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The Florence branch of an Italian supermarket chain recently imple-
mented a strategy that permanently lowered the price of numerous store
brands in several product categories. To quantify the impact of such a pol-
icy change, researchers often use synthetic control methods for estimating
causal effects when a subset of units receive a single persistent treatment and
the rest are unaffected by the change. In our applications, however, competi-
tor brands not assigned to treatment are likely impacted by the intervention
because of substitution effects; more broadly, this type of interference occurs
whenever the treatment assignment of one unit affects the outcome of another.
This paper extends the synthetic control methods to accommodate partial in-
terference, allowing interference within predefined groups but not between
them. Focusing on a class of causal estimands that capture the effect both on
the treated and control units, we develop a multivariate Bayesian structural
time series model for generating synthetic controls that would have occurred
in the absence of an intervention, enabling us to estimate our novel effects. In
a simulation study we explore our Bayesian procedures’ empirical properties
and show that it achieves good frequentists coverage, even when the model is
misspecified. We use our new methodology to make causal statements about
the impact on sales of the affected store brands and their direct competitors.
Our proposed approach is implemented in the CausalMBSTS R package.

1. Introduction. On October 4, 2018, the Florence branch of a large Italian supermarket
chain permanently lowered the price of 707 store brands in several product categories. In
the past the firm had regularly used temporary promotions (discounting products for a brief
period); however, the new permanent price reduction represented a significant strategic shift
in its business model. The firm hypothesized that the lower price would expand its customer
base, increasing sales and, ultimately, revenue. To evaluate the success of the new strategy,
we model the permanent price reduction as a single persistent intervention. In this paper we
focus on the cookies product category and estimate the causal effect of permanently reducing
the price of 10 store branded cookies on daily sales.

A popular approach for obtaining estimates of causal effects from panel data with a
single intervention is to use synthetic control methods (e.g., Abadie, Diamond and Hain-
mueller (2010), Abadie, Diamond and Hainmueller (2015), Abadie and Gardeazabal (2003),
Brodersen et al. (2015)). Unlike traditional difference-in-difference methods, synthetic con-
trols provide a more flexible framework as they directly impute the unobserved outcome
for treated time series by combining data from multiple control series that were not directly
impacted by the treatment but are, nevertheless, correlated with the counterfactual outcome
(O’Neill et al. (2016)). In our supermarket study, daily wine sales could be a suitable control
series because changes in the price of cookies are unlikely to affect wine sales; instead, the
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control series captures temporal trends that are useful in modeling how the sales of cook-
ies would have evolved in the absence of a price reduction. More broadly, synthetic control
methods have been successfully applied to evaluate the effectiveness of policy changes in
healthcare (Kreif et al. (2016), Papadogeorgou et al. (2018), Viviano and Bradic (2019)),
economics (Abadie, Diamond and Hainmueller (2015), Ben-Michael, Feller and Rothstein
(2018), Billmeier and Nannicini (2013), Dube and Zipperer (2015), Gobillon and Magnac
(2016)), marketing and online advertising (Brodersen et al. (2015), Li (2020)), among others.

Typically, synthetic control methods assume that there is no interference between experi-
mental units; that is, the assignment any unit receives has no bearing on the outcome of any
other unit (Cox (1958)). However, there are many applications where this assumption is vio-
lated (e.g., Hudgens and Halloran (2008), Tchetgen Tchetgen and VanderWeele (2012), and
Basse, Feller and Toulis (2019)). In our study, for each store brand cookie the firm identified
a competitor brand that is a direct substitute, differing primarily in the brand name. As tradi-
tional economic theory suggests, if two goods are substitutes, lowering the price of one will
impact the sales of the other (Nicholson and Snyder (2012)); therefore, any price changes to
the store brand will impact the sales of the direct competitor, and vice versa, violating the
no-interference assumption. Beyond the direct competitor it is reasonable to assume that the
price reduction will have negligible effects on the sales of other products.

More broadly, the setting where units interfere within predefined groups without inter-
fering across these groups is known as partial interference (Sobel (2006)) and has been ex-
tensively studied for cross-sectional data (e.g., Rosenbaum (2007), Hudgens and Halloran
(2008), and Forastiere, Airoldi and Mealli (2021)). In panel settings, like the supermarket
study, partial interference has received relatively less attention, partly because of the added
complications induced by the temporal component. In practice, authors often sidestep the is-
sue by aggregating units that are likely to interfere with each other, generating a single-treated
time series that now satisfies the no-interference assumption (Bojinov, Chen and Liu (2020)).
One obvious downside of this approach is the inherent loss of information and a decreased
ability to detect heterogeneous treatment effects.

To tackle this issue directly, we extend the synthetic control framework to partial interfer-
ence setting by leveraging the extended potential outcomes that allow both spillovers across
units and time (Bojinov, Rambachan and Shephard (2020), Bojinov and Shephard (2019),
Robins (1986), Robins, Greenland and Hu (1999), VanderWeele (2010)). We then define
new classes of causal effects that capture the impact of an intervention on both the unit that
received it and the units within the same group. To perform inference, we derive the mul-
tivariate version of the popular Bayesian structural time-series model for causal inference,
introduced in Brodersen et al. (2015). Like its univariate counterpart, our model allows for
a great deal of flexibility, due to its ability to incorporate trends and seasonality effects. In-
deed, our approach uses preintervention patterns (such as trend or seasonality) to forecast
the counterfactual outcome in the absence of intervention and then updates these predictions,
based on the posttreatment values of covariates linked to the outcome. To fit the model, we
provide a Markov chain Monte Carlo algorithm and describe how to use the resulting draws
to estimate our causal effects; all algorithms are implemented in the CausalMBSTS (Bojinov
and Menchetti (2020)) R package. We then use a small simulation study to investigate the
frequentist properties of our proposed approach and our ability to use posterior predictive
checks (Rubin (1984)) to assess the model fit.

In the supermarket study our framework treats every store-competitor pair jointly, allowing
us to model the group-specific interference directly. To determine the intervention’s impact,
we use our Bayesian structural time-series model to estimate the causal effect at various time
horizons. The results show that the new strategy had a minor, short-term impact on store
brands’ sales; interestingly, we do not detect significant effects on the competitor brands. In
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contrast, performing the equivalent aggregated analysis that ignores the interference incor-
rectly concludes that the price reduction positively affected sales.

Two papers consider our setup of partial-interference on panel or time series data, Cao
and Dowd (2019) and Grossi et al. (2020). Cao and Dowd (2019) develop a model that re-
quires that the impact of an intervention on one unit to the other is linear with an unknown
parameter. Our paper imposes no such restriction, making it much more generally applica-
ble. The formulation by Grossi et al. (2020) focuses on a context where only a single unit is
intervened on, while the others are assigned to control. Since the treatment received by that
unit may affect the outcomes of the other units, they rely on the partial interference assump-
tion and identify different clusters such that the units belonging to different clusters do not
interfere with each other. The inference is restricted to the group containing the treated unit,
while the others form the “donor pool,” used to construct synthetic controls by combining
the donor outcomes. Our work presents a generalization of their specific context. Again, we
study partial interference, but we allow for the existence of multiple treated units. By extend-
ing the univariate Bayesian structural time series model to the multivariate setting, we can
also model the interference between units in the same cluster by explicitly modeling their
dependence structure while transparently dealing with the surrounding uncertainty.

The paper is structured as follows. In Section 2 we present our causal framework, defining
the treatment assignments, potential outcomes, causal effects and our underlying assump-
tions. In Section 3 we introduce the multivariate Bayesian structural time series model and
explain how to apply it to our setting. In Section 4, we detail a simulation study that tracks
our approach’s performance. In Section 5 we provide the details of our supermarket study
analysis. The final section presents our concluding remarks. In Appendices A and B we then
provide the proof of the relations presented in this paper as well as additional results. The
appendices, the data set and the source code to replicate the results of the empirical analysis
are included in the Supplementary Material (Menchetti and Bojinov (2022)).

