International Journal of Forecasting 36 (2020) 75-85

Contents lists available at ScienceDirect x

International Journal of Forecasting

journal homepage: www.elsevier.com/locate/ijforecast (o
A hybrid method of exponential smoothing and recurrent n
neural networks for time series forecasting e

Slawek Smyl
Uber Technologies, 555 Market St, 94104, San Francisco, CA, USA

ARTICLE INFO

ABSTRACT

Keywords:
Forecasting competitions

This paper presents the winning submission of the M4 forecasting competition. The
submission utilizes a dynamic computational graph neural network system that enables

M4 a standard exponential smoothing model to be mixed with advanced long short term

Dynamic computational graphs

Automatic differentiation

Long short term memory (LSTM) networks
Exponential smoothing

memory networks into a common framework. The result is a hybrid and hierarchical
forecasting method.
© 2019 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Over recent decades, neural networks (NNs) and other
machine learning (ML) algorithms have achieved remark-
able success in various areas, including image and
speech recognition, natural language processing (NLP),
autonomous vehicles and games (Makridakis, 2017),
among others. The key to their success is the fact that,
given a large representative dataset, ML algorithms can
learn to identify complex non-linear patterns and explore
unstructured relationships without hypothesizing them a
priori. Thus, ML algorithms are not limited by assump-
tions or pre-defined data generating processes, which
allows the data to speak for itself.

However, the superiority of ML is not apparent when
it comes to forecasting. While ML algorithms have been
successful (Weron, 2014) in some applications like energy
forecasting (Dimoulkas, Mazidi, & Herre, 2019), where the
series being extrapolated are often numerous, long, and
accompanied by explanatory variables, the performance
of ML algorithms in more typical time series forecasting,
where the data availability is often limited and regressors
are not available, tends to be below expectations (Makri-
dakis, Spiliotis, & Assimakopoulos, 2018b).

None of the popular ML algorithms have been created
for time series forecasting, and time series data need to be
preprocessed in order for them to be used for forecasting.

E-mail address: slaweks@hotmail.co.uk.

https://doi.org/10.1016/j.ijforecast.2019.03.017

The strength of ML algorithms, and in fact the require-
ment for their successful use, is cross-learning, i.e., using
many series to train a single model. This is unlike standard
statistical time series algorithms, where a separate model
is developed for each series. However, the preprocessing
needs to be thought over well in order to learn across
many time series. NNs are particularly sensitive in this
area, as will be expanded later.

There are many good rules regarding preprocessing,
but it remains an experiment-intensive art. One of the
most important ingredients in the success of this method
in the M4 Competition was the on-the-fly preprocess-
ing that was an inherent part of the training process.
Crucially, the parameters of this preprocessing were be-
ing updated by the same overall optimization procedure
(stochastic gradient descent) as weights of the NNs, with
the overarching goal of accurate forecasting (minimizing
forecasting errors).

The preprocessing parameters were actually those
from (slightly simplified) updating formulas of some mod-
els from the exponential smoothing family. Thus, what
is presented here is a hybrid forecasting method that
mixes an exponential smoothing (ES) model with ad-
vanced long short term memory (LSTM) neural networks
in a common framework. The ES equations enable the
method to capture the main components of the indi-
vidual series, such as seasonality and level, effectively,
while the LSTM networks allow non-linear trends and
cross-learning. In this regard, the data are exploited in a

0169-2070/© 2019 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ijforecast.2019.03.017
http://www.elsevier.com/locate/ijforecast
http://www.elsevier.com/locate/ijforecast
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijforecast.2019.03.017&domain=pdf
mailto:slaweks@hotmail.co.uk
https://doi.org/10.1016/j.ijforecast.2019.03.017

76 S. Smyl / International Journal of Forecasting 36 (2020) 75-85

hierarchical manner, meaning that both local and global
components are utilized in order to extract and combine
information at either a series or a dataset level, thus
enhancing the forecasting accuracy.

The rest of the paper is organized as follows.
Section 2 introduces the method and describes it in a
general sense, while Section 3 gives more implementation
details. Section 4 concludes by sketching some general
modelling possibilities that are provided by recent NN
systems and probabilistic programming languages, and, in
this context, traces back the development of the models
described in this paper.

2. Methodology
2.1. Intuition and overview of the hybrid method

The method effectively mixes ES models with LSTM
networks, and in so doing, provides forecasts that are
more accurate than those generated by either pure statis-
tical or ML approaches, thus exploiting their advantages
while avoiding their drawbacks. This hybrid forecasting
approach has three main elements: (i) deseasonalization
and adaptive normalization, (ii) generation of forecasts
and (iii) ensembling.

The first element is implemented with state space ES-
style formulas. The initial seasonality components (e.g.
four for the quarterly series) and smoothing coefficients
(two of them in the case of a single seasonality sys-
tem) are per-series parameters and were fitted, together
with global NN weights, by stochastic gradient descent
(SGD). Knowing these parameters and the values of the
series allows the seasonality components and levels to be
calculated, and these are used for deseasonalization and
normalization. The deseasonalization of seasonal series
was very important in the M4 Competition, given that
the series were provided as numeric vectors without any
time stamp, so that there was no way of incorporating
calendar features like the day of the week or the month
number. Also, the series came from many sources, so their
seasonality patterns varied.

The second element is a NN that operates on desea-
sonalized and normalized data, providing the horizon-
steps ahead (e.g. 18 points in case of monthly series)
outputs that were subsequently re-normalized and re-
seasonalized to produce forecasts. The NN is global, learn-
ing across many time series.

The final element of the method is the ensembling of
the forecasts made in the previous step. This includes en-
sembling the forecasts produced by the individual models
from several independent runs, sometimes produced by a
subset of concurrently-trained models, and also averag-
ing those generated by the most recent training epochs.
This process enhances the robustness of the method fur-
ther, mitigating the model and parameter uncertainty
(Petropoulos, Hyndman, & Bergmeir, 2018) while also
exploiting the beneficial effects of combining (Chan &
Pauwels, 2018).

