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We study expressive power of shallow and deep neural networks with piece-wise linear activation
functions. We establish new rigorous upper and lower bounds for the network complexity in the setting
of approximations in Sobolev spaces. In particular, we prove that deep ReLU networks more efficiently
approximate smooth functions than shallow networks. In the case of approximations of 1D Lipschitz
functions we describe adaptive depth-6 network architectures more efficient than the standard shallow
architecture.
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1. Introduction

Recently, multiple successful applications of deep neural net-
works to pattern recognition problems (LeCun, Bengio, & Hinton,
2015; Schmidhuber, 2015) have revived active interest in theo-
retical properties of such networks, in particular their expressive
power. It has been argued that deep networks may be more ex-
pressive than shallow ones of comparable size (see, e.g., Bianchini
& Scarselli, 2014; Delalleau & Bengio, 2011; Montufar, Pascanu,
Cho, & Bengio, 2014; Raghu, Poole, Kleinberg, Ganguli, & Sohl-
Dickstein, 2016; Telgarsky, 2015). In contrast to a shallownetwork,
a deep one can be viewed as a long sequence of non-commutative
transformations, which is a natural setting for high expressiveness
(cf. the well-known Solovay–Kitaev theorem on fast approxi-
mation of arbitrary quantum operations by sequences of non-
commutative gates, see Dawson and Nielsen (2006); Kitaev, Shen,
and Vyalyi (2002)).

There are various ways to characterize expressive power of
networks. Delalleau and Bengio (2011) consider sum–product
networks and prove for certain classes of polynomials that they are
much more easily represented by deep networks than by shallow
networks. Montufar et al. (2014) estimate the number of linear
regions in the network’s landscape. Bianchini and Scarselli (2014)
give bounds for Betti numbers characterizing topological proper-
ties of functions represented by networks. Telgarsky (2015, 2016)
provides specific examples of classification problems where deep
networks are provably more efficient than shallow ones.

In the context of classification problems, a general and standard
approach to characterizing expressiveness is based on the notion
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of the Vapnik–Chervonenkis dimension (Vapnik & Chervonenkis,
2015). There exist several bounds for VC-dimension of deep net-
works with piece-wise polynomial activation functions that go
back to geometric techniques of Goldberg and Jerrum (1995) and
earlier results of Warren (1968); see Bartlett, Maiorov, and Meir
(1998); Sakurai (1999) and the book (Anthony & Bartlett, 2009).
There is a related concept, the fat-shattering dimension, for real-
valued approximation problems (Anthony & Bartlett, 2009; Kearns
& Schapire, 1990).

A very general approach to expressiveness in the context of
approximation is the method of nonlinear widths by DeVore,
Howard, and Micchelli (1989) that concerns approximation of a
family of functions under assumption of a continuous dependence
of the model on the approximated function.

In this paper we examine the problem of shallow-vs-deep ex-
pressiveness from the perspective of approximation theory and
general spaces of functions having derivatives up to certain order
(Sobolev-type spaces). In this framework, the problem of expres-
siveness is very well studied in the case of shallow networks with
a single hidden layer, where it is known, in particular, that to ap-
proximate a Cn-function on a d-dimensional set with infinitesimal
error ϵ one needs a network of size about ϵ−d/n, assuming a smooth
activation function (see, e.g., Mhaskar (1996), Pinkus (1999) for a
number of related rigorous upper and lower bounds and further
qualifications of this result). Much less seems to be known about
deep networks in this setting, though Mhaskar, Liao, and Pog-
gio (2016), Mhaskar and Poggio (2016) have recently introduced
functional spaces constructed using deep dependency graphs and
obtained expressiveness bounds for related deep networks.

We will focus our attention on networks with the ReLU activa-
tion function σ (x) = max(0, x), which, despite its utter simplicity,
seems to be the most popular choice in practical applications
(LeCun et al., 2015).Wewill consider L∞-error of approximation of
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functions belonging to the Sobolev spaces Wn,∞([0, 1]d) (without
any assumptions of hierarchical structure). We will often consider
families of approximations, as the approximated function runs
over the unit ball Fd,n in Wn,∞([0, 1]d). In such cases we will
distinguish scenarios of fixed and adaptive network architectures.
Our goal is to obtain lower andupper bounds on the expressiveness
of deep and shallow networks in different scenarios. We measure
complexity of networks in a conventional way, by counting the
number of their weights and computation units (cf. Anthony and
Bartlett (2009)).

The main body of the paper consists of Sections 2–4.
In Section 2wedescribe our ReLUnetworkmodel and show that

the ReLU function is replaceable by any other continuous piece-
wise linear activation function, up to constant factors in complexity
asymptotics (Proposition 1).

In Section 3 we establish several upper bounds on the com-
plexity of approximating by ReLU networks, in particular showing
that deep networks are quite efficient for approximating smooth
functions. Specifically:

• In Section 3.1 we show that the function f (x) = x2 can
be ϵ-approximated by a network of depth and complexity
O(ln(1/ϵ)) (Proposition 2). This also leads to similar upper
bounds on the depth and complexity that are sufficient to
implement an approximate multiplication in a ReLU net-
work (Proposition 3).

• In Section 3.2 we describe a ReLU network architecture
of depth O(ln(1/ϵ)) and complexity O(ϵ−d/n ln(1/ϵ)) that is
capable of approximatingwith error ϵ any function from Fd,n
(Theorem 1).

• In Section 3.3 we show that, even with fixed-depth net-
works, one can further decrease the approximation com-
plexity if the network architecture is allowed to depend
on the approximated function. Specifically, we prove that
one can ϵ-approximate a given Lipschitz function on the
segment [0, 1] by a depth-6 ReLU network with O( 1

ϵ ln(1/ϵ) )
connections and activation units (Theorem 2). This upper
bound is of interest since it lies below the lower bound pro-
vided by the method of nonlinear widths under assumption
of continuous model selection (see Section 4.1).

In Section 4 we obtain several lower bounds on the complexity
of approximation by deep and shallow ReLU networks, using dif-
ferent approaches and assumptions.

• In Section 4.1 we recall the general lower bound provided
by themethod of continuous nonlinear widths. This method
assumes that parameters of the approximation continuously
depend on the approximated function, but does not as-
sume anything about how the approximation depends on
its parameters. In this setup, at least ∼ϵ−d/n connections
and weights are required for an ϵ-approximation on Fd,n
(Theorem3). As alreadymentioned, for d = n = 1 this lower
bound is above the upper bound provided by Theorem 2.

• In Section 4.2 we consider the setup where the same net-
work architecture is used to approximate all functions in
Fd,n, but the weights are not assumed to continuously de-
pend on the function. In this case, application of existing
results on VC-dimension of deep piece-wise polynomial
networks yields a ∼ ϵd/(2n) lower bound in general and
a ∼ ϵ−d/nln−2p−1(1/ϵ) lower bound if the network depth
grows as O(lnp(1/ϵ)) (Theorem 4).

• In Section 4.3 we consider an individual approximation,
without any assumptions regarding it as an element of a
family as in Sections 4.1 and 4.2. We prove that for any d, n
there exists a function inWn,∞([0, 1]d) such that its approx-
imation complexity is not o(ϵ−d/(9n)) as ϵ → 0 (Theorem 5).

Fig. 1. A feedforward neural network having 3 input units (diamonds), 1 output unit
(square), and 7 computation units with nonlinear activation (circles). The network
has 4 layers and 16 + 8 = 24 weights.

• In Section 4.4 we prove that ϵ-approximation of any non-
linear C2-function by a network of fixed depth L requires
at least ∼ ϵ−1/(2(L−2)) computation units (Theorem 6). By
comparison with Theorem 1, this shows that for sufficiently
smooth functions approximation by fixed-depth ReLU net-
works is less efficient than by unbounded-depth networks.

In Section 5 we discuss the obtained bounds and summarize
their implications, in particular comparing deep vs. shallow net-
works and fixed vs. adaptive architectures.

The arXiv preprint of the first version of the present work ap-
peared almost simultaneously with the work of Liang and Srikant
(2016) containing results partly overlapping with our results in
Sections 3.1, 3.2 and 4.4. Liang and Srikant consider networks
equipped with both ReLU and threshold activation functions. They
prove a logarithmic upper bound for the complexity of approxi-
mating the function f (x) = x2, which is analogous to our Propo-
sition 2. Then, they extend this upper bound to polynomials and
smooth functions. In contrast to our treatment of generic smooth
functions based on standard Sobolev spaces, they impose more
complex assumptions on the function (including, in particular, how
many derivatives it has) that depend on the required approxima-
tion accuracy ϵ. As a consequence, they obtain strong O(lnc(1/ϵ))
complexity bounds rather different from our bound in Theorem 1
(in fact, our lower bound proved in Theorem 5 rules out, in gen-
eral, such strong upper bounds for functions having only finitely
many derivatives). Also, Liang and Srikant prove a lower bound
for the complexity of approximating convex functions by shallow
networks. Our version of this result, given in Section 4.4, is different
in that we assume smoothness and nonlinearity instead of global
convexity.