2. Causal framework. In this section we outline our framework for estimating the
causal effect of an intervention in a panel setting with partial interference among statisti-
cal units. Throughout, we illustrate key concepts and definitions by leveraging our analyses
of the Italian supermarket chain’s new price policy. In our empirical example the statistical
units are grouped into pairs, and so we begin by introducing the notation for a bivariate out-
come variable; we then provide extensions to general group sizes. We conclude the section
by defining our causal effects.

2.1. Notation. Throughout, we use a superscript s to denote the store brand and c the
competitor brand. At time t ∈ {1, . . . , T } and for each pair j ∈ {1, . . . , J }, let W(s)

j,t ∈ W be

the treatment assignment for the store brand, W(c)
j,t ∈ W be treatment assignment for the com-

petitor brand and Wj,t = (W(s)
j,t ,W(c)

j,t ) ∈ W2 the pair assignment. We mostly focus on the
binary treatment case, where W = {0,1}; following convention, we refer to “1” as treatment
and “0” as control. In our supermarket study each pair is assigned to one of four possible
treatments: no permanent price reduction Wj,t = (0,0), both receive a permanent price re-
duction Wj,t = (1,1), store brand receives a permanent price reduction only Wj,t = (1,0)

or competitor brand receives a permanent reduction only Wj,t = (0,1). We then define
the assignment path for each pair as the matrix Wj,1:T = (Wj,1, . . . ,Wj,T )′ ∈ W2×T and
the assignment panel that captures the assignments of all units throughout the study as
W1:J,1:T = (W′

1,1:T , . . . ,W′
J,1:T ) ∈ W2J×T . We will use this vector and matrix notation for

other variables but will sometimes drop the subscript if the dimensions are obvious from the
context. Realizations of random variables will be denoted by their lower case; for example,
wj,t will denote a sample from Wj,t .
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In the panel set up, the pairs can change their assignment at any point in time, but, to keep
our notation less cumbersome, we only focus on the case when there is a single persistent
policy change, as was the case in our supermarket study.

ASSUMPTION 1 (Single intervention). We say pair j received a single intervention, if
there exists a t∗j ∈ {1, . . . , T } such that, for all t ≤ t∗j , we have Wj,t = (0,0) and for all
t, t ′ > t∗j we have Wj,t = Wj,t ′ . If all pairs receive a single intervention, then we say the
study is a single intervention panel study. For simplicity, we also assume that the intervention
happen simultaneously, that is, t∗j = t∗j ′ = t∗.

We maintain Assumption 1 which allows us to drop the t subscript from the treatment
assignment so that Wj = (W(s)

j ,W(c)
j ) ∈ {0,1}2 for all t > t∗ and Wj = (0,0) for t ≤ t∗.

2.1.1. Potential outcomes. We now define the potential outcomes that describe what
would be observed for a particular pair at a fixed point in time for a given assignment panel.
Generally, the potential outcomes are a function of the full treatment panel (e.g., Bojinov,
Rambachan and Shephard (2020)); however, restricting our attention to nonanticipating po-
tential outcomes1 and Assumption 1 somewhat simplify the setup.

Assuming the intervention occurred at time t∗ + 1, for each pair j ∈ {1, . . . , J } at time
t ∈ {1, . . . , t∗}, we observe an outcome Yj,t = (Y(s)

j,t ,Y(c)
j,t ), where Y(s)

j,t is the outcome of the

store brand and Y(c)
j,t is the outcome of the competitor brand. In our application the outcome

of interest is the average hourly sales for each product.
For t > t∗, generally, the outcomes depend on the treatment assignment matrix,

Yj,t (w1:J ) = (Y(s)
j,t (w1:J ),Y(c)

j,t (w1:J )). In our empirical application the products within each
pair are alike and only differ on their brand name and packaging; whereas, brands in different
pairs differ on many characteristics (e.g., ingredients, flavor or weight). Therefore, we assume
that a price reduction of one brand will impact its sales and the sales of its direct competitor.
This assumption represents a model of consumer behavior in which customers’ selection of
the cookie type is not driven by price but rather by individual preferences; the choice within
cookie type is then impacted by the price.2 To connect the general setting to our empirical
application, we assume that there is no interference across pairs.

ASSUMPTION 2 (Partial temporal no interference). For all j ∈ {1, . . . , J } and t ∈ {t∗ +
1, . . . , T }, we assume that, for any w1:J ,w′

1:J ∈ W2×J such that wj = w′
j ,

Yj,t (w1:J ) = Yj,t

(
w′

1:J
)
.

This allows us to simplify out notation and write Yj,t (w1:J ) = Yj,t (wj ).

In our application there are four potential outcome paths that can occur, corresponding to
the four different assignments. For each store-competitor pair, we can combine the posttreat-
ment outcomes to define four potential outcome paths or potential outcome time series,

Yj,t∗+1:T (wj ) = (
Y(s)

j,t∗+1:T (wj ),Y(c)
j,t∗+1:T (wj )

)
.

1Following Bojinov and Shephard (2019), we say the potential outcomes are nonanticipating if the outcomes
at time t are not impacted by future treatment assignments. That is, the potential outcomes only depend on past
or current treatment assignments. In our empirical setting, for t < t∗, this assumption would be violated if the
knowledge of the upcoming price reduction changed present sales. For instance, consumers could have postponed
their purchases, leading to a decrease in sales before the intervention. We can, however, safely exclude this, as the
supermarket chain did not advertise the upcoming permanent discount in advance.

2Within our supermarket study, every store brand has its specific direct competitor; there are no cookies that
belong to multiple pairs.
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Note that, even though we dropped the t script from the assignment, our setup implicitly as-
sumes that the outcomes at time t > t∗ are a function of the assignment path. This ensures that
the potential outcomes at two different points in time correspond to two different treatment
paths and are not directly comparable.

To connect the potential outcomes to the observed outcome, we assume that there is full
compliance; that is, every pair receives the assigned treatment. In a causal inference setting
for panel data, for each unit there is only one observed potential outcome time series, whereas
the others are all unobserved. Generally, we will denote the observed treatment as wobs

j which

then leads to the observed outcome Yj,t∗+1:T = Yj,t∗+1:T (wobs
j ). In our application, only the

store brand receives the permanent price reduction making the observed outcome Yj,t∗+1:T =
Yj,t∗+1:T (1,0).

2.1.2. Covariates. Including good predictors of the preintervention outcome as covari-
ates can greatly improve the prediction accuracy of the counterfactual series in the absence
of intervention. However, suitable covariates should not be impacted by the treatment; oth-
erwise, we would consider them as secondary outcomes. For each pair and time point, we,
therefore, observe a vector of covariates Xj,t ∈ X obeying to the following assumption.

ASSUMPTION 3 (Covariates-treatment independence). Let Xj,t be a vector of covariates;
for all t > t∗ and for all assignments wj ,w′

j ∈W2, we assume that

Xj,t (wj ) = Xj,t

(
w′

j

) ∀j ∈ {1, . . . , J }.
Under Assumption 3 we can use the known covariates values posttreatment to improve the

prediction of the outcome in the absence of intervention. For example, in the supermarket
study we use the following covariates: weekend and holiday dummies, the prices of both
goods before the intervention and the daily sales of products in categories unaffected by the
price reduction. The latter are incorporated in the analysis as control cases because their
postintervention pattern might provide useful information for predicting the counterfactual
outcome in the absence of intervention. As fully detailed in Section 5.1, wines represent the
only category that did not receive the permanent discount. The prior price is included as a
covariate because it is a good predictor of sales had there not been an intervention (recall, the
inclusion of the actual daily price after the reduction would have violated Assumption 3). For
all of these covariates, Assumption 3 is likely to be satisfied but to check if the control series
Xj,1:T are genuinely unaffected by the intervention, one could also test if the time series
exhibit a change at the intervention time.