Based on the above, it can be said that the method has
the following two special characteristics:

e It is hybrid, in the sense that statistical modeling
(ES models) is combined concurrently with ML al-
gorithms (LSTM networks).

e It is hierarchical in nature, in the sense that both
global (applicable to large subsets of all series) and
local (applied to each series individually) parameters
are utilized in order to enable cross-learning while
also emphasizing the particularities of the time se-
ries being extrapolated.

2.2. Method description

2.2.1. Deseasonalization and normalization

The M4 time series, even within the same frequency
subset, e.g. monthly, come from many different sources
and exhibit a range of seasonality patterns. In addition,
the starting dates of the series are not provided. In such
circumstances, the NNs are unable to learn how to deal
with seasonality effectively. A standard remedy is to apply
a deseasonalization at preprocessing time. This solution is
adequate but not ideal, as it separates the preprocessing
from the forecasting completely, and the quality of the
decomposition is likely to be worst near the end of the
series, where it counts most for the forecast. One can also
observe that the deseasonalization algorithms, however
sophisticated and robust, were not designed to be good
preprocessors for NNs. Classic statistical models, such as
those from the exponential smoothing family, show a
better way: the forecasting model has integral parts that
deal with the seasonality.

In most NN variants, including LSTMs, the update size
of weight wy; is proportional to the final error, but also
to the absolute value of the strength of the associated
signal (coming from neuron i in the current layer to
neuron j in the next layer). Thus, the NNs behave like ana-
logue devices, even if implemented on a digital computer:
small-valued inputs will have small impacts during the
learning process. Normalizing each series globally to an
interval like [0-1] is also problematic, as the values to be
forecast may lie outside this range, and, more importantly,
for series that change a lot over their lifespan, the parts of
the series with small values will be ignored. Finally, infor-
mation on the strength of trend is lost: two series of the
same lengths and similar shapes, but one growing from
100 to 110 and another from 100 to 200, will look very
similar after the [0-1] normalization. Thus, while normal-
ization is necessary, it should be adaptive and local, where
the “normalizer” follows the series values.

2.2.2. Exponential smoothing formulas

Keeping in mind that the M4 series all have positive
values, the models of Holt (Gardner, 2006) and Holt and
Winters (Hyndman, Koehler, Ord, & Snyder, 2008) with
multiplicative seasonality were chosen. However, these
were simplified by the removal of the linear trend: the
NN was tasked to produce a trend that was most likely to
be non-linear. Moreover, non-seasonal (yearly and daily
data), single-seasonal (monthly, quarterly, and weekly
data) or double-seasonal (hourly data) models (Taylor,
2003) were used, depending on the frequency of the data.
The updating formulas for each case are as follows:

S. Smyl / International Journal of Forecasting 36 (2020) 75-85 77

Non-seasonal models:
i =ay + (1 —a)l_y (1)
Single seasonality models:
le =ayi/se + (1 —a)li_4
Seak = BYe/le + (1 — Bs;
Double seasonality models:
le = ay/(seue) + (1 — a)l—4
Strk = BYe/(Lue) + (1 — Bls; (3)
Uyr = YYe/(lese) + (1 — yue,

where y; is the value of the series at point t; [;, s, and u;
are the level, seasonality, and second seasonality compo-
nents, respectively; K is the number of observations per
seasonal period, i.e., four for quarterly, 12 for monthly and
52 for weekly; and, finally, L is the number of observations
per second seasonal period (for hourly data, 168). Note
that s; and u, are always positive, while the smoothing
coefficients «, B and y take a value between zero and
one. These restrictions can be implemented easily by ap-
plying exp() to the underlying parameters of the initial
seasonality components and sigmoid() to the underlying
parameters of the smoothing coefficients.

2.2.3. On-the-fly preprocessing

The above formulas allow the level and seasonality
components to be calculated for all points of each series.
These components are then used for deseasonalization
and adaptive normalization during the on-the-fly prepro-
cessing. This step is a crucial part of the method and is
described in this section.

Each series was preprocessed anew for each training
epoch, because the parameters (initial seasonality compo-
nents and smoothing coefficients) and the resulting levels
and seasonality components were different during each
epoch.

The standard approach of constant size, rolling input
and output windows was applied, as is shown in Fig. 1 for
the case of a monthly series. The size of the output win-
dow was always equal to the forecasting horizon (e.g., 13
for the weekly series), while the size of the input window
was determined by a rule that, for seasonal series, it
should cover at least a full seasonal period (e.g., being
equal to or larger than four in the case of quarterly series),
while for non-seasonal series the size of the input window
should be close to the forecasting horizon. However, the
exact size was defined after conducting experimentation
(backtesting). Please note that, unlike in many other re-
current neural network (RNN) based sequence processing
systems, the input size is larger than one. This works
better because it allows the NN to be exposed to the
immediate history of the series directly.

Preprocessing was rather simple: at each step, the
values in the input and output windows were normalized
by dividing them by the last value of the level in the
input window (the thick blue dot on Fig. 1), and then,
in the case of seasonal time series, divided further by
the relevant seasonality components. That resulted in the
input and output values being close to one, irrespective of

the original amplitude of the series and its history. Finally,
a squashing function, log(), was applied. The squashing
function prevented outliers from having an unduly large
and disturbing effect on the learning.

In addition, the domain of the time series (e.g. finance
or macro) was one-hot encoded as a six-long vector and
appended to the time series derived features. The domain
information was the only meta information available and
I considered it prudent to expose the NN to it.

It is generally worthwhile to increase the size of the
input window and extract more sophisticated features,
like the strength of the seasonality or the variability,
when preprocessing for NNs, but such approaches were
not adopted here for several reasons. The most impor-
tant one was that many series were too short to afford
a large input window, meaning that they could not be
used for backtesting. Another reason was that creating
features that summarize the characteristics of the series
effectively, irrespective of their length, is not straightfor-
ward. It was only after the end of the competition that a
promising R package called tsfeatures came to my atten-
tion (Hyndman, Wang, & Laptev, 2015; Kang, Hyndman,
& Smith-Miles, 2017).