2. The ReLU network model

Throughout the paper, we consider feedforward neural net-
works with the ReLU (Rectified Linear Unit) activation function

σ (x) = max(0, x).

The network consists of several input units, one output unit, and a
number of ‘‘hidden’’ computation units. Each hidden unit performs
an operation of the form

y = σ

(
N∑

k=1

wkxk + b

)
(1)

with someweights (adjustable parameters) (wk)Nk=1 and b depend-
ing on the unit. The output unit is also a computation unit, but
without the nonlinearity, i.e., it computes y =

∑N
k=1wkxk + b. The

units are grouped in layers, and the inputs (xk)Nk=1 of a computation
unit in a certain layer are outputs of some units belonging to any
of the preceding layers (see Fig. 1). Note that we allow connections
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between units in non-neighboring layers. Occasionally, when this
cannot cause confusion, we may denote the network and the
function it implements by the same symbol.

The depth of the network, the number of units and the to-
tal number of weights are standard measures of network com-
plexity (Anthony & Bartlett, 2009). We will use these measures
throughout the paper. The number of weights is, clearly, the sum
of the total number of connections and the number of computation
units. We identify the depth with the number of layers (in particu-
lar, the most common type of neural networks – shallow networks
having a single hidden layer – are depth-3 networks according to
this convention).

We finish this subsectionwith aproposition showing that, given
our complexity measures, using the ReLU activation function is
not much different from using any other piece-wise linear acti-
vation function with finitely many breakpoints: one can replace
one network by an equivalent one but having another activation
function while only increasing the number of units and weights
by constant factors. This justifies our restricted attention to the
ReLU networks (which could otherwise have been perceived as an
excessively particular example of networks).

Proposition 1. Let ρ : R → R be any continuous piece-wise linear
function with M breakpoints, where 1 ≤ M < ∞.

(a) Let ξ be a network with the activation function ρ, having depth
L, W weights and U computation units. Then there exists a ReLU
network η that has depth L, not more than (M + 1)2W weights
and not more than (M +1)U units, and that computes the same
function as ξ .

(b) Conversely, let η be a ReLU network of depth L with W weights
and U computation units. Let D be a bounded subset of Rn,
where n is the input dimension of η. Then there exists a network
with the activation function ρ that has depth L, 4W weights and
2U units, and that computes the same function as η on the set D.

Proof. (a) Let a1 < · · · < aM be the breakpoints of ρ, i.e., the points
where its derivative is discontinuous: ρ ′(ak+) ̸= ρ ′(ak−). We can
then express ρ via the ReLU function σ , as a linear combination

ρ(x) = c0σ (a1 − x) +

M∑
m=1

cmσ (x − am) + h

with appropriately chosen coefficients (cm)Mm=0 and h. It follows
that computation performed by a single ρ-unit,

x1, . . . , xN ↦→ ρ

( N∑
k=1

wkxk + b
)
,

can be equivalently represented by a linear combination of a con-
stant function and computations ofM + 1 σ -units,

x1, . . . , xN ↦→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ

( N∑
k=1

wkxk + b − am
)
, m = 1, . . . ,M,

σ

(
a1 − b −

N∑
k=1

wkxk
)
, m = 0

(here m is the index of a ρ-unit). We can then replace one-by-
one all the ρ-units in the network ξ by σ -units, without changing
the output of the network. Obviously, these replacements do not
change the network depth. Since each hidden unit gets replaced
byM +1 new units, the number of units in the new network is not
greater thanM+1 times their number in the original network. Note
also that the number of connections in the network ismultiplied, at
most, by (M + 1)2. Indeed, each unit replacement entails replacing
each of the incoming and outgoing connections of this unit byM+1

new connections, and each connection is replaced twice: as an
incoming and as an outgoing one. These considerations imply the
claimed complexity bounds for the resulting σ -network η.

(b) Let a be any breakpoint of ρ, so that ρ ′(a+) ̸= ρ ′(a−). Let r0
be the distance separating a from the nearest other breakpoint, so
that ρ is linear on [a, a + r0] and on [a − r0, a] (if ρ has only one
node, any r0 > 0 will do). Then, for any r > 0, we can express the
ReLU function σ via ρ in the r-neighborhood of 0:

σ (x) =
ρ
(
a +

r0
2r x
)
− ρ

(
a −

r0
2 +

r0
2r x
)
− ρ(a) + ρ

(
a −

r0
2

)(
ρ ′(a+) − ρ ′(a−)

) r0
2r

,

x ∈ [−r, r].

It follows that a computation performed by a single σ -unit,

x1, . . . , xN ↦→ σ

( N∑
k=1

wkxk + b
)
,

can be equivalently represented by a linear combination of a con-
stant function and two ρ-units,

x1, . . . , xN ↦→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρ

(
a +

r0
2r

b +
r0
2r

N∑
k=1

wkxk
)
,

ρ

(
a −

r0
2

+
r0
2r

b +
r0
2r

N∑
k=1

wkxk
)
,

provided the condition
N∑

k=1

wkxk + b ∈ [−r, r] (2)

holds. SinceD is a bounded set, we can choose r at each unit of the
initial network η sufficiently large so as to satisfy condition (2) for
all network inputs fromD. Then, like in (a), we replace each σ -unit
with two ρ-units, which produces the desired ρ-network. □

3. Upper bounds

Throughout the paper, we will be interested in approximating
functions f : [0, 1]d → R by ReLU networks. Given a function
f : [0, 1]d → R and its approximation f̃ , by the approximation
error we will always mean the uniform maximum error

∥f − f̃ ∥∞ = max
x∈[0,1]d

|f (x) − f̃ (x)|.

3.1. Fast deep approximation of squaring and multiplication

Our first key result shows that ReLU networks with uncon-
straineddepth can very efficiently approximate the function f (x) =

x2 (more efficiently than any fixed-depth network, as we will see
in Section 4.4). Our construction uses the ‘‘sawtooth’’ function that
has previously appeared in the paper by Telgarsky (2015).

Proposition 2. The function f (x) = x2 on the segment [0, 1] can be
approximated with any error ϵ > 0 by a ReLU network having the
depth and the number of weights and computation units O(ln(1/ϵ)).

Proof. Consider the ‘‘tooth’’ (or ‘‘mirror’’) function g : [0, 1] →

[0, 1],

g(x) =

⎧⎪⎨⎪⎩
2x, x <

1
2
,

2(1 − x), x ≥
1
2
,
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(a) (b)

(c)

Fig. 2. Fast approximation of the function f (x) = x2 from Proposition 2: (a) the
‘‘tooth’’ function g and the iterated ‘‘sawtooth’’ functions g2, g3; (b) the approxi-
mating functions fm; (c) the network architecture for f4 .

and the iterated functions

gs(x) = g ◦ g ◦ · · · ◦ g  
s

(x).

Telgarsky has shown (see Lemma 2.4 in Telgarsky (2015)) that gs
is a ‘‘sawtooth’’ function with 2s−1 uniformly distributed ‘‘teeth’’
(each application of g doubles the number of teeth):

gs(x) =

⎧⎪⎪⎨⎪⎪⎩
2s
(
x −

2k
2s

)
, x ∈

[
2k
2s ,

2k + 1
2s

]
, k = 0, 1, . . . , 2s−1

− 1

2s
(
2k
2s − x

)
, x ∈

[
2k − 1

2s ,
2k
2s

]
, k = 1, 2, . . . , 2s−1,

(see Fig. 2(a)). Our key observation now is that the function f (x) =

x2 can be approximated by linear combinations of the functions
gs. Namely, let fm be the piece-wise linear interpolation of f with
2m

+ 1 uniformly distributed breakpoints k
2m , k = 0, . . . , 2m:

fm
( k
2m

)
=

( k
2m

)2
, k = 0, . . . , 2m

(see Fig. 2(b)). The function fm approximates f with the error ϵm =

2−2m−2. Now note that refining the interpolation from fm−1 to fm
amounts to adjusting it by a function proportional to a sawtooth
function:

fm−1(x) − fm(x) =
gm(x)
22m .

Hence

fm(x) = x −

m∑
s=1

gs(x)
22s .

