) under the model (3.8)
and F = W (β, L), β ∈ {1, 2, . . .}, L > 0, or F = W̃ (β, L), β ≥ 1, L > 0.

The proof of this theorem follows essentially the same lines as that of
Theorem 3.1, up to some additional technicalities related to the discreteness
of the design points and possible nonperiodicity of the underlying functions f .
In order to focus on the main ideas, we will only give the proof of Theorem 3.1.

Consider the class of all linear estimators, that is, the estimators of the
form

fε,λ(x) =
∞∑

j=1

λjyjϕj(x), (3.9)

where the weights λj ∈ R are such that the sequence

λ = (λ1, λ2, . . .)
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belongs to �2(N); equation (3.9) is understood in the sense that fε,λ is the
mean square limit of the random series on the right hand side.

Observe that f̂ε defined by (3.3) is a linear estimator. Since f̂ε is asymp-
totically efficient among all the estimators in the minimax sense (cf. (3.7)), it
follows that f̂ε is asymptotically efficient among the linear estimators, that is,

lim
ε→0

supf∈W̃ (β,L) Ef‖f̂ε − f‖2
2

infλ supf∈W̃ (β,L) Ef‖fε,λ − f‖2
2

= 1.

From now on, we will write infλ = infλ∈�2(N). Before proving Theorem 3.1,
let us first check that this linear optimality holds.

3.2 Linear minimax lemma

In this section we deal with the Gaussian sequence model

yj = θj + εξj , j = 1, 2, . . . , (3.10)

with θ = (θ1, θ2, . . .) ∈ �2(N) and 0 < ε < 1 where ξj are i.i.d. N (0, 1) random
variables. We observe the random sequence

y = (y1, y2, . . .).

Recall that we have an access to such a sequence of observations if we deal
with the Gaussian white noise model (3.1): in this case we can take yj =
∫ 1

0
ϕj(t)dY (t) and θj =

∫ 1

0
ϕj(t)f(t)dt, where {ϕj} is the trigonometric basis

(cf. Section 1.10). Put

θ̂j(λ) = λjyj , j = 1, 2, . . . ,

θ̂(λ) = (θ̂1(λ), θ̂2(λ), . . .).

By (1.112), the risk of the linear estimator fε,λ is

Ef‖fε,λ − f‖2
2 = Eθ‖θ̂(λ) − θ‖2

=
∞∑

j=1

[(1 − λj)2θ2
j + ε2λ2

j ]

�
= R(λ, θ),

where Eθ denotes expectation with respect to the distribution of y in model
(3.10). Therefore, the linear minimax risk in model (3.1) is equal to the linear
minimax risk in model (3.10):

inf
λ

sup
f∈W̃ (β,L)

Ef‖fε,λ − f‖2
2 = inf

λ
sup

θ∈Θ(β,Q)

Eθ‖θ̂(λ) − θ‖2. (3.11)
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The results of this section will lead us to the following asymptotics for the
risk of linear estimators:

inf
λ

sup
θ∈Θ(β,Q)

Eθ‖θ̂(λ) − θ‖2 = C∗ε
4β

2β+1 (1 + o(1)), ε → 0, (3.12)

where C∗ is the Pinsker constant defined in (3.6).
Consider now a general ellipsoid (not necessarily a Sobolev one):

Θ =
{

θ = {θj} :
∞∑

j=1

a2
jθ

2
j ≤ Q

}
, (3.13)

where aj ≥ 0 are arbitrary coefficients and Q > 0 is a finite constant.

Definition 3.1 The linear minimax risk on the ellipsoid Θ is defined by

RL = inf
λ

sup
θ∈Θ

R(λ, θ).

A linear estimator θ̂(λ∗) with λ∗ ∈ �2(N) is called a linear minimax esti-
mator if

sup
θ∈Θ

R(λ∗, θ) = RL

or a linear asymptotically minimax estimator if

lim
ε→0

supθ∈Θ R(λ∗, θ)
RL

= 1.

It is easy to see that

inf
λ

R(λ, θ) =
∞∑

j=1

ε2θ2
j

ε2 + θ2
j

. (3.14)

Now introduce an equation with respect to the variable κ,

ε2

κ

∞∑

j=1

aj(1 − κaj)+ = Q (3.15)

and let us show that solutions κ = κ(ε) > 0 of (3.15) exist. This equation will
play an important role in what follows.

Lemma 3.1 If aj ≥ 0 is an increasing sequence and aj → +∞, then there
exists a unique solution of (3.15) given by

κ =
ε2
∑N

m=1 am

Q +
∑N

m=1 ε2a2
m

, (3.16)
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with

N = max
{

j : ε2

j∑

m=1

am(aj − am) < Q
}

< +∞.

Proof. Observe that the sequence ãj =
∑j

m=1 am(aj −am) is increasing and
ãj → +∞. Thus, the value N defined in the statement of the lemma is finite.
For all j ≤ N , we have

ε2
N∑

m=1

am(aN − am) ≥ ε2
N∑

m=1

am(aj − am).

By the definition of N , this implies that

∀j ≤ N : Q > ε2
N∑

m=1

am(aj − am). (3.17)

On the other hand, by the same definition, we obtain for all j > N

ε2
N∑

m=1

am(aj − am) ≥ ε2
N∑

m=1

am(aN+1 − am) (3.18)

= ε2
N+1∑

m=1

am(aN+1 − am) ≥ Q.

By (3.16)–(3.18), we have 1 − κaj > 0 for j ≤ N and 1 − κaj ≤ 0 for j > N .
Then

N = max{j : aj < 1/κ}. (3.19)

By (3.16) and (3.19),

ε2

κ

∞∑

j=1

aj(1 − κaj)+ =
ε2

κ

N∑

j=1

aj(1 − κaj) = Q.

This means that the value κ defined by (3.16) is a solution of (3.15). This
solution is unique since the function

ε2

t

∞∑

j=1

aj(1 − taj)+ = ε2
∞∑

j=1

aj(1/t − aj)+

is decreasing in t for 0 < t ≤ 1/min{aj : aj > 0}. In addition, each solution κ
of (3.15) should necessarily satisfy κ ≤ 1/min{aj : aj > 0} since otherwise
we have κaj > 1 for all j such that aj �= 0, and the left hand side of (3.15)
becomes zero.
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Suppose now that there exists a solution κ of (3.15). This is the case,
for example, when the assumptions of Lemma 3.1 are satisfied. For such a
solution, put

�j
�
= (1 − κaj)+, j = 1, 2, . . . , � = (�1, �2, . . .), (3.20)

and

D∗ �
= ε2

∞∑

j=1

(1 − κaj)+ = ε2
∞∑

j=1

�j ,

assuming that the last sum is finite.

Lemma 3.2 (Linear minimax lemma.) Suppose that Θ is a general ellip-
soid (3.13) with Q > 0 and let the sequence aj ≥ 0 be such that Card{j : aj =
0} < ∞. Suppose also that there exists a solution κ of (3.15) and D∗ < ∞.
Assume that � is defined by (3.20). Then the risk R(λ, θ) satisfies

inf
λ

sup
θ∈Θ

R(λ, θ) = sup
θ∈Θ

inf
λ

R(λ, θ) = sup
θ∈Θ

R(�, θ) = D∗. (3.21)

Proof. Obviously,

sup
θ∈Θ

inf
λ

R(λ, θ) ≤ inf
λ

sup
θ∈Θ

R(λ, θ) ≤ sup
θ∈Θ

R(�, θ).

Therefore it remains to show that

sup
θ∈Θ

R(�, θ) ≤ D∗ (3.22)

and
sup
θ∈Θ

inf
λ

R(λ, θ) ≥ D∗. (3.23)

Proof of (3.22). For all θ ∈ Θ, we have

R(�, θ) =
∞∑

i=1

((1 − �i)2θ2
i + ε2�2i )

= ε2
∞∑

i=1

�2i +
∞∑

i:ai>0

(1 − �i)2a−2
i a2

i θ
2
i (since �i = 1 for ai = 0)

≤ ε2
∞∑

i=1

�2i + Q sup
i:ai>0

[(1 − �i)2a−2
i ]

≤ ε2
∞∑

i=1

�2i + Qκ2 (since 1 − κai ≤ �i ≤ 1)

= ε2
∞∑

i=1

�2i + ε2κ
∞∑

i=1

ai�i (by (3.15))
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= ε2
∞∑

i=1

�i(�i + κai)

= ε2
∑

i:�i 
=0

�i(�i + κai) = ε2
∑

i:�i 
=0

�i = D∗. (3.24)

Proof of (3.23). Denote by V the set of all sequences v = (v1, v2, . . .) such
that vj ∈ R (without any restriction) if aj = 0, and

v2
j =

ε2(1 − κaj)+
κaj

, if aj > 0. (3.25)

Then V ⊂ Θ by (3.15). Therefore

sup
θ∈Θ

inf
λ

R(λ, θ) ≥ sup
v∈V

inf
λ

∞∑

i=1

[(1 − λi)2v2
i + ε2λ2

i ]

= sup
v∈V

[
∑

i:ai=0

v2
i ε2

v2
i + ε2

+
∑

i:ai>0

v2
i ε2

v2
i + ε2

]

= ε2Card{i : ai = 0} +
∑

i:ai>0

ε4(1 − κai)+
ε2(κai + (1 − κai)+)

= ε2Card{i : ai = 0} + ε2
∑

i:ai>0

(1 − κai)+

= ε2
∞∑

i=1

(1 − κai)+ = D∗.

The estimator θ̂(�) with the weight sequence � defined by (3.20) and (3.15)
is called the Pinsker estimator for the (general) ellipsoid Θ. The weights � in
(3.20) are called the Pinsker weights. Lemma 3.2 then shows that the Pinsker
estimator is a linear minimax estimator for a general ellipsoid Θ. Let us now
study the case of the Sobolev ellipsoid Θ(β,Q) in more detail.

Lemma 3.3 Consider the ellipsoid Θ = Θ(β,Q) defined by (3.13) with Q > 0
and

aj =
{

jβ , for even j,
(j − 1)β , for odd j,

where β > 0. Then:

(i) there exists a solution κ of (3.15) which is unique and satisfies

κ = κ∗(1 + o(1)) as ε → 0, (3.26)

for κ∗ defined in (3.5);
(ii)

D∗ = C∗ε
4β

2β+1 (1 + o(1)) as ε → 0 (3.27)

where C∗ is the Pinsker constant;
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(iii)
max
j≥2

v2
j a2

j = O(ε
2

2β+1 ) as ε → 0 (3.28)

where v2
j is defined in (3.25).

Proof. (i) We have

a1 = 0, a2m = a2m+1 = (2m)β , m = 1, 2, . . . .

Lemma 3.1 implies that there exists a unique solution of (3.15). Moreover,
from (3.15) we get

Q =
ε2

κ

∞∑

j=2

aj(1 − κaj)+

=
2ε2

κ

∞∑

m=1

(2m)β(1 − κ(2m)β)+ =
2ε2

κ

M∑

m=1

(2m)β(1 − κ(2m)β)

with M = �(1/κ)1/β
/2�. Next, for a > 0,

M∑

m=1

ma =
Ma+1

a + 1
(1 + o(1)) as M → ∞

giving

Q =
ε2β

(2β + 1)(β + 1)κ(2β+1)/β
(1 + o(1)) as κ → 0.

This implies that the solution κ of (3.15) satisfies

κ =
(

β

(2β + 1)(β + 1)Q

) β
2β+1

ε
2β

2β+1 (1 + o(1)) as ε → 0.

(ii) Using the argument as in (i) and invoking (3.26) we obtain

D∗ = ε2
∞∑

j=1

(1 − κaj)+ = ε2 + 2ε2
M∑

m=1

(1 − κ(2m)β)

= ε2 + 2ε2

[

M − 2βκ
Mβ+1

β + 1
(1 + o(1))

]

= [Q (2β + 1)]
1

2β+1

(
β

β + 1

) 2β
2β+1

ε
4β

2β+1 (1 + o(1))

= C∗ε
4β

2β+1 (1 + o(1)).

(iii) In order to prove (3.28), observe that v2
j = 0 for j > N , whereas aN < 1/κ.

Therefore

v2
j a2

j =
ε2aj(1 − κaj)+

κ
≤ ε2aN

κ
≤ ε2

κ2
= O(ε

2
2β+1 ) as ε → 0.
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Corollary 3.1 Let θ̂(�) be the Pinsker estimator on the ellipsoid Θ(β,Q) with
β > 0 and Q > 0. Then

inf
λ

sup
θ∈Θ(β,Q)

Eθ‖θ̂(λ) − θ‖2 = sup
θ∈Θ(β,Q)

Eθ‖θ̂(�) − θ‖2 (3.29)

= C∗ε
4β

2β+1 (1 + o(1))

as ε → 0 where C∗ is the Pinsker constant.

The proof follows immediately from (3.21) and (3.27).

3.3 Proof of Pinsker’s theorem

The proof of Theorem 3.1 consists in establishing the upper bound on the risk:

sup
f∈W̃ (β,L)

Ef‖f̂ε − f‖2
2 ≤ C∗ε

4β
2β+1 (1 + o(1)), as ε → 0, (3.30)

and the lower bound on the minimax risk:

R∗
ε

�
= inf

Tε

sup
f∈W̃ (β,L)

Ef‖Tε − f‖2
2 ≥ C∗ε

4β
2β+1 (1 + o(1)), (3.31)

as ε → 0.

3.3.1 Upper bound on the risk

Since

f̂ε(x) =
∞∑

j=1

�∗jyjϕj(x) with �∗j = (1 − κ∗aj)+ ,

we can write
Ef‖f̂ε − f‖2

2 = Eθ‖θ̂(�∗) − θ‖2 = R(�∗, θ), (3.32)

where θ is the sequence of Fourier coefficients of f and �∗ is the sequence of
weights defined by (3.4):

�∗ = (�∗1, �
∗
2, . . .).

We now show that the maximum risk of θ̂(�∗) on Θ(β,Q) asymptotically
behaves in the same way as that of the Pinsker estimator θ̂(�). Since the
definition of θ̂(�∗) is explicit and more simple than that of θ̂(�), we will call
θ̂(�∗) the simplified Pinsker estimator and the weights �∗ the simplified Pinsker
weights.

As in the proof of (3.22) we obtain, for all θ ∈ Θ(β,Q),

R(�∗, θ) ≤ ε2
∞∑

j=1

(�∗j )
2 + Q(κ∗)2.
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Define M∗ = �(1/κ∗)1/β
/2�, M = �(1/κ)1/β

/2� where κ is the solution of
(3.15). Applying the same argument as that used to prove Lemma 3.3 and
invoking (3.26) we find

ε2
∞∑

j=1

(�∗j )
2 + Q(κ∗)2 = ε2 + 2ε2

M∗
∑

m=1

(1 − κ∗(2m)β)2 + Qκ2(1 + o(1))

= ε2 + 2ε2

(

M∗ − 2β+1κ∗ (M∗)β+1

β + 1

+ 4β(κ∗)2
(M∗)2β+1

2β + 1

)

(1 + o(1)) + Qκ2(1 + o(1))

= ε2 + 2ε2

(

M − 2β+1κ
Mβ+1

β + 1

+ 4βκ2 M2β+1

2β + 1

)

(1 + o(1)) + Qκ2(1 + o(1))

=
[
ε2 + 2ε2

M∑

m=1

(1 − κ(2m)β)2 + Qκ2
]
(1 + o(1))

=
[
ε2

∞∑

j=1

�2j + Qκ2
]
(1 + o(1))

= D∗(1 + o(1)) as ε → 0

where the last equality follows from (3.24). Therefore,

sup
θ∈Θ(β,Q)

R(�∗, θ) ≤ D∗(1 + o(1)) as ε → 0. (3.33)

Upper bound (3.30) follows from (3.33) and (3.27) if we observe that

sup
f∈W̃ (β,L)

Ef‖f̂ε − f‖2
2 = sup

θ∈Θ(β,Q)

R(�∗, θ).

3.3.2 Lower bound on the minimax risk

Preliminaries: A Bayes problem in dimension 1

Consider a statistical model with a single Gaussian observation x ∈ R:

x = a + εξ, a ∈ R, ξ ∼ N (0, 1), ε > 0. (3.34)

For an estimator â = â(x) of the parameter a, define its squared risk
E
[
(â − a)2

]
, as well as its Bayes risk with respect to the prior distribution

N (0, s2) with s > 0:
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RB(â) =
∫

E
[
(â − a)2

]
μs(a)da (3.35)

=
∫

R2
(â(x) − a)2με(x − a)μs(a) dx da,

where
μs(u) =

1
s
ϕ
(u

s

)

and where ϕ(·) denotes the density of N (0, 1). The Bayes estimator âB is
defined as the minimizer of the Bayes risk among all estimators:

âB = arg min
â

RB(â).