2.2.4. Forecast by NNs

As explained above, the NNs operated on deseasonal-
ized, adaptively normalized, and squashed values. Their
output needed to be “unwound”, in following way:

For non-seasonal models:

Ver1.t+h = exp(NN(X)) * I; (4)
For single seasonality models:

Ver1.e0n = exp(NN(X)) # I * Seq1:.¢n (5)

For dual seasonality models:

Ver1.e0n = exp(NN(X)) # I Sei1:en * Upg1:e+h, (6)

where x is the pre-processed input (a vector), NN(x) is an
NN output (a vector), I; is the value of level at time ¢ (last
known data point) and h is the forecasting horizon. All
operations are elementwise. The above is summarized in
Fig. 2.

Note that the final forecast is actually an ensemble of
many such forecasts, a procedure which is explained later
in the paper.

2.2.5. Architectures of neural networks

In order to better understand the implementation, it
is useful to classify the parameters of forecasting systems
into the following three groups:

e Local constants: These parameters reflect the be-
havior of a single series; they do not change as we
step through that series. For example, the smoothing
coefficients of the ES model, as well as the initial
seasonal components, are the local non-changing
(constant) parameters.

e Local states: These parameters change as we step
through a series, evolving over time. For instance,
the level and seasonal components, as well as a
recurrent NN state, are local states.

78

S. Smyl / International Journal of Forecasting 36 (2020) 75-85

10000
L
o

8000
L
°

6000
L

input window

2000
L

°
o °

output window ° o

0 training area
o validation area

smooth trend aka level

normalizer

T
1986

T T T
1988 1880 1992

T
1994

Fig. 1. An example showing how rolling windows are used for preprocessing a random monthly series. The last step is used for validation.

Dataflow

Per series parameters:

Initial seasonality components (e.g. 4 for quarterly series, none for yearly series)
Smoothing coefficients (1 for level, 1 per seasonality)

Stochastic

Exponential Smoothing

update formulas

[Vector of levels and seasonality components J

Deseasonalization,

L=al/s)+1 -l
Stem = Y(yt/lt) +(1-

Y)s,

Gradient
Descent

local normalization

Reseasonalization,
denormalization

X=In(Input; /l/six ;)

Fi=NN(X;)

7i=exp(Fi)*|i*3i+..i+H

Fig. 2. Data flow and system architecture for the single seasonality case. X; is the normalized, deseasonalized, and squashed input to the NN. F; is
the NN output. Y; is the forecast, covering outputs i + 1...i + H, where H is the forecasting horizon. [; is scalar, the last level in the input window.

Xi, f/l and F; are vectors. Ensembling is not shown.

e Global constants: These parameters reflect the pat-
terns learned across large sets of series and are con-
stant; they do not change as we step through a
series. For example, the weights used for the NN
systems are global constants.

Typical statistical time series methods are trained on
individual series, meaning that they involve only local
constant and local state parameters. On the other hand,
standard ML methods are usually trained on large
datasets, involving only global parameters. The hybrid
method described here uses all three types of parame-
ters, being partly global and partly time series specific.
This type of modeling becomes possible through the use

of dynamic computation graph (DCG) systems, such as
DyNet (Neubig, Dyer, Goldberg, Matthews, Ammar, Anas-
tasopoulos, et al., 2017), PyTorch (Paszke, Gross, Chintala,
Chanan, Yang, DeVito, et al., 2017) and TensorFlow in
“eager mode” (Abadi, Agarwal, Barham, Brevdo, Chen,
Citro, et al., 2015). The difference between static and
dynamic computational graph systems is that the latter
have the ability to recreate the computational graph (built
behind the scenes by the NN system) for each sample,
here, for each time series. Thus, each series may have a
partially unique and partially shared model.

The architecture deployed was different for each fre-
quency and output type (point forecast or prediction in-
tervals).

S. Smyl / International Journal of Forecasting 36 (2020) 75-85 79

At a high level, the NNs of the model are dilated LSTM-
based stacks (Chang, Zhang, Han, Yu, Guo, Tan, et al,
2017), sometimes followed by a non-linear layer and al-
ways followed by a linear “adapter” layer, the objective
of which is to adapt the size of the state of the last layer
to the size of the output layer (the forecasting horizon, or
twice the forecasting horizon in case of prediction interval
(PI) models). The LSTM stacks are composed of a number
of blocks (here 1-2). In case of two (and theoretically
more) blocks, the output of a block is added to the next
block’s output using Resnet-style shortcuts (He, Zhang,
Ren, & Sun, 2015). Each block is a sequence of one to
four layers, belonging to one of the three types of dilated
LSTMs: standard (Chang et al., 2017), with an attention
mechanism (Qin, Song, Chen, Cheng, Jiang, & Cottrell,
2017) and a special residual version (Kim, El-Khamy, &
Lee, 2017).

Dilated LSTMs use as part of their input the hidden
state from previous, but not necessarily the latest, steps.
In standard LSTMs and related cells, part of the input at a
time t is the hidden state from step t — 1. In a cell that
is k-dilated, e.g. three, the hidden state is taken from step
t — k, so here t — 3. This improves long-term memory
performance. As is customary for dilated LSTMs (Chang
et al.,, 2017), they were deployed in stacks of cells with in-
creasing dilations. Similar blocks of standard, non-dilated
LSTMs performed slightly worse. Even bigger drops in
performance would have happened if the recurrent NNs
had been replaced with non-recurrent ones, indicating
that the RNN state is useful for dealing with the time
series and sequences more generally.