Since g can be implemented by a finite ReLU network (as g(x) =

2σ (x) − 4σ
(
x −

1
2

)
+ 2σ (x − 1)) and since construction of fm

only involvesO(m) linear operations and compositions of g , we can
implement fm by a ReLU network having depth and the number of
weights and computation units all being O(m) (see Fig. 2(c)). This
implies the claim of the proposition. □

Since

xy =
1
2
((x + y)2 − x2 − y2), (3)

we can use Proposition 2 to efficiently implement accurate mul-
tiplication in a ReLU network. The implementation will depend
on the required accuracy and the magnitude of the multiplied
quantities.

Proposition 3. Given M > 0 and ϵ ∈ (0, 1), there is a ReLU network
η with two input units that implements a function ×̃ : R2

→ R so
that

(a) for any inputs x, y, if |x| ≤ M and |y| ≤ M, then |×̃(x, y) −

xy| ≤ ϵ;
(b) if x = 0 or y = 0, then ×̃(x, y) = 0;
(c) the depth and the number of weights and computation units in

η are not greater than c1 ln(1/ϵ)+c2 with an absolute constant
c1 and a constant c2 = c2(M).

Proof. Let f̃sq,δ be the approximate squaring function from Propo-
sition 2 such that f̃sq,δ(0) = 0 and |̃fsq,δ(x) − x2| < δ for x ∈ [0, 1].
Assume without loss of generality thatM ≥ 1 and set

×̃(x, y) =
M2

8

(̃
fsq,δ

(
|x + y|
2M

)
− f̃sq,δ

(
|x|
2M

)
− f̃sq,δ

(
|y|
2M

))
, (4)

where δ =
8ϵ
3M2 . Thenproperty (b) is immediate and (a) follows eas-

ily using expansion (3). To conclude (c), observe that computation
(4) consists of three instances of f̃sq,δ and finitely many linear and
ReLU operations, so, using Proposition 2, we can implement ×̃ by a
ReLU network such that its depth and the number of computation
units and weights are O(ln(1/δ)), i.e. are O(ln(1/ϵ) + lnM). □

3.2. Fast deep approximation of general smooth functions

In order to formulate our general result, Theorem1,we consider
the Sobolev spaces Wn,∞([0, 1]d) with n = 1, 2, . . .. Recall that
Wn,∞([0, 1]d) is defined as the space of functions on [0, 1]d lying
in L∞ along with their weak derivatives up to order n. The norm in
Wn,∞([0, 1]d) can be defined by

∥f ∥Wn,∞([0,1]d) = max
n:|n|≤n

ess sup
x∈[0,1]d

|Dnf (x)|,

where n = (n1, . . . , nd) ∈ {0, 1, . . .}d, |n| = n1 + · · · + nd,
and Dnf is the respective weak derivative. Here and in the sequel
we denote vectors by boldface characters. The spaceWn,∞([0, 1]d)
can be equivalently described as consisting of the functions from
Cn−1([0, 1]d) such that all their derivatives of order n − 1 are
Lipschitz continuous.

Throughout the paper, we denote by Fn,d the unit ball in
Wn,∞([0, 1]d):

Fn,d = {f ∈ Wn,∞([0, 1]d) : ∥f ∥Wn,∞([0,1]d) ≤ 1}.

Also, it will now be convenient to make a distinction between
networks and network architectures: we define the latter as the for-
mer with unspecified weights. We say that a network architecture
is capable of expressing any function from Fd,n with error ϵ meaning
that this can be achieved by some weight assignment.

Theorem 1. For any d, n and ϵ ∈ (0, 1), there is a ReLU network
architecture that

1. is capable of expressing any function from Fd,n with error ϵ;
2. has the depth at most c(ln(1/ϵ) + 1) and at most

cϵ−d/n(ln(1/ϵ)+ 1)weights and computation units, with some
constant c = c(d, n).

Proof. The proof will consist of two steps. We start with approxi-
mating f by a sum–product combination f1 of local Taylor polyno-
mials and one-dimensional piecewise-linear functions. After that,
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Fig. 3. Functions (φm)5m=0 forming a partition of unity for d = 1,N = 5 in the proof
of Theorem 1.

we will use results of the previous section to approximate f1 by a
neural network.

Let N be a positive integer. Consider a partition of unity formed
by a grid of (N + 1)d functions φm on the domain [0, 1]d:∑
m

φm(x) ≡ 1, x ∈ [0, 1]d.

Here m = (m1, . . . ,md) ∈ {0, 1, . . . ,N}
d, and the function φm is

defined as the product

φm(x) =

d∏
k=1

ψ

(
3N
(
xk −

mk

N

))
, (5)

where

ψ(x) =

{1, |x| < 1,
0, 2 < |x|,
2 − |x|, 1 ≤ |x| ≤ 2

(see Fig. 3). Note that

∥ψ∥∞ = 1 and ∥φm∥∞ = 1 ∀m (6)

and

suppφm ⊂

{
x :

⏐⏐⏐xk −
mk

N

⏐⏐⏐ < 1
N

∀k
}
. (7)

For any m ∈ {0, . . . ,N}
d, consider the degree-(n − 1) Taylor

polynomial for the function f at x =
m
N :

Pm(x) =

∑
n:|n|<n

Dnf
n!

⏐⏐⏐⏐
x= m

N

(
x −

m
N

)n
, (8)

with the usual conventions n! =
∏d

k=1nk! and (x −
m
N )n =∏d

k=1(xk −
mk
N )nk . Now define an approximation to f by

f1 =

∑
m∈{0,...,N}d

φmPm. (9)

We bound the approximation error using the Taylor expansion
of f :

|f (x) − f1(x)| =

⏐⏐⏐∑
m

φm(x)(f (x) − Pm(x))
⏐⏐⏐

≤

∑
m:|xk−

mk
N |< 1

N ∀k

|f (x) − Pm(x)|

≤ 2d max
m:|xk−

mk
N |< 1

N ∀k
|f (x) − Pm(x)|

≤
2ddn

n!

( 1
N

)n
max
n:|n|=n

ess sup
x∈[0,1]d

|Dnf (x)|

≤
2ddn

n!

( 1
N

)n
.

Here in the second step we used the support property (7) and
the bound (6), in the third the observation that any x ∈ [0, 1]d
belongs to the support of at most 2d functions φm, in the fourth
a standard bound for the Taylor remainder, and in the fifth the
property ∥f ∥Wn,∞([0,1]d) ≤ 1.

It follows that if we choose

N =

⌈( n!
2ddn

ϵ

2

)−1/n
⌉

(10)

(where ⌈·⌉ is the ceiling function), then

∥f − f1∥∞ ≤
ϵ

2
. (11)

Note that, by (8) the coefficients of the polynomials Pm are uni-
formly bounded for all f ∈ Fd,n:

Pm(x) =

∑
n:|n|<n

am,n
(
x −

m
N

)n
, |am,n| ≤ 1. (12)

We have therefore reduced our task to the following: construct
a network architecture capable of approximating with uniform
error ϵ

2 any function of the form (9), assuming that N is given by
(10) and the polynomials Pm are of the form (12).

Expand f1 as

f1(x) =

∑
m∈{0,...,N}d

∑
n:|n|<n

am,nφm(x)
(
x −

m
N

)n
. (13)

The expansion is a linear combination of not more than dn(N +

1)d terms φm(x)(x −
m
N )n. Each of these terms is a product of at

most d + n − 1 piece-wise linear univariate factors: d functions
ψ(3Nxk − 3mk) (see (5)) and at most n − 1 linear expressions
xk −

mk
N . We can implement an approximation of this product

by a neural network with the help of Proposition 3. Specifically,
let ×̃ be the approximate multiplication from Proposition 3 for
M = d + n and some accuracy δ to be chosen later, and consider
the approximation of the product φm(x)(x −

m
N )n obtained by the

chained application of ×̃:

f̃m,n(x) = ×̃
(
ψ(3Nx1 − 3m1), ×̃

(
ψ(3Nx2 − 3m2), . . . ,

×̃
(
xk −

mk
N , . . .

)
. . .
))
. (14)

Using statement (c) of Proposition 3, we see that f̃m,n can be
implemented by a ReLU network with the depth and the number
of weights and computation units not larger than (d+n)c1 ln(1/δ),
for some constant c1 = c1(d, n).