The Bayes risk can be represented in the form

RB(â) = IE
[
(â(x) − a)2

]
,

where IE denotes expectation with respect to the distribution of the Gaussian
pair (x, a) such that x = a+εξ, where a is Gaussian with distribution N (0, s2)
and independent of ξ. By a classical argument, âB and RB(â) are equal to
the conditional mean and variance:

âB = IE(a|x),
RB(âB) = min

â
RB(â) = IE [Var(a|x)] .

Since the pair (x, a) is Gaussian, the variance Var(a|x) is independent of x
and we easily get the following lemma.

Lemma 3.4 The Bayes estimator of parameter a in model (3.34) is

âB =
s2

ε2 + s2
x

and the minimum value of the Bayes risk is

RB(âB) = Var(a|x) ≡ s2ε2

ε2 + s2
.

We proceed now to the proof of the lower bound (3.31). It is divided into
four steps.

Step 1. Reduction to a parametric family

Let N = max{j : �j > 0} where �j are the Pinsker weights (3.20) and let

ΘN =
{

θN = (θ2, . . . , θN ) ∈ RN−1 :
N∑

j=2

a2
jθ

2
j ≤ Q

}
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and

FN =
{

fθN (x) =
N∑

j=2

θjϕj(x) : (θ2, . . . , θN ) ∈ ΘN

}
.

The set FN is a parametric family of finite dimension N − 1 and

FN ⊂ W̃ (β, L).

Therefore
R∗

ε ≥ inf
Tε

sup
f∈FN

Ef‖Tε − f‖2
2.

For all f ∈ FN and all Tε, there exists a random vector θ̂N = (θ̂2, . . . , θ̂N ) ∈
ΘN such that

‖Tε − f‖2 ≥
∥
∥
∥

N∑

j=2

θ̂jϕj − f
∥
∥
∥

2
(3.36)

almost surely. In fact, if the realization Y is such that Tε ∈ L2[0, 1], it is
sufficient to take as estimator

∑N
j=2 θ̂jϕj the L2[0, 1] projection of Tε on FN

(indeed, the set FN is convex and closed). If Tε �∈ L2[0, 1], the left hand side
of (3.36) equals +∞ and inequality (3.36) is trivial for all (θ̂2, . . . , θ̂N ) ∈ ΘN .

With the notation Eθ
�
= EfθN

and in view of (3.36), we obtain

R∗
ε ≥ inf

θ̂N∈ΘN

sup
θN∈ΘN

Eθ

∥
∥
∥

N∑

j=2

(θ̂j − θj)ϕj

∥
∥
∥

2

2

= inf
θ̂N∈ΘN

sup
θN∈ΘN

Eθ

[ N∑

j=2

(θ̂j − θj)2
]
. (3.37)

Step 2. From the minimax to the Bayes risk

Introduce the following probability density with respect to the Lebesgue mea-
sure on RN−1:

μ(θN ) =
N∏

k=2

μsk
(θk), θN = (θ2, . . . , θN ),

where
s2

k = (1 − δ)v2
k with 0 < δ < 1

for v2
k defined by (3.25). The density μ is supported on RN−1. Now, by (3.37),

we can bound the minimax risk R∗
ε from below by the Bayes risk, so that

R∗
ε ≥ inf

θ̂N∈ΘN

N∑

k=2

∫

ΘN

Eθ

[
(θ̂k − θk)2

]
μ(θN )dθN ≥ I∗ − r∗, (3.38)
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where the main term of the Bayes risk I∗ and the residual term r∗ are given
by

I∗ = inf
θ̂N

N∑

k=2

∫

RN−1
Eθ

[
(θ̂k − θk)2

]
μ(θN )dθN ,

r∗ = sup
θ̂N∈ΘN

N∑

k=2

∫

Θc
N

Eθ

[
(θ̂k − θk)2

]
μ(θN )dθN

with Θc
N = RN−1 \ΘN . In order to prove (3.31), it is sufficient to obtain the

following lower bound for the main term of the Bayes risk:

I∗ ≥ C∗ε
4β

2β+1 (1 + o(1)) as ε → 0, (3.39)

and to prove that the residual term r∗ is negligible:

r∗ = o(ε
4β

2β+1 ) as ε → 0. (3.40)

Indeed, (3.31) follows from (3.38)–(3.40).

Step 3. Lower bound for the main term of the Bayes risk

The main term of the Bayes risk I∗ is a sum of N − 1 terms, each of them
depending on a single coordinate θ̂k:

I∗ = inf
θ̂N

N∑

k=2

∫

RN−1
Eθ

[
(θ̂k − θk)2

]
μ(θN )dθN

≥
N∑

k=2

inf
θ̂k

∫

RN−1
Eθ

[
(θ̂k − θk)2

]
μ(θN )dθN . (3.41)

Define Pθ = PfθN
and let Pf be the distribution of X = {Y (t), t ∈ [0, 1]} in

model (3.1). In particular, P0 is the distribution of {εW (t), t ∈ [0, 1]}, where
W is a standard Wiener process. By Girsanov’s theorem (Lemma A.5 in the
Appendix) and by the definition of fθN , the likelihood ratio can be written as
follows:

dPθ

dP0
(X) = exp

⎛

⎝ε−2
N∑

j=2

θjyj −
ε−2

2

N∑

j=2

θ2
j

⎞

⎠

�
= S(y2, . . . , yN , θN )

with

yj =
∫ 1

0

ϕj(t)dY (t), j = 2, . . . , N.
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Note that we can replace the infimum over arbitrary estimators θ̂k(X) by
the infimum over estimators θ̄k(y2, . . . , yN ) depending only on the statistics
y2, . . . , yN . Indeed, using Jensen’s inequality,

Eθ

[
(θ̂k(X) − θk)2

]

= E0

[
dPθ

dP0
(X)(θ̂k(X) − θk)2

]

= E0

[
E0

[
(θ̂k(X) − θk)2

∣
∣
∣ y2, . . . , yN

]
S(y2, . . . , yN , θN )

]

≥ E0

[
(θ̄k(y2, . . . , yN ) − θk)2S(y2, . . . , yN , θN )

]

= Eθ

[
(θ̄k(y2, . . . , yN ) − θk)2

]
,

where θ̄k(y2, . . . , yN ) = E0(θ̂k(X)|y2, . . . , yN ). Therefore

inf
θ̂k

∫

RN−1
Eθ

[
(θ̂k − θk)2

]
μ(θN )dθN (3.42)

≥ inf
θ̄k(·)

∫

RN−1
Eθ

[
(θ̄k(y2, . . . , yN ) − θk)2

]
μ(θN )dθN

= inf
θ̄k(·)

∫

RN−1

∫

RN−1
(θ̄k(u2, . . . , uN ) − θk)2

N∏

j=2

[
με(uj − θj)μsj

(θj)dujdθj

]

≥
∫

RN−2

∫

RN−2
Ik({uj}j 
=k)

∏

j 
=k

[
με(uj − θj)μsj

(θj)dujdθj

]
,

where inf θ̄k(·) denotes the infimum over all the Borel functions θ̄k(·) on RN−1,

{uj}j 
=k
�
= (u2, . . . , uk−1, uk+1, . . . , uN ) and

Ik({uj}j 
=k)
�
= inf

θ̄k(·)

∫

R2
(θ̄k(u2, . . . , uN ) − θk)2με(uk − θk)μsk

(θk)dukdθk.

For any fixed {uj}j 
=k we obtain

Ik({uj}j 
=k) ≥ inf
θ̃k(·)

∫

R2
(θ̃k(uk) − θk)2με(uk − θk)μsk

(θk)dukdθk (3.43)

=
s2

kε2

ε2 + s2
k

(by Lemma 3.4),

where inf θ̃k(·) denotes the infimum over all Borel functions θ̃k(·) on R. In-
equality (3.41) combined with (3.42) and (3.43) implies

I∗ ≥
N∑

k=2

s2
kε2

ε2 + s2
k

= (1 − δ)
N∑

k=2

ε2v2
k

ε2 + (1 − δ)v2
k
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≥ (1 − δ)
N∑

k=2

ε2v2
k

ε2 + v2
k

= (1 − δ)ε2
∞∑

k=2

(1 − κak)+ (by (3.23))

= (1 − δ)(D∗ − ε2) = (1 − δ)C∗ε
4β

2β+1 (1 + o(1)) as ε → 0.

The proof is completed by making δ tend to 0.

Step 4. Negligibility of the residual term

We now prove (3.40), i.e., the fact that the residual term r∗ is negligible, as
compared to the main term I∗ of the Bayes risk. Set ‖θN‖2 =

∑N
k=2 θ2

k and
dN = supθN∈ΘN

‖θN‖. We have

r∗ = sup
θ̂N∈ΘN

∫

Θc
N

Eθ‖θ̂N − θN‖2μ(θN )dθN

≤ 2
∫

Θc
N

(d2
N + ‖θN‖2)μ(θN )dθN

≤ 2
[
d2

NIPμ(Θc
N ) +

(
IPμ(Θc

N )IEμ‖θN‖4
)1/2
]

(Cauchy–Schwarz),

where IPμ and IEμ denote the probability measure and the expectation asso-
ciated with the density μ, respectively. On the other hand,

d2
N = sup

θN∈ΘN

N∑

k=2

θ2
k ≤ 1

a2
2

sup
θN∈ΘN

N∑

k=2

a2
kθ2

k ≤ Q

a2
2

.

Since θk and θj are independent, we have

IEμ‖θN‖4 = IEμ

[
( N∑

k=2

θ2
k

)2
]

=
∑

k 
=j

IEμ(θ2
k)IEμ(θ2

j ) +
N∑

k=2

IEμ(θ4
k)

=
∑

k 
=j

s2
ks2

j + 3
N∑

k=2

s4
k

≤ 3

(
N∑

k=2

s2
k

)2

≤ 3a−4
2

(
N∑

k=2

a2
ks2

k

)2

≤ 3a−4
2 Q2,

where the last inequality is obtained if we observe that, by the definition of s2
k,

(3.15), and (3.25), we have

N∑

k=2

a2
ks2

k = (1 − δ)
N∑

k=2

a2
kv2

k, and
N∑

k=2

a2
kv2

k = Q. (3.44)

The above calculations imply that
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r∗ ≤ 2a−2
2 Q

(

IPμ(Θc
N ) +

√
3IPμ(Θc

N )
)

≤ 6a−2
2 Q
√

IPμ(Θc
N ). (3.45)

Therefore, in order to obtain (3.40) it is sufficient to check that

IPμ(Θc
N ) = o

(
ε

8β
2β+1

)
as ε → 0. (3.46)

Using (3.44) and the fact that IEμ(θ2
k) = s2

k = (1 − δ)v2
k we obtain

IPμ(Θc
N ) = IPμ

(
N∑

k=2

a2
kθ2

k > Q

)

(3.47)

= IPμ

(
N∑

k=2

a2
k(θ2

k − IEμ(θ2
k)) > Q − (1 − δ)

N∑

k=2

a2
kv2

k

)

= IPμ

(
N∑

k=2

a2
k(θ2

k − IEμ(θ2
k)) > δQ

)

= P

(
N∑

k=2

Zk >
δ

1 − δ

N∑

k=2

b2
k

)

with b2
k = a2

ks2
k, Zk = (ξ2

k − 1)b2
k, and with the i.i.d. N (0, 1) variables ξk. The

last probability can be bounded from above as follows.

Lemma 3.5 For all 0 < t < 1 we have

P

(
N∑

k=2

Zk ≥ t
N∑

k=2

b2
k

)

≤ exp

⎛

⎝− t2
∑N

k=2 b2
k

8 max
2≤k≤N

b2
k

⎞

⎠ .

Proof. Fix x > 0 and γ > 0. By the Markov inequality,

P

(
N∑

k=2

Zk ≥ x

)

≤ exp(−γx)
N∏

k=2

E [exp(γZk)] .

Here

E [exp(γZk)] =
1√
2π

∫
exp
(

γ(ξ2 − 1)b2
k − ξ2

2

)

dξ

= exp(−γb2
k)(1 − 2γb2

k)−1/2 ≤ exp(2(γb2
k)2)

whenever γb2
k < 1/4. Indeed, e−x(1 − 2x)−1/2 ≤ e2x2

if 0 < x < 1/4. This
implies that

P

(
N∑

k=2

Zk ≥ x

)

≤ exp

(

−γx + 2γ2
N∑

k=2

b4
k

)

≤ exp

(

−γx + 2γ2 max
2≤k≤N

b2
k

N∑

k=2

b2
k

)



154 3 Asymptotic efficiency and adaptation

whenever 0 < γ <
1

4 max
2≤k≤N

b2
k

. The proof is completed by taking

x = t

N∑

k=2

b2
k, γ =

t

4 max
2≤k≤N

b2
k

with 0 < t < 1.

Using (3.47) and Lemma 3.5 we get that, for 0 < δ < 1/2,

IPμ(Θc
N ) ≤ exp

⎛

⎝− δ2

8(1 − δ)2

∑N
k=2 a2

ks2
k

max
2≤k≤N

a2
ks2

k

⎞

⎠ . (3.48)

In addition, from (3.44) we have
∑N

k=2 a2
ks2

k = (1 − δ)Q and, by (3.28),
max2≤k≤N a2

ks2
k = O(ε

2
2β+1 ). Hence, for a constant C > 0,

IPμ(Θc
N ) ≤ exp

(
−Cε−

2
2β+1

)
,

implying (3.46) and (3.40). This completes the proof of the lower bound (3.31).

Remarks.

(1) The proofs of this section also yield an analog of Theorem 3.1 for the
Gaussian sequence model (3.10), i.e., the following result:

inf
θ̂ε

sup
θ∈Θ(β,Q)

Eθ‖θ̂ε − θ‖2 = sup
θ∈Θ(β,Q)

Eθ‖θ̂(�∗) − θ‖2

= C∗ε
4β

2β+1 (1 + o(1)), ε → 0, (3.49)

where the infimum is over all estimators. This result holds under the same
conditions as in Theorem 3.1.
(2) Theorem 3.1 and (3.49) remain valid if we replace the weights �∗j (the
simplified Pinsker weights) in the definition of the estimator by the minimax
linear weights �j given by (3.20) (the Pinsker weights) with aj as in (3.2). To
check this fact it is sufficient to compare (3.29) and (3.49).
(3) In the definition of the prior density μk the value of δ is fixed. This is not
the only possibility. We can also take δ = δε depending on ε and converging
to 0 slowly enough as ε → 0, for example, δε = (log 1/ε)−1. It is easy to see
that in this case (3.48) still implies (3.46).
(4) An argument similar to that in the proof of Lemma 3.5 shows that

IPμ

(

(1 − 2δ)Q ≤
N∑

k=2

a2
kθ2

k ≤ Q

)

→ 1 as ε → 0
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at an exponential rate. Similarly to (3.46), this relation remains valid if δ = δε

depends on ε and converges to 0 slowly enough as ε → 0. This means that
almost all the mass of the prior distribution IPμ is concentrated in a small
(asymptotically shrinking) neighborhood of the boundary {θ :

∑
k a2

kθ2
k = Q}

of the ellipsoid Θ(β,Q). The values θ in this neighborhood can be viewed as
being the least favorable, i.e., the hardest to estimate. Since the neighborhood
depends on ε, the least favorable values θ are different for different ε. Even
more, one can show that there exist no fixed (that is, independent of ε) θ∗

belonging to the ellipsoid Θ(β,Q) and such that

Eθ∗‖θ̂(�∗) − θ∗‖2 = C∗ε
4β

2β+1 (1 + o(1)), ε → 0.

We will come back to this property in Section 3.8.

3.4 Stein’s phenomenon

In this section we temporarily switch to the parametric Gaussian models,
and discuss some notions related to Stein’s phenomenon. This material plays
an auxiliary role. It will be helpful for further constructions in the chapter.
Consider the following two Gaussian models.

Model 1

This is a truncated version of the Gaussian sequence model:

yj = θj + εξj , j = 1, . . . , d,

where ε > 0 and ξj are i.i.d. N (0, 1) random variables. In this section
we will denote by y, θ, and ξ the following d-dimensional vectors:

y = (y1, . . . , yd), θ = (θ1, . . . , θd), ξ = (ξ1, . . . , ξd) ∼ Nd(0, I),

where Nd(0, I) stands for the standard d-dimensional normal distri-
bution. Then we can write

y = θ + εξ, ξ ∼ Nd(0, I). (3.50)

The statistical problem is to estimate the unknown parameter θ ∈ Rd.

Model 2

We observe random vectors X1, . . . , Xn satisfying

Xi = θ + ηi, i = 1, . . . , n,

with θ ∈ Rd where ηi are i.i.d. Gaussian vectors with distribution
Nd(0, I). The statistical problem is to estimate θ. The vector X̄ =
n−1
∑n

i=1 Xi is a sufficient statistic in this model. We can write
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X̄ = θ +
1√
n

ξ = θ + εξ

with

ε =
1√
n

and ξ =
1√
n

n∑

i=1

ηi ∼ Nd(0, I).