2.1.3. Assignment mechanism. We now define the class of assignment mechanism (i.e.,
conditional distributions of the assignment, given the set of potential outcomes, covariates and
past assignments) that will allow us to estimate the causal effects, defined in the subsequent
section. Our assumption has two parts. The first requires the assignment is individualistic; that
is, the treatment of one pair has no bearing on another. The second requires the assignment is
nonanticipating; that is, the assignment in a given period does not depend on future outcomes
or covariates.

ASSUMPTION 4 (Nonanticipating individualistic treatment). The assignment mecha-
nism at time t∗ + 1 is independent across pairs and for the j th pair depends solely on its
past outcomes and past covariates,

Pr
(
W1:J,t∗+1 = w1:J,t∗+1|W1:J,1:t∗,W1:J,t∗+2:T ,Y1:J,1:T (w1:J,1:T ),X1:J,1:T

)
=

J∏
j=1

Pr
(
Wj,t∗+1 = wj,t∗+1|Yj,1:t∗(wj,1:t∗),Xj,1:t∗

)
.
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The nonanticipating treatment assumption is the extension of the unconfounded assign-
ment mechanism in a cross-sectional setting (Imbens and Rubin (2015), Bojinov, Rambachan
and Shephard (2020)). Assumption 4 is essential in ensuring that, conditional on past out-
comes and covariates, any differences in the outcomes are attributable to the intervention.

2.1.4. Multivariate case. Our framework easily generalizes to groups of size dj > 2. For
j ∈ {1, . . . , J }, let Wi

j ∈ W be the treatment status of the ith unit inside the j th group, and let

Wj = (W(1)
j , . . . ,W

(dj )

j ) ∈ Wdj be the treatment status of the j th group. Again, Assumption
1 allowed us to drop the subscript for time. We then define the outcome to be a dj -variate

vector, Yt = (Y(1)
t , . . . ,Y

(dj )
t ), for t ≤ t∗. Assuming that there is only partial interference,

Assumption 2, the potential outcomes for t > t∗ for any wj ∈ {0,1}dj are

Yj,t (wj ) = (
Y(1)

t (wj ), . . . ,Y
(dj )
t (wj )

)
.

Again, we can use the more compact notation to denote the potential outcome time series,
Yj,t∗+1:T (wj ). All other assumptions and definitions easily extend to the multivariate case.

2.2. Causal estimands. We now develop a new class of causal estimands for which we
define a contemporaneous effect (i.e., an instantaneous effect at each time point after the
intervention), a cumulative effect (i.e., a partial sum of the contemporaneous effect) and an
average temporal effect (i.e., a normalization of the cumulative effect). To simplify our no-
tation, we will drop the subscript j that tracks the group and focus on analyzing each multi-
variate time series separately; d will then indicate the group size. Even though our goal is to
estimate the heterogeneous effect on each pair, the definitions below are given for a general
multivariate case where units define groups of size d > 2. For simplicity, for the remainder of
the paper we focus on the binary treatment case where W = {0,1}. Generalizing to multiple
treatments is straightforward but makes the notation more cumbersome.

Since we are following the potential outcome approach to causal inference, we restrict
t > t∗ so that the causal effects are defined as comparisons between two potential outcomes.

DEFINITION 1. For w, w̃ ∈Wd , the general causal effect of an assignment w, compared
to an alternative assignment w̃, is

τ t (w, w̃) = (
τ

(1)
t (w, w̃), . . . , τ

(d)
t (w, w̃)

)
= (

Y(1)
t (w) − Y(1)

t (w̃), . . . ,Y(d)
t (w) − Y(d)

t (w̃)
)

(1)

= (
Yt (w) − Yt (w̃)

)
.

The cumulative general causal effect at time point t ′ > t∗ is

(2) �t ′(w, w̃) =
t ′∑

t=t∗
τ t (w, w̃).

The temporal average general causal effect at time point t ′ is

(3) τ̄ t ′(w, w̃) = 1

t ′ − t∗
t ′∑

t=t∗+1

τ t (w, w̃) = 1

t ′ − t∗
�t ′(w, w̃).

In a general d-variate case, the total number of general causal effects that we can estimate
is C2d ,2.
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EXAMPLE 1. For the supermarket study, d = 2 and W2 = {(0,0), (0,1), (1,1), (1,0)}.
The general causal effect, τ t ((1,0), (0,0)) = Yt (1,0) − Yt (0,0), measures the units sold
on day t when only the store brand receives a permanent discount, compared to the al-
ternative scenario where neither receive a discount. The cumulative general causal effect
�t ′((1,0), (0,0)), obtained from summing the general causal effects, captures the total addi-
tional units sold, due to the price reduction up to time t ′. Finally, the temporal average general
effect τ̄t ((1,0), (0,0)) measures the average daily change in units sold, due to the new policy
up to t ′.

There are two natural extensions to the general causal effect: the marginal causal effect,
which captures the impact of changing one unit’s treatment averaged over other units’ possi-
ble assignments, and the conditional causal effect which captures the effect of changing one
unit’s treatment fixing the other units’ assignments. We provide the details in Appendix B.1,
as they are not of primary interest in our supermarket study.

3. Multivariate Bayesian structural time series. We now outline our approach for es-
timation and inference of the causal effects defined in Section 2.2. We begin by deriving
the multivariate Bayesian structural time series models (MBSTS) which are the multivariate
extensions of the models used by Brodersen et al. (2015) and Papadogeorgou et al. (2018).
Like their univariate versions, MBSTS models are flexible and allow for a transparent uncer-
tainty incorporation. Flexibility comes from our ability to add subcomponents (e.g., trend,
seasonality and cycle) that encapsulate the characteristics of the data. Uncertainty is quanti-
fied through the posterior distribution, which we derive and provide a sampling algorithm.

Estimation has two steps. First, we fit an MBSTS model for each pair in the period up to the
intervention, t ∈ {1, . . . , t∗}. Second, we estimate the target causal effects by forecasting the
unobserved potential outcomes in the period following the intervention, t ∈ {t∗ + 1, . . . , T }.
This section mirrors the two steps by first describing the model priors and posterior inference,
followed by detailing the forecast and inference step. To improve the readability of the model
equations, in Section 3.1 we drop the explicit dependence of the outcome on the treatment
status (writing Yt to indicate Yt (w)) because the model is fit using the data prior to the inter-
vention when Wt = (0,0) for all store-competitor pairs and all t ≤ t∗. We resume the usual
notation in Section 3.2, where we derive the posterior distributions of the causal estimands
defined in Section 2.2.

Throughout this section, we employ random matrices to simplify the notation and subse-
quent posterior inference by allowing us to avoid matrix vectorization. Recalling the notation
introduced by Dawid (1981), let Z be an (n × d) matrix with standard normal entries, then
Z follows a standard matrix Normal distribution, written Z ∼ N (In, Id), where In and Id

are (n × n) and (d × d) identity matrices (the entries of Z are, therefore, independent). More
generally, throughout the rest of paper, Y ∼ N (M,�,�) indicates that Y follows a matrix
normal distribution with mean M, row variance-covariance matrix � and column variance-
covariance matrix �. Finally, a d-dimensional vector (n = 1), following a multivariate stan-
dard Normal distribution, will be indicated as Z ∼ Nd(0, Id), and IW(ν,S) will denote an
Inverse-Wishart distribution with ν degrees of freedom and scale matrix S.