Nowwe estimate the error of this approximation. Note that we
have |ψ(3Nxk − 3mk)| ≤ 1 and |xk −

mk
N | ≤ 1 for all k and all

x ∈ [0, 1]d. By statement (a) of Proposition 3, if |a| ≤ 1 and |b| ≤ M ,
then |×̃(a, b)| ≤ |b| + δ. Repeatedly applying this observation to
all approximate multiplications in (14) while assuming δ < 1, we
see that the arguments of all these multiplications are bounded by
ourM (equal to d+ n) and the statement (a) of Proposition 3 holds
for each of them. We then have⏐⏐̃fm,n(x) − φm(x)

(
x −

m
N

)n⏐⏐
=
⏐⏐×̃(ψ(3Nx1 − 3m1), ×̃

(
ψ(3Nx2 − 3m2),

×̃
(
ψ(3Nx3 − 3m3), . . .

)))
−ψ(3Nx1 − 3m1)ψ(3Nx2 − 3m2)ψ(3Nx3 − 3m3) . . .

⏐⏐
≤
⏐⏐×̃(ψ(3Nx1 − 3m1), ×̃

(
ψ(3Nx2 − 3m2),

×̃
(
ψ(3Nx3 − 3m3), . . .

)))
−ψ(3Nx1 − 3m1) · ×̃

(
ψ(3Nx2 − 3m2),

×̃
(
ψ(3Nx3 − 3m3), . . .

))⏐⏐
+ |ψ(3Nx1 − 3m1)| ·

⏐⏐×̃(ψ(3Nx2 − 3m2),

×̃
(
ψ(3Nx3 − 3m3), . . .

))
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−ψ(3Nx2 − 3m2) · ×̃
(
ψ(3Nx3 − 3m3), . . .

)⏐⏐
+ · · ·

≤ (d + n)δ. (15)

Moreover, by statement (b) of Proposition 3,

f̃m,n(x) = φm(x)
(
x −

m
N

)n
, x ̸∈ suppφm. (16)

Now we define the full approximation by

f̃ =

∑
m∈{0,...,N}d

∑
n:|n|<n

am,ñfm,n. (17)

We estimate the approximation error of f̃ :

|̃f (x) − f1(x)|

=

⏐⏐⏐⏐ ∑
m∈{0,...,N}d

∑
n:|n|<n

am,n
(̃
fm,n(x) − φm(x)

(
x −

m
N

)n)⏐⏐⏐⏐
=

⏐⏐⏐⏐ ∑
m:x∈suppφm

∑
n:|n|<n

am,n
(̃
fm,n(x) − φm(x)

(
x −

m
N

)n)⏐⏐⏐⏐
≤ 2d max

m:x∈suppφm

∑
n:|n|<n

⏐⏐⏐̃fm,n(x) − φm(x)
(
x −

m
N

)n⏐⏐⏐
≤ 2ddn(d + n)δ,

where in the first step we use expansion (13), in the second the
identity (16), in the third the bound |am,n| ≤ 1 and the fact that
x ∈ suppφm for at most 2d functions φm, and in the fourth the
bound (15). It follows that if we choose

δ =
ϵ

2d+1dn(d + n)
, (18)

then ∥̃f − f1∥∞ ≤
ϵ
2 and hence, by (11),

∥̃f − f ∥∞ ≤ ∥̃f − f1∥∞ + ∥f1 − f ∥∞ ≤
ϵ

2
+
ϵ

2
≤ ϵ.

On the other hand, note that by (17), f̃ can be implemented by
a network consisting of parallel subnetworks that compute each
of f̃m,n; the final output is obtained by weighting the outputs of
the subnetworks with theweights am,n. The architecture of the full
network does not depend on f ; only theweights am,n do. As already
shown, each of these subnetworks has not more than c1 ln(1/δ)
layers, weights and computation units, with some constant c1 =

c1(d, n). There are not more than dn(N + 1)d such subnetworks.
Therefore, the full network for f̃ has not more than c1 ln(1/δ) + 1
layers and dn(N + 1)d(c1 ln(1/δ) + 1) weights and computation
units. With δ given by (18) and N given by (10), we obtain the
claimed complexity bounds. □

We remark that an analog of Theorem 1 for so-called k’th order
activation functions with k ≥ 2 can be found in Mhaskar (1993).

3.3. Faster approximations using adaptive network architectures

Theorem 1 provides an upper bound for the approximation
complexity in the casewhen the samenetwork architecture is used
to approximate all functions in Fd,n.We can consider an alternative,
‘‘adaptive architecture’’ scenario where not only the weights, but
also the architecture is adjusted to the approximated function. We
expect, of course, that this would decrease the complexity of the
resulting architectures, in general (at the price of needing to find
the appropriate architecture). In this section we show that we can
indeed obtain better upper bounds in this scenario.

For simplicity, we will only consider the case d = n = 1. Then,
Wn,∞([0, 1]d) is the space of Lipschitz functions on the segment
[0, 1]. The set F1,1 consists of functions f having both ∥f ∥∞ and

the Lipschitz constant bounded by 1. Theorem 1 provides an upper
bound O( ln(1/ϵ)

ϵ
) for the number of weights and computation units,

but in this special case there is in fact a better bound O( 1
ϵ
) obtained

simply by piece-wise interpolation.
Namely, given f ∈ F1,1 and ϵ > 0, set T = ⌈

1
ϵ
⌉ and let f̃

be the piece-wise interpolation of f with T + 1 uniformly spaced
breakpoints ( t

T )
T
t=0 (i.e., f̃ ( t

T ) = f ( t
T ), t = 0, . . . , T ). The function

f̃ is also Lipschitz with constant 1 and hence ∥f − f̃ ∥∞ ≤
1
T ≤ ϵ

(since for any x ∈ [0, 1] we can find t such that |x −
t
T | ≤

1
2T and

then |f (x) − f̃ (x)| ≤ |f (x) − f ( t
T )| + |̃f ( t

T ) − f̃ (x)| ≤ 2 ·
1
2T =

1
T ).

At the same time, the function f̃ can be expressed in terms of the
ReLU function σ by

f̃ (x) = b +

T−1∑
t=0

wtσ

(
x −

t
T

)
with some coefficients b and (wt )T−1

t=0 . This expression can be
viewed as a special case of the depth-3 ReLU network with O( 1

ϵ
)

weights and computation units.
We show now how the bound O( 1

ϵ
) can be improved by using

adaptive architectures.

Theorem 2. For any f ∈ F1,1 and ϵ ∈ (0, 1
2 ), there exists a depth-

6 ReLU network η (with architecture depending on f ) that provides
an ϵ-approximation of f while having not more than c

ϵ ln(1/ϵ) weights,
connections and computation units. Here c is an absolute constant.

Proof. We first explain the idea of the proof. We start with inter-
polating f by a piece-wise linear function, but not on the length
scale ϵ—instead, we do it on a coarser length scale mϵ, with some
m = m(ϵ) > 1. We then create a ‘‘cache’’ of auxiliary subnetworks
that we use to fill in the details and go down to the scale ϵ, in
each of the mϵ-subintervals. This allows us to reduce the amount
of computations for small ϵ because the complexity of the cache
only depends on m. The assignment of cached subnetworks to the
subintervals is encoded in the network architecture and depends
on the function f . We optimize m by balancing the complexity of
the cache with that of the initial coarse approximation. This leads
to m ∼ ln(1/ϵ) and hence to the reduction of the total complexity
of the network by a factor ∼ ln(1/ϵ) compared to the simple
piece-wise linear approximation on the scale ϵ. This construction
is inspired by a similar argument used to prove the O(2n/n) upper
bound for the complexity of Boolean circuits implementing n-ary
functions (Shannon, 1949).

The proof becomes simpler if, in addition to the ReLU function
σ , we are allowed to use the activation function

ρ(x) =

{
x, x ∈ [0, 1),
0, x ̸∈ [0, 1) (19)

in our neural network. Since ρ is discontinuous, we cannot just use
Proposition 1 to replace ρ-units by σ -units. We will first prove the
analog of the claimed result for the model including ρ-units, and
then we will show how to construct a purely ReLU network.

Lemma 1. For any f ∈ F1,1 and ϵ ∈ (0, 1
2 ), there exists a

depth-5 network including σ -units and ρ-units, that provides an
ϵ-approximation of f while having not more than c

ϵ ln(1/ϵ) weights,
where c is an absolute constant.

Proof. Given f ∈ F1,1, we will construct an approximation f̃ to f in
the form

f̃ = f̃1 + f̃2.

Here, f̃1 is the piece-wise linear interpolation of f with the break-
points {

t
T }

T
t=0, for some positive integer T to be chosen later. Since
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f is Lipschitz with constant 1, f̃1 is also Lipschitz with constant 1.
We will denote by It the intervals between the breakpoints:

It =

[ t
T
,
t + 1
T

)
, t = 0, . . . , T − 1.