The general idea of the recurrent NN attention mech-
anism is that, instead of using the previous hidden state
as in standard LSTMs, or the delayed state as in the case
of dilated LSTMs, one calculates weights that are applied
to a number of past hidden states in order to create an
artificial weighted average state. This allows the system
to “concentrate on” or “attend to” a particular single state
or group of past states dynamically. My implementation
is an extension of the dilated LSTM, so the maximum
look-behind horizon is equal to the dilation. In the case
of weekly series, the network consisted of single block
with two layers, encoded as attentive (1,52). The first
layer dilation is equal to one, so it is a standard LSTM,
but the second layer calculates weights over the past 52
hidden states (as they become available, so at point 53
or later when stepping through a series). The weights are
calculated using a separate standard two-layer NN that is
embedded into the LSTM,; its inputs are concatenations of
the LSTM input and the last hidden state, and its weights
are adjusted by the same gradient descent mechanism
that operates on all other parameters.

Fig. 3 shows three examples of configurations; the
first one generates point forecasts (PFs) for the quarterly
series, the second one PFs for the monthly series, and the
third one prediction intervals (PIs) for the yearly series.

(a) The NN consists of two blocks, each one involving
two dilated LSTMs, that are connected by a shortcut
around the second block. The final element is the
“adapter layer”; it is just a standard linear layer (the

transfer function equals identity) that adapts the
hidden output from the fourth layer (the one with
dilation = 8), usually 30-40 long, into the expected
output size (here eight).

(b) The NN consists of a single block composed of
four dilated LSTMs, with residual connections as
per (Kim et al.,, 2017). Please note that the short-
cut arrows point correctly into the inside of the
residual LSTM cell; this is a non-standard residual
shortcut.

(c) The NN consists of a single block consisting of two
dilated LSTMs with the attention mechanism, fol-
lowed by a dense non-linear layer (with tanh()
activation), then by a linear adapter layer of the
double size of the output, so that forecasts of both
lower and upper bounds are generated simultane-
ously. The attention mechanism (Qin et al., 2017)
slows the calculations considerably, but occasion-
ally appeared best.

Later, I provide a table that lists architectures and hyper-
parameters for all cases, not just these three. Please keep
in mind that, while the graph shows only the global parts
of the models, the per-series parts are equally important.

3. Implementation details

This section provides more implementation details
regarding the hybrid method. This includes information
about the loss function, the hyperparameters of the mod-
els, and the ensembling procedures.

3.1. Loss function

3.1.1. Point forecasts

The error measure used in the M4 Competition for
the case of the PFs was a combination of the symmetric
mean absolute error (SMAPE) and the mean scaled error
(MASE) (Makridakis, Spiliotis, & Assimakopoulos, 2018a).
The two metrics are quite similar in nature, in the sense
that both are normalized absolute differences between
the predicted and actual values of the series. Recalling
that the inputs to the NN in this system are already desea-
sonalized and normalized, I postulated that the training
loss function does not need to include normalization: it
could be just a simple absolute difference between the
target values and the predicted ones. However, it be-
came apparent during backtesting that the models tend
to have a positive bias, probably as a result of applying
a squashing function, log(), to time series derived inputs
and outputs to the NN. The system learned in the log
space, but the final forecast errors are calculated back in
the linear space. To counter this, a pinball loss with a t
value a bit smaller than 0.5 (typically 0.45-0.49) was used.
The pinball loss is defined as follows:

L= — ¥, ifye = ¥
= —y)1 —1),if Y > yi.

Thus, the pinball function is asymmetric, penalizing
actual values that are above and below a quantile differ-
ently so as to allow the method to deal with the bias.
It is an important loss function on its own; minimizing

(7)

80 S. Smyl / International Journal of Forecasting 36 (2020) 75-85

Linear adaptor

LSTM, dilation=8

LSTM, dilation=4

LSTM Resid,

LSTM, dilation=2

LSTM, dilation=1

Linear adaptor
dilation=12"%
LSTM Resid, dilation=6 \

LSTM Resid, dilation=3 \

LSTM Resid, dilation=1

Linear adaptor

Lower IP

[

Non-linear layer

Upper IP

LSTM Att, dilation=6

I

LSTM Att, dilation=1

(1,2)-(4,8) Std

Quarterly Monthly

(1-3-6-12) Residual a la Kim

(1,6),NL

Yearly, Pred. Intervals

Fig. 3. NN architectures used for generating some of the PFs and Pls.

it produces quantile regression (Takeuchi, Le, Sears, &
Smola, 2006).

3.1.2. Prediction intervals

The pinball loss function could have been adopted for
generating the PIs as well. The requested coverage was
95%, so one could have tried to forecast 2.5% and 97.5%
intervals. However, the competition metric for PIs was not
based on separate upper and lower pinball losses; instead,
it was a single formula called the mean scaled interval
score (MSIS) (Makridakis et al.,, 2018a). Once again, the
denominator of the MSIS was omitted, since the input to
the NNs was already deseasonalized and normalized. It
should be noted that, although the method provided the
most precise PIs among those of all methods submitted,
the positive bias mentioned above can still be observed
for the case of the PIs, with the upper interval being
exceeded less frequently than the lower one.

At this point I would like to draw the reader’s atten-
tion to the great practical feature of NN-based systems:
the ease of creating a loss function that is aligned with
business/scientific objectives. For this application, the loss
functions were aligned with the accuracy metrics used in
the M4 Competition.

3.1.3. Level wiggliness penalty

Intuitively, the level should be a smooth version of
the time series, with no seasonality patterns. One would
expect this to be of secondary importance, and more of
an aesthetic-level requirement. However, it turns out that
the smoothness of the level influenced the forecasting
accuracy substantially. It appears that when the input to
the NN was smooth, the NN concentrated on predict-
ing the trend, instead of over-fitting on some spurious,
seasonality-related patterns. A smooth level also means
that the seasonality components absorbed the seasonality
properly. In functional data analysis, an average of squares
of second derivatives is a popular penalty against the wig-
gliness of a curve (Ramsay & Silverman, 2002). However,
such a penalty may be too strict and not robust enough

when applied to time series with occasional large shifts. In
this regard, a modified version of this penalty was applied,
which was calculated as follows:

e Calculate log differences, ie., di = log(yes1/ye)
where y; is point t of the series;

e Calculate differences of the above: e; = d;1 — dy;

e Square and average them for each series.

