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Abstract

This paper considers the problem of nonparametric quantile regression under the

assumption that the target conditional quantile function is a composition of a se-

quence of low-dimensional functions. We study the nonparametric quantile regression

estimator using deep neural networks to approximate the target conditional quantile

function. For convenience, we shall refer to such an estimator as a deep quantile regres-

sion (DQR) estimator. We show that the DQR estimator achieves the nonparametric

optimal convergence rate up to a logarithmic factor determined by the intrinsic dimen-

sion of the underlying compositional structure of the conditional quantile function, not

the ambient dimension of the predictor. Therefore, DQR is able to mitigate the curse

of dimensionality under the assumption that the conditional quantile function has a

compositional structure. To establish these results, we analyze the approximation error

of a composite function by neural networks and show that the error rate only depends

on the dimensions of the component functions. We apply our general results to several

important statistical models often used in mitigating the curse of dimensionality, in-

cluding the single index, the additive, the projection pursuit, the univariate composite,

and the generalized hierarchical interaction models. We explicitly describe the pref-

actors in the error bounds in terms of the dimensionality of the data and show that

the prefactors depends on the dimensionality linearly or quadratically in these mod-

els. We also conduct extensive numerical experiments to evaluate the e↵ectiveness of

DQR and demonstrate that it outperforms a kernel-based method for nonparametric

quantile regression.
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1 Introduction

Consider a nonparametric regression model

Y = f0(X) + ⌘, (1.1)

where Y 2 R is a response variable, X 2 X ⇢ Rd is a d-dimensional vector of predictors,
f0 : X ! R is an unknown regression function, and ⌘ is an error term that may depend
on X. We consider the problem of nonparametric quantile regression under the assumption
that the underlying regression function is a composition of a sequence of low-dimensional
functions. We study the nonparametric quantile regression estimator using deep neural
networks to approximate the target regression function. For convenience, we shall refer to
such an estimator as a deep quantile regression (DQR) estimator.

Quantile regression (Koenker and Bassett, 1978; Koenker, 2005) is an important method
in the toolkit for analyzing the relationship between a response Y and a predictor X. Un-
like the least squares regression that models the conditional mean of Y given X, quantile
regression estimates the conditional quantiles of Y given X. Thus quantile regression is able
to describe the conditional distribution of Y given X. There is a rich literature on quantile
regression, much of the work focus on the parametric case when the conditional quantile func-
tion is assumed to be a linear function of the predictor. The linear quantile regression has
also been studied extensively in the context of regularized estimation and variable selection
in the high-dimensional settings (Li and Zhu, 2008; Belloni et al., 2011, 2019; Wang et al.,
2012; Zheng et al., 2015, 2018). In addition, there are many important studies on nonpara-
metric quantile regression. Examples include the methods using smoothing splines (Koenker
et al., 1994; He and Shi, 1994; He and Ng, 1999) and reproducing kernels (Takeuchi et al.,
2006; Sangnier et al., 2016). These studies established the convergence rate of the nonpara-
metric estimators and discussed related problems arising in quantile regression, including an
approach to dealing with the quantile crossing problem and a method for incorporating prior
qualitative knowledge such as monotonicity constraints in the conditional quantile function
estimation. An early study on nonparametric quantile regression using shallow neural net-
works is White (1992). We refer to Koenker (2005) and the references therein for a detailed
treatment of quantile regression. More discussions on nonparametric quantile regression
related to this work are given in Section 8.

To give a snapshot of quantile regressions using deep neural networks compared with the
traditional linear and the kernel quantile regressions, we look at the fitting of the univariate
regression functions “Wave”, when the error term follows a “Sine” distribution or condi-
tionally follows a normal distribution (⌘ | X = x) ⇠ 0.5 ⇥N (0, [sin(⇡x)]2). The functional
form of the “Wave” function is given in Section 7. Figure 1 presents the fitting results using
deep quantile regression (DQR), quantile regression in reproducing kernel Hilbert space (ker-
nel QR) in Sangnier et al. (2016) and traditional linear quantile regression (linear QR) in
Koenker and Bassett (1978) at the 0.25-th, the 0.50-th and the 0.75-th quantiles. Moreover,
least squares regression using deep neural networks (DLS ) is also compared with the above
methods at the 0.50-th quantile. We see that linear QR fails when the model is nonlinear,
while kernel QR and DQR yield acceptable fitting curves. In particular, DQR works best
among the methods considered in this example.
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Figure 1: The fitted quantile curves by di↵erent methods under the univariate model “Wave”
with “Sine” error. The training data is depicted as grey dots.The target quantile functions
at the quantile levels ⌧ =0.25 (yellow), 0.5 (green), 0.75 (red) are depicted as solid curves,
and the estimated quantile functions are represented by dashed curves with the same color.
From the left to right, the subfigures correspond to the methods: DQR, kernel QR and linear
QR. The fitted DLS curve (in blue) is included in the left subfigure.

In classical nonparametric statistics, including nonparametric quantile regression, the
complexity of a function such as regression function and density function is measured through
smoothness in terms of the order of the derivatives. The rate of convergence in estimating
such functions is determined by the dimension and the smoothness index (Stone, 1982).
Specifically, under the assumption that the target function f0 is in a Hölder class with a
smoothness index � > 0 (�-Hölder smooth), i.e., all the partial derivatives up to order b�c
exist and the partial derivatives of order b�c are ��b�c Hölder continuous, where b�c denotes
the largest integer strictly smaller than �, the optimal convergence rate of the prediction error
is Cdn��/(2�+d) under mild conditions (Stone, 1982), where Cd is a prefactor independent of
n but depending on d and other model parameters. When d is small, say, d = 2, assuming
the target function has a continuous second derivative, the optimal rate of convergence is
Cdn�1/3. Therefore, in the low-dimensional settings, a su�cient degree of smoothness will
overcome the adverse impact of the dimensionality on the convergence rate. Moreover, in low-
dimensional models with a small d, the impact of Cd on the convergence rate is not significant.
However, in high-dimensional models with a large d, the situation is completely di↵erent.
First, the rate of convergence can be painfully slow, unless the function f0 is assumed to have
an extremely large smoothness index �. But such an assumption is not realistic in practice.
Second, the impact of Cd can be substantial when d is large. For example, if the prefactor
Cd depends on d exponentially, it can overwhelm the convergence rate n��/(2�+d). Therefore,
it is important to clearly describe how Cd depends on the dimensionality.