We will now construct f̃2 as an approximation to the difference

f2 = f − f̃1. (20)

Note that f2 vanishes at the endpoints of the intervals It :

f2
( t
T

)
= 0, t = 0, . . . , T , (21)

and f2 is Lipschitz with constant 2:

|f2(x1) − f2(x2)| ≤ 2|x1 − x2|, (22)

since f and f̃1 are Lipschitz with constant 1.
To define f̃2, we first construct a setΓ of cached functions. Letm

be apositive integer to be chosen later. LetΓ be the set of piecewise
linear functions γ : [0, 1] → R with the breakpoints {

r
m }

m
r=0 and

the properties

γ (0) = γ (1) = 0

and

γ

( r
m

)
− γ

( r − 1
m

)
∈

{
−

2
m
, 0,

2
m

}
, r = 1, . . . ,m.

Note that the size |Γ | of Γ is not larger than 3m.
If g : [0, 1] → R is any Lipschitz function with constant 2 and

g(0) = g(1) = 0, then g can be approximated by some γ ∈ Γ with
error not larger than 2

m : namely, take γ ( r
m ) =

2
m⌊g( r

m )/ 2
m⌋.

Moreover, if f2 is defined by (20), then, using (21), (22), on each
interval It the function f2 can be approximatedwith error not larger
than 2

Tm by a properly rescaled function γ ∈ Γ . Namely, for each
t = 0, . . . , T − 1 we can define the function g by g(y) = Tf2( t+y

T ).
Then it is Lipschitz with constant 2 and g(0) = g(1) = 0, so we can
find γt ∈ Γ such that

sup
y∈[0,1)

⏐⏐⏐Tf2( t + y
T

)
− γt (y)

⏐⏐⏐ ≤
2
m
.

This can be equivalently written as

sup
x∈It

⏐⏐⏐f2(x) −
1
T
γt (Tx − t)

⏐⏐⏐ ≤
2
Tm
.

Note that the obtained assignment t ↦→ γt is not injective, in
general (T will be larger than |Γ |).

We can then define f̃2 on the whole [0, 1) by

f̃2(x) =
1
T
γt (Tx − t), x ∈ It , t = 0, . . . , T − 1. (23)

This f̃2 approximates f2 with error 2
Tm on [0, 1):

sup
x∈[0,1)

|f2(x) − f̃2(x)| ≤
2
Tm
, (24)

and hence, by (20), for the full approximation f̃ = f̃1 + f̃2 we will
also have

sup
x∈[0,1)

|f (x) − f̃ (x)| ≤
2
Tm
. (25)

Note that the approximation f̃2 has properties analogous to (21),
(22):

f̃2
( t
T

)
= 0, t = 0, . . . , T , (26)

|̃f2(x1) − f̃2(x2)| ≤ 2|x1 − x2|, (27)

in particular, f̃2 is continuous on [0, 1).

Fig. 4. Architecture of the network implementing the function f̃ = f̃1 + f̃2 from
Lemma 1.

We will now rewrite f̃2 in a different form interpretable as a
computation by a neural network. Specifically, using our additional
activation function ρ given by (19), we can express f̃2 as

f̃2(x) =
1
T

∑
γ∈Γ

γ

( ∑
t:γt=γ

ρ(Tx − t)
)
. (28)

Indeed, given x ∈ [0, 1), observe that all the terms in the inner sum
vanish except for the one corresponding to the t determined by the
condition x ∈ It . For this particular t we have ρ(Tx − t) = Tx − t .
Since γ (0) = 0, we conclude that (28) agrees with (23).

Let us also expand γ ∈ Γ over the basis of shifted ReLU
functions:

γ (x) =

m−1∑
r=0

cγ ,rσ
(
x −

r
m

)
, x ∈ [0, 1].

Substituting this expansion in (28), we finally obtain

f̃2(x) =
1
T

∑
γ∈Γ

m−1∑
r=0

cγ ,rσ
( ∑
t:γt=γ

ρ(Tx − t) −
r
m

)
. (29)

Now consider the implementation of f̃ by a neural network. The
term f̃1 can clearly be implemented by a depth-3 ReLU network
using O(T ) connections and computation units. The term f̃2 can be
implemented by a depth-5 networkwith ρ- and σ -units as follows
(we denote a computation unit by Q with a superscript indexing
the layer and a subscript indexing the unit within the layer).

1. The first layer contains the single input unit Q (1).
2. The second layer contains T units (Q (2)

t )Tt=1 computing Q (2)
t =

ρ(TQ (1)
− t).

3. The third layer contains |Γ | units (Q (3)
γ )γ∈Γ computing Q (3)

γ =

σ (
∑

t:γt=γQ
(2)
t ). This is equivalent to Q (3)

γ =
∑

t:γt=γQ
(2)
t ,

because Q (2)
t ≥ 0.

4. The fourth layer containsm|Γ | units (Q (4)
γ ,r ) γ∈Γ

r=0,...,m−1
comput-

ing Q (4)
γ ,r = σ (Q (3)

γ −
r
m ).

5. The final layer consists of a single output unit Q (5)
=∑

γ∈Γ

∑m−1
r=0

cγ ,r
T Q (4)

γ ,r .

Examining this network, we see that the total number of con-
nections and units in it is O(T + m|Γ |) and hence is O(T + m3m).
This also holds for the full network implementing f̃ = f̃1 + f̃2, since
the term f̃1 requires even fewer layers, connections and units. The
output units of the subnetworks for f̃1 and f̃2 can be merged into
the output unit for f̃1 + f̃2, so the depth of the full network is the
maximum of the depths of the networks implementing f̃1 and f̃2,
i.e., is 5 (see Fig. 4).

Now, given ϵ ∈ (0, 1
2 ), take m = ⌈

1
2 log3(1/ϵ)⌉ and T = ⌈

2
mϵ ⌉.

Then, by (25), the approximation error maxx∈[0,1]|f (x) − f̃ (x)| ≤
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2
Tm ≤ ϵ, while T + m3m

= O( 1
ϵ ln(1/ϵ) ), which implies the claimed

complexity bound. □

We show now how to modify the constructed network so as to
remove ρ-units.We only need tomodify the f̃2 part of the network.
We will show that for any δ > 0 we can replace f̃2 with a function
f̃3,δ (defined below) that

(a) obeys the following analog of approximation bound (24):

sup
x∈[0,1]

|f2(x) − f̃3,δ(x)| ≤
8δ
T

+
2
Tm
, (30)

(b) and is implementable by a depth-6 ReLU network having
complexity c(T +m3m) with an absolute constant c indepen-
dent of δ.

Since δ can be taken arbitrarily small, the theorem then follows
by arguing as in Lemma 1, only with f̃2 replaced by f̃3,δ .

As a first step, we approximate ρ by a continuous piece-wise
linear function ρδ , with a small δ > 0:

ρ(y) =

⎧⎪⎪⎨⎪⎪⎩
y, y ∈ [0, 1 − δ),
1 − δ

δ
(1 − y), y ∈ [1 − δ, 1),

0, y ̸∈ [0, 1).

Let f̃2,δ be defined as f̃2 in (29), but with ρ replaced by ρδ:

f̃2,δ(x) =
1
T

∑
γ∈Γ

m−1∑
r=0

cγ ,rσ
( ∑
t:γt=γ

ρδ(Tx − t) −
r
m

)
.

Since ρδ is a continuous piece-wise linear function with three
breakpoints, we can express it via the ReLU function, and hence
implement f̃2,δ by a purely ReLU network, as in Proposition 1,
and the complexity of the implementation does not depend on δ.
However, replacingρwithρδ affects the function f̃2 on the intervals
( t−δT ,

t
T ], t = 1, . . . , T , introducing there a large error (of magni-

tude O( 1T )). But recall that both f2 and f̃2 vanish at the points t
T , t =

0, . . . , T , by (21), (26). We can then largely remove this newly
introduced error by simply suppressing f̃2,δ near the points t

T .
Precisely, consider the continuous piece-wise linear function

φδ(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, y ̸∈ [0, 1 − δ),
y
δ
, y ∈ [0, δ),

1, y ∈ [δ, 1 − 2δ),
1 − δ − y

δ
, y ∈ [1 − 2δ, 1 − δ)

and the full comb-like filtering function

Φδ(x) =

T−1∑
t=0

φδ(Tx − t).