3.1. The model. Two equations define the MBSTS model. The first one is the “observa-
tion equation” that links the observed data Yt to the state vector αt that models the different
components in the data (such as trend, seasonality or cycle) and covariates which increase
the counterfactual series’ prediction accuracy. The second one is the “state equation” that
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determines the state vector’s evolution across time,

Yt︸︷︷︸
1×d

= Zt︸︷︷︸
1×m

αt︸︷︷︸
m×d

+ Xt︸︷︷︸
1×P

β︸︷︷︸
P×d

+ εt︸︷︷︸
1×d

, εt ∼ Nd(0,Ht�),

αt+1︸ ︷︷ ︸
m×d

= Tt︸︷︷︸
m×m

αt︸︷︷︸
m×d

+ Rt︸︷︷︸
m×r

ηt︸︷︷︸
r×d

, ηt ∼ N (0,Ct ,�), α1 ∼ N (a1,P 1,�).
(4)

For all t ≤ t∗, αt is matrix of the m states of the d different time series, and α1 is the starting
value; Zt is a vector selecting the states entering the observation equation; Xt is a vector of
regressors;3 β is matrix of regression coefficients, and εt is a vector of observation errors.
For the state equation, ηt is a matrix of the r state errors (if all states have an error term, then
r = m); Tt is a matrix defining the equation of the states components (e.g., in a simple local
level model Tt = 1), and Rt is a matrix selecting the rows of the state equation with nonzero
error terms. Under our specification we assume that εt and ηt are mutually independent and
independent of α1. We denote the variance-covariance matrix of the dependencies between
the time series by

� =

⎡
⎢⎢⎢⎢⎣

σ 2
1 σ12 · · · σ1d

σ21 σ 2
2 · · · σ2d

...
...

. . .
...

σd1 σd2 · · · σ 2
d

⎤
⎥⎥⎥⎥⎦ .

Then, Ht is the variance of the observation error at time t ; to simplify the notation, we can
also define �ε = Ht�. Finally, Ct is an (r × r) matrix of dependencies between the states’
disturbances, and, since we are assuming that different states are independent, Ct is a diagonal
matrix. Indeed, we can also write ηt ∼ Nd(0,Qt ) where Qt is the Kronecker product of Ct

and �, denoted by Qt = Ct ⊗ �. Furthermore, different values in the diagonal elements of
Ct allow each state disturbance to have its own (d × d) variance-covariance matrix �r .4 In
short,

Q = Ct ⊗ �ε =

⎡
⎢⎢⎢⎣
c1� 0 · · ·0

0 c2� · · · 0
...

...
. . .

...

0 0 · · · cr�

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
�1 0 · · ·0
0 �2 · · · 0
...

...
. . .

...

0 0 · · · �r

⎤
⎥⎥⎥⎦ .

To build intuition for the different components of the MBSTS model, we find it is useful
to consider an example of a simple local level model.

EXAMPLE 2. The multivariate local level model is characterized by a trend component
evolving according to a simple random walk without a seasonality component and Normally
distributed disturbance terms,

Yt = μt + εt εt ∼ Nd(0,Ht�),

μt+1 = μt + ηt,μ ηt,μ ∼ Nd(0, c1�).
(5)

3Notice that this parametrization assumes the same set of regressors for each time series but still allows the
coefficients to be different across the d time series.

4The notation Ht� and cr� means that the dependence structure between the d series is the same for both εt

and ηt ; furthermore, when Ht and Ct are known, the posterior distribution of αt is available in closed form (West
and Harrison (2006)). Instead, we employ a simulation smoothing algorithm to sample from the posterior of the
states, and in Section 3.1.2 we derive posterior distributions for �ε and �r in the general case of unknown Ht

and Ct .
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FIG. 1. The figure shows 200 observations sampled from a multivariate local level model with d = 2. In our
empirical application, Y1 and Y2 would denote the number of units sold of the store and competitor brands.

We can recover the general formulation, outlined in (4), by setting αt = μt and Zt = Tt =
Rt = 1. Figure 1 provides a graphical representation of what a sample from this model would
look like when d = 2.

Unlike the previous example, the data in our supermarket study exhibit a weekly pattern
(see Section 5). The following MBSTS models is an extension of Example 2 that includes a
seasonal component:

Yt = μt + γ t + Xtβ + εt εt ∼ Nd(0,Ht�),

μt+1 = μt + ηt,μ ηt,μ ∼ Nd(0, c1�),(6)

γ t+1 = −
S−2∑
s=0

γ t−s + ηt,γ ηt,γ ∼ Nd(0, c2�),

where Yt = (Y(s)
t ,Y(c)

t ) is a bivariate vector of the units sold by the store brand, Y(s)
t , and the

units sold by the corresponding competitor brand, Y(c)
t ; μt and γ t denote, respectively, the

trend and seasonal components, and Xt is the vector of covariates satisfying Assumption 3.
Finally, ηt,μ, ηt,γ are the state errors having variance-covariance matrices �1 = c1�, �2 =
c2�, and S = 7 is the weekly seasonal period. We selected the trend plus seasonal model
based on the results of our posterior predictive checks; as detailed in Appendix B.5, posterior
predictive checks are a viable tool to assess model performance as well as to check if the
covariates used in the MBSTS model are suitable controls in the absence of treatment.

3.1.1. Prior elicitation. The unknown parameters of Model (4) are the variance-
covariance matrices of the error terms and the matrix of regression coefficients β . Since both
the observation and state errors are normally distributed, we use a conjugate Inverse-Wishart
prior for their variance-covariance matrices. Generally, the MBSTS model can handle dy-
namic covariate coefficients. However, in our supermarket study the relationship between
covariates and the outcome is likely stable over time, and so we use a matrix normal prior,
β ∼ N (b0,H,�ε).

In our application we have a large pool of possible controls but believe that only a small
subset is useful. We can incorporate such a sparsity assumption by setting b0 = 0 and intro-
ducing a selection vector 
 = (�1, . . . , �P )′, with �p ∈ {0,1}, p ∈ [1, . . . ,P ]. Then, βp = 0
when �p = 0, meaning that the corresponding row of β is set to zero and the regressor Xp is
excluded from our model; when �p = 1 then we include Xp in our model. This is known as
spike and slab prior, and it can be written as

Pr(β,�ε,
) = Pr(β�|�ε,
)Pr(�ε|
)Pr(
).
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We model each element of 
 as an independent Bernoulli random variable with parameter π .
Let θ = (νε, νr ,Sε,Sr ,X1:t∗) be the vector of known parameters and matrices, and X� and

H� be the selected regressors and the variance-covariance matrix of the corresponding rows
of β; the full set of prior distributions at time t ≤ t∗ is


|θ ∼
P∏

p=1

π�p(1 − π)1−�p ,

�ε|
, θ ∼ IW(νε,Sε),

β�|�ε,
, θ ∼ N (0,H�,�ε),

αt |Y1:t−1,�ε,�r , θ ∼ N (at ,P t ,�),

�r |θ ∼ IW(νr ,Sr ).

For setting the prior hyperparameters, Brown, Vannucci and Fearn (1998) suggest using
νε = d + 2, the smallest integer value such that the expectation of �ε exists. We use a similar
strategy for νr . As for the scale matrices of the Inverse-Wishart distributions, in our empirical
analysis we set

Sε = Sr =
[

s2
1 s1s2ρ

s1s2ρ s2
2

]
,

where, s2
1 , s2

2 are the sample variances of the store and the competitor brand, respectively,
and ρ is a correlation coefficient that can be elicited by incorporating our prior belief on the
dependence structure of the two series. Finally, we set H� = (X′

�X�) which is the Zellner’s
g-prior (Zellner and Siow (1980)).