Throughout this section Eθ will denote the expectation with respect to the
distribution y in Model 1 or with respect to the distribution of X̄ in Model 2,
and ‖ · ‖ will denote the Euclidean norm in Rd. In what follows, we will write
‖θ‖ to denote either the �2(N)-norm or the Euclidean norm on Rd of the
vector θ according to whether θ ∈ �2(N) or θ ∈ Rd.

Model 1 with ε = 1/
√

n is equivalent to Model 2 in the following sense:
for any Borel function θ̂ : Rd → Rd the squared risk Eθ‖θ̂(y) − θ‖2 of the
estimator θ̂(y) in Model 1 with ε = 1/

√
n is equal to the risk Eθ‖θ̂(X̄) − θ‖2

of the estimator θ̂(X̄) in Model 2.
Model 1 is a useful building block in the context of nonparametric estima-

tion, as we will see later. On the other hand, Model 2 is classical for parametric
statistics. In this section proofs of the results are only given for Model 1. In
view of the equivalence, analogous results for Model 2 are obtained as an
immediate by-product.

Definition 3.2 An estimator θ∗ of the parameter θ is called inadmissible
on Θ ⊆ Rd with respect to the squared risk if there exists another estimator θ̂
such that

Eθ‖θ̂ − θ‖2 ≤ Eθ‖θ∗ − θ‖2 for all θ ∈ Θ,

and there exists θ0 ∈ Θ such that

Eθ0‖θ̂ − θ0‖2 < Eθ0‖θ∗ − θ0‖2.

Otherwise, the estimator θ∗ is called admissible.

The squared risk of the estimator X̄ in Model 2 is given by

Eθ‖X̄ − θ‖2 =
d

n
= dε2, ∀ θ ∈ Rd.

This risk is therefore constant as a function of θ.
Stein (1956) considered Model 2 and showed that if d ≥ 3, then the es-

timator X̄ is inadmissible. This property is known as Stein’s phenomenon.
Moreover, Stein proposed an estimator whose risk is smaller than that of X̄
everywhere on Rd if d ≥ 3. This improved estimator is based on a shrinkage
of X̄ towards the origin with a shrinkage factor that depends on ‖X̄‖.
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3.4.1 Stein’s shrinkage and the James–Stein estimator

We now explain the idea of Stein’s shrinkage for Model 1. The argument for
Model 2 is analogous and we omit it. We start with two preliminary lemmas.

Lemma 3.6 (Stein’s lemma). Suppose that a function f : Rd → R satis-
fies:

(i) f(u1, . . . , ud) is absolutely continuous in each coordinate ui for almost all
values (with respect to the Lebesgue measure on Rd−1) of other coordinates
(uj , j �= i),

(ii)

Eθ

∣
∣
∣
∣
∂f(y)
∂yi

∣
∣
∣
∣ < ∞, i = 1, . . . , d.

Then

Eθ [(θi − yi)f(y)] = −ε2Eθ

[
∂f

∂yi
(y)
]

, i = 1, . . . , d.

Proof. We will basically use integration by parts with a slight modification
due to the fact that the function f is not differentiable in the standard sense.

Observe first that it is sufficient to prove the lemma for θ = 0 and ε = 1.
Indeed, the random vector ζ = ε−1(y − θ) has distribution Nd(0, I). Hence,
for f̃(y) = f(εy + θ) we have

Eθ

[
ε−1(θi − yi)f(y)

]
= −E

[
ζif̃(ζ)

]
, E

[
∂f

∂ζi
(ζ)
]

= εE

[
∂f̃

∂ζi
(ζ)

]

,

where ζ1, . . . , ζd are the coordinates of ζ. It is clear that f satisfies assump-
tion (ii) of the lemma if and only if f̃ satisfies the inequality

E

∣
∣
∣
∣
∣
∂f̃(ζ)
∂ζi

∣
∣
∣
∣
∣
< ∞, i = 1, . . . , d, (3.51)

where ζ ∼ Nd(0, I). Therefore it is sufficient to prove that for any function f̃
satisfying (3.51) and assumption (i) of the lemma we have

E[ζif̃(ζ)] = E

[
∂f̃

∂ζi
(ζ)

]

, i = 1, . . . , d. (3.52)

Without loss of generality, it is enough to prove (3.52) for i = 1 only. To do
this, it suffices to show that, almost surely,

E
[
ζ1f̃(ζ)|ζ2, . . . , ζd

]
= E

[
∂f̃

∂ζ1
(ζ)
∣
∣
∣ ζ2, . . . , ζd

]

. (3.53)

Since the variables ζj are mutually independent with distribution N (0, 1),
equality (3.53) will be proved if we show that for almost all ζ2, . . . , ζd with
respect to the Lebesgue measure on Rd−1 we have
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∫ ∞

−∞
uf̃(u, ζ2, . . . , ζd)e−u2/2du =

∫ ∞

−∞

∂f̃

∂u
(u, ζ2, . . . , ζd)e−u2/2du.

Put h(u) = f̃(u, ζ2, . . . , ζd). In order to complete the proof, it remains to show
that for any absolutely continuous function h : R → R such that

∫ ∞

−∞
|h′(u)|e−u2/2du < ∞,

we have ∫ ∞

−∞
uh(u)e−u2/2du =

∫ ∞

−∞
h′(u)e−u2/2du. (3.54)

To show (3.54) note first that

e−u2/2 =

⎧
⎨

⎩

∫∞
u

ze−z2/2dz, if u > 0,

−
∫ u

−∞ ze−z2/2dz, if u < 0.

Therefore,
∫ ∞

−∞
h′(u)e−u2/2du =

∫ ∞

0

h′(u)
[ ∫ ∞

u

ze−z2/2dz
]
du

−
∫ 0

−∞
h′(u)

[ ∫ u

−∞
ze−z2/2dz

]
du

=
∫ ∞

0

ze−z2/2
[ ∫ z

0

h′(u)du
]
dz

−
∫ 0

−∞
ze−z2/2

[ ∫ 0

z

h′(u)du
]
dz

=
(∫ ∞

0

+
∫ 0

−∞

)

{ze−z2/2[h(z) − h(0)]}dz

=
∫ ∞

−∞
zh(z)e−z2/2dz

implying (3.54).

Lemma 3.7 Let d ≥ 3. Then, for all θ ∈ Rd,

0 < Eθ

(
1

‖y‖2

)

< ∞.

Proof. By (3.50), we have

Eθ

(
1

‖y‖2

)

=
1
ε2

E
(

1
‖ε−1θ + ξ‖2

)

,
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where ξ ∼ Nd(0, I) is a standard Gaussian d-dimensional vector. Since the
distribution Nd(0, I) is spherically symmetric,

∀ v, v′ ∈ Rd : ‖v‖ = ‖v′‖ =⇒ ‖ξ + v‖ D= ‖ξ + v′‖, (3.55)

where D= denotes equality in distribution. Indeed, since the norms of v and v′

are equal, there exists an orthogonal matrix Γ such that v′ = Γv. Since
Γξ

D= ξ, we obtain (3.55). In particular,

E
(

1
‖ε−1θ + ξ‖2

)

= E
(

1
‖v0 + ξ‖2

)

with v0 = (‖θ‖/ε, 0, . . . , 0). On the other hand,

E
(

1
‖v0 + ξ‖2

)

=
1

(
√

2π)d

∫

Rd

exp
(

−‖x‖2

2

)

‖v0 + x‖−2dx

=
1

(
√

2π)d
exp
(

−‖θ‖2

2ε2

)

×
∫

Rd

exp
(

u1‖θ‖
ε

− ‖u‖2

2

)

‖u‖−2du

with u = (u1, . . . , ud). Since xy ≤ 3x2 + y2/3 for x ≥ 0, y ≥ 0, we have
|u1|‖θ‖/ε ≤ 3‖θ‖2/ε2 + ‖u‖2/3. Then

E
(

1
‖v0 + ξ‖2

)

≤ 1
(
√

2π)d
exp
(

5‖θ‖2

2ε2

)∫

Rd

exp
(

−‖u‖2

6

)

‖u‖−2du.

We complete the proof by observing that if d ≥ 3, there exists a constant
C > 0 such that

∫

Rd

exp
(

−‖u‖2

6

)

‖u‖−2du = C

∫ ∞

0

e−r2/6rd−3dr < ∞.

Stein introduced the class of estimators of the form

θ̂ = g(y)y, (3.56)

where g : Rd → R is a function to be chosen. The coordinates of the vector
θ̂ = (θ̂1, . . . , θ̂d) have the form

θ̂j = g(y)yj .

On the other hand, the random vector y is a natural estimator of θ, similar
to the arithmetic mean X̄ in Model 2. The risk of this estimator equals

Eθ‖y − θ‖2 = dε2.
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Let us look for a function g such that the risk of the estimator θ̂ = g(y)y is
smaller than that of y. We have

Eθ‖θ̂ − θ‖2 =
d∑

i=1

Eθ

[
(g(y)yi − θi)2

]

=
d∑

i=1

{
Eθ

[
(yi − θi)2

]
+ 2Eθ

[
(θi − yi)(1 − g(y))yi

]

+ Eθ

[
y2

i (1 − g(y))2
]}

.

Suppose now that the function g is such that the assumptions of Lemma 3.6
hold for the functions f = fi where fi(y) = (1 − g(y))yi, i = 1, . . . , d. Then

Eθ[(θi − yi)(1 − g(y))yi] = −ε2Eθ

[

1 − g(y) − yi
∂g

∂yi
(y)
]

,

and

Eθ

[
(θ̂i − θi)2

]
= ε2 − 2ε2Eθ

[

1 − g(y) − yi
∂g

∂yi
(y)
]

+ Eθ

[
y2

i (1 − g(y))2
]
.

Summing over i gives

Eθ‖θ̂ − θ‖2 = dε2 + Eθ[W (y)] (3.57)

with

W (y) = −2ε2d(1 − g(y)) + 2ε2
d∑

i=1

yi
∂g

∂yi
(y) + ‖y‖2(1 − g(y))2.

The above argument is summarized in the following way.

Lemma 3.8 (Stein’s unbiased risk estimator). Consider Model 1 with
d ≥ 3 and the estimator θ̂ defined in (3.56). Let the assumptions of Lemma 3.6
be fulfilled for the functions f = fi where fi(y) = (1 − g(y))yi, i = 1, . . . , d.
Then an unbiased estimator of the risk Eθ‖θ̂ − θ‖2 is given by the formula

SURE = ε2d(2g(y) − 1) + 2ε2
d∑

i=1

yi
∂g

∂yi
(y) + ‖y‖2(1 − g(y))2.

Here SURE stands for Stein’s unbiased risk estimator. Note that the result
of Lemma 3.8 is of the same type as those obtained in Section 1.4 for unbiased
estimators of the risk of kernel density estimators.

The risk of θ̂ is smaller than that of y if we choose g such that

Eθ[W (y)] < 0.
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In order to satisfy this inequality, Stein suggested to search for g among the
functions of the form

g(y) = 1 − c

‖y‖2

with an appropriately chosen constant c > 0. If g has this form, the func-
tions fi defined by fi(y) = (1−g(y))yi satisfy the assumptions of Lemma 3.6,
and (3.57) holds with

W (y) = −2ε2d
c

‖y‖2
+ 2ε2

d∑

i=1

y2
i

2c

‖y‖4
+

c2

‖y‖2
(3.58)

=
1

‖y‖2

(
− 2dcε2 + 4ε2c + c2

)
.

The minimizer in c of (3.58) is equal to

copt = ε2(d − 2).

The function g and the estimator θ̂ = g(y)y associated to this choice of g are
given by

g(y) = 1 − ε2(d − 2)
‖y‖2

,

and

θ̂JS =
(

1 − ε2(d − 2)
‖y‖2

)

y, (3.59)

respectively. The statistic θ̂JS is called the James–Stein estimator of θ. If the
norm ‖y‖ is sufficiently large, multiplication of y by g(y) shrinks the value
of y to 0. This is called the Stein shrinkage. If c = copt, then

W (y) = −ε4(d − 2)2

‖y‖2
. (3.60)

For this function W , Lemma 3.7 implies −∞ < Eθ[W (y)] < 0, provided that
d ≥ 3. Therefore, if d ≥ 3, the risk of the James–Stein estimator satisfies

Eθ‖θ̂JS − θ‖2 = dε2 − Eθ

(
ε4(d − 2)2

‖y‖2

)

< Eθ‖y − θ‖2

for all θ ∈ Rd.

Conclusion: If d ≥ 3, the James–Stein estimator θ̂JS (which is biased)
is better than the (unbiased) estimator y for all θ ∈ Rd and therefore the
estimator y is not admissible in Model 1.

The James–Stein estimator for Model 2 is obtained in a similar way; we
just need to replace y by X̄ and ε by 1/

√
n in (3.59):
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θ̂JS =
(

1 − d − 2
n‖X̄‖2

)

X̄. (3.61)

Since Models 1 and 2 are equivalent, (3.61) is better than the estimator X̄ for
all θ ∈ Rd when d ≥ 3. Therefore we have proved the following result.

Theorem 3.3 (Stein’s phenomenon). Let d ≥ 3. Then the estimator θ̂ =
y is inadmissible on Rd in Model 1 and the estimator θ̂ = X̄ is inadmissible
on Rd in Model 2.

It is interesting to analyze the improvement given by θ̂JS with respect
to y. For θ = 0 the risk of the James–Stein estimator is

E0‖θ̂JS‖2 = dε2 − ε4(d − 2)2E
(

1
‖εξ‖2

)

= 2ε2,

since E
(
‖ξ‖−2

)
= 1/(d − 2) (check this as an exercise). Therefore, for θ = 0

the improvement is characterized by the ratio

E0‖θ̂JS‖2

E0‖y‖2
=

2
d

, (3.62)

which is a constant independent of ε. On the contrary, for all θ �= 0 the ratio
of the squared risks of θ̂JS and y tends to 1 as ε → 0 (cf. Lehmann and
Casella (1998), p. 407) making the improvement asymptotically negligible.

3.4.2 Other shrinkage estimators

It follows from (3.58) that there exists a whole family of estimators that are
better than y in Model 1 when the dimension d is large enough: It is sufficient
to take the constant c in the definition of g so that −2dcε2 + 4ε2c + c2 < 0.
For example, if c = ε2d, we obtain the Stein estimator :

θ̂S
�
=
(

1 − ε2d

‖y‖2

)

y.

This estimator is better than y for d ≥ 5. However, it is worse than θ̂JS for
d ≥ 3.

Estimators performing even better correspond to nonnegative functions g:

g(y) =
(

1 − c

‖y‖2

)

+

with c > 0. For example, taking here c = ε2(d− 2) and c = ε2d we obtain the
positive part James–Stein estimator and the positive part Stein estimator:

θ̂JS+ =
(

1 − ε2(d − 2)
‖y‖2

)

+

y,
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and

θ̂S+ =
(

1 − ε2d

‖y‖2

)

+

y

respectively.

Lemma 3.9 For all d ≥ 1 and all θ ∈ Rd,

Eθ‖θ̂JS+ − θ‖2 < Eθ‖θ̂JS − θ‖2, Eθ‖θ̂S+ − θ‖2 < Eθ‖θ̂S − θ‖2.

A proof of this lemma is given in the Appendix (Lemma A.6).

Thus, the estimators θ̂JS+ and θ̂S+ are better than θ̂JS and θ̂S , respec-
tively. Though the four estimators are better than y, they are all inadmissible
(since θ̂JS+ and θ̂S+ are inadmissible; see, for example, Lehmann and Casella
(1998), p. 357). However, it can be shown that the estimator θ̂JS+ can be
improved in the smaller order terms only, so that it is “quite close” to being
admissible. We mention also that there exists an admissible estimator of θ,
though its construction is more cumbersome than that of θ̂JS+.

Lemma 3.10 Let θ ∈ Rd. For all d ≥ 4,

Eθ‖θ̂S − θ‖2 ≤ dε2‖θ‖2

‖θ‖2 + dε2
+ 4ε2 (3.63)

and, for all d ≥ 1,

Eθ‖θ̂S+ − θ‖2 ≤ dε2‖θ‖2

‖θ‖2 + dε2
+ 4ε2. (3.64)

Proof. We first prove (3.63). From (3.57) and (3.58) with c = ε2d we obtain

Eθ‖θ̂S − θ‖2 = dε2 + (−2dcε2 + 4ε2c + c2)Eθ

(
1

‖y‖2

)

= dε2 − (d2 − 4d)ε4Eθ

(
1

‖y‖2

)

.