Note that Φδ is continuous piece-wise linear with 4T breakpoints,
and 0 ≤ Φδ(x) ≤ 1. We then define our final modification of f̃2 as

f̃3,δ(x) = σ

(̃
f2,δ(x) + 2Φδ(x) − 1

)
− σ

(
2Φδ(x) − 1

)
. (31)

Lemma 2. The function f̃3,δ obeys the bound (30).

Proof. Given x ∈ [0, 1), let t ∈ {0, . . . , T − 1} and y ∈ [0, 1)
be determined from the representation x =

t+y
T (i.e., y is the

relative position of x in the respective interval It ). Consider several
possibilities for y:

1. y ∈ [1 − δ, 1]. In this caseΦδ(x) = 0. Note that

sup
x∈[0,1]

|̃f2,δ(x)| ≤ 1, (32)

because, by construction, supx∈[0,1] |̃f2,δ(x)| ≤ supx∈[0,1] |̃f2(x)|,
and supx∈[0,1] |̃f2(x)| ≤ 1 by (26), (27). It follows that both
terms in (31) vanish, i.e., f̃3,δ(x) = 0. But, since f2 is Lipschitz
with constant 2 by (22) and f2( t+1

T ) = 0, we have |f2(x)| ≤

|f2(x) − f2( t+1
T )| ≤

2|y−1|
T ≤

2δ
T . This implies |f2(x) − f̃3,δ(x)| ≤

2δ
T .

2. y ∈ [δ, 1 − 2δ]. In this case Φδ(x) = 1 and f̃2,δ(x) = f̃2(x).
Using (32), we find that f̃3,δ(x) = f̃2,δ(x) = f̃2(x). It follows that
|f2(x) − f̃3,δ(x)| = |f2(x) − f̃2(x)| ≤

2
Tm .

3. y ∈ [0, δ]∪[1−2δ, 1−δ]. In this case f̃2,δ(x) = f̃2(x). Since σ is
Lipschitz with constant 1, |̃f3,δ(x)| ≤ |̃f2,δ(x)| = |̃f2(x)|. Both f2
and f̃2 are Lipschitz with constant 2 (by (22), (27)) and vanish
at t

T and t+1
T (by (21), (26)). It follows that

|f2(x) − f̃3,δ(x)| ≤ |f2(x)| + |̃f2(x)|

≤ 2

⎧⎪⎨⎪⎩
2|x −

t
T

|, y ∈ [0, δ]

2|x −
t + 1
T

|, y ∈ [1 − 2δ, 1 − δ]
≤

8δ
T
. □

It remains to verify the complexity property (b) of the function
f̃3,δ . As already mentioned, f̃2,δ can be implemented by a depth-
5 purely ReLU network with not more than c(T + m3m) weights,
connections and computation units, where c is an absolute con-
stant independent of δ. The function Φδ can be implemented by a
shallow, depth-3 network with O(T ) units and connection. Then,
computation of f̃3,δ can be implemented by a network including
two subnetworks for computing f̃2,δ andΨδ , and an additional layer
containing two σ -units as written in (31). We thus obtain 6 layers
in the resulting full network and, choosing T and m in the same
way as in Lemma 1, obtain the bound c

ϵ ln(1/ϵ) for the number of its
connections, weights, and computation units. □

4. Lower bounds

4.1. Continuous nonlinear widths

The method of continuous nonlinear widths (DeVore et al.,
1989) is a very general approach to the analysis of parameter-
ized nonlinear approximations, based on the assumption of con-
tinuous selection of their parameters. We are interested in the
following lower bound for the complexity of approximations in
Wn,∞([0, 1]d).

Theorem 3 (DeVore et al., (1989), Theorem 4.2). Fix d, n. Let W
be a positive integer and η : RW

→ C([0, 1]d) be any mapping
between the space RW and the space C([0, 1]d). Suppose that there
is a continuous mapM : Fd,n → RW such that ∥f −η(M(f ))∥∞ ≤ ϵ
for all f ∈ Fd,n. Then W ≥ cϵ−d/n, with some constant c depending
only on n.

We apply this theorem by taking η to be some ReLU network
architecture, and RW the corresponding weight space. It follows
that if a ReLU network architecture is capable of expressing any
function from Fd,n with error ϵ, then, under the hypothesis of
continuousweight selection, the networkmust have at least cϵ−d/n

weights. The number of connections is then lower bounded by
c
2ϵ

−d/n (since the number of weights is not larger than the sum of
the number of computation units and the number of connections,
and there are at least as many connections as units).

The hypothesis of continuous weight selection is crucial in
Theorem3. By examining our proof of the counterpart upper bound
O(ϵ−d/n ln(1/ϵ)) in Theorem 1, the weights are selected there in
a continuous manner, so this upper bound asymptotically lies
above cϵ−d/n in agreement with Theorem 3. We remark, however,
that the optimal choice of the network weights (minimizing the
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error) is known to be discontinuous in general, even for shallow
networks (Kainen, Kůrková, & Vogt, 1999).

We also compare the bounds of Theorems 2 and 3. In the case
d = n = 1, Theorem 3 provides a lower bound c

ϵ
for the number

of weights and connections. On the other hand, in the adaptive
architecture scenario, Theorem 2 provides the upper bound c

ϵ ln(1/ϵ)
for the number of weights, connections and computation units.
The fact that this latter bound is asymptotically below the bound
of Theorem 3 reflects the extra expressiveness associated with
variable network architecture.

4.2. Bounds based on VC-dimension

In this section we consider the setup where the same network
architecture is used to approximate all functions f ∈ Fd,n, but the
dependence of the weights on f is not assumed to be necessarily
continuous. In this setup, some lower bounds on the network
complexity can be obtained as a consequence of existing upper
bounds on VC-dimension of networks with piece-wise polynomial
activation functions and Boolean outputs (Anthony & Bartlett,
2009). In the next theorem, part (a) is a more general but weaker
bound, while part (b) is a stronger bound assuming a constrained
growth of the network depth.

Theorem 4. Fix d, n.

(a) For any ϵ ∈ (0, 1), a ReLU network architecture capable of
approximating any function f ∈ Fd,n with error ϵ must have
at least cϵ−d/(2n) weights, with some constant c = c(d, n) > 0.

(b) Let p ≥ 0, c1 > 0 be some constants. For any ϵ ∈ (0, 1
2 ), if a

ReLU network architecture of depth L ≤ c1lnp(1/ϵ) is capable
of approximating any function f ∈ Fd,n with error ϵ, then the
network must have at least c2ϵ−d/nln−2p−1(1/ϵ) weights, with
some constant c2 = c2(d, n, p, c1) > 0.1

Proof. Recall that given a class H of Boolean functions on [0, 1]d,
the VC-dimension ofH is defined as the size of the largest shattered
subset S ⊂ [0, 1]d, i.e. the largest subset on which H can compute
any dichotomy (see, e.g., (Anthony & Bartlett, 2009), Section 3.3).
We are interested in the case when H is the family of functions
obtained by applying thresholds 1(x > a) to a ReLU network with
fixed architecture but variable weights. In this case Theorem 8.7
of Anthony and Bartlett (2009) implies that

VCdim(H) ≤ c3W 2, (33)

and Theorem 8.8 implies that

VCdim(H) ≤ c3L2W lnW , (34)

where W is the number of weights, L is the network depth, and c3
is an absolute constant.

Given a positive integer N to be chosen later, choose S as a set
of Nd points x1, . . . , xNd in the cube [0, 1]d such that the distance
between any two of them is not less than 1

N . Given any assignment
of values y1, . . . , yNd ∈ R, we can construct a smooth function f
satisfying f (xm) = ym for all m by setting

f (x) =

Nd∑
m=1

ymφ(N(x − xm)), (35)

with some C∞ function φ : Rd
→ R such that φ(0) = 1 and

φ(x) = 0 if |x| > 1
2 .

1 The author thanks Matus Telgarsky for suggesting this part of the theorem.

Fig. 5. A function f considered in the proof of Theorem 2 (for d = 2).

Let us obtain a condition ensuring that such f ∈ Fd,n. For any
multi-index n,

max
x

|Dnf (x)| = N |n| max
m

|ym|max
x

|Dnφ(x)|,

so if

max
m

|ym| ≤ c4N−n, (36)

with the constant c4 = (maxn:|n|≤nmaxx|Dnφ(x)|)−1, then f ∈ Fd,n.
Now set

ϵ =
c4
3
N−n. (37)

Suppose that there is a ReLU network architecture η that can
approximate, by adjusting its weights, any f ∈ Fd,n with error less
than ϵ. Denote by η(x,w) the output of the network for the input
vector x and the vector of weightsw.