This penalty, multiplied by a constant parameter in the
range of 50-100, called the level variability penalty (LVP),
was added to both PFs and PIs loss function. The level wig-
gliness penalty affected the performance of the method
significantly, and it is conceivable that this submission
would not have won the M4 Competition without it.

3.2. Ensembling and data subsetting

Two models (one for PFs and one for PIs) were built
for each of the six single-frequency subsets (daily, weekly
etc.). Each of the models was actually an ensemble at
several levels, which are presented below.

3.2.1. Independent runs

A single run involves a full training of the models as
well as the generation of forecasts for all series in the
subset. However, each run for a given series produces a
slightly different forecast, since the parameter initializa-
tions are random. Ensembling models constructed from
different runs can mitigate the effect of randomness and
decrease the uncertainty. Backtesting indicated that in-
creasing the number of runs above the 6-9 range did
not improve the forecasting accuracy, and as a result, the
number of independent runs was limited accordingly.

3.2.2. Ensemble of specialists or simple ensemble

When it was computationally feasible, as turned out
to be the case for all except the monthly and quarterly
series, several concurrently-trained models, learning from
different subset of series, were used rather than training

S. Smyl / International Journal of Forecasting 36 (2020) 75-85 81

. N
NN
, 1 0B

Netl Net2 Net3

(Y

W Series1 M Series?2

Series 3

Net4 Net5 Net6 Net7

Series4 M Series5

m Series6 MW Series7 MSeries8 MSeries9 M Series10

Fig. 4. An example allocation performed by the ensemble of specialists algorithm for a set of ten series to seven models, using the top two models

per series.

a single model. This approach, called “ensemble of spe-
cialists”, was proposed originally by Smyl (2017), and is
summarized below.

The main idea is that, when a dataset contains a large
number of series from unknown sources, it is reasonable
to assume that these could possibly be grouped in subsets,
such that the overall forecasting accuracy would improve
if one used a separate model for each group instead of
a single one for the whole dataset. However, there is
no straightforward way of performing the grouping task,
as series from disparate sources may look and behave
similarly. Moreover, clustering the series using generic
metrics may not be useful for improving the forecasting
accuracy.

In this regard, the ensemble of specialists algorithm
trains a number of models (NNs and per-series param-
eters) concurrently and forces them to specialize in a
subset of series. The algorithm is summarized as follows:

1. Create a pool of models (e.g. seven models) and
randomly allocate a part (e.g. half of the time series)
to each model.

2. For each model:

(a) Execute a single training on the allocated
subset.

(b) Record the performance for the whole train-
ing set (in-sample, average over all points of
the training part of a series).

3. Rank the models for each series and then allocate
each series to the top N (e.g. two) best models.

4. Repeat steps 2 and 3 until the average error in the
validation area starts growing.

Thus, the final forecast for a particular series is the
average of the forecasts produced by the top N models.
The main assumption here is continuity: if a particular
model is good at forecasting the in-sample part of the
series, it will hopefully display accurate results in the
out-of-sample part of the series as well. The architecture

and the inputs used for the individual models remain the
same. What differs, and is manipulated actively, between
epochs is the composition of the training data set for each
model. Fig. 4 shows an example allocation of ten series
among seven models altogether and two top models.

A simpler approach, called here simple ensemble, was
used for monthly and quarterly data instead of the en-
semble of specialists. In this case, the data were split into
two non-overlapping sets at the beginning of each run and
then models were trained and forecasts made for each of
the two halves. This was a kind of bagging, and worked
well too.

It is worth mentioning that the ensemble of specialists
improved the forecasting accuracy by around 3% on the
M3 monthly data set in the work of Smyl (2017). How-
ever, the difference reported was not stable, depending
on the data and the quality of the models used. Therefore,
more work is needed to delineate the areas of superiority
of each method clearly.

3.2.3. Stage of training

The forecasts generated by a few (e.g. 4-5) of the
most recent training epochs were ensembled to provide
a single forecast. The whole training typically used 10-
30 epochs; thus, in the case of 20 epochs for example,
the final forecast was actually an average of the forecasts
produced at epochs 16, 17, 18, 19 and 20.

3.3. Backtesting

Backtesting was implemented by removing typically
one, but sometimes two, of the last horizon-number of
points from each series (e.g. 18 or 36 for monthly data),
and training the system on a set with such shortened
series. However, while the training steps were never
exposed to the removed values, the system was tested
on the validation (removed) area after every epoch, and
the results guided the architectural and hyperparameter
choices. In practice, there was a very strong correlation

82 S. Smyl / International Journal of Forecasting 36 (2020) 75-85

Table 1
Details of the architecture and parameters used.

Frequency PF

Pls

Monthly Simple ensemble
Residual (1-3-6-12)

LVP = 50

Epochs = 10

LR = 5e—4

Max length = 272
Training percentile = 49
State size of LSTMs = 50

Epochs = 14
LR = 1e—3, {8,3e—4}, {13,1e—4}
Max length = 512

Quarterly Simple ensemble
(1,2)-(48)

LVP = 80

Epochs = 15

LR = le—3, {10,1e—4}
Max length = 174
Training percentile = 45
State size of LSTMs = 40

Epochs = 16
LR = 1e—3, {7,3e—4}, {11,1e—4}

Yearly Ensemble of specialists 4/5
Attentive (1,6)
LVP =0
Epochs = 12
LR = le—4, {15,1e—5}
Max length = 72
Training percentile = 50
State size of LSTMs = 30