Recently, several authors carried out important and inspiring studies on the convergence
properties of least squares nonparametric estimation using neural network approximation of
the regression function (Bauer and Kohler, 2019; Schmidt-Hieber et al., 2020; Chen et al.,
2019a; Kohler et al., 2019; Nakada and Imaizumi, 2019; Farrell et al., 2021). These studies
show that deep neural network regression can achieve the minimax optimal rate of con-
vergence up to a logarithmic factor for estimating the conditional mean regression function
established by Stone (1982). However, nonparametric estimation using deep neural networks
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cannot escape the well-know problem of curse of dimensionality in high-dimensions without
any conditions on the underlying model.

It is clear that smoothness is not the right measure of the complexity of a function class
in the high-dimensional settings, since smoothness does not help mitigate the curse of dimen-
sionality. An e↵ective approach to mitigating the curse of dimensionality is to consider func-
tions with a compositional structure. Deep neural network modeling has achieved impressive
success and often outperformed kernel based methods in many important applications with
high-dimensional data, including speech recognition, image classification, object detection,
drug discovery and genomics, among others (LeCun et al., 2015). Thus it is desirable to
consider statistical models in a function class that can mitigate the curse of dimensionality
and can be well approximated by deep neural networks. It has been shown that deep ReLU
networks are solutions to regularized data fitting problems in the function space consisting of
compositions of functions from the Banach spaces of second-order bounded variation (Parhi
and Nowak, 2021). Using composite functions in nonparametric regression modeling has a
long history in statistics. For example, the nonparametric additive model, which can be con-
sidered a composition of a linear function with a vector function whose components depend
on only one of the variables, has been studied by many authors (Breiman and Friedman,
1985; Stone, 1985, 1986; Hastie and Tibshirani, 1990). Recently, more general composite
functions for statistical modeling have been proposed in several interesting works (Horowitz
and Mammen, 2007; Bauer and Kohler, 2019; Schmidt-Hieber et al., 2020). Under this as-
sumption, the convergence rate Cdn��/(2�+d) could be improved to Cd,d⇤n

��/(2�+d⇤) for some
d⇤ ⌧ d, where Cd,d⇤ is a constant depending on (d⇤, d), where d⇤ is the intrinsic dimension
of the model. In these results, the convergence rate part is improved from n��/(2�+d) to
n��/(2�+d⇤). When d⇤ ⌧ d, the improvement is substantial. However, the prefactor Cd,d⇤ in
the error bounds depends on d exponentially or are not clearly described in the aforemen-
tioned works (Stone, 1985, 1986; Horowitz and Mammen, 2007; Bauer and Kohler, 2019;
Schmidt-Hieber et al., 2020). In a low-dimensional model with a small d, the impact of
the prefactor on the overall error bound is not significant. However, in a high-dimensional
model with a large d, the impact of the prefactor can be substantial, even overwhelm the
convergence rate part (Ghorbani et al., 2020). Therefore, it is important to describe how
the prefactor depends on the dimension d in the error bound.

In this paper, we establish non-asymptotic upper bounds for the excess risk and mean in-
tegrated squared error of the DQR estimator under the assumption that the target regression
function is a composite function. A novel aspect of our work is that we clearly describe how
the prefactors in the error bounds depend on the ambient dimension d and the dimensions
of the low-dimensional component functions of the composite function. Our error bounds
achieve the minimax optimal rates and significantly improve over the existing ones in the
sense that their prefactors depend linearly or quadratically on the dimension d, instead of
exponentially on d. This shows that DQR can mitigate the curse of dimensionality under
the assumption that the target regression function belongs to the class of composite func-
tions. These results are based on new approximation error bounds of composite functions
by the neural networks, which may be of independent interest. Our main contributions are
as follows.

1. We establish excess risk bounds for the proposed DQR estimator under the assumption
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that the target conditional quantile function has a compositional structure with lower-
dimensional component functions. With appropriately specified ReLU networks in
terms of depth, width and size of the network, our DQR estimator achieves near
optimal convergence rate up to a logarithmic factor under a heavy-tailed error (finite
p-th moment for p � 1) and mild regular conditions on the joint distribution of the
response and the predictor. Moreover, we show that DQR can mitigate the curse of
dimensionality in the sense that the convergence rate of the error bound depends on
the dimensions of the component functions, not the ambient dimension. We also show
that the prefactors of the error bounds depend on the ambient dimension linearly or
quadratically.

2. We derive novel approximation error results of composite functions using ReLU acti-
vated neural networks under the assumption that the component functions are Hölder
continuous. This result shows that the curse of dimensionality can be mitigated through
composition in the sense the approximate error rate depends on the intrinsic dimension
of a composite functions, instead of the ambient dimension of the function. Equally
importantly, the prefactor of the error bound is significantly improved in the sense
that it depends on the dimensionality d polynomially instead of exponentially as in the
existing results. This approximation result is the key building block in establishing the
bounds for excess risk and mean integrated squared error for DQR.

3. We apply our general results to several important statistical models often used in mit-
igating the curse of dimensionality, including the single index, the additive, the pro-
jection pursuit, the univariate composite, and the generalized hierarchical interaction
models. We show that DQR achieves the optimal convergence rate up to a logarithmic
factor under these models. We also present the prefactors of the error bounds for these
models.