Consider any assignment z of Boolean values z1, . . . , zNd ∈

{0, 1}. Set

ym = zmc4N−n, m = 1, . . . ,Nd,

and let f be given by (35) (see Fig. 5); then (36) holds and hence
f ∈ Fd,n.

By assumption, there is then a vector of weights, w = wz, such
that for all mwe have |η(xm,wz) − ym| ≤ ϵ, and in particular

η(xm,wz)
{
≥ c4N−n

− ϵ > c4N−n/2, if zm = 1,
≤ ϵ < c4N−n/2, if zm = 0,

so the thresholded network η1 = 1(η > c4N−n/2) has outputs

η1(xm,wz) = zm, m = 1, . . . ,Nd.

Since the Boolean values zm were arbitrary, we conclude that the
subset S is shattered and hence

VCdim(η1) ≥ Nd.

Expressing N through ϵ with (37), we obtain

VCdim(η1) ≥

(3ϵ
c4

)−d/n
. (38)

To establish part (a) of the Theorem, we apply bound (33) to the
network η1:

VCdim(η1) ≤ c3W 2, (39)

where W is the number of weights in η1, which is the same as
in η if we do not count the threshold parameter. Combining (38)
with (39), we obtain the desired lower bound W ≥ cϵ−d/(2n) with
c = (c4/3)d/(2n)c

−1/2
3 .

To establish part (b) of the theorem, we use bound (34) and the
hypothesis L ≤ c1lnp(1/ϵ):

VCdim(η1) ≤ c3c21 ln
2p(1/ϵ)W lnW . (40)
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Combining (38) with (40), we obtain

W lnW ≥
1

c3c21

(3ϵ
c4

)−d/n
ln−2p(1/ϵ). (41)

Trying aW of the formWc2 = c2ϵ−d/nln−2p−1(1/ϵ) with a constant
c2, we get

Wc2 lnWc2 = c2ϵ−d/nln−2p−1(1/ϵ)

×

(d
n
ln(1/ϵ) + ln c2 − (2p + 1) ln ln(1/ϵ)

)
=

(
c2

d
n

+ o(1)
)
ϵ−d/nln−2p(1/ϵ).

Comparing this with (41), we see that if we choose c2 <
(c4/3)d/nn/(dc3c21 ), then for sufficiently small ϵ we haveW lnW ≥

Wc2 lnWc2 and hence W ≥ Wc2 , as claimed. We can ensure that
W ≥ Wc2 for all ϵ ∈ (0, 1

2 ) by further decreasing c2. □

We remark that the constrained depth hypothesis of part (b) is
satisfied, with p = 1, by the architecture used for the upper bound
in Theorem 1. The bound stated in part (b) of Theorem 4 matches
the upper bound of Theorem 1 and the lower bound of Theorem 3
up to a power of ln(1/ϵ).

4.3. Adaptive network architectures

Our goal in this section is to obtain a lower bound for the
approximation complexity in the scenario where the network ar-
chitecture may depend on the approximated function. This lower
bound is thus a counterpart to the upper bound of Section 3.3.

To state this result we define the complexity N (f , ϵ) of ap-
proximating the function f with error ϵ as the minimal number
of hidden computation units in a ReLU network that provides such
an approximation.

Theorem 5. For any d, n, there exists f ∈ Wn,∞([0, 1]d) such that
N (f , ϵ) is not o(ϵ−d/(9n)) as ϵ → 0.

The proof relies on the following lemma.

Lemma 3. Fix d, n. For any sufficiently small ϵ > 0 there exists
fϵ ∈ Fd,n such that N (fϵ, ϵ) ≥ c1ϵ−d/(8n), with some constant c1 =

c1(d, n) > 0.

Proof. Observe that all the networks with notmore thanm hidden
computation units can be embedded in the single ‘‘enveloping’’
network that has m hidden layers, each consisting of m units, and
that includes all the connections between units not in the same
layer (see Fig. 6(a)). The number of weights in this enveloping
network is O(m4). On the other hand, Theorem 4(a) states that
at least cϵ−d/(2n) weights are needed for an architecture capable
of ϵ-approximating any function in Fd,n. It follows that there is a
function fϵ ∈ Fd,n that cannot be ϵ-approximated by networkswith
fewer than c1ϵ−d/(8n) computation units. □

Before proceeding to the proof of Theorem5, note thatN (f , ϵ) is
amonotonedecreasing function of ϵwith a fewobvious properties:

N (af , |a|ϵ) = N (f , ϵ), for any a ∈ R \ {0} (42)

(follows by multiplying the weights of the output unit of the
approximating network by a constant);

N (f ± g, ϵ + ∥g∥∞) ≤ N (f , ϵ) (43)

(follows by approximating f ± g by an approximation of f );

N (f1 ± f2, ϵ1 + ϵ2) ≤ N (f1, ϵ1) + N (f2, ϵ2) (44)

(follows by combining approximating networks for f1 and f2 as in
Fig. 6(b)).

(a)

(b)

Fig. 6. (a) Embedding a networkwithm = 4 hidden units into an ‘‘enveloping’’ net-
work (see Lemma 3). (b) Putting sub-networks in parallel to form an approximation
for the sum or difference of two functions, see Eq. (44).

Proof (Proof of Theorem 5). The claim of Theorem 5 is similar to
the claim of Lemma 3, but is about a single function f satisfying a
slightly weaker complexity bound at multiple values of ϵ → 0.We
will assume that Theorem 5 is false, i.e.,

N (f , ϵ) = o(ϵ−d/(9n)) (45)

for all f ∈ Wn,∞([0, 1]d), and we will reach contradiction by
presenting f violating this assumption. Specifically, we construct
this f as

f =

∞∑
k=1

akfk, (46)

with some ak ∈ R, fk ∈ Fd,n, and we will make sure that

N (f , ϵk) ≥ ϵ
−d/(9n)
k (47)

for a sequence of ϵk → 0.
We determine ak, fk, ϵk sequentially. Suppose we have already

found {as, fs, ϵs}k−1
s=1 ; let us describe how we define ak, fk, ϵk.

First, we set

ak = min
s=1,...,k−1

ϵs

2k−s . (48)

In particular, this ensures that

ak ≤ ϵ121−k,

so that the function f defined by the series (46) will be in
Wn,∞([0, 1]d), because ∥fk∥Wn,∞([0,1]d) ≤ 1.

Next, using Lemma 3 and Eq. (42), observe that if ϵk is suffi-
ciently small, then we can find fk ∈ Fd,n such that

N
(
akfk, 3ϵk

)
= N

(
fk,

3ϵk
ak

)
≥ c1

(3ϵk
ak

)−d/(8n)
≥ 2ϵ−d/(9n)

k . (49)

In addition, by assumption (45), if ϵk is small enough then

N
( k−1∑

s=1

asfs, ϵk
)

≤ ϵ
−d/(9n)
k . (50)
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Let us choose ϵk and fk so that both (49) and (50) hold. Obviously,
we can also make sure that ϵk → 0 as k → ∞.

Let us check that the above choice of {ak, fk, ϵk}∞k=1 ensures that
inequality (47) holds for all k:

N
( ∞∑

s=1

asfs, ϵk
)

≥ N
( k∑

s=1

asfs, ϵk +

 ∞∑
s=k+1

asfs


∞

)
≥ N

( k∑
s=1

asfs, ϵk +

∞∑
s=k+1

as
)

≥ N
( k∑

s=1

asfs, 2ϵk
)

≥ N (akfk, 3ϵk) − N
( k−1∑

s=1

asfs, ϵk
)

≥ ϵ−d/(9n).

Here in the first step we use inequality (43), in the second the
monotonicity of N (f , ϵ), in the third the monotonicity of N (f , ϵ)
and the setting (48), in the fourth the inequality (44), and in the
fifth the conditions (49) and (50). □

4.4. Slow approximation of smooth functions by shallow networks

In this sectionwe show that, in contrast to deep ReLU networks,
shallow ReLU networks relatively inefficiently approximate suffi-
ciently smooth (C2) nonlinear functions. We remark that Liang
and Srikant (2016) prove a similar result assuming global convexity
instead of smoothness and nonlinearity.

Theorem 6. Let f ∈ C2([0, 1]d) be a nonlinear function (i.e., not of
the form f (x1, . . . , xd) ≡ a0 +

∑d
k=1akxk on the whole [0, 1]d). Then,

for any fixed L, a depth-L ReLU network approximating f with error
ϵ ∈ (0, 1) must have at least cϵ−1/(2(L−2)) weights and computation
units, with some constant c = c(f , L) > 0.