Attentive (1,6),NL

Epochs = 29
LR = le—4, {17,3e—5}, {22,1e-5}

Daily Ensemble of specialists 4/5
(1,3)-(7,14)
Seasonality = 7
LVP = 100
Epochs = 13
LR = 3e—4, {9,1e—4}
Max length = 112
Training percentile = 49
State size of LSTMs = 40

Epochs = 21
LR = 3e—4, {13,1e—4}

Weekly Ensemble of specialists 3/5
Attentive(1,52)
Seasonality = 52
LVP = 100
Epochs = 23

IR = le—3, {11,3e—4}, {17,1e—4}

Max length = 335
Training percentile = 47
State size of LSTMs = 40

Ensemble of specialists 4/5

Epochs = 31
LR = 1e-3, {15,3e—4}

Hourly Ensemble of specialists 4/5
(1,4)-(24,168)
Seasonality = 24,168
LVP = 10
Epochs = 27

LR = 1e—2, {7,5e—3}, {18,1e—3}, {22,3e—4}

Max length = NA
Training percentile = 49
State size of LSTMs = 40

Epochs = 37
LR = 1e—2, {20,1e—3}

between the validation results when testing on the last
horizon-number of points and the penultimate horizon-
number of points, with the former approach typically
being used because it also admitted a larger number of
series (many were too short to be used for backtesting if
more than one horizon-number of points was removed).

While many series were short, there were also many
that were very long, for example representing over 300
years of monthly data. The usefulness of the early parts
of such series for the accuracy of the forecast was not
obvious, while they involved an obvious computational
demand. Thus, the long series were shortened, keep-
ing only the most recent “maximum length” points. The

maximum length hyperparameter was tested and
increased from a relatively small value until no further
meaningful improvement in accuracy was observed in
backtesting. It is listed in Table 1 along with the rest of
the hyperparameters.

3.4. Hyperparameters

All hyperparameters were chosen using some combi-
nation of reasoning, intuition, and backtesting. The main
tool used for preventing over-fitting was early stopping:
during training, the average accuracy on the validation
area (typically the last output horizon number of points,

S. Smyl / International Journal of Forecasting 36 (2020) 75-85 83

see Fig. 1) was calculated after every training epoch. The
epoch with the lowest validation error was noted and
used as the maximum number of epochs when doing the
final (using all of the data) learning and forecasting. The
learning rate schedule was also decided by observing the
validation errors after every epoch.

Table 1 lists all of the NN architectures and hyperpa-
rameters used. If a PI model used the same values as the
PF model, the values are not repeated. A few comments
about each:

e Ensembling
Either the simple ensemble or the ensemble of spe-
cialists. In the latter case it is detailed as topN/
numberOfAllModels, e.g. 4/5, see Section 3.2.2. In
the case of yearly data, both ensembling methods
were tried, but in the cases of daily, weekly, and
hourly data, the ensemble of specialists was chosen
without experimentation, under the belief that it
should provide better results.

e NN architecture
It is encoded as a sequence of blocks, in brackets,
see Section 2.2.5. The residual shortcuts around the
blocks, or, in the special case of LSTMs as per Kim
et al. (2017), around the layers, are marked with
dashes. Let me quickly describe the architecture of
each type of series:

- Monthly series used a single block of the spe-
cial residual layers.

- Quarterly, daily, and hourly series used what
perhaps should be a standard architecture (as it
appears to work well in other contexts, outside
of the M4 Competition, too): two blocks of two
dilated LSTM layers.

- Point forecast models of yearly series used a
single block of dilated LSTMs with attention,
encoded as attentive (1,6), while models for
prediction intervals added a standard dense
layer with tanh() activation, which I call the
nonlinear layer (NL), and therefore this is en-
coded as attentive (1,6), NL.

- The architecture for weekly series, as described
above, used attentive LSTMs.

- As in other cases in the table, the architecture
chosen was result of some reasoning/beliefs
and experimentation. I believed that, in case
of seasonal series, at least one of the dilations
should be equal to the seasonality, while an-
other should be in the range of the prediction
horizon. It is likely that the architecture was
over-fitted to the backtesting results; for ex-
ample, the more standard architectures (1,3)-
(6,12) or (1,3,12) would almost certainly work
well for monthly series too (without the special
residual architecture).

e LVP
LVP stands for level variability penalty, and is the
multiplier that is applied to the level wiggliness
penalty. It applies only to the seasonal models. The
value is not very sensitive, as changing it even by
50% would not make a big difference. However, it is
still important.

e Number of epochs
The number of training epochs for the final training
and forecasting runs was chosen experimentally as
the one that minimized the error on the validation
area. There was a clear interplay between the learn-
ing rate and the number of epochs: higher learning
rates needed smaller numbers of epochs. Another
factor that influenced them both was the computa-
tional requirement of a subset: a larger number of
series in a subset forced a preference for a smaller
number of epochs (and thus higher learning rates).

e Learning rates
The first number is the initial learning rate, which
was often reduced during training; for example, in
case of the model for yearly PIs, it started at 1le—4,
but was reduced to 3e—5 at epoch 17 and again
to le—5 at epoch 22. The schedule was result of
observing the behaviors of the validation errors af-
ter each training epoch. When they plateaued for
around two epochs, the learning rate was reduced
by a factor of 3-10.

e Max length
This parameter lists maximum length of series used,
see Section 3.3. In the case of hourly series, there was
no chopping, all series were used in their original
length.

e Training percentile
See Section 3.1.1.

e State size of LSTMs
LSTM cells maintain a vector of numbers, called the
state, which is their memory. The size of the state
was not a sensitive parameter, with values above
30 working well. Larger values slow down the cal-
culations, but reduce the number of epochs needed
slightly. There was no benefit in accuracy of using
larger states.