By Jensen’s inequality,

Eθ

(
1

‖y‖2

)

≥ 1
Eθ‖y‖2

=
1

‖θ‖2 + ε2d
.

Therefore

Eθ‖θ̂S − θ‖2 ≤ dε2 − ε4d(d − 4)
‖θ‖2 + ε2d

=
dε2‖θ‖2

‖θ‖2 + ε2d
+

4ε4d

‖θ‖2 + ε2d

implying (3.63).
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We now prove (3.64). By Lemma 3.9 and (3.63), it is sufficient to show
(3.64) for d ≤ 3. Observe that the function f(y) = (1 − g(y))yi satisfies the
assumptions of Lemma 3.6 if g(y) = (1 − ε2d/‖y‖2)+. In particular,

∂g(y)
∂yi

=
2ε2dyi

‖y‖4
I(‖y‖2 > ε2d).

Hence, by formula (3.57),

Eθ‖θ̂S+ − θ‖2 = dε2 + Eθ[W (y)],

where

W (y) =
(
‖y‖2 − 2ε2d

)
I(‖y‖2 ≤ ε2d) +

ε4d(4 − d)
‖y‖2

I(‖y‖2 > ε2d)

≤ ε4d(4 − d)
‖y‖2

I(‖y‖2 > ε2d).

If d ≤ 3, the last expression is less than or equal to ε2(4 − d). Therefore, for
d ≤ 3,

Eθ‖θ̂S+ − θ‖2 ≤ 4ε2,

implying (3.64).

Two other important types of shrinkage are hard and soft thresholding.
If we choose the shrinkage factor in the form g(y) = I(‖y‖ > τ) with some
τ > 0, we obtain the global hard thresholding estimator of θ in Model 1:

θ̂GHT = I(‖y‖ > τ)y.

At first sight, this thresholding seems very rough: We either keep or “kill” all
the observations. Nevertheless, some important properties of the Stein shrink-
age are preserved. In particular, if τ = cε

√
d for a suitably chosen absolute

constant c > 0, a result similar to Lemma 3.10 remains valid for θ̂GHT , though
with coarser constants (cf. Exercise 3.7). Analogous properties can be proved
for the global soft thresholding estimator

θ̂GST =
(

1 − τ

‖y‖

)

+

y.

One can also consider coordinate-wise rather than global shrinkage of y. The
main examples are: the hard thresholding estimator θ̂HT whose components
are equal to

θ̂j,HT = I(|yj | > τ̃)yj ;

the soft thresholding estimator θ̂ST with the components

θ̂j,ST = sign(yj)
(
|yj | − τ̃

)
+

=
(

1 − τ̃

|yj |

)

+

yj ;
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and the nonnegative garotte estimator θ̂G with the components

θ̂j,G =

(

1 − τ̃2

y2
j

)

+

yj .

Here τ̃ > 0 is a threshold, which usually has the form τ̃ = cε
√

log(1/ε), for a
suitable absolute constant c > 0.

In either case, the coordinate-wise shrinkage keeps large observations (per-
haps, slightly transforming them) and sets others equal to 0. Note that the
nonnegative garotte is a particular case of the positive part Stein shrinkage
corresponding to d = 1.

Finally, the coordinate-wise linear shrinkage is equivalent to the Tikhonov
regularization:

θ̂TR
j =

yj

1 + bj

where bj > 0 (cf. Section 1.7.3).

3.4.3 Superefficiency

The estimator X̄ is asymptotically efficient on (Rd, ‖·‖) in Model 2 in the sense
of Definition 2.2 and the estimator y is asymptotically efficient on (Rd, ‖ · ‖)
in Model 1 for ε = 1/

√
n. In fact, these estimators are not only asymptotically

efficient, but also minimax in the nonasymptotic sense for all fixed n (or ε)
(cf. Lehmann and Casella (1998), p. 350). In particular, the minimax risk
associated to Model 1 is equal to the maximal risk of y:

inf
θ̂ε

sup
θ∈Rd

Eθ‖θ̂ε − θ‖2 = sup
θ∈Rd

Eθ‖y − θ‖2 = dε2,

where the infimum is over all estimators. So, the maximal risk of any asymp-
totically efficient estimator in Model 1 is dε2(1 + o(1)) as ε → 0. Estimators
with smaller asymptotic risk can be called superefficient. More precisely, the
following definition is used.

Definition 3.3 We say that an estimator θ∗ε is superefficient in Model 1
if

lim sup
ε→0

Eθ‖θ∗ε − θ‖2

dε2
≤ 1, ∀ θ ∈ Rd, (3.65)

and if there exists θ = θ ∈ Rd such that the inequality in (3.65) is strict. The
points θ satisfying the strict inequality are called superefficiency points
of θ∗ε .

The remarks after Theorem 3.3 imply that θ̂JS is superefficient with the
only superefficiency point θ = 0 for d ≥ 3. In a similar way, it can be shown
that θ̂S is superefficient if d ≥ 5. Using Lemma 3.9 and the remarks preceding
it we obtain the following result.
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Proposition 3.1 The estimators θ̂JS and θ̂JS+ are superefficient in Model 1
if d ≥ 3. The estimators θ̂S and θ̂S+ are superefficient in Model 1 if d ≥ 5.

Note that the concept of supperefficiency is in some sense weaker than
that of admissibility since supperefficiency is an asymptotic property. How-
ever, there is no general relation between superefficiency and admissibility.
For example, the estimators mentioned in Proposition 3.1 are not admissible;
they are, however, superefficient. On the other hand, in dimension d = 1 the
estimator y is admissible (see Lehmann and Casella (1998), p. 324) but it is
not superefficient.

Observe also that superefficiency is not a consequence of Stein’s phe-
nomenon. Indeed, in dimension d = 1 the Stein phenomenon does not occur,
but there exist superefficient estimators like the Hodges estimator (see, for
example, Ibragimov and Has’minskii (1981), p. 91).

Le Cam (1953) proved that for any finite d (i.e., in the parametric case) the
set of superefficiency points of an estimator has necessarily the Lebesgue mea-
sure zero. Therefore, roughly speaking, the superefficiency phenomenon is neg-
ligible when the model is parametric. We will see in Section 3.8 that the situa-
tion becomes completely different in nonparametric models: For the Gaussian
sequence model (where d = ∞) there exist estimators which are superefficient
everywhere on a “massive” set like, for example, the ellipsoid Θ(β,Q).

3.5 Unbiased estimation of the risk

We now return to the Gaussian sequence model

yj = θj + εξj , j = 1, 2, . . . .

A linear estimator of the sequence θ = (θ1, θ2, . . .) is an estimator of the form

θ̂(λ) = (θ̂1, θ̂2, . . .) with θ̂j = λjyj ,

where λ = {λj}∞j=1 ∈ �2(N) is a sequence of weights. The mean squared risk
of θ̂(λ) is

R(λ, θ) = Eθ‖θ̂(λ) − θ‖2 =
∞∑

j=1

[
(1 − λj)2θ2

j + ε2λ2
j

]

(cf. (1.112)). How to choose the sequence of weights λ in an optimal way?
Suppose that λ belongs to a class of sequences Λ such that Λ ⊆ �2(N). Some
examples of classes Λ that are interesting in the context of nonparametric
estimation will be given below. A mean square optimal on Λ sequence λ is a
solution of the following minimization problem:

λoracle(Λ, θ) = arg min
λ∈Λ

R(λ, θ)
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if such a solution exists. The mapping θ �→ θ̂(λoracle(Λ, θ)) is an oracle in the
sense of Definition 1.13. It can be called the linear oracle with weights in the
class Λ. Since the underlying θ is unknown, the oracle value θ̂(λoracle(Λ, θ))
is not an estimator. When no ambiguity is caused, we will also attribute the
name “oracle” to the sequence of weights λoracle(Λ, θ).

An important question in this context is the following: Can we construct
an estimator whose risk would converge to the risk of the oracle, i.e., to
minλ∈Λ R(λ, θ), as ε → 0?

A general way to answer this question is based on the idea of unbiased
estimation of the risk that was already discussed in Chapter 1. To develop
this idea for our framework observe first that

‖θ̂(λ) − θ‖2 =
∑

j

(λ2
jy

2
j − 2λjyjθj + θ2

j )

for λ, θ, y such that the sum on right hand side is finite. Put

J (λ)
�
=
∑

j

(λ2
jy

2
j − 2λj(y2

j − ε2)).

Then
Eθ[J (λ)] = Eθ‖θ̂(λ) − θ‖2 −

∑

j

θ2
j = R(λ, θ) −

∑

j

θ2
j .

In other words, J (λ) is an unbiased estimator of the risk R(λ, θ), up to the
term

∑
j θ2

j independent of λ. Therefore we can expect that the minimizer
of J (λ) would be close to the minimizer in λ of R(λ, θ).

Define
λ̃ = λ̃(Λ) = arg min

λ∈Λ
J (λ).

The sequence λ̃ = (λ̃1, λ̃2, . . .) is a random sequence whose elements λ̃j =
λ̃j(y) in general depend on all the data y = (y1, y2, . . .). Define an estimator
with weights λ̃ as follows:

θ̃(Λ) = θ̂(λ̃) = {θ̃j},

where
θ̃j = λ̃j(y)yj , j = 1, 2, . . . .

We will see in the examples given below that θ̃ is a nonlinear estimator, i.e.,
the coefficients λ̃j(y) are not constant as functions of y.

The role of θ̃(Λ) is to mimic the behavior of the oracle θ̂(λoracle(Λ, θ)):
as we will see it in the next section, under fairly general conditions the risk
of θ̃(Λ) is asymptotically smaller than or equal to that of the oracle. This
property will allow us to interpret θ̃(Λ) as an adaptive estimator; it adapts to
the unknown oracle.
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Definition 3.4 Let Θ ⊆ �2(N) be a class of sequences and let Λ ⊆ �2(N) be
a class of weights. An estimator θ∗ε of θ in model (3.10) is called adaptive
to the oracle λoracle(Λ, ·) on Θ if there exists a constant C < ∞ such that

Eθ‖θ∗ε − θ‖2 ≤ C inf
λ∈Λ

Eθ‖θ̂(λ) − θ‖2

for all θ ∈ Θ and 0 < ε < 1.
An estimator θ∗ε of θ is called adaptive to the oracle λoracle(Λ, ·) in

the exact sense on Θ if it satisfies

Eθ‖θ∗ε − θ‖2 ≤ (1 + o(1)) inf
λ∈Λ

Eθ‖θ̂(λ) − θ‖2

for all θ ∈ Θ where o(1) tends to 0 as ε → 0 uniformly in θ ∈ Θ.

Below we will consider some examples of classes Λ, of the corresponding
oracles λoracle(Λ, θ) and estimators θ̃(Λ) obtained by minimization of J (λ).
The following two remarks are important to design the classes Λ in a natural
way.

(1) It is sufficient to consider λj ∈ [0, 1]. Indeed, the projection of λj �∈ [0, 1]
on [0, 1] only reduces the risk R(λ, θ) of a linear estimator θ̂(λ).

(2) Usually it is sufficient to set λj = 0 for j > Nmax where

Nmax = �1/ε2�. (3.66)

Indeed, we mainly deal here with θ ∈ Θ(β,Q) for β > 0 and Q > 0. A typical
situation is that θ corresponds to a continuous function, so that it makes sense
to consider β > 1/2 (cf. remark at the end of Section 1.7.1). The squared risk
of the linear estimator is

R(λ, θ) =
Nmax∑

j=1

[
(1 − λj)2θ2

j + ε2λ2
j

]
+ r0(ε)

where the residual r0(ε) is controlled in the following way for θ ∈ Θ(β,Q) and
β > 1/2:

r0(ε) =
∑

j>Nmax

[
(1 − λj)2θ2

j + ε2λ2
j

]

≤
∑

j>Nmax

θ2
j + o(ε2) (since 0 ≤ λj ≤ 1, λ ∈ �2(N), Nmax → ∞)

≤ N−2β
max

∑

j>Nmax

(j − 1)2βθ2
j + o(ε2) = o(N−2β

max + ε2) = o(ε2)

as ε → 0.
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Another reason for keeping only a finite number of coordinates θ̂i is that
we would like to construct a computationally feasible estimator. In general,
the cutoff Nmax is taken to be finite even though it may differ from (3.66).

Example 3.1 Estimators with constant weights in Model 1.

Consider the finite-dimensional model

yj = θj + εξj , j = 1, . . . , d,

where ξj are i.i.d. N (0, 1) random variables (Model 1 of Section 3.4).
Introduce the class Λ as follows:

Λconst = {λ | λj ≡ t, j = 1, . . . , d, t ∈ [0, 1]}.

The estimator with constant weights of the vector θ = (θ1, . . . , θd) is
defined by

θ̂(t) = ty = (ty1, . . . , tyd).

It is easy to see that the minimum of the squared risk among all
estimators with constant weights is equal to

min
t

Eθ‖θ̂(t)− θ‖2 = min
t

d∑

j=1

[(1− t)2θ2
j + ε2t2] =

dε2‖θ‖2

dε2 + ‖θ‖2
. (3.67)

The value of t = t∗ that achieves this minimum,

t∗ =
‖θ‖2

dε2 + ‖θ‖2
,

corresponds to the oracle with constant weights λoracle(Λconst, θ) =
(t∗, . . . , t∗). For weights λ = (t, . . . , t) belonging to Λconst, the function
J (λ) in the unbiased estimator of the risk has the form

J (λ) =
d∑

j=1

(t2y2
j − 2t(y2

j − ε2)) = (t2 − 2t)‖y‖2 + 2tdε2,

and the minimizer in t ∈ [0, 1] of this expression is

t̃ =
(

1 − dε2

‖y‖2

)

+

.

The corresponding estimator θ̃ is therefore the positive part Stein
estimator

θ̃ = θ̃(Λconst) =
(

1 − dε2

‖y‖2

)

+

y = θ̂S+.
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By Lemma 3.10,

Eθ‖θ̃ − θ‖2 ≤ dε2‖θ‖2

dε2 + ‖θ‖2
+ 4ε2.

This result and (3.67) imply the following inequality, valid under
Model 1, which we will refer to as the first oracle inequality:

Eθ‖θ̃ − θ‖2 ≤ min
t

Eθ‖θ̂(t) − θ‖2 + 4ε2. (3.68)

Note that in this example J (λ) is equal to SURE up to a summand
that does not depend on t (cf. Lemma 3.8 with g(y) ≡ t). Thus,
the positive part Stein estimator is the estimator whose weights are
obtained by minimization of SURE in t ∈ [0, 1].

Example 3.2 Projection estimators.

Consider the class of weights

Λproj = {λ | λj = I{j ≤ N}, N ∈ {1, 2, . . . , Nmax}}.

The corresponding linear estimator is given by

θ̂j,N =

{
yj , if 1 ≤ j ≤ N,

0, if j > N.

This is a simple projection estimator similar to that studied in Chap-
ter 1 for the nonparametric regression model. If λ ∈ Λproj , the function
J (λ) in the unbiased estimator of the risk is as follows:

J (λ) =
∑

j≤N

(y2
j − 2(y2

j − ε2)) = 2Nε2 −
∑

j≤N

y2
j

and the weights λ̃j obtained by minimization of J (λ) are of the form

λ̃j = I{j ≤ Ñ} (3.69)

with
Ñ = arg min

1≤N≤Nmax

(
2Nε2 −

∑

j≤N

y2
j

)
(3.70)

Note that we can write

Ñ = arg min
1≤N≤Nmax

(Nmax∑

j=1

(yj − θ̂j,N )2 + 2Nε2
)
. (3.71)

Thus, Ñ is a minimizer of the penalized residual sum of squares. The
penalty is 2Nε2. This can be linked to the Cp-criterion for regression
(1.105) using the standard correspondence ε = σ/

√
n (cf. Section 1.10

for the equivalence argument). In other words, Ñ is a minimizer of
the Cp-criterion for the Gaussian sequence model.
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Example 3.3 Spline-type estimators.

By Exercise 1.11, the spline estimator is approximated by the weighted
projection estimator with weights

λj =
1

1 + κπ2a2
j

,

where κ > 0 and

aj =

{
jβ , for even j,

(j − 1)β , for odd j.

Following this, we can define a class of linear estimators that are close
to spline estimators:

Λspline =

{

λ
∣
∣
∣ λj =

1
1 + sa2

j

I{j ≤ Nmax}, s ∈ S, β ∈ B

}

with appropriate sets S ⊆ (0,∞) and B ⊆ (0,∞), where the integer
Nmax is defined by (3.66). The corresponding nonlinear estimator θ̃ has
weights λ̃(Λspline) minimizing J (λ) over Λspline. A similar definition
can be given for the class

Λ′
spline =

{

λ
∣
∣
∣ λj =

1
1 + sj2β

I{j ≤ Nmax}, s ∈ S, β ∈ B

}

.