3.1.2. Posterior inference. Let Ỹ1:t∗ = Y1:t∗ − Z1:t∗α1:t∗ indicate the observations up to
time t∗ with the time series component subtracted out. The full conditional distributions are
given by

β�|Ỹ1:t∗,�ε,
, θ ∼ N (M,W,�ε),(7)

�ε|Ỹ1:t∗,
, θ ∼ IW
(
νε + t∗,SSε

)
,(8)

�r |η(r)
1:t∗, θ ∼ IW

(
νr + t∗,SSr

)
,(9)

where M = (X′
�X� + H−1

� )−1X′
�Ỹ1:t∗ , W = (X′

�X� + H−1
� )−1, SSε = Sε + Ỹ′

1:t∗Ỹ1:t∗ −
M′W−1M, SSr = Sr + η

′(r)
1:t∗η

(r)
1:t∗ and η

(r)
1:t∗ indicates the disturbances up to time t∗ of the

r th state. Full proof of relations (7), (8) and (9) is given in Appendix B.3.
To sample from the joint posterior distribution of the states and model parameters, we

employ a Gibbs sampler in which we alternate sampling from the distribution of the states,
given the parameters and sampling from the distribution of the parameters, given the states
(see Algorithm 1 in Appendix B.3).

3.1.3. Prediction and estimation of causal effects. Let ϑ = (α1:t∗,β�,�ε,�r ,
) be the
vector of states and model parameters. We can use the joint posterior distribution Pr(ϑ |Y1:t∗)
to make in-sample and out-of-sample forecasts by drawing from the posterior predictive dis-
tribution. This process is particularly straightforward for in-sample forecasts.

To sample a new vector of observations Ynew
1:t∗ , given the observed preintervention data

Y1:t∗ , we note that

Pr
(
Ynew

1:t∗ |Y1:t∗
) =

∫
Pr

(
Ynew

1:t∗ ,ϑ |Y1:t∗
)
dϑ
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=
∫

Pr
(
Ynew

1:t∗ |Y1:t∗,ϑ
)

Pr(θ |Y1:t∗) dϑ(10)

=
∫

Pr
(
Ynew

1:t∗ |ϑ
)

Pr(ϑ |Y1:t∗) dϑ,

where the last equality follows because Ynew
1:t∗ is independent of Y1:t∗ , conditional on ϑ . We

then obtain in-sample forecasts from the posterior predictive distribution by substituting the
Gibbs draws from Pr(ϑ |Y1:t∗) into the model equations (4). We typically use in-sample fore-
casting for model checking.

To predict the counterfactual time series in the absence of an intervention, we need out-
of-sample forecasts. Forecasting future observations, given the model estimated on the prein-
tervention data, is still relatively straightforward; except, the new values are no longer inde-
pendent of Y1:t∗ , given ϑ . To see this, consider the vector ϑ ′ = (αt∗+k, . . . ,αt∗+1,ϑ), and let
Ynew

t∗+k denote the k-step ahead forecast after the intervention. Then,

Pr
(
Ynew

t∗+k|Y1:t∗
)

=
∫

Pr
(
Ynew

t∗+k,ϑ
′|Y1:t∗

)
dϑ ′

=
∫

Pr
(
Ynew

t∗+k,αt∗+k, . . . ,αt∗+1,ϑ |Y1:t∗
)
dϑ ′

=
∫

Pr
(
Ynew

t∗+k|αt∗+k, . . . ,αt∗+1,ϑ,Y1:t∗
)

Pr(αt∗+k|αt∗+k−1, . . . ,αt∗+1,ϑ,Y1:t∗)

· · ·Pr(αt∗+1|Y1:t∗,ϑ)Pr(ϑ |Y1:t∗) dϑ ′.

To make out-of-samples forecasts, respecting the dependence structure highlighted above, we
substitute the existing draws from Pr(ϑ |Y1:t∗), obtained by the Gibbs sampler, into the model
equations (4), thereby updating the states and sampling the new sequence Ynew

t∗+1, . . . ,Ynew
t∗+k .

3.2. Causal effect estimation. We can now estimate the causal effects, defined in Sec-
tion 2.2, by using the MBSTS model to predict the counterfactual outcomes. Below, we focus
on the general causal effect given in equation (1); the details for the marginal and conditional
effects are in Appendix B.1.

Recall that Y1:t∗(0,0) is the observed preintervention data. For two treatments w, w̃ ∈
{0,1}d , let Pr(Yt∗+k(w)|Y1:t∗(0,0)) and Pr(Yt∗+k(w̃)|Y1:t∗(0,0)) be the posterior predictive
distributions of the outcome at time t∗ + k under the two treatment assignments.

Then, for each draw from the posterior predictive distributions we set

(11) τ new
t∗+k(w, w̃) = Ynew

t∗+k(w) − Ynew
t∗+k(w̃),

yielding samples from the posterior distribution of the general causal effect. Samples from
the posterior distributions of the cumulative general effect and the temporal average general
effect at t ′ > t∗ can be derived from (11) as follows:

�new
t ′ (w, w̃) =

t ′∑
t=t∗+1

τ new
t (w, w̃),(12)

τ̄ new
t (w, w̃) = 1

t ′ − t∗
�new

t ′ (w, w̃).(13)

Having samples from posterior distributions of the causal effects, we can easily compute
posterior means and 95% credible intervals.
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EXAMPLE 3. In our supermarket study we are interested in estimating the general causal
effect of the permanent price reduction on the store-competitor pair, τ t ((1,0), (0,0)) =
Yt (1,0) − Yt (0,0), with t > t∗. For a positive integer k, Yt∗+k(1,0) is the observed out-
come postintervention, and the predictive posterior distribution of the counterfactual outcome
in the absence of intervention is Pr(Yt∗+k(0,0)|Y1:t∗(0,0)). To get samples from the poste-
rior distribution of the general causal effect at time t∗ + k, we draw multiple times from
Pr(Yt∗+k(0,0)|Y1:t∗(0,0)), that is, τ new

t∗+k((1,0), (0,0)) = Yt∗+k(1,0) − Ynew
t∗+k(0,0).

Notice that (11), (12) and (13) do not require Yt (w) or Yt (w̃) to be observed in the
postintervention period. However, estimation of unobserved potential outcomes, other than
Yt (0,0), requires a stronger set of modelling assumptions, making the inference less reliable.

In practice, to obtain reliable estimates of the causal effects, the assumed model has to
describe the data adequately. Therefore, we recommend checking model adequacy through
the use of posterior predictive checks (Rubin (1981), Rubin (1984), Gelman et al. (2013)).
Under our setup we can also show that the above procedure yields unbiased estimates of the
general causal effect and, in turn, the marginal and conditional effects. A detailed description
of posterior predictive checks and the discussion of our estimators’ frequentist properties are
given, respectively, in Appendix B.5 and B.4.

3.2.1. Combining results. To estimate an average across the various store-competitor
pairs, we can combine the separate estimates through a meta-analysis.5 For example, de-
note the temporal average causal effect of the permanent price reduction on the j th cookie
pair is τ̄ j,t ((1,0), (0,0)) with posterior distribution Pr(τ̄ j,t ((1,0), (0,0))|Y1:t∗(0,0)) given
in (13). We can define the summary temporal average effect across all j pairs,

(14) ¯̄τ t

(
(1,0), (0,0)

) = 1

J

J∑
j=1

τ̄ j,t

(
(1,0), (0,0)

)
.

To obtain samples from the posterior distribution of ¯̄τ t ((1,0), (0,0)), we aggregate the pos-
terior samples from each of the j temporal average causal effect.