3.5. Implementation

The method was implemented through four programs:
two using the ensemble of specialists and two using sim-
ple ensembling, as was described earlier. Each pair con-
sisted of one program for generating the PFs and another
for estimating the PIs. If the competition were to happen
today, probably only two programs would be needed, one
using the ensemble of specialists and another using the
simple ensemble, as PIs and PFs can be generated from
a single program by modifying the loss function and the
architecture. The method was written in C++ relying on
the DyNet library (Neubig et al., 2017). It can be compiled
and run on Windows, Linux or Mac, and can option-
ally write to a relational database, such as SQL Server
or MySQL, to facilitate the analysis of the backtesting
results, which is very useful in practice. The programs
use CPU, not GPU, and are meant to be run in parallel.
The code is available publicly at the M4 GitHub reposi-
tory (https://github.com/M4Competition/M4-methods) to
facilitate replicability and support future research (Makri-
dakis, Assimakopoulos, & Spiliotis, 2018). The code is well
commented and is the ultimate description of the method.

https://github.com/M4Competition/M4-methods

84 S. Smyl / International Journal of Forecasting 36 (2020) 75-85

3.6. What did not work well and recent changes

The method generated accurate forecasts for most of
the frequencies, but especially the monthly, yearly and
quarterly ones. However, the accuracy was sub-optimal
for the cases of the daily and weekly data. This can be
explained in part by the author’s concentration on the
“three big" subsets: monthly, yearly and quarterly, as
they covered 95% of the data, and performing well on
them was key to success in the competition. However,
subsequent work on daily and weekly data confirmed
that under-performance on these frequencies is a real
problem.

Since the competition ended, several improvements
have been attempted. One such attempt that achieved
noticeable improvements in accuracy on the daily and
weekly data, bringing the performance to the level of
the best benchmarks, is as follows. When analyzing the
values of the smoothing coefficients, as they changed with
passing training epochs, it became clear that they did not
seem to plateau in late epochs, as the gradient descent did
not seem to push them strongly enough. Thus, a separate,
larger learning rate, which was a multiple of three of the
main learning rate, was assigned to them, and this had
the required effect. The smoothing coefficients changed
quickly and eventually plateaued in late epochs.

4. Hybrid, hierarchical, and understandable ML models

This section begins by summarizing the main features
of the model, then outlines generalizations and broader
implications of its techniques and approaches. Also in this
context, I retrace the steps that lead to the formulation of
the models described in this paper.

The winning solution was a hybrid forecasting method
which mixed exponential smoothing-inspired formulas,
used for deseasonalizing and normalizing the series, with
advanced neural networks, exploited for extrapolating the
series. Equally important was the hierarchical structure
of the method, which combined a global part learned
across many time series (weights of the NN) with a time
series specific part (smoothing coefficients and initial sea-
sonality components). The third main component of the
method was a broad usage of ensembling, at multiple
levels. The first two features were made possible by the
great functionalities offered by the modern NN systems
of automatic differentiation and dynamic computational
graphs (Paszke et al., 2017).

Automatic differentiation allows the building of mod-
els that utilize expressions made up of two sets: a quite
broad list of basic functions, like sin(), exp(), etc., and a list
of operators like matrix and element-wise multiplications,
additions, reciprocal, etc. Neural networks that use matrix
operations and some nonlinear functions are just exam-
ples of the allowed expressions. The gradient descent
machinery fits parameters of all of these expressions. In
the model described here, there was both a NN and a non-
NN part (exponential smoothing inspired formulas). It is
quite feasible to build models that encode complicated
technical or business knowledge.

Dynamic computational graphs allow the building of
hierarchical models, with global and local (here, per time

series) expressions and parameters. There could also be
per-group parts. The models can be quite general; e.g. in
a classical, statistical vein:

Student performance = School impact + Teacher impact
+ Individual impact.

Note that each component can be a separate NN, an in-
scrutable black box. However, we can observe and quan-
tify the impact of each of the black boxes, both generally
and in each case, and therefore we are getting a partially
understandable ML model.

Automatic differentiation is also a fundamental feature
of Stan, a probabilistic programming language (Carpenter,
Hoffman, Brubaker, Lee, Li, & Betancourt, 2015). It fits
models primarily using Hamiltonian Markov chain Monte
Carlo, so the optimization is different, but the underlying
auto-differentiation feels very similar. This similarity in
modeling capabilities between Stan and DyNet led to the
formulation of the proposed model, as is described in
more detail below.

By the middle of 2016, I and my collaborators had
successfully created extensions and generalizations of the
Holt and Holt-Winters models in Stan (I called this family
of models LGT: local and global trend models; see Smyl &
Zhang, 2015, and Smyl, Bergmeir, Wibowo, & Ng, 2019),
and experimented with using them along with NN mod-
els (Smyl & Kuber, 2016). Later, I also experimented a lot
with building NN models for the M3 Competition data
set (Smyl, 2017). I was able to beat classical statistical
algorithms on the yearly (and therefore non-seasonal)
subset, but could not do it on the monthly subset. For
seasonal series, I used STL decomposition as part of the
preprocessing, so clearly it did not work well. Also, my
LGT models were more accurate than my NN models in
every category of the M3 data. Thus, when I realized that
DyNet, like Stan, allows a broad range of models to be
coded freely, I decided to apply LGT ideas, such as dealing
with seasonality, to a NN model. That is how the M4
winning solution was born.

Acknowledgments

I would like to thank Professor Spyros Makridakis and
his colleagues for organizing the M4 Competition. I be-
lieve that forecasting competitions have been the main
driver for the advancement of deep learning during its
early years. Competitions enable the comparison of var-
ious forecasting methods, the exchange of ideas and the
sharing of code. In addition, the competition dataset often
becomes a valuable resource for years to come.

Finally, I would like to thank Evangelos Spiliotis for his
help in editing this paper.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C,
et al. (2015). TensorFlow: Large-scale machine learning on het-
erogeneous systems. URL https://www.tensorflow.org/, software
available from tensorflow.org.