Example 3.4 Pinsker-type estimators.

Consider the class of weights

ΛPinsk = {λ | λj = (1 − saj)+ I{j ≤ Nmax}, s ∈ S, β ∈ B},

where S ⊆ (0,∞) and B ⊆ (0,∞) are given sets and aj are defined as
in Example 3.3. A similar class is

Λ′
Pinsk = {λ | λj = (1 − sjβ)+ I{j ≤ Nmax}, s ∈ S, β ∈ B}.

Pinsker weights (3.4) belong to ΛPinsk under a fairly general choice
of the sets S and B. Observe also that, by definition (3.66) of Nmax,
for B ⊂ (1/2,∞) and for a reasonable choice of S we have

(1 − saj)+ I(j ≤ Nmax) = (1 − saj)+.

Minimization of the unbiased estimator of the risk over this class of
sequences λ leads to a nonlinear estimator θ̃(ΛPinsk).
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The classes Λ defined in Examples 3.1–3.4 are important special classes.
It will also be useful to introduce two “super-classes”: the class of monotone
weights and the class of blockwise constant weights. The class of monotone
weights can be called a “super-class” since it contains all the classes defined
in Examples 3.1–3.4 (indeed, in Examples 3.1–3.4 the weights λj are non-
increasing functions of j), as well as many other interesting classes. The class
of blockwise constant weights is important because it provides a sufficiently
accurate approximation of the class of monotone weights, as we will see it in
the next section.

Example 3.5 Estimators with monotone weights.

Define the following class of weights:

Λmon = {λ | 1 ≥ λ1 ≥ λ2 ≥ . . . ≥ λNmax ≥ 0, λj = 0, j > Nmax}

and call the sequence

λoracle(Λmon, θ) = arg min
λ∈Λmon

R(λ, θ)

the monotone oracle. The respective data-driven choice of weights is
defined by

λ̃ = λ̃(Λmon) = arg min
λ∈Λmon

J (λ).

Example 3.6 Estimators with blockwise constant weights.

Consider a partitioning of the set {1, 2, . . . , Nmax} in blocks Bj , j =
1, . . . , J :

J⋃

j=1

Bj = {1, 2, . . . , Nmax}, Bi ∩ Bj = ∅, i �= j.

Suppose also that min{k : k ∈ Bj} > max{k : k ∈ Bj−1}. The class
of blockwise constant weights is defined as follows:

Λ∗ =
{

λ
∣
∣
∣ λk =

J∑

j=1

tjI(k ∈ Bj) : 0 ≤ tj ≤ 1, j = 1, . . . , J
}

.

The importance of this class is explained by the fact that one can
approximate rather different weights by blockwise constant weights.
Minimization of J (λ) over Λ∗ is particularly simple and explicit. In-
deed, the coordinates of the vector

λ̃ = arg min
λ∈Λ∗

J (λ)
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are blockwise constant:

λ̃k =
J∑

j=1

λ̃(j)I(k ∈ Bj),

where
λ̃(j) = arg min

t∈[0,1]

∑

k∈Bj

(t2y2
k − 2t(y2

k − ε2)).

Note that

arg min
t∈R

∑

k∈Bj

(t2y2
k − 2t(y2

k − ε2)) = 1 − ε2Tj

‖y‖2
(j)

, (3.72)

where
‖y‖2

(j)

�
=
∑

k∈Bj

y2
k, Tj

�
= Card Bj .

The projection of (3.72) on [0, 1] is

λ̃(j) =

(

1 − ε2Tj

‖y‖2
(j)

)

+

, j = 1, . . . , J. (3.73)

Hence the adaptive estimator obtained by minimizing J (λ) over Λ∗

has the following form:

θ̃k =

{
λ̃(j)yk, if k ∈ Bj , j = 1, . . . , J,

0, if k > Nmax

(3.74)

with λ̃(j) defined in (3.73).

Conclusion: Minimization of J (λ) over Λ∗ produces blockwise con-
stant positive part Stein estimators.

Definition 3.5 The estimator θ̃ = (θ̃1, θ̃2, . . .) where θ̃k is defined by (3.74)
is called the block Stein estimator.

Remark.

The results in Section 3.4 show that Stein’s shrinkage gives an improvement
only if d ≥ 3. Therefore the weights λ̃(j) in (3.74) can be replaced by 1 in
blocks of size Tj ≤ 2.
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3.6 Oracle inequalities

The aim of this section is to establish some inequalities for the risk of the
block Stein estimator.

Let θ̃ be the block Stein estimator and let θ be any sequence in �2(N).
Define the corresponding vectors θ(j), θ̃(j) ∈ RTj :

θ(j) = (θk, k ∈ Bj), θ̃(j) = (θ̃k, k ∈ Bj), j = 1, . . . , J.

By the first oracle inequality (3.68), for each block Bj we have

Eθ‖θ̃(j) − θ(j)‖2
(j) ≤ min

tj

∑

k∈Bj

[(1 − tj)2θ2
k + ε2t2j ] + 4ε2, j = 1, . . . , J.

Then

Eθ‖θ̃ − θ‖2 =
J∑

j=1

Eθ‖θ̃(j) − θ(j)‖2
(j) +

∑

k>Nmax

θ2
k

≤
J∑

j=1

min
tj

∑

k∈Bj

[(1 − tj)2θ2
k + ε2t2j ] +

∑

k>Nmax

θ2
k + 4Jε2

= min
λ∈Λ∗

R(λ, θ) + 4Jε2.

Hence the following result is proved.

Theorem 3.4 Let θ̃ be the block Stein estimator. Then, for all θ ∈ �2(N),

Eθ‖θ̃ − θ‖2 ≤ min
λ∈Λ∗

R(λ, θ) + 4Jε2. (3.75)

In what follows, (3.75) will be referred to as the second oracle inequality. Like
the first oracle inequality, it is nonasymptotic, that is, it holds for all ε. It
says that, up to the residual term 4Jε2 independent of θ, the block Stein
estimator θ̃ mimics the blockwise constant oracle

λoracle(Λ∗, θ) = arg min
λ∈Λ∗

R(λ, θ).

Let us now show that the blockwise constant oracle is almost as good as
the monotone oracle. We will need the following assumption on the system of
blocks.

Assumption (C)
There exists η > 0 such that

max
1≤j≤J−1

Tj+1

Tj
≤ 1 + η.
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Lemma 3.11 If Assumption (C) holds then, for all θ ∈ �2(N),

min
λ∈Λ∗

R(λ, θ) ≤ (1 + η) min
λ∈Λmon

R(λ, θ) + ε2T1.

Proof. It is sufficient to show that for any sequence λ ∈ Λmon there exists a
sequence λ̄ ∈ Λ∗ such that

R(λ̄, θ) ≤ (1 + η)R(λ, θ) + ε2T1, ∀ θ ∈ �2(N). (3.76)

We are going to prove that inequality (3.76) holds for a sequence λ̄ =
(λ̄1, λ̄2, . . .) defined as follows:

λ̄k =

{
λ̄(j)

�
= maxm∈Bj

λm, if k ∈ Bj , j = 1, . . . , J,

0, if k > Nmax.

It is clear that λ̄k ≥ λk for k = 1, 2, . . .. Hence,

R(λ̄, θ) =
∞∑

k=1

[(1 − λ̄k)2θ2
k + ε2λ̄2

k] ≤
∞∑

k=1

[(1 − λk)2θ2
k + ε2λ̄2

k].

Since

R(λ, θ) =
∞∑

k=1

[(1 − λk)2θ2
k + ε2λ2

k],

the proof will be complete if we show that

ε2
∞∑

k=1

λ̄2
k ≤ (1 + η)ε2

∞∑

k=1

λ2
k + ε2T1. (3.77)

But (3.77) follows from the chain of inequalities:

∞∑

k=1

λ̄2
k =

∑

k≤Nmax

λ̄2
k

≤ T1 +
J∑

j=2

∑

k∈Bj

λ̄2
k (since 0 ≤ λ̄1 ≤ 1)

= T1 +
J∑

j=2

Tj λ̄
2
(j)

≤ T1 + (1 + η)
J∑

j=2

Tj−1λ̄
2
(j) (by Assumption (C))

≤ T1 + (1 + η)
J∑

j=2

∑

m∈Bj−1

λ2
m (since λ̄(j) ≤ λm, ∀ m ∈ Bj−1)
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= T1 + (1 + η)
J−1∑

j=1

∑

m∈Bj

λ2
m

≤ T1 + (1 + η)
∞∑

k=1

λ2
k.

Theorem 3.5 Suppose that the blocks satisfy Assumption (C). Then for all
θ ∈ �2(N) the risk of the block Stein estimator θ̃ satisfies

Eθ‖θ̃ − θ‖2 ≤ (1 + η) min
λ∈Λmon

R(λ, θ) + ε2(T1 + 4J). (3.78)

The proof of this theorem is straightforward in view of Theorem 3.4 and
Lemma 3.11.

Formula (3.78) will be called the third oracle inequality. Like the first two
oracle inequalities, it is nonasymptotic, i.e., it holds for all ε. It says that if η
is sufficiently small the block Stein estimator θ̃ mimics the monotone oracle,
up to the residual term ε2(T1 + 4J) independent of θ.

The question arising now is as follows: How to construct good systems of
blocks, i.e., systems {Bj} such that η and the residual term ε2(T1 +4J) would
be sufficiently small? Let us consider some examples.

Example 3.7 Diadic blocks.

Let Tj = 2j for j = 1, . . . , J − 1. This assumption is standard in the
context of wavelet estimation. Then η = 1 in Assumption (C), and the
total number J of blocks {Bj} satisfies J ≤ log2(2 + 1/ε2) by (3.66).
Therefore, inequality (3.78) takes the following form:

Eθ‖θ̃ − θ‖2 ≤ 2 min
λ∈Λmon

R(λ, θ) + ε2(2 + 4 log2(2 + 1/ε2)),

where θ̃ is the Stein estimator with diadic blocks. Note that the resid-
ual term is small (of order ε2 log(1/ε)) but the oracle risk on the
right hand side is multiplied by 2. Therefore the inequality is rather
rough; it does not guarantee that the risk of θ̃ becomes close to that
of the oracle, even asymptotically. This is explained by the fact that
the lengths Tj of diadic blocks increase too fast; this system of blocks
is not sufficiently flexible. A better performance is achieved by using
another system of blocks described in the next example.

Example 3.8 Weakly geometric blocks.

This construction of blocks is entirely determined by a value ρε > 0
such that ρε → 0 as ε → 0. We will take

ρε = (log(1/ε))−1, (3.79)
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though there exist other choices of ρε leading to analogous results.
The lengths of the blocks Tj are defined as follows:

T1 = �ρ−1
ε � = �log(1/ε)�,

T2 = �T1(1 + ρε)�,
... (3.80)

TJ−1 = �T1(1 + ρε)J−2�,

TJ = Nmax −
J−1∑

j=1

Tj

where

J = min{m : T1 +
m∑

j=2

�T1(1 + ρε)j−1� ≥ Nmax}. (3.81)

Observe that
TJ ≤ �T1(1 + ρε)J−1�.

Definition 3.6 The system of blocks {Bj} defined by (3.79)–(3.81) with
Nmax defined by (3.66) is called a weakly geometric system of blocks, or
a WGB system. The corresponding block Stein estimator is called the Stein
WGB estimator.

The quantities η and J for the WGB system are given in the following
lemma.

Lemma 3.12 Let {Bj} be a WGB system. Then there exist 0 < ε0 < 1 and
C > 0 such that:

(i) J ≤ C log2(1/ε) for any ε ∈ (0, ε0),
(ii) Assumption (C) holds with η = 3ρε for all ε ∈ (0, ε0).

Proof. Suppose that ε is sufficiently small for the inequality ρε < 1 to hold
and observe that

�x� ≥ x − 1 ≥ x(1 − ρε), ∀x ≥ ρ−1
ε .

Then
�T1(1 + ρε)j−1� ≥ T1(1 + ρε)j−1(1 − ρε). (3.82)

Using (3.82) we obtain

T1 +
J−1∑

j=2

�T1(1 + ρε)j−1� ≥ T1

(
1 +

J−2∑

j=1

(1 + ρε)j(1 − ρε)
)

≥ ρ−1
ε

(
1 + ρ−1

ε [(1 + ρε)J−2 − 1](1 − ρ2
ε)
)
.
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It follows from (3.81) that

ρ−1
ε

(
1 + ρ−1

ε [(1 + ρε)J−2 − 1](1 − ρ2
ε)
)
≤ Nmax ≤ ε−2.

Therefore, for a constant C < ∞ and all ε > 0 small enough,

(1 + ρε)J−2 ≤ Cρ2
εε

−2,

implying (i). To prove (ii) observe that, by (3.82),

Tj+1

Tj
≤ �T1(1 + ρε)j�

�T1(1 + ρε)j−1� ≤ (1 + ρε)j

(1 + ρε)j−1(1 − ρε)

=
1 + ρε

1 − ρε
≤ 1 + 3ρε

if ρε ≤ 1/3.

Corollary 3.2 Let θ̃ be a Stein WGB estimator. Then there exist constants
0 < ε0 < 1 and C < ∞ such that

Eθ‖θ̃ − θ‖2 ≤ (1 + 3ρε) min
λ∈Λmon

R(λ, θ) + Cε2 log2(1/ε) (3.83)

for all θ ∈ �2(N) and all 0 < ε < ε0.

The proof is straightforward in view of Theorem 3.5 and Lemma 3.12.

Since ρε = o(1), the oracle inequality (3.83) is asymptotically exact. More
specifically, it implies the following asymptotic result.

Corollary 3.3 Let θ̃ be a Stein WGB estimator and let θ ∈ �2(N) be a se-
quence satisfying

minλ∈Λ R(λ, θ)
ε2 log2(1/ε)

→ ∞ as ε → 0

for a class Λ ⊆ Λmon. Then

Eθ‖θ̃ − θ‖2 ≤ (1 + o(1))min
λ∈Λ

R(λ, θ) as ε → 0. (3.84)

Remark.

It is clear that inequality (3.83) remains valid if we replace there minλ∈Λmon

by minλ∈Λ for a class Λ ⊂ Λmon. Therefore inequalities (3.83) and (3.84) can
be applied to the classes Λ = Λproj , Λspline, ΛPinsk, etc. Thus, the Stein WGB
estimator is asymptotically at least as good as, and in fact even better than,
the oracles corresponding to these particular classes. In other words, the Stein
WGB estimator is adaptive to the oracles λoracle(Λproj , ·), λoracle(Λspline, ·),
λoracle(ΛPinsk, ·) in the exact sense.
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3.7 Minimax adaptivity

Suppose that θ belongs to an ellipsoid Θ = Θ(β,Q) with β > 0, Q > 0
and that we consider estimation of θ in the Gaussian sequence model (3.10).
The definition of asymptotically efficient estimator for this model takes the
following form (cf. Definition 2.2).

Definition 3.7 An estimator θ∗ε of θ in model (3.10) is called asymptoti-
cally efficient on the class Θ if

lim
ε→0

supθ∈Θ Eθ‖θ∗ε − θ‖2

inf θ̂ε
supθ∈Θ Eθ‖θ̂ε − θ‖2

= 1,

where the infimum is over all estimators.

Corollary 3.1 and formula (3.49) imply that the simplified Pinsker esti-
mator θ̂(�∗), as well as the Pinsker estimator θ̂(�) (where the sequences of
optimal weights �∗ = (�∗1, �

∗
2, . . .) and � = (�1, �2, . . .) are defined by (3.4) and

(3.20), respectively) are asymptotically efficient on the class Θ(β,Q).
The main drawback of these two estimators is that they depend on the

parameters β and Q which are unknown in practice.

Definition 3.8 An estimator θ∗ε of θ in model (3.10) is called adaptive in
the exact minimax sense on the family of classes {Θ(β,Q), β > 0, Q >
0} if it is asymptotically efficient for all classes Θ(β,Q), β > 0, Q > 0,
simultaneously.

Clearly, an adaptive estimator cannot depend on the parameters β and Q
of individual classes Θ(β,Q).

We now prove that the Stein WGB estimator θ̃ is adaptive in the exact
minimax sense on the family of classes {Θ(β,Q), β > 0, Q > 0}. This property
of θ̃ follows from oracle inequality (3.83) and Lemma 3.2. Indeed, by taking
the upper bound on both sides of (3.83) with respect to θ ∈ Θ(β,Q), we
obtain

sup
θ∈Θ(β,Q)

Eθ‖θ̃ − θ‖2 ≤ (1 + 3ρε) sup
θ∈Θ(β,Q)

min
λ∈Λmon

R(λ, θ) (3.85)

+ Cε2 log2(1/ε).