4. Simulation study. We now describe a simulation study exploring the frequentist
properties of our proposed approach for correctly specified models and a misspecified model.
The results suggest that the misspecification only leads to a minor drop in performance and
that posterior predictive checks are viable approaches to assess model adequacy.

4.1. Design. The simulation study is specifically designed to resemble our supermarket
example. As described in Section 3.1, we use an MBSTS model with both a trend and a
seasonal component. The simulated data is then generated according to model (6),

Yt = μt + γ t + Xtβ + εt εt ∼ Nd(0,Ht�),

μt+1 = μt + ηt,μ ηt,μ ∼ Nd(0, c1�),

γ t+1 = −
S−2∑
s=0

γ t−s + ηt,γ ηt,γ ∼ Nd(0, c2�),

5We avoid using a full joint model across different pairs for computational feasibility. Moreover, as there is no
interference across the store-competitor pairs, we can factor the joint distribution into a product of marginals that
can be analyzed separately.
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where Yt = (Y1,Y2) is a bivariate time series, μt is a trend component evolving according
a random walk and γ t is a seasonal component with period S = 7. We further set Ht = 1,
c1 = 3, c2 = 2 and � = [ 1 −0.3

−0.3 1 ]. We then assume a regression component formed by two
covariates, X1 ∼ f (x), with f (x) = 1 − x + N(0,0.5), and X2 ∼ N(2,0.3), with coefficient
β sampled from a matrix-normal distribution with mean b0 = 0 and H = IP .

To estimate the causal effect, we use two different models for inference: a correctly spec-
ified model with both trend and seasonal components (M1) and a misspecified model with
only the seasonal part (M2). For both models we choose the following set of hyperparame-

ters: νε = νr = 4; Sε = Sr = 0.2[ s2
1 s1s2ρ

s1s2ρ s2
2

], where s2
1 and s2

2 are the sample variances of Y1

and Y2, respectively, ρ = −0.8 is a correlation coefficient reflecting our prior belief of their
dependence structure and Zellner’s g-prior for the variance-covariance matrix of β .

To make our simulation close to our empirical application, we generated 1000 data sets
in a fictional time period, starting January 1, 2018, and ending June 30, 2019. We model the
intervention as taking place on January 2, 2019, and assume a fixed persistent contempora-
neous effect; for example, the series goes up by +10% and stays at this level throughout. To
study the empirical power and coverage, we tried five different impact sizes, ranging from
+1% to +100% on Y1 and from −1% to −90% on Y2. After generating the data, we es-
timated the effects, using both M1 and M2, for a total of 10,000 estimated models (one
for each data set, impact size and model type), each having 1000 draws from the resulting
posterior distribution. Finally, we predicted the counterfactual series in the absence of inter-
vention for three-time horizons, namely, after one month, three months and six months from
the intervention.

We evaluate the performance of the models in terms of:

1. length of the credible intervals around the temporal average general effect τ̄t ((1,0),

(0,0));

2. absolute percentage estimation error, computed as | ˆ̄τt ((1,0),(0,0))−τ̄t ((1,0),(0,0))|
τ̄t ((1,0),(0,0))

;
3. interval coverage, namely, the proportion of the true pointwise effects covered by the

estimated 95% credible intervals.

We focus on the percentage estimation error because different effect sizes are not imme-
diately comparable without normalizing. For example, a small bias when estimating a large
effect is better than the same bias when estimating a much smaller effect.

4.2. Results. Table 1 reports the average interval length for M1 and M2 across the dif-
ferent effect sizes and time horizons. As expected, the length of credible intervals, estimated
under M1, increases with the time horizon. In contrast, for M2 the interval length is stable
across time, as the model lacks a trend component. Figure 2 shows the absolute percentage
error decreases as the effect size increases because small effects are more difficult to detect.
To confirm this claim, in Figure 3 we report the percentage of times we detect a causal effect
over the 1000 simulated data sets. Under M1 for the two smallest effect sizes, which exhibit
the highest estimation errors, we rarely correctly conclude that a causal effect is present.
However, when the effect size increases, we can detect the presence of a causal effect at a
much higher rate. The results under M2 are somewhat counterintuitive as, even though the
model is misspecified, smaller effects are more readily detected. This phenomenon occurs
because of the smaller credible intervals; that is, for small effect sizes our results are biased
with low variance which means we often conclude there is an effect.

Table 2 reports the average interval coverage under M1 and M2. The coverage under M2
ranges from 82.0% to 88.6% which is lower than the desired 95%. In contrast, the frequentists
coverage under M1 is at the nominal 95% for both Y1 and Y2.
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TABLE 1
Length of credible intervals around the temporal average general effect, τ̄ t ((1,0), (0,0)), estimated under M1

and M2, for each effect size and time horizon

1 month 3 months 6 months

τ̄ t ((1,0), (0,0)) Y1 Y2 Y1 Y2 Y1 Y2

M1 (1.01,0.99) 20.93 21.10 27.62 27.80 46.58 46.28
(1.10,0.90) 21.34 21.37 28.09 28.15 46.98 46.89
(1.25,0.75) 21.33 21.30 28.18 28.09 47.11 46.97
(1.50,0.50) 21.30 21.31 28.11 28.11 47.02 46.91
(2.00,0.10) 21.38 21.25 28.24 28.06 47.12 46.90

M2 (1.01,0.99) 30.39 30.39 30.40 30.41 30.48 30.47
(1.10,0.90) 30.48 30.48 30.50 30.50 30.57 30.58
(1.25,0.75) 30.48 30.46 30.51 30.49 30.60 30.58
(1.50,0.50) 30.45 30.43 30.47 30.46 30.55 30.54
(2.00,0.10) 30.49 30.49 30.52 30.51 30.60 30.57

FIG. 2. Average absolute percentage error (± 2 s.e.m) at the first time horizon under M1 and M2 for the impact
sizes ≥ 10% (Y1) and ≤ −10% (Y2).

FIG. 3. Average proportion of credible intervals excluding zero (± 2 s.e.m) at the first time horizon under M1
and M2 for all impact sizes.
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TABLE 2
Interval coverage under M1 and M2 for each effect size and time horizon

1 month 3 months 6 months

τ̄ t ((1,0), (0,0)) Y1 Y2 Y1 Y2 Y1 Y2

M1 (1.01,0.99) 96.0 95.0 96.1 95.3 96.0 96.3
(1.10,0.90) 95.9 94.9 96.0 95.2 95.9 96.3
(1.25,0.75) 96.0 95.0 96.0 95.3 96.0 96.2
(1.50,0.50) 96.1 94.9 96.1 95.2 96.1 96.2
(2.00,0.10) 95.9 95.0 96.1 95.3 96.0 96.3

M2 (1.01,0.99) 86.8 88.4 85.5 87.2 82.0 84.6
(1.10,0.90) 87.0 88.5 85.7 87.3 82.1 84.7
(1.25,0.75) 87.0 88.6 85.7 87.3 82.1 84.7
(1.50,0.50) 86.9 88.6 85.6 87.3 82.0 84.7
(2.00,0.10) 86.9 88.6 85.7 87.3 82.1 84.6

Overall, the simulation results suggest that, when the model is correctly specified, the pro-
posed approach performs well in estimating the causal effect of an intervention. Conversely,
when the model is misspecified, the estimation error increases and the credible intervals do
not achieve the required coverage; however, the results are likely to provide practitioners with
useful insights.

In practice, we recommend assessing our model’s adequacy before performing substantive
analysis by using posterior predictive checks. In Appendix A.1 we provide examples results
obtained under M1 (Figures 3 and 4) and posterior predictive checks under both M1 and M2.
From the observation of Figures 5 and 6, we can immediately see that M1 yields a better ap-
proximation of the empirical density of the simulated data and lower residual autocorrelation
than M2.