4. We bridge the gap between the excess risk and the mean integrated squared error of
the DQR estimator under mild conditions. We do not require the bounded support
condition on the conditional distribution of the response given the predictor as in the
existing literature. The mean integrated squared error of our DQR estimator is shown
to converge at the near optimal rate up to a logarithmic factor, inheriting the properties
of the corresponding excess risk. The convergence rate of the mean integrated squared
error of the DQR estimator is determined by the dimensions of the component functions
and the prefactor depends polynomially on the widest layer of the composite functions.

The remainder of this paper is organized as follows. In Section 2 we describe the deep
quantile regression problem, the deep neural networks used in the estimation and the as-
sumption on the compositional structure of the conditional quantile function. In Section 3
we provide a high level description of our main results and the overall approach we take to
establish these results. In Section 4 we present non-asymptotic bounds on the excess risk
and mean integrated squared error of the DQR estimator. Section 5 includes applications of
our general error bounds to several important models in nonparametric statistics. In Section
6 we present a result on the approximation error of composite functions using deep neural
networks. In Section 7 we present simulation results demonstrating that DQR outperforms a
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kernel nonparametric quantile regression method based on vector-valued reproducing kernel
Hilbert space (RKHS) (Sangnier et al., 2016). Section 8 contains discussions on the related
work. Concluding remarks are given in Section 9. Proofs and additional simulation results
are given in the appendix.

2 Deep quantile regression

In this section, we present the basic setup of nonparametric regression. We describe the
structure of the feedforward neural networks to be used in the estimation and define the
compositional structure for the target conditional quantile function.

For a given quantile level ⌧ 2 (0, 1), the quantile check loss function is defined by

⇢⌧ (x) = x{⌧ � I(x  0)}, x 2 R.

For a possibly random function f : Rd ! R, let Z ⌘ (X, Y ) be a random vector independent
of f . We define the risk of f under the loss function ⇢⌧ (·) by

R⌧ (f) = EZ{⇢⌧ (Y � f(X))}.

At the population level, the nonparametric quantile estimation is to find a measurable func-
tion f ⇤ : Rd ! R satisfying

f ⇤ := argmin
f

R⌧ (f) = argmin
f

EZ{⇢⌧ (Y � f(X))},

where EZ means that the expectation is taken with respect to the distribution of Z. If the
conditional ⌧ -th quantile of ⌘ given X is 0 and E(|⌘||X = x) < 1 for all x 2 X , then the
true regression function f0 is the optimal solution f ⇤ on X .

In applications, when only a random sample S ⌘ {(Xi, Yi)}ni=1
is available, we consider

the empirical risk

R⌧
n(f) =

1

n

nX

i=1

⇢⌧ (Yi � f(Xi)). (2.1)

Our goal is to construct an estimator of f0 within a certain class of functions Fn by minimizing
the empirical risk, that is,

f̂n 2 arg min
f2Fn

R⌧
n(f), (2.2)

where f̂n is called the empirical risk minimizer (ERM). We choose Fn to be a function
class consisting of deep neural networks (DNN). We will also refer to f̂n as a deep quantile
regression (DQR) estimator below.

2.1 Deep neural networks

We set the function class Fn to be FD,W,U ,S,B, a class of feedforward neural networks f� :
Rd ! R with parameter �, depth D, width W , size S, number of neurons U and f� satisfying
kf�k1  B for some 0 < B < 1, where kfk1 is the supreme norm of a function f : Rd ! R.
Note that the network parameters may depend on the sample size n, but the dependence is

6

⼀

τ|x /Ix , 0 + Ix≤ 0 ( 1 - t ) | xl

⼀

⼀

⼀

⼀

⼀

⼀

深

⼀



omitted in the notation for simplicity. A brief description of multilayer perceptrons (MLPs),
the commonly used feedforward neural networks, are given below. The architecture of a
MLP can be expressed as a composition of a series of functions

f�(x) = LD � � � LD�1 � � � · · · � � � L1 � � � L0(x), x 2 Rd,

where �(x) = max(0, x) is the rectified linear unit (ReLU) activation function (defined for
each component of x if x is a vector) and

Li(x) = Wix+ bi, i = 0, 1, . . . ,D,

where Wi 2 Rdi+1⇥di is a weight matrix, di is the width (the number of neurons or computa-
tional units) of the i-th layer, and bi 2 Rdi+1 is the bias vector in the i-th linear transformation
Li.

Such a network f� has D hidden layers and (D + 1) layers in total. We use a (D + 1)-
vector (w0, w1, . . . , wD)> to describe the width of each layer; particularly in nonparametric
regression problems, w0 = d is the dimension of the input and wD = 1 is the dimension
of the response . The width W is defined as the maximum width of hidden layers, i.e.,
W = max{w1, . . . , wD}; the size S is defined as the total number of parameters in the
network f�, i.e., S =

PD
i=0

{wi+1 ⇥ (wi + 1)}; the number of neurons U is defined as the
number of computational units in hidden layers, i.e., U =

PD
i=1

wi. For an MLP FD,U ,W,S,B,
its parameters satisfy the simple relationship

max{W ,D}  S  W(D + 1) + (W2 +W)(D � 1) +W + 1 = O(W2D).

2.2 Structured composite functions

Let the target quantile regression function f0 : Rd ! R be a d-dimensional function. We
assume that f0 is a composition of a series of functions hi, i = 0 . . . , q, i.e.,

f0 = hq � · · · � h0,

where hi : [ai, bi]di ! [ai+1, bi+1]di+1 . Here d0 = d and dq+1 = 1. For each hi, denote by
hi = (hij)>j=1,...,di+1

the components of hi and let ti be the maximal number of variables on
which each of hij the depends on. Note that ti  di and each hij is a ti-variate function for
j = 1, . . . , di.