Next, note that the sequence of linear minimax weights � belongs to Λmon

for sufficiently small ε. Indeed, the coefficients �j = (1 − κaj)+ in (3.20) are
decreasing in j, and �j = 0 if j > cε−

2
2β+1 for a constant c > 0. We have

�j = 0 if j > Nmax for sufficiently small ε, since Nmax ∼ 1/ε2 by (3.66). It
follows that for sufficiently small ε we have minλ∈Λmon

R(λ, θ) ≤ R(�, θ) for
all θ ∈ Θ(β,Q). By plugging this inequality into (3.85) we obtain
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sup
θ∈Θ(β,Q)

Eθ‖θ̃ − θ‖2 ≤ (1 + 3ρε) sup
θ∈Θ(β,Q)

R(�, θ) + Cε2 log2(1/ε)

= (1 + 3ρε)D∗ + Cε2 log2(1/ε) (by Lemma 3.2)

= (1 + 3ρε)C∗ε
4β

2β+1 (1 + o(1))
+ Cε2 log2(1/ε) (by (3.27))

= C∗ε
4β

2β+1 (1 + o(1)), ε → 0.

Therefore, we have proved the following result.

Theorem 3.6 The Stein WGB estimator θ̃ is adaptive in the exact minimax
sense on the family of Sobolev ellipsoids {Θ(β,Q), β > 0, Q > 0}.

This theorem is our main result on adaptivity on the family of classes Θ(β,Q).
It shows that the Stein WGB estimator θ̃ is much more attractive than the
Pinsker estimators θ̂(�∗) and θ̂(�): θ̃ possesses a much stronger efficiency prop-
erty and the construction of this estimator is independent of β and Q. We
also see that there is no price to pay for adaptivity: one can switch from the
Pinsker estimator to an estimator independent of β and Q without increasing
the asymptotic risk. Finally we mention that the Stein WGB estimator is not
the only adaptive estimator in the sense of Definition 3.8 on the family of
classes {Θ(β,Q), β > 0, Q > 0} (see the bibliographic notes in Section 3.9
below).

There also exist estimators having a weaker adaptivity property, which
manifests itself only in the rates of convergence. The following definition de-
scribes this property.

Definition 3.9 An estimator θ∗ε of θ in model (3.10) is called adaptive in
the minimax sense on the family of classes {Θ(β,Q), β > 0, Q > 0} if

sup
θ∈Θ(β,Q)

Eθ‖θ∗ε − θ‖2 ≤ C(β,Q)ψ2
ε , ∀ β > 0, Q > 0, 0 < ε < 1,

where ψε = ε
2β

2β+1 and where C(β,Q) is a finite constant depending only on β
and Q.

For example, one can prove that the Mallows Cp estimator, i.e., the estima-
tor with weights λ̃j defined by (3.69)–(3.70), is adaptive in the minimax sense
on the family of classes {Θ(β,Q), β > 0, Q > 0}, though it is not adaptive in
the exact minimax sense.

3.8 Inadmissibility of the Pinsker estimator

We now consider another corollary of the oracle inequality (3.83). It consists
in the fact that the adaptive estimator θ̃ is uniformly better than the Pinsker
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estimator on any ellipsoid that is strictly contained in Θ(β,Q), so that the
Pinsker estimator is inadmissible. The notion of admissibility is understood
here in the sense of Definition 3.2, where we consider Θ as a subset of �2(N)
and ‖ · ‖ as the �2(N)-norm.

Proposition 3.2 Let θ̂(�) be the Pinsker estimator for the ellipsoid Θ(β,Q)
with β > 0 and Q > 0. Then for any 0 < Q′ < Q there exists ε1 ∈ (0, 1) such
that the Stein WGB estimator θ̃ satisfies

Eθ‖θ̃ − θ‖2 < Eθ‖θ̂(�) − θ‖2 (3.86)

for all θ ∈ Θ(β,Q′) and ε ∈ (0, ε1). Hence θ̂(�) is inadmissible on Θ(β,Q′)
for all ε ∈ (0, ε1).

Proof. Let �′ = (�′1, �
′
2, . . .) be the sequence of weights of the simplified

Pinsker estimator for the ellipsoid Θ(β,Q′):

�′j = (1 − κ′aj)+ with κ′ =
(

β

(2β + 1)(β + 1)Q′

) β
2β+1

ε
2β

2β+1 .

Observe that �′ ∈ Λmon for sufficiently small ε.
In view of (3.83), for all θ ∈ �2(N) and 0 < ε < ε0 we get

Eθ‖θ̃ − θ‖2 ≤ (1 + 3ρε)R(�′, θ) + Cε2 log2(1/ε) (3.87)
= R(�, θ) + 3ρεR(�′, θ) + [R(�′, θ) − R(�, θ)]

+ Cε2 log2(1/ε),

where � is a sequence of Pinsker weights for Θ(β,Q) defined by (3.20). By
(3.24), we have D∗ = ε2

∑∞
j=1 �2j + Qκ2 implying, by (3.26) and (3.27),

Qκ2 =
D∗

2β + 1
(1 + o(1)), ε2

∞∑

j=1

�2j =
2βD∗

2β + 1
(1 + o(1)) (3.88)

as ε → 0.
Observe that �′j ≤ �j for all j. In the same way as in (3.24) we obtain, for

all θ ∈ Θ(β,Q′),

∞∑

j=1

[(1 − �′j)
2 − (1 − �j)2]θ2

j ≤ Q′ sup
j:aj>0

(
[(1 − �′j)

2 − (1 − �j)2]a−2
j

)

≤ Q′[(κ′)2 − κ2].

This inequality combined with (3.26), (3.27), and (3.88) implies that, for all
θ ∈ Θ(β,Q′),
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R(�′, θ) − R(�, θ) =
∞∑

j=1

[(1 − �′j)
2 − (1 − �j)2]θ2

j (3.89)

+ ε2
∞∑

j=1

[(�′j)
2 − �2j ]

≤
[
ε2

∞∑

j=1

(�′j)
2 + Q(κ′)2

]
− ε2

∞∑

j=1

�2j − Q′κ2

= D′ − 2βD∗

2β + 1
(1 + o(1))

− Q′
(

β

(2β + 1)(β + 1)Q

) 2β
2β+1

ε
4β

2β+1 (1 + o(1)),

where

D′ = ε2
∞∑

j=1

(�′j)
2 + Q(κ′)2 (3.90)

= [Q′ (2β + 1)]
1

2β+1

(
β

β + 1

) 2β
2β+1

ε
4β

2β+1 (1 + o(1)).

By (3.89) and (3.90), for all θ ∈ Θ(β,Q′) and all sufficiently small ε,

R(�′, θ) − R(�, θ) (3.91)

≤ AQ
1

2β+1

(
β

(2β + 1)(β + 1)

) 2β
2β+1

ε
4β

2β+1 (1 + o(1))

≤ −c1ε
4β

2β+1 ,

where

A = (2β + 1)
(

Q′

Q

) 1
2β+1

− 2β − Q′

Q
,

c1 > 0 is a constant depending only on β, Q, and Q′, and where we have used
the fact that (2β + 1)x

1
2β+1 < 2β + x for 0 ≤ x < 1. On the other hand, by

Lemma 3.2, (3.26), and (3.27), we have

R(�′, θ) ≤ sup
θ∈Θ(β,Q′)

R(�′, θ) = D′(1 + o(1)) ≤ c2ε
4β

2β+1 (3.92)

for a constant c2 > 0 depending only on Q′ and β. Substituting (3.91) and
(3.92) into (3.87) we obtain

Eθ‖θ̃ − θ‖2 ≤ R(�, θ) + (3c2ρε − c1)ε
4β

2β+1 + Cε2 log2(1/ε)

for all θ ∈ Θ(β,Q′) and all sufficiently small ε. To complete the proof, it is
enough to note that (3c2ρε − c1)ε

4β
2β+1 + Cε2 log2(1/ε) < 0 for all sufficiently

small ε.
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This argument does not give an answer to the question on whether in-
equality (3.86) can be extended to the boundary of Θ(β,Q) and therefore
whether θ̂(�) is inadmissible over the whole set Θ(β,Q). However, we have
the following asymptotic result:

lim sup
ε→0

sup
θ∈Θ(β,Q)

Eθ‖θ̃ − θ‖2

Eθ‖θ̂(�) − θ‖2
≤ 1, ∀ β > 0, Q > 0. (3.93)

Indeed, using (3.88) we get, for all θ ∈ �2(N),

Eθ‖θ̂(�) − θ‖2 =
∞∑

j=1

(1 − �j)2θ2
j + ε2

∞∑

j=1

�2j ≥ ε2
∞∑

j=1

�2j (3.94)

=
2βD∗

2β + 1
(1 + o(1)) ≥ c3ε

4β
2β+1

for sufficiently small ε where c3 > 0 is a constant depending only on β and Q.
On the other hand, (3.83) implies

Eθ‖θ̃ − θ‖2 ≤ (1 + 3ρε)Eθ‖θ̂(�) − θ‖2 + Cε2 log2(1/ε). (3.95)

Inequality (3.93) follows directly from (3.94) and (3.95). Observe that (3.94)
and (3.95) hold for any fixed θ in �2(N), implying in fact a stronger inequality
than (3.93):

lim sup
ε→0

sup
θ∈�2(N)

Eθ‖θ̃ − θ‖2

Eθ‖θ̂(�) − θ‖2
≤ 1. (3.96)

The following nonuniform result can also be proved.

Proposition 3.3 Let θ̂(�) be the Pinsker estimator for the ellipsoid Θ(β,Q)
where β > 0 and Q > 0. Then for all θ ∈ Θ(β,Q) the Stein WGB estimator θ̃
satisfies

lim
ε→0

Eθ‖θ̃ − θ‖2

Eθ‖θ̂(�) − θ‖2
= 0 (3.97)

and

lim
ε→0

ε−
4β

2β+1 Eθ‖θ̃ − θ‖2 = 0. (3.98)

Proof. Since Λproj ⊂ Λmon, inequality (3.83) yields

Eθ‖θ̃ − θ‖2 ≤ (1 + 3ρε) min
λ∈Λproj

R(λ, θ) + Cε2 log2(1/ε)

= (1 + 3ρε) min
N≤Nmax

( ∞∑

i=N+1

θ2
i + ε2N

)
+ Cε2 log2(1/ε).
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Put Nε = �δε− 2
2β+1 � ≥ δε−

2
2β+1 with δ > 0. For ε small enough, we have

Nε < Nmax by (3.66). Then

min
N≤Nmax

( ∞∑

i=N+1

θ2
i + ε2N

)
≤

∞∑

i=Nε

θ2
i + ε2Nε

≤ N−2β
ε

∞∑

i=Nε

i2βθ2
i + ε2Nε

≤ δ−2βε
4β

2β+1 αε + ε2(δε−
2

2β+1 + 1),

where αε =
∑∞

i=Nε
i2βθ2

i = o(1) as ε → 0 for all θ ∈ Θ(β,Q). Hence

Eθ‖θ̃ − θ‖2ε−
4β

2β+1 ≤ δ−2βαε + δ(1 + o(1)).

By taking the limit as ε → 0, we obtain

lim sup
ε→0

Eθ‖θ̃ − θ‖2ε−
4β

2β+1 ≤ δ. (3.99)

Since δ > 0 is arbitrary, this yields (3.98). Finally, (3.97) follows from (3.94)
and (3.99).

Remarks.

(1) Proposition 3.2 demonstrates the superiority of the Stein WGB estimator
θ̃ (an adaptive estimator) over the Pinsker estimator, which is not adaptive.
(2) At first sight, the result of Proposition 3.3 seems to be surprising: One
can improve the Pinsker estimator everywhere on the ellipsoid where this
estimator is minimax. Moreover, the rate of convergence is also improved.
However, it would seem natural that at least in the most unfavorable case
(i.e., when θ belongs to the boundary of the ellipsoid) the Pinsker estimator
could not be improved. The explanation of this paradox is simple: Although
the least favorable sequence θ belongs to the boundary of the ellipsoid, this
sequence depends on ε (indeed, this is the sequence θ(ε) = {vj} with vj defined
by (3.25)). On the other hand, in Proposition 3.3 we deal with a sequence
θ ∈ �2(N) which is fixed and independent of ε. The rate of convergence to 0
in (3.97) and (3.98) is not uniform in θ; it becomes slower and slower as θ
approaches the boundary of the ellipsoid Θ(β,Q).
(3) The result (3.97) in Proposition 3.3 can be enhanced in the following way:

lim
ε→0

Eθ‖θ̃ − θ′‖2

infθ∈�2(N) Eθ‖θ̂(�) − θ‖2
= 0, ∀ θ′ ∈ Θ(β,Q). (3.100)

Indeed, it is easy to see that we can insert infθ∈�2(N) in front of the expectation
in (3.94).
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Arguing analogously to the finite-dimensional case considered in Sec-
tion 3.4, we can define the concept of superefficiency in the nonparametric
problem that we study here. Definiton 3.3 of superefficiency is naturally mod-
ified in the following way: instead of the quantity dε2 representing the minimax
risk in Model 1 (d-dimensional Gaussian model), we now introduce C∗ε

4β
2β+1 ,

which is the asymptotic value of the minimax risk on the ellipsoid Θ(β,Q).

Definition 3.10 We say that an estimator θ∗ε is superefficient at a point
θ ∈ Θ(β,Q) if

lim sup
ε→0

Eθ‖θ∗ε − θ‖2

C∗ε
4β

2β+1

< 1,

where C∗ is the Pinsker constant.

Then the following corollary of Proposition 3.3 is immediate.

Corollary 3.4 The Stein WGB estimator θ̃ is superefficient at any point
of Θ(β,Q) for all β > 0 and Q > 0.

This result differs dramatically from its finite-dimensional analog in Sec-
tion 3.4 (cf. Proposition 3.1). The Pinsker estimator is an asymptotically
efficient estimator whose role is similar to that of the asymptotically efficient
estimator y in Model 1 of Section 3.4. In turn, the Stein WGB estimator is
an analog of the finite-dimensional Stein estimator in Section 3.4. Whereas in
the finite-dimensional case superefficiency is possible only on a set of Lebesgue
measure zero (note the remark at the end of Section 3.4), we see that in the
nonparametric situation there exist estimators that are everywhere supereffi-
cient.

3.9 Notes

Theorems 3.1 and 3.2 are due to Pinsker (1980) and Nussbaum (1985), respec-
tively. Pinsker (1980) established a more general result than Theorem 3.1, not
necessarily restricted to the Sobolev ellipsoids. He imposed only very mild con-
ditions on aj . Another proof of Pinsker’s lower bound for the Sobolev ellipsoids
can be derived from the van Trees inequality (cf. Belitser and Levit (1995)).
Linear minimax lemma in this form was first stated by Pinsker (1980). A simi-
lar result was proved earlier by Kuks and Olman (1971) for finite-dimensional
regression models.

Lemmas 3.6 and 3.8 are due to Stein (1981). The estimator θ̂JS was in-
troduced by James and Stein (1961). Strawderman (1971) constructed an ad-
missible estimator of θ in Model 1. For a more detailed account on the subject
of Section 3.4 we refer the reader to Lehmann and Casella (1998).

Mallows’ Cp and related techniques were already discussed in Section 1.11.
Birgé and Massart (2001) proposed some extensions of the Cp-criterion in
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the Gaussian sequence model. They considered definition (3.71) with penal-
ties close to 2Nε2 and proved oracle inequalities showing that the estimators
with the corresponding weights λ̃j = I(j ≤ Ñ) mimic the projection oracle
λoracle(Λproj , ·).

Kneip (1994) studied adaptation to the oracle for several examples of mo-
notone weights. Direct minimization of J (λ) on the class of all monotone
weights Λmon was considered by Beran and Dümbgen (1998). Such a mini-
mization is numerically feasible but the resulting estimator λ̃(Λmon) is not
proved to have optimality properties as those obtained for the block Stein
estimator.

The Stein WGB estimator is not the only estimator that has the advantage
of being exact adaptive on the family of Sobolev ellipsoids. A large variety of
other estimators share the same property; cf. Efroimovich and Pinsker (1984),
Golubev (1987), Golubev and Nussbaum (1992), Nemirovski (2000), Cavalier
and Tsybakov (2001), Efromovich (2004).