5. Empirical analysis. We now describe the results of our empirical application, where
we analyze the efficacy of a strategic shift by an Italian supermarket chain to permanently
reduce the price of a selected subset of store brands in its Florence stores. The firm’s pri-
mary objective was to increase the customer base and sales. The policy change affected 707
products in several categories; below, we provide the details for the “cookies” category.

5.1. Data & methodology. Among the 284 items in the “cookies” category, there are 28
store brands, of which 10 were selected for a permanent price reduction, ranging from −3.5%
to −23.2% (the median was −11.8%). For each store brand the supermarket chain identified
a direct competitor brand, thereby defining 10 pairs of cookies.

Those in the same pair are almost identical, except for their brand name. In contrast, cook-
ies belonging to different pairs differ on many characteristics (e.g., ingredients, target market
and weight). As discussed earlier, in this setup the permanent discount on a store brand is
likely to impact its direct competitor but is unlikely to affect the sales of the cookies in dif-
ferent pairs, allowing us to justify the partial temporal no-interference assumption.

Our data consists of daily sales for all cookies from September 1, 2017, until April 30,
2019. Our outcome variable is the average units sold per hour, computed as the number of
units sold daily divided by the number of hours that the stores stay open. We focus on hourly
average sales because Italian regulations dictate that the supermarket chain only operates for
a limited number of hours on Sundays; this discrepancy leads to a considerable difference in
daily sales. As an example, Figure 4 shows the time series of daily units sold by two store
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FIG. 4. Store brands. Starting from the left: Time series of the average unit sold per hour; evolution of price
per unit; autocorrelation function. The price plot shows the permanent price reduction after the intervention date
(indicated by the vertical dashed line).

brands, their price and the autocorrelation function. The plots show a strong weekly sea-
sonal pattern. Figure 5 exhibits the same plots for two competitor brands.6 The occasional
drops in the price series are from temporary promotions run regularly by the supermarket
chain. In our data the competitor brands are subject to several promotions during the anal-
ysis period. However, those differ from the permanent price reduction on their temporary
nature and the regular frequency. As our goal is to evaluate the effectiveness of the store’s
policy change—a permanent price reduction; we will not consider temporary promotions as
interventions. There is also considerable visual evidence that the store brands’ intervention
influenced the competitor cookies’ pricing strategy. Indeed, all competitor brands (except for
brand 10) received a temporary promotion matching the time of the intervention, suggesting
that competitors may have reacted to the new policy.7

Under partial temporal no-interference, we fit an MBSTS model for each pair; we also use
covariates to improve the prediction of the counterfactual series. In particular, the set of re-

FIG. 5. Competitor brands. Starting from the left: Time series of the average unit sold per hour; evolution of
price per unit; evolution of price relative to the store brand (the dashed horizontal line indicates a relative price
equal to 1); autocorrelation function. The price plot shows the temporary promotions these brands are subject to,
that is, both before and after the intervention date (indicated by the vertical dashed line) the price of competitor
brands is reduced for a while and then bounces back to the original level.

6The equivalent plots for all the remaining store and competitor brands are provided in Appendix A.1.
7See Figure 2 in Appendix A.1.
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gressors include: (1) two dummies taking value 1 on Saturday and Sunday, the former being
the most profitable day of the week, whereas, on the latter, stores operate reduced hours; a
holiday dummy taking value 1 on the day before and after a national holiday, accounting for
consumers’ tendency to shop more before and after a closure day, and (2) a set of synthetic
controls selected among one category (e.g., wine sales) that did not receive active treatment.
Including covariates should increase prediction accuracy in the absence of intervention, but
suitable covariates must respect two conditions: they should be good predictors of the out-
come before the intervention, and they must satisfy Assumption 3. As a result, the unit prices
can not be part of our models; nevertheless, they are important drivers of sales, especially dur-
ing promotions (Blattberg, Briesch and Fox (1995), Neslin, Henderson and Quelch (1985),
Pauwels, Hanssens and Siddarth (2002)). We solved this issue by using the “prior price,”
which is equal to the actual price up to the intervention, and then it is set equal to the last
price before intervention (which is the most reliable estimate of the price without an inter-
vention).

Finally, to speed up computations, the set of synthetic controls is selected in two steps:
first, we select the best 10 matches among the 260 possible control series in the “wines” cat-
egory by dynamic time warping;8 then, we group them with the other predictors and perform
multivariate Bayesian variable selection.

Each model is estimated in the period before the intervention; then, as described in Sec-
tion 3.1.3, we predict the counterfactual series in the absence of intervention by performing
out-of-sample forecasts. Next, we estimate the intervention’s causal effect at three different
time horizons—one month, three months and six months from the treatment day. This allows
us to determine whether the effect persists over time or quickly disappears.

5.2. Results. We now present the results for the best MBSTS model with both a trend and
seasonality component. The model was selected amongst an array of possible alternatives,
using posterior predictive checks; see Appendix A.1 for the details and Appendix A.2 for a
description of the other models tried. Convergence diagnostics are provided in Appendix B.7.

The estimates of the temporal average general effect, reported in Table 3, reveal the pres-
ence of three significant causal effects—where the 95% credible intervals do not include
0—on the store brands belonging to pairs 4, 7 and 10 at the first time horizon. Interestingly,
we do not find a significant effect on the competitor brands in the same pairs, most likely
because, during the intervention period, competitor brands were subject to multiple tempo-
rary promotions that might have reduced the negative impact of the permanent discount on
store brands. Furthermore, Italian supermarket chains have introduced store brands products
only in recent years; so, despite the price reduction on store brand cookies, some consumers
may still prefer the competitor cookie because of subjective factors, such as brand loyalty.
Another important result is that after the initial surge in sales, we cannot detect a significant
effect for longer time horizons. Figure 6 plots the pointwise general effect τ̂ t ((1,0), (0,0))

for the fourth pair at each time horizon, that is, the difference between the observed series and
the predicted counterfactual computed at every time point; see Appendix A.1 for additional
plots.

Overall, these results suggest that the firm’s strategic change had a minor impact on the
store brands’ sales. Furthermore, since we do not detect an effect after the first month, it

8Dynamic time warping (DTW) is a technique for finding the optimal alignment between two time series.
Instead of minimizing the Euclidean distance between the two sequences, it finds the minimum-distance warping
path, i.e., given a matrix of distances between each point of the first series with each point of the second series, the
path through the matrix minimizing the total cumulative distance between the two sequences. For further details,
see Keogh and Ratanamahatana (2005), Salvador and Chan (2007). Implementation of DTW has been done with
the R package MarketMatching (Larsen (2019)).
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TABLE 3
Temporal average general causal effects of the new price policy on the 10 store (s) - competitor (c) pairs

computed at three time horizons. In this table, ˆ̄τ t stands for the general effect ˆ̄τ t ((1,0), (0,0))

1 month 3 months 6 months

ˆ̄τ t 2.5% 97.5% ˆ̄τ t 2.5% 97.5% ˆ̄τ t 2.5% 97.5%

(1) s 6.97 −24.25 38.47 4.68 −44.00 53.61 6.99 −65.91 79.55
c 24.89 −101.30 153.64 17.49 −193.06 219.08 5.09 −307.48 309.00

(2) s 7.02 −14.79 28.90 4.92 −30.20 38.56 6.56 −44.17 58.01
c 14.71 −62.26 99.44 8.92 −119.33 144.72 0.92 −205.51 201.82

(3) s 7.94 −14.08 32.26 5.30 −31.95 41.38 7.82 −48.46 62.50
c 15.42 −62.17 90.81 11.06 −113.64 132.60 4.84 −189.44 197.55