Many well-known important models in semiparametric and nonparametric statistics have
a compositional structure. Examples include the single index model (Härdle et al., 1993;
Horowitz and Härdle, 1996), the additive model (Stone, 1985, 1986; Hastie and Tibshirani,
1990), the projection pursuit model (Friedman and Stuetzle, 1981), the interaction model
(Stone, 1994), the composite regression model (Horowitz and Mammen, 2007), and the
generalized hierarchical interaction model (Bauer and Kohler, 2019). We consider the bounds
for the excess risk of DQR under these models in Section 5.

In this work, we focus on the quantile regression models in which the conditional quantile
function has a compositional structure. This is the key condition we use to mitigate the curse
of dimensionality. We will only assume the Hölder continuity on the component functions
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of the composite conditional quantile function. A function h : [a1, b1]d1 ! [a2, b2]d2 is said to
be Hölder continuous with order ↵ and Hölder constant � if there exist ↵ 2 (0, 1] and � � 0
such that

kh(x)� h(y)k2  �kx� yk↵
2

(2.3)

for any x, y 2 [a1, b1]d1 .
We now describe the assumptions on the target regression function f0 in detail below.

Assumption 1 (Structured target regression function with continuous components). The
target quantile regression function f0 = hq � · · · � h0 is a composition of a series of functions
hi, i = 0 . . . , q, where hi : [ai, bi]di ! [ai+1, bi+1]di+1 with d0 = d and dq+1 = 1. For each
hi = (hij)>j=1,...,di+1

(i = 0, . . . , q), its components hij : [ai, bi]ti ! [ai+1, bi+1] (j = 1, . . . , di+1)
are Hölder continuous functions with order ↵i 2 [0, 1] and constant �i � 0, where ti is the
maximal number of variables on which each of hij depends on (ti  di). Let J ⇢ {0, . . . , q}
be a set consisting of the indices of linear transformation layers of f0 (if any) and J c :=
{0, . . . , q}\J denote the complement of J .

We will show that, if the target regression function f0 satisfies Assumption 1, the DQR
estimator can automatically adapt to the compositional structure and circumvent the curse
of dimensionality.

3 A high-level description of the results

In this section, we present a high-level description of our approach, the non-asymptotic
bounds for the excess risk and the mean integrated squared error of the DQR estimator.
Detailed statements of the results and the assumptions are given in the Sections 4-6 below.

For a DQR estimator f̂n 2 Fn defined in (2.2), we evaluate its quality via the excess risk,
defined as the di↵erence between the risks of f̂n and f0,

R⌧ (f̂n)�R⌧ (f0) = EZ⇢⌧ (f̂n(X)� Y )� EZ⇢⌧ (f0(X)� Y ).

We first establish an upper bound on the excess risk, which is the starting point of our error
analysis.

Lemma 1. For any random sample S = {(Xi, Yi)ni=1
}, the excess risk of the DQR estimator

f̂n satisfies

R⌧ (f̂n)�R⌧ (f0)  2 sup
f2Fn

|R⌧ (f)�R⌧
n(f)|+ inf

f2Fn

R⌧ (f)�R⌧ (f0), (3.1)

where R⌧
n is defined in (2.1).

The excess risk of the DQR estimator is bounded above by the sum of two terms: the
stochastic error 2 supf2Fn

|R⌧ (f) � R⌧
n(f)| and the approximation error inff2Fn R⌧ (f) �

R(f0). It is interesting to note that the upper bound no longer depends on the DQR
estimator itself, but the function class Fn, the loss function ⇢⌧ and the random sample S.

The stochastic error 2 supf2Fn
|R⌧ (f)�R⌧

n(f)| can be analyzed using the empirical pro-
cess theory (Van der Vaart and Wellner, 1996; Anthony and Bartlett, 1999; Bartlett et al.,
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2019). A key step is to calculate the complexity measure of Fn in terms of its covering
number. The details are given in Section 4.

The approximation error term inff2Fn R⌧ (f) � R⌧ (f0) measures the approximation er-
ror of the function class Fn for f0 under the loss function ⇢⌧ . To utilize the approxima-
tion theories of neural networks, we need to relate inff2Fn R⌧ (f) � R⌧ (f0) to the quantity
inff2Fn kf � f0k for some functional norm k · k. The power of neural network functions
approximating high-dimensional functions have been studied by many authors, some recent
works include Yarotsky (2017, 2018); Shen et al. (2019, 2020), among others. For a composite
function f0 under Assumption 1, we derive new approximation results in Section 6.

To clearly describe how the error bounds depend on various parameters, including the
network parameters such as depth, width and size of the network, as well as the model
parameters such as the intrinsic and ambient dimensions of the model, we present general
expressions of the stochastic errors and the approximation errors, which constitute the upper
bounds for the excess risk and the mean integrated squared error (MISE), in Theorems 1
and 2 in Section 4 below. The network parameters, similar to the bandwidth in kernel
nonparametric regression or density estimation, can be tuned as a function of the sample
size and the model dimension to obtain the best trade-o↵ between the stochastic error and the
approximation error, and therefore achieve the best overall error rate. An appealing aspect
of our results is that they clearly and explicitly describe how the prefactors in the error
bounds depend on the network parameters and the dimensionality of the model. Explicit
expressions of the bounds for the excess risk and the MISE are presented in Corollaries 2
and 3 in Section 4.

In Section 5, we consider several well-known semiparametric and nonparametric models
that are widely used to mitigate the curse of dimensionality, including the single index model,
the additive model, the projection pursuit model, the interaction model, the univariate
composite regression model, and the generalized hierarchical interaction model. We derive
explicit expressions of the error bounds when the underlying conditional quantile function
takes the form of these well-known models

As can be seen in Corollary 2 for the excess risk of the DQR estimator and the error
bounds for the models considered in Section 5, based on appropriately specified network
parameters (depth, width and size of the network), we have the following upper bound for
the excess risk,

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C0Cd,d⇤(log n)

2n�(1� 1
p)

2↵⇤
2↵⇤+t⇤ , (3.2)

where C0 is a constant only depending on the model parameters such as the smoothness
index of the underlying conditional quantile function, Cd,d⇤ is the prefactor depending on
d, the dimension of the predictor; and d⇤, determined by the dimensions of the component
functions in the composite function. The convergence rate part of the error bound (3.2),
n�(1�1/p)2↵⇤/(2↵⇤

+t⇤), is determined by the number of moments p of the response Y (see
Assumption 2 below), the smoothness index of the composite function ↵⇤, and the intrinsic
dimension of the model t⇤. If Y has sub-exponential tail probabilities, we can set p = 1.
The bound for the mean integrated squared error of the DQR estimator has a form similar
to (3.2), see Corollary 3.