The block Stein estimator with diadic blocks (cf. Example 3.7) was sug-
gested by Donoho and Johnstone (1995), who also showed that it satisfies the
oracle inequality (3.75). Brown et al. (1997) and Cai (1999) obtained simi-
lar inequalities for modifications of the Stein estimator with diadic blocks.
The block Stein estimator with arbitrary blocks is introduced in Cavalier and
Tsybakov (2001, 2002), in a more general form than in (3.74):

θ̃k =

⎧
⎪⎪⎨

⎪⎪⎩

yk, if k ∈ Bj with j ∈ J0,

yk

(

1 − ε2Tj(1+pj)

‖y‖2
(j)

)

+

, if k ∈ Bj with j �∈ J0,

0, k > Nmax,

(3.101)

where 0 ≤ pj < 1 and J0 is a set of indices that can be chosen, for example, as
J0 = {j : Tj ≤ 4/(1−pj)} where Tj = Card Bj . Such an estimator is called a
penalized block Stein estimator. Because of the penalizing factor (1 + pj), the
estimator (3.101) has fewer nonzero coefficients θ̃k than the simple block Stein
estimator (3.74), in other words it is more sparse. A major penalty choice dis-

cussed in Cavalier and Tsybakov (2001) is pj ∼
(

log Tj

Tj

)1/2

and this is in some

sense the smallest penalty, but one can consider, for example, pj ∼ T−γ
j with

0 < γ < 1/2 or other similar choices. An intuitive motivation is the following.
The ratio of standard deviation to expectation for the stochastic error term
corresponding to jth block is of order T

−1/2
j . Hence, to control the variability

of stochastic terms, one needs a penalty that is slightly larger than T
−1/2
j . As

shown in Cavalier and Tsybakov (2001), the penalized block Stein estimator
is: (i) adaptive in the exact minimax sense on any ellipsoid in �2 (cf. (3.13))
with monotone nondecreasing aj ; (ii) almost sharp asymptotically minimax
on other bodies such as hyperrectangles, tail-classes, Besov classes with p ≥ 2;
and (iii) attains the optimal rate of convergence (up to a logarithmic factor)
on the Besov classes with p < 2. Cavalier and Tsybakov (2002) prove similar
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results for an extension of (3.101) to the heteroscedastic sequence space model
yk = bkθk + εξk, k = 1, 2, . . ., where bk > 0 are known constants. This corre-
sponds to statistical inverse problems. Sections 3.6 and 3.7 present a simplified
version of some results in Cavalier and Tsybakov (2001). Section 3.8 is new,
though essentially in the spirit of Brown et al. (1997). Further developments
on the block Stein estimators, a survey of more recent work, and numerical
studies can be found in Rigollet (2006a,b).

3.10 Exercises

Exercise 3.1 Consider an exponential ellipsoid:

Θ =
{

θ = {θj}∞j=1 :
∞∑

j=1

e2αjθ2
j ≤ Q

}
(3.102)

where α > 0 and Q > 0.

(1) Give an asymptotic expression, as ε → 0, for the minimax linear risk on Θ.

(2) Prove that the simple projection estimator defined by

θ̂k = ykI(k ≤ N∗), k = 1, 2, . . . ,

with an appropriately chosen integer N∗ = N∗(ε), is an asymptotically minimax
linear estimator on the ellipsoid (3.102). Therefore it shares this property with the
Pinsker estimator for the same ellipsoid.

Exercise 3.2 Suppose that we observe

yj = θj + ξj , j = 1, . . . , d, (3.103)

where the random variables ξj are i.i.d. with distribution N (0, 1). Consider the
estimation of parameter θ = (θ1, . . . , θd). Take Θ(Q) = {θ ∈ Rd : ‖θ‖2 ≤ Qd}
with some Q > 0, where ‖ · ‖ denotes the Euclidean norm on Rd. Define the
minimax risk

R∗
d(Θ(Q)) = inf

θ̂
sup

θ∈Θ(Q)

Eθ

[
1
d
‖θ̂ − θ‖2

]

,

where Eθ is the expectation with respect to the joint distribution of (y1, . . . , yd)
satisfying (3.103). Prove that

lim
d→∞

R∗
d(Θ(Q)) =

Q

Q + 1
.

Hint: To obtain the lower bound on the minimax risk, take 0 < δ < 1 and apply
the scheme of Section 3.3.2 with the prior distribution N (0, δQ) on each of the
coordinates of θ.
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Exercise 3.3 Consider the setting of Exercise 3.2.

(1) Prove that the Stein estimator

θ̂S =
(

1 − d

‖y‖2

)

y,

as well as the positive part Stein estimator

θ̂S+ =
(

1 − d

‖y‖2

)

+

y,

are adaptive in the exact minimax sense over the family of classes {Θ(Q), Q > 0},
that is, for all Q > 0,

lim sup
d→∞

sup
θ∈Θ(Q)

Eθ

(
1
d
‖θ̂ − θ‖2

)

≤ Q

Q + 1

with θ̂ = θ̂S or θ̂ = θ̂S+. (Here, we deal with adaptation at an unknown radius Q
of the ball Θ(Q).) Hint: Apply Lemma 3.10.

(2) Prove that the linear minimax estimator on Θ(Q) (the Pinsker estimator) is
inadmissible on any class Θ(Q′) such that 0 < Q′ < Q for all d > d1 where d1

depends only on Q and Q′.

Exercise 3.4 Consider Model 1 of Section 3.4. Let τ̃ > 0.

(1) Show that the hard thresholding estimator θ̂HT with the components

θ̂j,HT = I(|yj | > τ̃)yj , j = 1, . . . , d,

is a solution of the minimization problem

min
θ∈Rd

{ d∑

j=1

(yj − θj)2 + τ̃2
d∑

j=1

I(θj �= 0)
}

.

(2) Show that the soft thresholding estimator θ̂ST with the components

θ̂j,ST =
(

1 − τ̃

|yj |

)

+

yj , j = 1, . . . , d,

is a solution of the minimization problem

min
θ∈Rd

{ d∑

j=1

(yj − θj)2 + 2τ̃

d∑

j=1

|θj |
}

.

Exercise 3.5 Consider Model 1 of Section 3.4. Using Stein’s lemma, show that
the statistic
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J1(τ̃) =
d∑

j=1

(2ε2 + τ̃2 − y2
j ) I(|yj | ≥ τ̃)

is an unbiased estimator of the risk of the soft thresholding estimator θ̂ST , up to
the additive term ‖θ‖2 that does not depend on τ̃ :

Eθ [J1(τ̃)] = Eθ‖θ̂ST − θ‖2 − ‖θ‖2.

Based on this, suggest a data-driven choice of the threshold τ̃ .

Exercise 3.6 Consider Model 1 of Section 3.4. Let τ > 0.

(1) Show that the global hard thresholding estimator

θ̂GHT = I(‖y‖ > τ) y

is a solution of the minimization problem

min
θ∈Rd

{ d∑

j=1

(yj − θj)2 + τ2I(‖θ‖ �= 0)
}

.

(2) Show that the global soft thresholding estimator

θ̂GST =
(

1 − τ

‖y‖

)

+

y

is a solution of the minimization problem

min
θ∈Rd

{ d∑

j=1

(yj − θj)2 + 2τ‖θ‖
}

.

Exercise 3.7 Consider first Model 1 of Section 3.4. Define a global hard thresh-
olding estimator of the vector θ = (θ1, . . . , θd) as follows:

θ̂ = I(‖y‖ > τ) y,

where τ = 2ε
√

d.

(1) Prove that for ‖θ‖2 ≤ ε2d/4 we have

Pθ(θ̂ = y) ≤ exp(−c0d),

where c0 > 0 is an absolute constant. Hint: Use the following inequality (cf.
Lemma 3.5):

P

(
d∑

k=1

(ξ2
k − 1) ≥ td

)

≤ exp
(

− t2d

8

)

, ∀ 0 < t ≤ 1.
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(2) Based on (1) prove that

Eθ‖θ̂ − θ‖2 ≤ ‖θ‖2 + c1ε
2d exp(−c0d/2)

for ‖θ‖2 ≤ ε2d/4 with an absolute constant c1 > 0.

(3) Show that, for all θ ∈ Rd,

Eθ‖θ̂ − θ‖2 ≤ 9ε2d.

(4) Combine (2) and (3) to prove the oracle inequality

Eθ‖θ̂ − θ‖2 ≤ c2
dε2‖θ‖2

dε2 + ‖θ‖2
+ c1ε

2d exp(−c0d/2), ∀ θ ∈ Rd,

where c2 > 0 is an absolute constant. Hint: min(a, b) ≤ 2ab/(a + b) for all
a ≥ 0, b > 0.

(5) We switch now to the Gaussian sequence model (3.10). Introduce the blocks
Bj of size card(Bj) = j and define the estimators

θ̃k = I(‖y‖(j) > τj)yk for k ∈ Bj , j = 1, 2, . . . , J,

where τj = 2ε
√

j, J ≥ 1/ε2, and θ̃k = 0 for k >
∑J

j=1 card(Bj). Set θ̃ =
(θ̃1, θ̃2, . . .). Prove the oracle inequality

Eθ‖θ̃ − θ‖2 ≤ c3 min
λ∈Λmon

R(λ, θ) + c4ε
2, ∀ θ ∈ �2(N),

where c3 > 0 and c4 > 0 are absolute constants.

(6) Show that the estimator θ̃ defined in (5) is adaptive in the minimax sense on
the family of classes {Θ(β,Q), β > 0, Q > 0} (cf. Definition 3.9).



Appendix

This Appendix contains proofs of some auxiliary results used in Chapters 1–3.
In order to make reading more feasible, we also reproduce here the statements
of the results.

Lemma A.1 (Generalized Minkowski inequality). For any Borel func-
tion g on R × R, we have

∫ (∫
g(u, x)du

)2
dx ≤

(∫ (∫
g2(u, x)dx

)1/2

du

)2

.

Proof. It suffices to assume that
∫ (∫

g2(u, x)dx
)1/2

du
�
= Cg < ∞,

since otherwise the result of the lemma is trivial. Put

S(x) =
∫

|g(u, x)|du.

For all f ∈ L2(R),
∣
∣
∣

∫
S(x)f(x)dx

∣
∣
∣ ≤
∫

|f(x)|
∫

|g(u, x)|du dx

=
∫

du

∫
|f(x)||g(u, x)|dx (Tonelli–Fubini)

≤ ‖f‖2

∫ (∫
g2(u, x)dx

)1/2

du (Cauchy–Schwarz)

= Cg‖f‖2

with ‖f‖2 = (
∫

f2(x)dx)1/2. This implies that the linear functional f �→∫
S(x)f(x)dx is continuous on L2(R). Then S ∈ L2(R) and
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‖S‖2 = sup
f 
=0

∫
Sf

‖f‖2
≤ Cg

implying the required result.

Lemma A.2 If f ∈ L2(R), then

lim
δ→0

sup
|t|≤δ

∫
(f(x + t) − f(x))2dx = 0.

Proof. Denote by Φ the Fourier transform of f . Then for t ∈ R the Fourier
transform of f(·+t) is the function ω �→ Φ(ω)eitω. By the Plancherel theorem,
for all t ∈ R,

∫
(f(x + t) − f(x))2dx =

∫
|Φ(ω)|2|eitω − 1|2dω

= 4
∫

|Φ(ω)|2 sin2(ωt/2)dω.

Let 0 < δ < π2 and |t| ≤ δ. Then sin2(ωt/2) ≤ sin2(
√

δ/2) whenever |ω| ≤
t−1/2, and we get

∫
(f(x + t) − f(x))2dx ≤ 4

[∫

|ω|≤t−1/2
|Φ(ω)|2 sin2(ωt/2)dω

+
∫

|ω|>t−1/2
|Φ(ω)|2dω

]

≤ 4
[

sin2(
√

δ/2)
∫

|Φ(ω)|2dω

+
∫

|ω|>δ−1/2
|Φ(ω)|2dω

]

= o(1) as δ → 0,

since Φ ∈ L2(R).

Proposition A.1 Assume that:

(i) the function K is a kernel of order 1 satisfying the conditions
∫

K2(u)du < ∞,

∫
u2|K(u)|du < ∞, SK

�
=
∫

u2K(u)du �= 0;

(ii) the density p is differentiable on R, the first derivative p′ is absolutely
continuous on R and the second derivative satisfies

∫
(p′′(x))2dx < ∞.
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Then for all n ≥ 1 the mean integrated squared error of the kernel estimator p̂n

satisfies

MISE ≡ Ep

∫
(p̂n(x) − p(x))2dx

=
[

1
nh

∫
K2(u)du +

h4

4
S2

K

∫
(p′′(x))2dx

]

(1 + o(1)),

where o(1) is independent of n and tends to 0 as h → 0.

Proof. (i) First, consider the variance term
∫

σ2(x)dx. Using (1.6), we obtain

∫
σ2(x)dx =

1
nh

∫
K2(u)du − 1

nh2

∫ (∫
K

(
z − x

h

)

p(z)dz

)2

dx.

The assumptions of the proposition imply that the probability density p is
uniformly bounded on R. Therefore p ∈ L2(R). By the Cauchy–Schwarz
inequality and the Tonelli–Fubini theorem, we obtain

∫ (∫
K

(
z − x

h

)

p(z)dz

)2

dx

≤
∫ [∫ ∣∣

∣
∣K

(
t − x

h

)∣
∣
∣
∣ dt

] ∫ ∣∣
∣
∣K

(
z − x

h

)∣
∣
∣
∣ p

2(z)dzdx

= h2

(∫
|K(u)|du

)2 ∫
p2(z)dz.

Therefore the variance term satisfies
∫

σ2(x)dx =
1

nh

∫
K2(u)du (1 + o(1)) (A.1)

where o(1) is independent of n and tends to 0 as h → 0. (ii) We now study
the bias term

∫
b2(x)dx. From (1.18) with � = 2 we get

b(x) = h2

∫
u2K(u)

[ ∫ 1

0

(1 − τ)p′′(x + τuh)dτ
]
du. (A.2)

Define

b∗ =
h4

4

(∫
u2K(u)du

)2 ∫
(p′′(x))2dx

= h4

∫ [ ∫
u2K(u)

(∫ 1

0

(1 − τ)p′′(x)dτ
)
du
]2

dx

and observe that
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∣
∣
∣

∫
b2(x)dx − b∗

∣
∣
∣ = h4

∣
∣
∣

∫
A1(x)A2(x)dx

∣
∣
∣ (A.3)

≤ h4
(∫

A2
1(x)dx

)1/2(∫
A2

2(x)dx
)1/2

with

A1(x)
�
=
∫

u2K(u)
(∫ 1

0

(p′′(x + τuh) − p′′(x))(1 − τ)dτ
)
du,

and

A2(x)
�
=
∫

u2K(u)
(∫ 1

0

(p′′(x + τuh) + p′′(x))(1 − τ)dτ
)
du.

By a successive application of the generalized Minkowski inequality, the
Cauchy–Schwarz inequality and the Tonelli–Fubini theorem, we obtain

∫ (∫
u2|K(u)|

[ ∫ 1

0

|p′′(x + τuh)|(1 − τ)dτ
]
du

)2

dx (A.4)

≤
(∫

u2|K(u)|
(∫ [∫ 1

0

|p′′(x + τuh)|(1 − τ)dτ
]2

dx

)1/2

du

)2

≤
(∫

u2|K(u)| ×

(∫ ∫ 1

0

(p′′(x + τuh))2(1 − τ)dτdx

∫ 1

0

(1 − τ)dτ

)1/2

du

)2

=
1
4

(∫
u2|K(u)|du

)2 ∫
(p′′(x))2dx < ∞.

This implies that the integral
∫

A2
2(x)dx is bounded by a constant indepen-

dent of h. By the same argument as in (A.4) and by dividing the domain of
integration into two parts, |u| ≤ h−1/2 and |u| > h−1/2, we get
∫

A2
1(x)dx (A.5)

≤
(∫

u2|K(u)|
(∫ [∫ 1

0

|p′′(x + τuh) − p′′(x)|dτ
]2

dx

)1/2

du

)2

≤
(∫

u2|K(u)|
(∫ ∫ 1

0

(p′′(x + τuh) − p′′(x))2dτdx

)1/2

du

)2

≤
(

sup
|u|≤h−1/2

[∫ 1

0

∫
(p′′(x + τuh) − p′′(x))2dxdτ

]1/2 ∫
u2|K(u)|du

+ 2
[ ∫

(p′′(x))2dx
]1/2
∫

|u|>h−1/2
u2|K(u)|du

)2

.
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By Lemma A.2, we have

sup
|u|≤h−1/2

∫ 1

0

∫
(p′′(x + τuh) − p′′(x))2dxdτ (A.6)

≤ sup
|t|≤h1/2

∫
(p′′(x + t) − p′′(x))2dx = o(1)

as h → 0. From (A.3)–(A.6) we finally obtain
∫

b2(x)dx = b∗(1 + o(1)) as h → 0.

This relation combined with (A.1) proves the proposition.

Proposition A.2 Let assumption (ii) of Proposition A.1 be satisfied and let
K be a kernel of order 2 such that

∫
K2(u)du < ∞.