Proof. Since f ∈ C2([0, 1]d and f is nonlinear, we can find x0 ∈

[0, 1]d and v ∈ Rd such that x0 + xv ∈ [0, 1]d for all x ∈ [−1, 1]
and the function f1 : x ↦→ f (x0+xv) is strictly convex or concave on
[−1, 1]. Supposewithout loss of generality that it is strictly convex:

min
x∈[−1,1]

f ′′

1 (x) = c1 > 0. (51)

Suppose that f̃ is an ϵ-approximation of function f , and let f̃ be
implemented by a ReLU network η of depth L. Let f̃1 : x ↦→

f̃ (x0 + xv). Then f̃1 also approximates f1 with error not larger than
ϵ. Moreover, since f̃1 is obtained from f̃ by a linear substitution
x = x0 + xv, f̃1 can be implemented by a ReLU network η1 of the
same depth L and with the number of units and weights not larger
than in η (we can obtain η1 from η by replacing the input layer in
η with a single unit, accordingly modifying the input connections,
and adjusting the weights associated with these connections). It is
thus sufficient to establish the claimed bounds for η1.

By construction, f̃1 is a continuous piece-wise linear function of
x. Denote by M the number of linear pieces in f̃1. We will use the
following counting lemma.

Lemma4. M ≤ (2U)L−2, where U is the number of computation units
in η1.

Proof. This bound, up to minor details, is proved in Lemma 2.1
of Telgarsky (2015). Precisely, Telgarsky’s lemma states that if a
network has a single input, connections only between neighboring
layers, at mostm units in a layer, and a piece-wise linear activation

function with t pieces, then the number of linear pieces in the
output of the network is not greater than (tm)L. By examining the
proof of the lemma we see that it will remain valid for networks
with connections not necessarily between neighboring layers, if
we replace m by U in the expression (tm)L. Moreover, we can
slightly strengthen the bound by noting that in the present paper
the input and output units are counted as separate layers, only
units of layers 3 to L have multiple incoming connections, and the
activation function is applied only in layers 2 to L−1. By following
Telgarsky’s arguments, this gives the slightly more accurate bound
(tU)L−2 (i.e., with the power L − 2 instead of L). It remains to note
that the ReLU activation function corresponds to t = 2. □

Lemma 4 implies that there is an interval [a, b] ⊂ [−1, 1] of
length not less than 2(2U)−(L−2) on which the function f̃1 is linear.
Let g = f1 − f̃1. Then, by the approximation accuracy assumption,
supx∈[a,b]|g(x)| ≤ ϵ, while by (51) and by the linearity of f̃1 on
[a, b], maxx∈[a,b]g ′′(x) ≥ c1 > 0. It follows that max(g(a), g(b)) ≥

g( a+b
2 ) +

c1
2 (

b−a
2 )2 and hence

ϵ ≥
1
2

(
max(g(a), g(b)) − g( a+b

2 )
)

≥
c1
4

(b − a
2

)2
≥

c1
4
(2U)−2(L−2),

which implies the claimed bound U ≥
1
2 (

4ϵ
c1
)−1/(2(L−2)). Since there

are at least as many weights as computation units in a network, a
similar bound holds for the number of weights. □

5. Discussion

We discuss some implications of the obtained bounds.

Deep vs. shallow ReLU approximations of smooth functions. Our
results clearly show that deep ReLU networks more efficiently
express smooth functions than shallow ReLU networks. By The-
orem 1, functions from the Sobolev space Wn,∞([0, 1]d) can be
ϵ-approximated by ReLU networks with depth O(ln(1/ϵ)) and
the number of computation units O(ϵ−d/n ln(1/ϵ)). In contrast, by
Theorem 6, a nonlinear function from C2([0, 1]d) cannot be ϵ-
approximated by a ReLU network of fixed depth Lwith the number
of units less than cϵ−1/(2(L−2)). In particular, it follows that in terms
of the required number of computation units, unbounded-depth
approximations of functions fromWn,∞([0, 1]d) are asymptotically
strictly more efficient than approximations with a fixed depth L at
least when
d
n
<

1
2(L − 2)

(assuming also n > 2, so that Wn,∞([0, 1]d) ⊂ C2([0, 1]d)).
The efficiency of depth is even more pronounced for very smooth
functions such as polynomials, which can be implemented by deep
networks using only O(ln(1/ϵ)) units (cf. Propositions 2 and 3 and
the proof of Theorem 1). Liang and Srikant describe in Liang and
Srikant (2016) some conditions on the approximated function (re-
sembling conditions of local analyticity) under which complexity
of deep ϵ-approximation is O(lnc(1/ϵ)) with a constant power c.

Continuous model selection vs. function-dependent network architec-
tures. When approximating a function by a neural network, one
can either view the network architecture as fixed and only tune
the weights, or optimize the architecture as well. Moreover, when
tuning the weights, one can either require them to continuously
depend on the approximated function or not. We naturally expect
that more freedom in the choice of the approximation should lead
to higher expressiveness.

Our bounds confirm this expectation to a certain extent. Specif-
ically, the complexity of ϵ-approximation of functions from the
unit ball F1,1 inW1,∞([0, 1]) is lower bounded by c

ϵ
in the scenario

with a fixed architecture and continuously selected weights (see
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Theorem 3). On the other hand, we show in Theorem 2 that this
complexity is upper bounded by O( 1

ϵ ln(1/ϵ) ) if we are allowed to
adjust the network architecture. This bound is achieved by finite-
depth (depth-6) ReLU networks using the idea of reused subnet-
works familiar from the theory of Boolean circuits (Shannon, 1949).

In the case of fixed architecture, we have not established any
evidence of complexity improvement for unconstrained weight
selection compared to continuous weight selection. We remark
however that, already for approximations with depth-3 networks,
the optimal weights are known to discontinuously depend, in
general, on the approximated function (Kainen et al., 1999). On
the other hand, part b) of Theorem 4 shows that if the network
depth scales as O(lnp(1/ϵ)), discontinuous weight selection cannot
improve the continuous-case complexity more than by a factor
being some power of ln(1/ϵ).

Upper vs. lower complexity bounds. We indicate the gaps be-
tween respective upper and lower bounds in the three scenarios
mentioned above: fixed architectures with continuous selection
of weights, fixed architectures with unconstrained selection of
weights, or adaptive architectures.

For fixed architectures with continuous selection the lower
bound cϵ−d/n is provided by Theorem 3, and the upper bound
O(ϵ−d/n ln(1/ϵ)) by Theorem 1, so these bounds are tight up to a
factor O(ln(1/ϵ)).

In the case of fixed architecture but unconstrained selection,
part b) of Theorem4 gives a lower bound cϵ−d/nln−2p−1(1/ϵ) under
assumption that the depth is constrained by O(lnp(1/ϵ)). This is
only different by a factor of O(ln2p+2(1/ϵ)) from the upper bound
of Theorem 1. Without this depth constraint we only have the
significantly weaker bound cϵ−d/(2n) (part a) of Theorem 4).

In the case of adaptive architectures, there is a big gap between
our upper and lower bounds. The upper bound O( 1

ϵ ln(1/ϵ) ) is given
by Theorem 2 for d = n = 1. The lower bound, proved for general
d, n in Theorem 5, only states that there are f ∈ Wn,∞([0, 1]d) for
which the complexity is not o(ϵ−d/(9n)).

ReLU vs. smooth activation functions. A popular general-purpose
method of approximation is shallow (depth-3) networks with
smooth activation functions (e.g., logistic sigmoid). Upper and
lower approximation complexity bounds for these networks
(Maiorov & Meir, 2000; Mhaskar, 1996) show that complexity
scales as ∼ ϵ−d/n up to some ln(1/ϵ) factors. Comparing this with
our bounds in Theorems 1, 2, 4, it appears that deep ReLU networks
are roughly (up to ln(1/ϵ) factors) as expressive as shallow net-
works with smooth activation functions.

6. Conclusion

We have established several upper and lower bounds for the
expressive power of deep ReLU networks in the context of ap-
proximation in Sobolev spaces. We should note, however, that this
setting may not quite reflect typical real world applications, which
usually possess symmetries and hierarchical and other structural
properties substantially narrowing the actually interesting classes
of approximated functions (LeCun et al., 2015). Some recent publi-
cations introduce and study expressive power of deep networks in
frameworks bridging this gap, in particular, graph-based hierarchi-
cal approximations are studied in Mhaskar et al. (2016); Mhaskar
and Poggio (2016) and convolutional arithmetic circuits in Cohen,
Sharir, and Shashua (2015). Theoretical analysis of expressiveness
of deep networks taking into account such properties of real data
seems to be an important and promising direction of future re-
search.
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