Explicit expressions for Cd,d⇤ in (3.2) are given in Corollaries 2 and 3, as well as for
the examples in Section 5. For example, for the single index model (5.1), the additive
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model (5.2) and the additive model with an unknown link function (5.3), Cd,d⇤ = d2 log d.
For the interaction model (5.4), Cd,d⇤ = (Kdd⇤)2 log(Kdd⇤), where K is the number of
component functions and d⇤ is the dimension of the component functions in the model. For
the projection pursuit model (5.5), Cd,d⇤ = (max{K, d})2 log(max{K, d}), where K is the
number of component functions in the model. For the univariate composite model (5.6) and
the generalized hierarchical interaction model (5.8), the forms of Cd,d⇤ are more complicated,
they are given in Section 5.

These results demonstrate that DQR with deep neural networks can significantly atten-
uate the curse of dimensionality when the underlying conditional quantile function takes the
form of one of these models, even though the construction of the DQR estimator does not
use the specific structure of these models.

4 Non-asymptotic error bounds

In this section, we present non-asymptotic error bounds for the DQR estimator, including
bounds for the excess risk upper bounds in section 4.1 and bounds for mean integrated
squared error in 4.2. The bounds are determined by a trade-o↵ between the stochastic error
and the approximation error.

4.1 Excess risk bounds

For analyzing the stochastic error of the DQR estimator, we make the following assumption.

Assumption 2. (i) The conditional ⌧ -th quantile of ⌘ given X = x is 0 and E(|⌘||X = x) <
1 for almost every x 2 X . (ii) The support of covariates X is a bounded compact set in
Rd, and without loss of generality X = [0, 1]d. (iii) The response variable Y has a finite p-th
moment for some p > 1, i.e., there exists a finite constant M > 0 such that E|Y |p  M .

Note that throughout the paper, we focus on the case when X = [0, 1]d. In the non-
parametric regression problems, we can always first transform the predictors to a bounded
region.

For a class F of functions: X ! R, its pseudo dimension, denoted by Pdim(F), is defined
to be the largest integer m for which there exists (x1, . . . , xm, y1, . . . , ym) 2 Xm ⇥ Rm such
that for any (b1, . . . , bm) 2 {0, 1}m there exists f 2 F such that 8i : f(xi) > yi () bi = 1
(Anthony and Bartlett, 1999; Bartlett et al., 2019). For a class of real-valued functions
generated by neural networks, pseudo dimension is a natural measure of its complexity.
In particular, if F is the class of functions generated by a neural network with a fixed
architecture and fixed activation functions, we have Pdim(F) = VCdim(F) (Theorem 14.1
in Anthony and Bartlett (1999)), where VCdim(F) is the VC dimension of F . In our results,
we require the sample size n to be greater than the pseudo dimension of the class of neural
networks considered.

For a given sequence x = (x1, . . . , xn) 2 X n, let F�|x = {(f(x1), . . . , f(xn) : f 2 F�} ⇢
Rn. For a positive number �, let N (�, k · k1,F�|x) be the covering number of F�|x under the
norm k · k1 with radius �. Define the uniform covering number Nn(�, k · k1,F�) to be the
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maximum over all x 2 X of the covering number N (�, k · k1,F�|x), i.e.,

Nn(�, k · k1,F�) = max{N (�, k · k1,F�|x) : x 2 X}. (4.1)

We give an upper bound of the stochastic error in the following lemma.

Lemma 2. Consider the d-variate nonparametric regression model in (1.1) with an unknown
regression function f0. Let F� = FD,W,U ,S,B be a class of feedforward neural networks with a
continuous piecewise-linear activation function of finite pieces and f̂� 2 argminf2F�

R⌧
n(f)

be the empirical risk minimizer over F�. Assume that Assumption 2 holds and kf0k1  B
for B � 1. Then, for 2n � Pdim(F�) and any ⌧ 2 (0, 1),

sup
f2F�

|R⌧ (f)�R⌧
n(f)|  c0

max{⌧, 1� ⌧}B
n1�1/p

logN2n(n
�1, k · k1,F�), (4.2)

where c0 > 0 is a constant independent of n, d, ⌧,B,S,W and D. Moreover,

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C0

max{⌧, 1� ⌧}BSD log(S) log(n)
n1�1/p

+2 inf
f2F�

�
R⌧ (f)�R⌧ (f0)

 
, (4.3)

where C0 > 0 is a constant independent of n, d, ⌧,B,S,W and D.

Remark 1. The denominator n1�1/p in (4.2) and (4.3) can be improved to n if the response
Y is assumed to be sub-exponentially distributed, i.e., there exists a constant �Y > 0 such
that E exp(�Y |Y |) < 1. This corresponds to the case that p = +1.

The stochastic error is bounded by a term determined by the metric entropy of F� in
(4.2), which is measured by the covering number of F�. To obtain (4.3), we further bound
the covering number of F� by its pseudo dimension (VC dimension). According to Bartlett
et al. (2019), the pseudo dimension (VC dimension) of F� with piecewise-linear activation
function can be further contained and expressed in terms of its parameters D and S, i.e.,
Pdim(F�) = O(SD log(S)). This leads to the upper bound for the prediction error by the
sum of the stochastic error and the approximation error of F� to f0 in (4.3).