Then, for any ε > 0, the kernel estimator p̂n with bandwidth

h = n−1/5ε−1

∫
K2(u)du

satisfies

lim sup
n→∞

n4/5Ep

∫
(p̂n(x) − p(x))2dx ≤ ε. (A.7)

The same is true for the positive part estimator p̂+
n = max(0, p̂n):

lim sup
n→∞

n4/5Ep

∫
(p̂+

n (x) − p(x))2dx ≤ ε. (A.8)

Proof. Since K is a kernel of order 2, we have
∫

u2K(u)du = 0. Under this
assumption, following the proof of Proposition A.1 we get b∗ = o(h4), and
therefore

∫
b2(x)dx = o(h4). Since the variance term satisfies (A.1), we obtain

Ep

∫
(p̂n(x) − p(x))2dx =

1
nh

∫
K2(u)du (1 + o(1)) + o(h4).

This implies (A.7) in view of the choice of h. Finally, (A.8) follows from (A.7)
and (1.10).
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Lemma A.3 Let β be an integer, β ≥ 1, L > 0, and let {ϕj}∞j=1 be the

trigonometric basis. Then the function f =
∞∑

j=1

θjϕj belongs to W per(β, L) if

and only if the vector θ of the Fourier coefficients of f belongs to the ellipsoid
in �2(N) defined by

Θ(β,Q) =
{
θ ∈ �2(N) :

∞∑

j=1

a2
jθ

2
j ≤ Q

}
,

where Q = L2/π2β and aj are given by (1.90).

Proof. Necessity. First, we prove that if f ∈ W per(β, L), then θ ∈ Θ(β,Q).
For f ∈ W per(β, L) and j = 1, . . . , β, define the Fourier coefficients of f (j)

with respect to the trigonometric basis:

s1(j)
�
=
∫ 1

0

f (j)(t)dt = f (j−1)(1) − f (j−1)(0) = 0,

s2k(j)
�
=

√
2
∫ 1

0

f (j)(t) cos(2πkt)dt,

s2k+1(j)
�
=

√
2
∫ 1

0

f (j)(t) sin(2πkt)dt, for k = 1, 2, . . . ,

and put s2k(0)
�
= θ2k, s2k+1(0)

�
= θ2k+1. Integrating by parts we obtain

s2k(β) =
√

2f (β−1)(t) cos(2πkt)
∣
∣
∣
1

0
(A.9)

+ (2πk)
√

2
∫ 1

0

f (β−1)(t) sin(2πkt)dt

= (2πk)
√

2
∫ 1

0

f (β−1)(t) sin(2πkt)dt

= (2πk)s2k+1(β − 1)

and

s2k+1(β) = −(2πk)
√

2
∫ 1

0

f (β−1)(t) cos(2πkt)dt (A.10)

= −(2πk)s2k(β − 1).

In particular, s2
2k(β) + s2

2k+1(β) = (2πk)2(s2
2k(β − 1) + s2

2k+1(β − 1)). By
recurrence, we find

s2
2k(β) + s2

2k+1(β) = (2πk)2β(θ2
2k + θ2

2k+1), for k = 1, 2, . . . . (A.11)

Next, note that
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∞∑

k=1

(2πk)2β(θ2
2k + θ2

2k+1) = π2β
∞∑

j=1

a2
j θ2

j , (A.12)

implying, by the Parseval equality,

∫ 1

0

(f (β)(t))2dt =
∞∑

k=1

(s2
2k(β) + s2

2k+1(β)) = π2β
∞∑

j=1

a2
j θ2

j .

Since
∫ 1

0
(f (β)(t))2dt ≤ L2, we obtain θ ∈ Θ(β,Q).

Sufficiency. Suppose now that θ ∈ Θ(β,Q) and let us prove that the function f
with the sequence θ of Fourier coefficients satisfies f ∈ W per(β, L). Observe
first that if θ ∈ Θ(β,Q), we have for j = 0, 1, . . . , β − 1,

∞∑

k=1

kj(|θ2k| + |θ2k+1|) ≤
∞∑

k=1

kβ−1(|θ2k| + |θ2k+1|)

≤
(

2
∞∑

k=1

k2β(θ2
2k + θ2

2k+1)

)1/2( ∞∑

k=1

k−2

)1/2

< ∞.

This implies that the series f(x) =
∑∞

j=1 θjϕj(x), as well as its derivatives

f (j)(x) =
∞∑

k=1

(2πk)j(θ2kϕ̃2k,j(x) + θ2k+1ϕ̃2k+1,j(x)),

for j = 1, . . . , β − 1, converge uniformly in x ∈ [0, 1]. Here

ϕ̃2k,j(x) =
√

2
dj

duj
(cos u)

∣
∣
∣
u=2πkx

, ϕ̃2k+1,j(x) =
√

2
dj

duj
(sin u)

∣
∣
∣
u=2πkx

.

Since the functions ϕ̃m,j are periodic, we have f (j)(0) = f (j)(1) for j =
0, 1, . . . , β − 1.

Now let {sm(β−1)}∞m=1 be the Fourier coefficients of the function f (β−1).
Define {sm(β)}∞m=1 from {sm(β − 1)}∞m=1 by (A.9) and (A.10) if m ≥ 2
and put s1(β) = 0. It follows from the Parseval equality and (A.11)–(A.12)
that the function g ∈ L2[0, 1] defined by the sequence of Fourier coefficients
{sm(β)}∞m=1 satisfies

∫ 1

0

g2(x)dx =
∞∑

m=1

s2
m(β) ≤ π2βQ = L2

whenever θ ∈ Θ(β,Q). Let us now show that g equals the derivative of the
function f (β−1) almost everywhere. Indeed, since the Fourier series of any
function in L2[0, 1] is termwise integrable on any interval [a, b] ⊆ [0, 1], we can
write
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∫ b

a

g(x)dx ≡
∫ b

a

∞∑

k=1

(s2k(β)
√

2 cos(2πkx) + s2k+1(β)
√

2 sin(2πkx))dx

=
∞∑

k=1

(2πk)−1(s2k(β)
√

2 sin(2πkx) − s2k+1(β)
√

2 cos(2πkx))
∣
∣
∣
b

a

=
∞∑

k=1

(s2k(β − 1)
√

2 sin(2πkx) + s2k+1(β − 1)
√

2 cos(2πkx))
∣
∣
∣
b

a

= f (β−1)(b) − f (β−1)(a).

This proves that f (β−1) is absolutely continuous on [0, 1] and that its derivative
f (β) is equal to g almost everywhere on [0, 1] with respect to the Lebesgue
measure. Thus,

∫ 1

0
(f (β))2 ≤ L2, completing the proof.

Lemma A.4 (Hoeffding’s inequality). Let Z1, . . . , Zm be independent ran-
dom variables such that ai ≤ Zi ≤ bi. Then for all t > 0

P

(
m∑

i=1

(Zi − E(Zi)) ≥ t

)

≤ exp
(

− 2t2
∑m

i=1(bi − ai)2

)

.

Proof. It is sufficient to study the case where E(Zi) = 0, i = 1, . . . ,m. By
the Markov inequality, for all v > 0,

P

(
m∑

i=1

Zi ≥ t

)

≤ exp(−vt)E

[

exp
(
v

m∑

i=1

Zi

)
]

(A.13)

= e−vt
m∏

i=1

E
[
evZi
]
.

Note that

E
[
evZi
]
≤ exp

(
v2(bi − ai)2

8

)

. (A.14)

Indeed, since the exponential function is convex, we have

evx ≤ bi − x

bi − ai
evai +

x − ai

bi − ai
evbi , ai ≤ x ≤ bi.

Taking the expectations and using the fact that E(Zi) = 0, we obtain

E
[
evZi
]
≤ bi

bi − ai
evai − ai

bi − ai
evbi

= (1 − s + sev(bi−ai))e−sv(bi−ai) �
= eg(u),

where u = v(bi − ai), s = −ai/(bi − ai) and g(u) = −su + log(1− s + seu). It
is easy to see that g(0) = g′(0) = 0 and g′′(u) ≤ 1/4 for all u. By expanding g
in Taylor series, we obtain, for some 0 ≤ τ ≤ 1,
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g(u) = u2g′′(τu)/2 ≤ u2/8 = v2(bi − ai)2/8

implying (A.14). From (A.13) and (A.14) we get

P

(
m∑

i=1

Zi ≥ t

)

≤ e−vt
m∏

i=1

exp
(

v2(bi − ai)2

8

)

= exp
(

− 2t2
∑m

i=1(bi − ai)2

)

if we take v = 4t/
∑m

i=1(bi − ai)2.

Denote by U the σ-algebra of subsets of C[0, 1] generated by cylindric sets
{Y (t1) ∈ B1, . . . , Y (tm) ∈ Bm}, where Bj are Borel sets in R. Let Pf be the
probability measure on (C[0, 1],U) generated by the process X = {Y (t), 0 ≤
t ≤ 1} satisfying the Gaussian white noise model (3.1) for a function f ∈
L2[0, 1]. In particular, P0 is the measure corresponding to the function f ≡ 0.
Denote by Ef and E0 the expectations with respect to Pf and P0.

Lemma A.5 (Girsanov’s theorem). The measure Pf is absolutely contin-
uous with respect to P0 and the Radon–Nikodym derivative satisfies

dPf

dP0
(X) = exp

(

ε−2

∫ 1

0

f(t)dY (t) − ε−2

2

∫ 1

0

f2(t)dt

)

.

In particular, for any measurable function F : (C[0, 1],U) → (R,B(R)),

Ef [F (X)] = E0

[

F (X) exp
(

ε−2

∫ 1

0

f(t)dY (t) − ε−2

2

∫ 1

0

f2(t)dt

)]

.

The proof of this result can be found, for example, in Ibragimov and Hasmin-
skii (1981), Appendix 2.

Lemma A.6 Consider Model 1 of Section 3.4. For a finite constant c > 0,
consider the estimator

θ̃ = g(y)y

with
g(y) = 1 − c

‖y‖2

and the estimator

θ̃+ =
(

1 − c

‖y‖2

)

+

y.

Then, for all θ ∈ Rd,

Eθ‖θ̃+ − θ‖2 < Eθ‖θ̃ − θ‖2.
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Proof. Observe that Eθ‖θ̃+ − θ‖2 < ∞ for all θ ∈ Rd. It is sufficient to
consider the case of d ≥ 3, since for d = 1 and d = 2 we have Eθ(‖y‖−2) = +∞
(see the proof of Lemma 3.7) and Eθ‖θ̃ − θ‖2 = +∞, ∀ θ ∈ Rd. If d ≥ 3, the
expectation Eθ‖θ̃ − θ‖2 is finite by Lemma 3.7.

Set for brevity g = g(y) and write

Eθ‖θ̃ − θ‖2 = Eθ

[
g2‖y‖2 − 2(θ, y)g + ‖θ‖2

]
,

where (θ, y) is the standard scalar product of θ and y in Rd. Then

Eθ‖θ̃+ − θ‖2 = Eθ‖ygI(g > 0) − θ‖2

= Eθ

[
g2‖y‖2I(g > 0) − 2(θ, y)gI(g > 0) + ‖θ‖2

]
.

Therefore

Eθ‖θ̃ − θ‖2 − Eθ‖θ̃+ − θ‖2 = Eθ

[
g2‖y‖2I(g ≤ 0) − 2(θ, y)gI(g ≤ 0)

]
.

If θ = 0, the lemma is proved since the right hand side is positive. Indeed,
the definition of Model 1 implies that Eθ

[
g2‖y‖2I(g ≤ 0)

]
is the integral of a

positive function on a set of nonzero Lebesgue measure.
Let now θ �= 0. Without loss of generality suppose that θ1 �= 0. To prove

the lemma it is sufficient to show that

− Eθ[(θ, y)gI(g ≤ 0)] > 0. (A.15)

This inequality will be proved if we show that

− Eθ[θiyigI(g ≤ 0)] > 0 for all i ∈ {1, . . . , d} such that θi �= 0. (A.16)

Our aim now is to show (A.16). It is sufficient to do this for i = 1. Apply
conditional expectations to obtain

− Eθ[θ1y1gI(g ≤ 0)] = −Eθ

[
θ1Eθ(y1gI(g ≤ 0)| y2

1)
]

= Eθ

[
θ1Eθ(y1| y2

1)Eθ(|g|I(g ≤ 0)| y2
1)
]
. (A.17)

Let us calculate Eθ(y1| y2
1). It is easy to see that for all a ≥ 0

Eθ(y1| y2
1 = a2) = aEθ

[
sgn(y1)| |y1| = a

]
,

where sgn(y1) = I(y1 ≥ 0) − I(y1 < 0). For all δ > 0 and a ≥ 0, put

E(δ)
�
= Eθ

[
sgn(y1)I(a ≤ |y1| ≤ a + δ)

]

=
∫ a+δ

a

Eθ

[
sgn(y1)| |y1| = t

]
p(t)dt, (A.18)
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where p(·) is the density of |y1|. Since y1 = θ1 + εξ1 with ξ1 ∼ N (0, 1), we
have

p(t) =
1
ε
ϕ

(
t − θ1

ε

)

+
1
ε
ϕ

(
−t − θ1

ε

)

, t ≥ 0, (A.19)

where ϕ is the density of N (0, 1). On the other hand,

E(δ) = Pθ(a ≤ y1 ≤ a + δ) − Pθ(−a − δ ≤ y1 ≤ −a).

Then
E′(0) = py1(a) − py1(−a), (A.20)

where py1(·) is the density of the distribution of y1, that is

py1(a) =
1
ε
ϕ

(
a − θ1

ε

)

.

By differentiating (A.18) with respect to δ at the point δ = 0, we obtain, in
view of (A.19) and (A.20),

Eθ

[
sgn(y1)| |y1| = a

]
=

E′(0)
p(a)

=
ϕ
(

a−θ1
ε

)
− ϕ
(−a−θ1

ε

)

ϕ
(

a−θ1
ε

)
+ ϕ
(−a−θ1

ε

) = tanh(aθ1ε
−2).

Therefore, for all a > 0,

θ1Eθ(y1|y2
1 = a2) = aθ1 tanh(aθ1ε

−2) > 0, (A.21)

since u tanh(u) > 0 for all u �= 0. By (A.17) and (A.21), we obtain

−Eθ[θ1y1gI(g ≤ 0)] = Eθ

[
|y1|θ1 tanh(|y1|θ1ε

−2)Eθ(|g|I(g ≤ 0)| y2
1)
]

= Eθ

[
I(|y1| <

√
c)|y1|θ1 tanh(|y1|θ1ε

−2)Eθ(|g|I(g ≤ 0)| y2
1)
]
. (A.22)

Using the definition of Model 1 it is easy to show that for 0 < a <
√

c we have
Eθ(|g|I(g ≤ 0)| y2

1 = a2) > 0, since we integrate a positive function on a set of
nonzero Lebesgue measure. This remark combined with formulas (A.21) and
(A.22) implies (A.16) and thus proves the lemma.
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14. Birgé, L. and Massart, P. (2001) Gaussian model selection. J. Eur. Math. Soc.,
3, 203-268.

15. Borovkov, A.A. (1984) Mathematical Statistics. Nauka, Moscow. English trans-
lation by Gordon and Breach, Singapore e.a., 1998.

16. Borovkov, A.A. and Sakhanenko, A.I. (1980) On estimates of the averaged
squared risk. Probability and Mathematical Statistics, 1, 185-195 (in Russian).

17. Bretagnolle, J. and Huber, C. (1979) Estimation des densités: risque minimax.
Z. für Wahrscheinlichkeitstheorie und verw. Geb., 47, 199-137.



204 Bibliography

18. Brown, L.D. and Low, M.G. (1996) Asymptotic equivalence of nonparametric
regression and white noise. Annals of Statistics, 24, 2384-2398.

19. Brown, L.D., Low, M.G. and Zhao, L.H. (1997) Superefficiency in nonpara-
metric function estimation. Annals of Statistics, 25, 898-924.

20. Brown, L.D., Carter, A., Low, M.G. and Zhang, C.-H. (2004) Equivalence
theory for density estimation, Poisson processes and Gaussian white noise with
drift. Annals of Statistics, 32, 2399-2430.

21. Bunea, F., Tsybakov, A.B. and Wegkamp, M.H. (2007a) Aggregation for Gaus-
sian regression. Annals of Statistics, 35, 1674-1697.

22. Bunea, F., Tsybakov, A.B. and Wegkamp, M.H. (2007b) Sparsity oracle in-
equalities for the Lasso. Electronic J. of Statistics, 1, 169-194.

23. Cai, T. (1999) Adaptive wavelet estimation: A block thresholding and oracle
inequality approach. Annals of Statistics, 27, 2607-2625.

24. Cavalier, L. and Tsybakov, A.B. (2001) Penalized blockwise Stein’s method,
monotone oracles and sharp adaptive estimation. Mathematical Methods of
Statistics, 10, 247-282.

25. Cavalier, L. and Tsybakov, A.B. (2002) Sharp adaptation for inverse problems
with random noise. Probability Theory and Related Fields, 123, 323-354.
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