Carpenter, B., Hoffman, M. D., Brubaker, M., Lee, D., Li, P, & Betan-
court, M. (2015). The stan math library: Reverse-mode automatic
differentiation in c++. CoRR, abs/1509.07164.

https://www.tensorflow.org/
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb2
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb2
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb2
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb2
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb2

S. Smyl / International Journal of Forecasting 36 (2020) 75-85 85

Chan, F., & Pauwels, L. L. (2018). Some theoretical results on forecast
combinations. International Journal of Forecasting, 34(1), 64-74.
Chang, S., Zhang, Y., Han, W, Yu, M, Guo, X, Tan, W., et al.
(2017). Dilated recurrent neural networks. arXiv e-prints, arXiv:

1710.02224.

Dimoulkas, I., Mazidi, P., & Herre, L. (2019). Neural networks for
GEFCom2017 probabilistic load forecasting. International Journal of
Forecasting, (in press).

Gardner, E. S. (2006). Exponential smoothing: The state of the art —
Part II. International Journal of Forecasting, 22(4), 637-666.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for
image recognition. arXiv e-prints, arXiv:1512.03385.

Hyndman, R.], Koehler, A. B., Ord, A. B., & Snyder, R. D. (2008).
Forecasting with exponential smoothing: The state space approach.
Berlin: Springer Verlag.

Hyndman, R.,, Wang, E., & Laptev, N. (2015). Large-scale unusual time
series detection. In IEEE international conference on data mining.
Kang, Y., Hyndman, R.], & Smith-Miles, K. (2017). Visualising fore-
casting algorithm performance using time series instance spaces.

International Journal of Forecasting, 33(2), 345-358.

Kim, J., EI-Khamy, M., & Lee, J. (2017). Residual LSTM: Design of a deep
recurrent architecture for distant speech recognition. arXiv e-prints,
arXiv:1701.03360.

Makridakis, S. (2017). The forthcoming artificial intelligence (AI)
revolution: Its impact on society and firms. Futures, 90, 46-60.
Makridakis, S., Assimakopoulos, V., & Spiliotis, E. (2018). Objectivity, re-
producibility and replicability in forecasting research. International

Journal of Forecasting, 34(4), 835-838.

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018a). The
M4 Competition: Results, findings, conclusion and way forward.
International Journal of Forecasting, 34(4), 802-808.

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018b). Statistical and
machine learning forecasting methods: Concerns and ways forward.
PLoS One, 13(3), 1-26.

Neubig, G., Dyer, C., Goldberg, Y., Matthews, A., Ammar, W., Anasta-
sopoulos, A., et al. (2017). DyNet: The dynamic neural network
toolkit. arXiv preprint, arXiv:1701.03980.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al.
(2017). Automatic differentiation in PyTorch. In NIPS 2017 autodiff
workshop.

Petropoulos, F., Hyndman, R.]J., & Bergmeir, C. (2018). Exploring
the sources of uncertainty: Why does bagging for time series
forecasting work? European Journal of Operational Research, 268(2),
545-554.

Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., & Cottrell, G. (2017). A
dual-stage attention-based recurrent neural network for time series
prediction. arXiv e-prints, arXiv:1704.02971.

Ramsay, J., & Silverman, B. (2002). Functional data analysis. New York:
Springer-Verlag.

Smyl, S. (2017). Ensemble of specialized neural networks for time series
forecasting. In 37th international symposium on forecasting.

Smyl, S., Bergmeir, C., Wibowo, E., & Ng, T. W. (2019). Rlgt: Bayesian
exponential smoothing models with trend modifications. R package
version 01-2.

Smyl, S., & Kuber, K. (2016). Data preprocessing and augmentation
for multiple short time series forecasting with recurrent neural
networks. In 36th international symposium on forecasting.

Smyl, S., & Zhang, Q. (2015). Fitting and extending exponential
smoothing models with Stan. In 35th international symposium on
forecasting.

Takeuchi, I, Le, Q. V., Sears, T. D., & Smola, A.]. (2006). Nonparametric
quantile estimation. Journal of Machine Learning Research (JMLR), 7,
1231-1264.

Taylor,]J. W. (2003). Short-term electricity demand forecasting us-
ing double seasonal exponential smoothing. The Journal of the
Operational Research Society, 54(8), 799-805.

Weron, R. (2014). Electricity price forecasting: A review of the state-
of-the-art with a look into the future. International Journal of
Forecasting, 30(4), 1030-1081.

http://refhub.elsevier.com/S0169-2070(19)30115-3/sb3
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb3
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb3
http://arxiv.org/abs/1710.02224
http://arxiv.org/abs/1710.02224
http://arxiv.org/abs/1710.02224
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb5
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb5
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb5
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb5
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb5
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb6
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb6
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb6
http://arxiv.org/abs/1512.03385
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb8
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb8
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb8
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb8
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb8
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb10
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb10
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb10
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb10
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb10
http://arxiv.org/abs/1701.03360
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb12
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb12
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb12
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb13
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb13
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb13
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb13
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb13
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb14
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb14
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb14
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb14
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb14
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb15
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb15
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb15
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb15
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb15
http://arxiv.org/abs/1701.03980
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb18
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb18
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb18
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb18
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb18
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb18
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb18
http://arxiv.org/abs/1704.02971
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb20
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb20
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb20
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb25
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb25
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb25
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb25
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb25
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb26
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb26
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb26
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb26
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb26
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb27
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb27
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb27
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb27
http://refhub.elsevier.com/S0169-2070(19)30115-3/sb27

	A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting
	Introduction
	Methodology
	Intuition and overview of the hybrid method
	Method description
	Deseasonalization and normalization
	Exponential smoothing formulas
	On-the-fly preprocessing
	Forecast by NNs
	Architectures of neural networks

	Implementation details
	Loss function
	Point forecasts
	Prediction intervals
	Level wiggliness penalty

	Ensembling and data subsetting
	Independent runs
	Ensemble of specialists or simple ensemble
	Stage of training

	Backtesting
	Hyperparameters
	Implementation
	What did not work well and recent changes

	Hybrid, hierarchical, and understandable ML models
	Acknowledgments
	References