To derive an upper bound for the approximation error inff2F�
{R⌧ (f)�R⌧ (f0)}, we first

bound it in terms of inff2F�
kf � f0k for some functional norm k · k. In the following, we let

⌫ denote the marginal distribution of X and define kf � f0kLp(⌫) := {E|f(X)� f0(X)|p}1/p
for p 2 (0,1).

Lemma 3. Assume that Assumption 2 (i) holds. Let f0 be the target function defined in
(1.1) and R⌧ (f0) be its risk. Then, we have

inf
f2F�

{R⌧ (f)�R⌧ (f0)}  max{⌧, 1�⌧} inf
f2F�

E|f(X)�f0(X)| = max{⌧, 1�⌧} inf
f2F�

kf�f0kL1(⌫),

where ⌫ denotes the marginal distribution of X.

As a consequence of Lemma 3, we only need to give upper bounds on the approximation
error inff2F�

kf�f0kL1(⌫) to give the overall bounds on the excess risk of the ERM f̂� defined
in (2.2). Furthermore, if the conditional distributions of error given covariates satisfy proper
conditions and the risk function R(·) has a local quadratic approximation around f0, the
convergence rate results can be further improved.
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Assumption 3 (Local quadratic bound of the excess risk). There exist some constants
c0⌧ = c0⌧ (⌧, X, ⌘, f0) > 0 and �0⌧ = �0⌧ (⌧, X, ⌘, f0) > 0 which may depend on ⌧ , X, ⌘ and f0
such that

R⌧ (f)�R⌧ (f0)  c0⌧kf � f0k2L2(⌫),

for any f satisfying kf � f0kL1(X 0)  �0⌧ , where X 0 is any subset of X such that P (X 2
X 0) = P (X 2 X ).

Remark 2. Assumption 3 is generally satisfied when the conditional density of ⌘ given
X = x is positive in a neighborhood of its ⌧ -th conditional quantile.

By Lemma 3 and Assumption 3, a sharper bound for the approximation error improves
over that of Lemma 3 can be obtained and presented in the next lemma.

Lemma 4. Assume that Assumption 2 (i) and 3 hold, let f0 be the target function defined
in (1.1) and R⌧ (f0) be its risk, then we have

inf
f2F�

{R⌧ (f)�R⌧ (f0)}  c⌧ inf
f2F�

kf � f0k2L2(⌫),

where c⌧ � max
�
c0⌧ ,max{⌧, 1� ⌧}/�0⌧

 
> 0 is a constant, ⌫ denotes the marginal probability

measure of X and F� = FD,W,U ,S,B denotes the class of feedforward neural networks with
parameters D,W ,U ,S and B.

Remark 3. We establish the error bounds for approximating a composite function using
deep neural networks in Theorem 3 in Section 6. Theorem 3 can be used to bound the
approximation error term inff2F�

kf � f0kL2(⌫) in Lemmas 3 and 4, which leads to the bound
for the approximation error in Theorem 1 below.

Before stating the results for the excess risk bounds, we specify the network parameters.
For any given Ni, Li 2 N+, i 2 J c, we set the function class F� = FD,W,U ,S,B consisting of
ReLU multi-layer perceptrons with width no more than W and depth D, where

W = max
i=0,...,q

di max{4tibN1/ti
i c+ 3ti, 12Ni + 8}, (4.4)

D =
X

i2Jc

(12Li + 15) + 2|J |. (4.5)

Here recall J ⇢ {0, . . . , q} is a set collecting the indices of linear layers of f0 (if any) and
J c := {0, . . . , q}\J denotes the complement of J .

Theorem 1 (Non-asymptotic excess risk bound). Under model (1.1), suppose that Assump-
tions 1 and 2 hold, ⌫ is absolutely continuous with respect to the Lebesgue measure, and
kf0k1  B for some B � 1. Suppose the network parameters of the function class F�

are specified as in (4.4) and (4.5). Then, for 2n � Pdim(F�), the excess risk of the DQR
estimator f̂� satisfies

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C

�⌧BSD log(S) log(n)
n1�1/p

+ 2�⌧

X

i2Jc

C⇤
i �

⇤
i t

⇤
i (NiLi)

�2↵⇤
i /ti ,
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where �⌧ = max{⌧, 1 � ⌧} and C > 0 is a constant which does not depend on n, d, ⌧,B,
S, D, C⇤

i , �
⇤
i , ↵

⇤
i , Ni or Li, and C⇤

i = 18⇧
q
j=i+1↵j , �⇤

i = ⇧q
j=i�

⇧
q
k=j+1↵k

j , ↵⇤
i = ⇧q

j=i↵j and

t⇤i = (⇧q
j=i

p
tj

⇧
q
k=j↵k)/

p
ti
↵i.

Additionally if Assumption 3 also holds, we have

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C

�⌧BSD log(S) log(n)
n1�1/p

+ 2c⌧
⇥X

i2Jc

C⇤
i �

⇤
i t

⇤
i (NiLi)

�2↵⇤
i /ti

⇤2
,

where c⌧ > 0 is a constant defined in Lemma 4 and C > 0 is a constant not depending on
n, d, ⌧,B, S, D, C⇤

i , �
⇤
i , ↵

⇤
i , Ni or Li.

Remark 4. In Theorem 1, the bounds for the excess risk are explicitly expressed in terms of
the network parameters D and S and the parameters Ni and Li. , which determine the width
and the depth of the network as specified in (4.4) and (4.5). The dependence of the bounds
on the dimensions of the functions (d, tj) and the Hölder constants (↵j,�j) for the functions
is also explicitly described. These constants are given and determined by the underlying
model, so we cannot change them. The constants C and c⌧ are independent of all the above
parameters, in particular, they do not depend on the dimensions (d, tj).