(4) s 47.84 4.71 96.82 22.65 −52.13 96.38 23.73 −88.10 131.67
c 28.86 −77.93 135.93 20.91 −151.05 190.01 11.20 −256.88 279.74

(5) s 4.11 −46.65 54.64 7.57 −76.37 91.02 11.75 −111.67 136.65
c 45.47 −63.13 154.24 16.68 −156.03 188.67 9.42 −263.47 280.16

(6) s 9.53 −14.45 33.68 11.76 −28.33 51.70 13.58 −45.97 74.20
c 25.64 −37.88 93.36 6.71 −104.80 113.12 4.13 −163.82 164.96

(7) s 78.19 0.15 154.08 34.45 −82.11 151.65 29.48 −149.12 206.10
c 182.70 −221.16 600.08 102.61 −581.90 769.52 80.62 −951.26 1069.94

(8) s 25.23 −28.60 78.16 23.34 −67.87 109.37 17.07 −115.20 145.12
c 15.91 −15.15 47.53 6.03 −44.60 60.30 3.82 −73.60 82.80

(9) s 40.29 −9.84 90.38 15.37 −64.38 97.76 12.07 −108.11 136.44
c 17.17 −30.76 68.56 1.20 −79.88 84.48 2.81 −118.55 127.05

(10) s 12.43 1.35 23.64 9.64 −8.07 27.98 5.30 −22.02 32.67
c 0.04 −9.36 9.79 1.92 −13.22 17.72 4.00 −18.33 27.03

seems that this intervention failed to significantly and permanently impact sales. Of course,
as we showed in the simulation study, there could have been a small effect that our model was
unable to detect. However, since the firm needed a significant boost in sales to make up for
the loss in profits due to the price reduction, we can conclude that this policy was ineffective.
This result is robust to different prior assumptions (see Appendix B.6 for detailed sensitivity
analysis) and to modifications in the set of covariates. In particular, we obtain similar results

FIG. 6. Pointwise causal effect of the permanent price reduction on the fourth store-competitor pair at one
month, three months and six months after the intervention.
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when, instead of using the individual prices, we include among the predictors the difference
in price or the price ratio between the store and competitor brand (see Tables 3 and 4 in
Appendix B.2).

An alternative analysis strategy is to aggregate the sales of store and competitor brands and
treating each aggregate as a univariate time series. However, this procedure leads to a loss of
information, providing misleading results that could drive the analyst to make the wrong
decision. To show that, we estimated the causal effect using the univariate BSTS models on
a range of different aggregated sales. We report the results for three: the average sales of
the brands in the same pair, the average sales of all store brands and the average sales of
all store and competitor brands. The average is computed as the total number of units sold
daily by all products in the aggregate divided by the opening hours. Notice that we did not
consider the aggregate of the competitor brands alone. This is because it would have required
the prediction of the counterfactual series under treatment.

Like the multivariate analysis, for each aggregate we used a model that contained a trend
and seasonality component as well as a set of covariates. The covariates included the three
dummies (described earlier), aggregate sales of all wines and the prior price computed by
averaging the prior prices of all cookies in each aggregate. Table 4 shows the results of the
univariate analysis. We find evidence of a positive effect on the tenth pair at the first and
second-time horizons and a positive effect on the eighth pair at the first horizon. In addition,
the estimated effects on the store brands aggregate and the store-competitor aggregate are
both positive and significant for the first time horizon. To provide a comparison with these
last two aggregates, Table 4 reports the summary temporal average effect on all cookie pairs
obtained by combining the individual estimates with a meta-analysis, as described in Sec-
tion 3.2.1. The summary effect on the store brands is positive and significant at the first time
horizon, and, interestingly, it is in line with the estimated effect on the store brands aggregate
from the univariate analysis. However, with the univariate analysis we cannot isolate the ef-
fect on the competitor brands, and we would have erroneously concluded that the new policy
had a positive impact on the store-competitor aggregate. In contrast, the meta-analysis shows

TABLE 4
Univariate temporal average causal effect ( ˆ̄τt ) at three time horizons of the new price policy on: (i) aggregated

sales (pairs 1–10); (ii) the store brands aggregate (SA); (iii) the store - competitor aggregate (SCA). The last two
lines show, separately for the store brands (META-S) and the competitor brands (META-C), the summary

temporal average effect combined with a meta-analysis

1 month 3 months 6 months

ˆ̄τt 2.5% 97.5% ˆ̄τt 2.5% 97.5% ˆ̄τt 2.5% 97.5%

Pair 1 16.65 −36.89 64.97 12.46 −73.66 93.47 6.97 −115.80 130.39
Pair 2 9.85 −25.50 42.76 4.56 −54.77 62.29 −0.24 −85.55 85.37
Pair 3 11.20 −29.89 48.21 8.66 −58.13 73.73 6.25 −90.95 107.34
Pair 4 36.86 −4.18 75.70 22.78 −46.31 87.32 18.50 −76.66 119.12
Pair 5 29.05 −40.13 88.51 11.51 −102.42 121.54 10.70 −158.37 186.19
Pair 6 16.86 −14.59 44.80 4.09 −50.47 57.12 5.40 −74.01 88.53
Pair 7 120.86 −129.59 352.65 75.54 −272.11 393.52 57.87 −568.82 687.77
Pair 8 20.06 4.95 34.39 12.59 −11.39 36.03 8.91 −25.75 42.42
Pair 9 28.58 −0.03 55.95 8.51 −38.36 54.54 9.53 −56.66 78.61
Pair 10 7.29 4.19 10.00 6.63 1.64 10.94 5.75 −1.49 12.17

SA 25.01 10.08 39.04 15.04 −8.80 37.56 15.52 −19.30 49.19
SCA 34.56 8.55 58.78 19.98 −20.53 58.62 16.16 −44.40 78.19

META-S 23.95 3.62 45.32 13.97 −18.39 47.89 13.43 −34.05 67.37
META-C 37.08 −34.98 106.39 19.35 −100.10 133.78 12.68 −163.61 184.61
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that the effect on competitor brands is not significant. Overall, despite a similar result for the
tenth pair, we would have reached the wrong conclusions for pairs 4, 7 and 8 and would have
reported the misleading finding of an overall positive impact on the sales.

To further illustrate the range of possible causal estimands in a multivariate setting, we also
estimated the marginal and the conditional effects. The results, given in Table 1 and Table 2
in Appendix B.1, show three significant marginal effects on the sales of store brands and little
evidence of a conditional effect.

6. Conclusion. This paper presents a causal analysis of the effectiveness of a new pric-
ing strategy implemented by an Italian supermarket chain. The results suggest that the policy
change had a minor impact on the store brands’ sales and little evidence of a detrimental
effect on competitor brands. Our findings relied on a new methodology for analyzing the
effectiveness of a single persistent intervention in the presence of partial interference. Inter-
estingly, we showed that methods that fail to account for the interference lead to incorrect
results that overestimate the price reduction’s effectiveness.

We believe that our approach brings several contributions to the nascent stream of literature
on synthetic control methods in panel settings with interference. First, we derived a wide class
of new causal estimands. Second, MBSTS allows us to model the interference between units
in the same group by explicitly modeling their dependence structure and, simultaneously,
ensuring a transparent way to deal with the surrounding uncertainty. Finally, the approach is
flexible, and the underlying distributional assumptions can be tested in a very natural way by
posterior inference.

SUPPLEMENTARY MATERIAL

Appendices.pdf (DOI: 10.1214/21-AOAS1498SUPPA; .pdf). A pdf file that contains Ap-
pendix A and Appendix B.

Rcodes_and_data.zip (DOI: 10.1214/21-AOAS1498SUPPB; .zip). A zip file that con-
tains the code and the data set to replicate the analysis shown in the paper.
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