Theorem 1 gives a general expression of the upper bound for the excess risk. This bound
clearly describes how the bounds depend on various parameters. The parameters that can be
changed or tuned are the network parameters given in terms of Ni and Li. We note that the
stochastic error term increases with (Ni, Li), while the approximation error term decreases
with (Ni, Li). Thus we can select (Ni, Li) to balance these two error terms, which lead to
the best error bound. We will present an explicit expression of the risk bound in Corollary
2 below. First, we state a simpler bound assuming that all the component functions in the
composition are Lipschitz continuous with ↵i = 1, i = 0, 1, . . . , q.

Corollary 1. Under model (1.1), suppose Assumptions 1 and 2 hold and all hij : Dij ! R
in Theorem 3 are Lipschitz continuous functions (↵i = 1 for i = 0, . . . , q) with Lipschitz
constants �i � 0. Given any N,L 2 N+, for i 2 J c, we set the same shape for each
subnetwork with Ni = N 2 N+ and Li = L 2 N+, and for j 2 J , we set the 3-layer
subnetwork with width (dj, 2dj, dj+1) according to Lemma 9. Suppose the network parameters
of the function class F� are specified as in (4.4) and (4.5). Then, for 2n � Pdim(F�), the
excess risk of the DQR estimator f̂� satisfies

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C

�⌧BSD log(S) log(n)
n1�1/p

+ 36�⌧

X

i2Jc

⇧k=i+1

p
tk(NiLi)

�2/ti ,

where �⌧ = max{⌧, 1 � ⌧} and C > 0 is a constant independent of n, d, ⌧,B,S,D, N or L.
Additionally if Assumption 3 also holds, we have

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C

�⌧BSD log(S) log(n)
n1�1/p

+ 648c⌧
⇥X

i2Jc

⇧k=i+1

p
tk(NiLi)

�2/ti
⇤2
,

where c⌧ > 0 is a constant defined in Assumption 3 and C > 0 is a constant independent of
n, d, ⌧,B,S,D, N or L.
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Remark 5. The log(n) factor in the stochastic error of the upper bound in Theorem 1
and Corollary 1 is due to the truncation technique used in the proof. Power of log factors,
(logn)k for some k 2 N+, are commonly seen in the results of related work, e.g., Bauer and
Kohler (2019); Schmidt-Hieber et al. (2020) and Farrell et al. (2021). By properly setting
the network size S or depth D to have order O(nc/(log n)k) for some constant c > 0 and
k 2 N+, the final convergence rate of the excess risk could be made optimal. However, this
will make the selection of the network parameters more complicated. Therefore, we will not
do so in this paper. The rate of convergence is (nearly) optimal up to a logarithmic factor
(log n)2.

We now present an explicit risk bound for the DQR estimators with three sets of network
parameters with di↵erent depth and width. All these three di↵erent specifications of the
network parameters lead to the same risk bound.

Corollary 2. Under model (1.1), suppose that Assumptions 1-3 hold, ⌫ is absolutely contin-
uous with respect to the Lebesgue measure, kf0k1  B for some B � 1 and 2n � Pdim(F�).
Let (↵⇤, t⇤) = argmin(↵⇤

i ,ti),i2Jc{↵⇤
i /ti}, �⇤ = maxi=0,...,q �⇤

i and d⇤ = maxi=0,...,q t⇤i , where
↵⇤
i ,�

⇤
i and t⇤i are defined in Theorem 1. Suppose the network parameters of the function

class F� are specified as follows:

1. (Deep and fixed width MLP) Let Ni = 1 and Li = bn(1�1/p)t⇤/(4↵⇤
+2t⇤)c. The corre-

sponding width, depth and size of the networks satisfy:

W1 = max
i=0,...,q

di max{7ti, 20},

D1 = (12bn(1�1/p)t⇤/(4↵⇤
+2t⇤)c+ 15)|J c|+ 2|J |,

S1  W2

1
D1  max

i=0,...,q
(20diti)

2 ⇥ 29qbn(1�1/p)t⇤/(4↵⇤
+2t⇤)c.

2. (Deep and wide MLP) Let Ni = bn(1�1/p)t⇤/(8↵⇤
+4t⇤)c and Li = bn(1�1/p)t⇤/(8↵⇤

+4t⇤)c.
The corresponding width, depth and size of the networks satisfy:

W2 = max
i=0,...,q

di max{4tibbn(1�1/p)t⇤/(8↵⇤
+4t⇤)c1/tic+ 3ti, 12bn(1�1/p)t⇤/(8↵⇤

+4t⇤)c+ 8},

D2 = (12bn(1�1/p)t⇤/(8↵⇤
+4t⇤)c+ 15)|J c|+ 2|J |,

S2  W2

2
D2  max

i=0,...,q
(20diti)

2 ⇥ 29qbn(1�1/p)t⇤/(4↵⇤
+2t⇤)c3/2.

3. (Fixed depth and wide MLP) Let Ni = bn(1�1/p)t⇤/(4↵⇤
+2t⇤)c and Li = 1. The corre-

sponding width, depth and size of the networks satisfy:

W3 = max
i=0,...,q

di max{4tibbn(1�1/p)t⇤/(4↵⇤
+2t⇤)c1/tic+ 3ti, 12bn(1�1/p)t⇤/(4↵⇤

+2t⇤)c+ 8},

D3 = 27|J c|+ 2|J |,
S3  W2

3
D3  max

i=0,...,q
(20diti)

2 ⇥ 29qbn(1�1/p)t⇤/(4↵⇤
+2t⇤)c2.
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Then, the excess risk satisfies

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C0Cd,d⇤(log n)

2n�(1� 1
p)

2↵⇤
2↵⇤+t⇤ , (4.6)

where Cd,d⇤ = (d⇤)2(maxi=0,...,q diti)2 log(maxi=0,...,q diti), C0 = c�⌧c⌧Bq2 log(q)(�⇤)2. Here c
is a universal constant not depending on any parameters.

In Corollary 2, three sets of di↵erent network parameters lead to the same risk bound.
Therefore, generally the choice of network parameters is not unique to achieve a desired risk
bound. Although the three sets of network parameters given in Corollary 2 yield the same
risk bound, the sizes of the networks are di↵erent. As can be seen from the expressions of
the network sizes S1, S2 and S3, we have, on the logarithmic scale,

logS1 : logS2 : logS3 = 1 :
3

2
: 2.

Therefore, the deep and fixed width network in the first network specification with width W1

and depth D1 is the most e�cient design among the three network structures in the sense
that it has the smallest network size. Corollary 2 shows that deep networks have advantages
over shallow ones in the sense that deep networks achieve the same risk bound with a smaller
network size. More detailed discussions on the relationship between convergence rate and
network structure can be found in Jiao et al. (2021).

4.2 Mean integrated squared error

The empirical risk minimization quantile estimator typically results in an estimator f̂n for
which its risk R⌧ (f̂n) is close to optimal risk R⌧ (f0) in expectation or with high probability.
However, small excess risk in general only implies in a weak sense that the ERM f̂n is close
to f0 (Remark 3.18, Steinwart (2007)). Hence, in this subsection, we bridge the gap between
the excess risk and the mean integrated squared error (MISE) of the estimated conditional
quantile function. To this end, we need the following condition on the conditional distribution
of Y given X.

Assumption 4. There exist constants � > 0 and  > 0 such that for any |�|  �,
��PY |X(f0(x) + � | x)� PY |X(f0(x) | x)

�� � |�|,

for all x 2 X up to a ⌫-negligible set, where PY |X(·|x) denotes the conditional distribution
function of Y given X = x.

Remark 6. A similar condition is assumed by Padilla and Chatterjee (2021) in studying
nonparametric quantile trend filtering. This condition is weaker than Condition 2.1 in He
and Shi (1994) and condition D.1 in Belloni et al. (2011), which require the conditional
density of Y given X = x to be bounded below near its ⌧ -th quantile.

Under Assumption 4, the self-calibration condition can be established as stated below.
This will lead to a bound on the MISE of the estimated quantile function based on a bound
for the excess risk.
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Lemma 5 (Self-calibration). Suppose that Assumption 2 (i) and Assumption 4 hold. For
any f : X ! R, denote �2(f, f0) = E

⇥
min{|f(X)� f0(X)|2, |f(X)� f0(X)|}

⇤
where  and

� > 0 are defined in Assumption 4. Then we have

�2(f, f0)  c,�
�
R⌧ (f)�R⌧ (f0)

 
,

for any f : X ! R where c,� = max{2/, 4/(�)}. More exactly, for f : X ! R satisfying
|f(x)� f0(x)|  � for x 2 X up to a ⌫-negligible set, we have

kf � f0k2L2(⌫) 
2



�
R⌧ (f)�R⌧ (f0)

 
,

otherwise we have

kf � f0kL1(⌫) 
4

�

�
R⌧ (f)�R⌧ (f0)

 
.

Remark 7. Similar self-calibration conditions can be found in Christmann and Steinwart
(2007); Steinwart et al. (2011); Lv et al. (2018) and Padilla et al. (2020). A general result is
obtained in Steinwart et al. (2011) under the so-called ⌧ -quantile of t-average type assumption
on the joint distribution P , where kf�f0kLr(⌫) is upper bounded by the q-th root of excess risk
R⌧ (f) �R⌧ (f0) for t 2 (0,1], q 2 [1,1) and r = tq/(t + 1). However, those assumptions
on the joint distribution P generally require that the conditional distribution of Y given X is
bounded, which may not be applicable to models with heavy-tailed response as in our setting,
see, e.g., Assumption 2.

Theorem 2 (Non-asymptotic bound for mean integrated squared error). Under model (1.1),
suppose that Assumptions 1, 2 and 4 hold, ⌫ is absolutely continuous with respect to the
Lebesgue measure, and kf0k1  B for some B � 1. Then, given any Ni, Li 2 N+, i 2 J c, for
the function class of ReLU multi-layer perceptrons F� = FD,W,U ,S,B with width no larger than

W = maxi=0,...,q di max{4tibN1/ti
i c + 3ti, 12Ni + 8} and depth D =

P
i2Jc(12Li + 15) + 2|J |,

for 2n � Pdim(F�), the MISE of the DQR estimator f̂� satisfies

E
�
�2(f̂�, f0)

 
 c,��⌧

h
C
BSD log(S) log(n)

n1�1/p
+ 2

X

i2Jc

C⇤
i �

⇤
i t

⇤
i (NiLi)

�2↵⇤
i /ti

i
,

where c,� = max{4/(�), 2/} and �2(·, ·) are defined in Lemma 5, �⌧ = max{⌧, 1 � ⌧}
and C > 0 is a constant not depending on n, d, ⌧,B,S,D, C⇤

i ,�
⇤
i ,↵

⇤
i , Ni or Li, and C⇤

i =

18⇧
q
j=i+1↵j , �⇤

i = ⇧q
j=i�

⇧
q
k=j+1↵k

j , ↵⇤
i = ⇧q

j=i↵j and t⇤i = (⇧q
j=i

p
tj

⇧
q
k=j↵k)/

p
ti
↵i. Additionally

if Assumption 3 also holds, we have

Ekf̂� � f0kL⇤(⌫)  c,�
h
C
�⌧BSD log(S) log(n)

n1�1/p
+ 2c⌧

�X

i2Jc

C⇤
i �

⇤
i t

⇤
i (NiLi)

�2↵⇤
i /ti

 2
i
,

where c⌧ > 0 is a constant defined in Assumption 3 and C > 0 is a constant independent of
n, d, ⌧,B,S,D, C⇤

i ,�
⇤
i ,↵

⇤
i , Ni or Li.

Similar to Corollary 2, we have the following corollary for the MISE of the DQR estimator.

16


