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ABSTRACT
Neural networks have become one of themost popularly usedmeth-
ods in machine learning and artificial intelligence. Due to the uni-
versal approximation theorem, a neural network with one hidden
layer can approximate any continuous function on compact support
as long as the number of hidden units is sufficiently large. Statisti-
cally, a neural network can be classified into a nonlinear regression
framework. However, if we consider it parametrically, due to the
unidentifiability of the parameters, it is difficult to derive its asymp-
totic properties. Instead, we consider the estimation problem in a
nonparametric regression framework and use the results from sieve
estimation to establish the consistency, the rates of convergence and
the asymptotic normality of the neural network estimators. We also
illustrate the validity of the theories via simulations.
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1. Introduction

With the success of machine learning and artificial intelligence in research and industry,
neural networks have become popularly used methods nowadays. Many newly developed
machine learningmethods are based ondeepneural networks andhave achieved great clas-
sification and prediction accuracy. We refer interested readers to Goodfellow et al. (2016)
formore background and details. In classical statistical learning theory, the consistency and
the rate of convergence of the empirical risk minimisation principle are of great interest.
Many upper bounds have been established for the empirical risk and the sample com-
plexity based on the growth function and the Vapnik–Chervonenkis dimension (see, e.g.,
Vapnik 1998; Anthony and Bartlett 2009; Devroye et al. 2013). However, few studies have
focused on the asymptotic properties for neural networks. As Thomas J. Sargent said, ‘arti-
ficial intelligence is actually statistics, but in a very gorgeous phrase, it is statistics ’. So
it is natural and worthwhile to explore whether neural networks possess nice asymptotic
properties. As if they do, it may be possible to conduct statistical inference based on neu-
ral networks. Throughout this paper, we will focus on the asymptotic properties of neural
networks with one hidden layer.
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One of the most important properties of neural networks is that they are universal
approximants (Hornik et al. 1989), which means any continuous function on a compact
support can be approximated arbitrarily well by a neural network with one hidden layer. So
it seems natural to consider it as a nonparametric regression problem and approximate the
underlying function class through a class of neural networks with one hidden layer. Many
other series-based estimators such as splines and wavelets also possess similar approxima-
tion properties and have been extensively studied in the literature. Chen (2007) provides
a comprehensive review for those methods. For nonparametric regression problems, ran-
dom design and fixed design are the two main frameworks. Many existing literature on
neural networks focus on random design (e.g. Chen and White 1999; Györfi et al. 2002).
On the other hand, general theories on nonparametric regression under fixed design have
been well studied in van de Geer (2000). Therefore, it is still worthwhile to study neural
networks under fixed design.

Specifically, consider the following nonparametric regression model:

yi = f0(xi)+ εi,

where ε1, . . . , εn are i.i.d. random variables defined on a complete probability space
(�,A,P) with E[ε] = 0, Var[ε] = σ 2 and E[|ε|2+λ] < ∞ for some λ > 0; x1, . . . , xn ∈
X ⊂ Rd are vectors of covariates with X being a compact set in Rd and f0 is an unknown
function needed to be estimated.We assume that f0 ∈ F , whereF is the class of continuous
functions with compact supports. Clearly, f0 minimises the population criterion function

Qn(f ) = E

[
1
n

n∑
i=1
(yi − f (xi))2

]

= 1
n

n∑
i=1
(f (xi)− f0(xi))2 + σ 2.

A least squares estimator of the regression function can be obtained by minimising the
empirical squared error loss Qn(f ):

f̂n = argminf∈FQn(f ) = argminf∈F
1
n

n∑
i=1
(yi − f (xi))2.

However, if the class of functions F is too rich, the resulting least squares estimator may
have undesired properties, such as inconsistency (Shen and Wong 1994; Shen 1997; van
de Geer 2000). Instead, we can optimise the squared error loss over some less complex
function space Fn, which is an approximation of F while the approximation error tends
to 0 as the sample size increases. In the language of Grenander (1981), such a sequence of
function classes is known as a sieve. More precisely, we consider a sequence of function
classes,

F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ Fn+1 ⊆ · · · ⊆ F ,

approximatingF in the sense that
⋃∞

n=1Fn is dense inF . In other words, for each f ∈ F ,
there exists πnf ∈ Fn such that d(f ,πnf ) → 0 as n → ∞, where d(·, ·) is some pseudo-
metric defined on F . With some abuse of notation, an approximate sieve estimator f̂n is
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defined to be

Qn(f̂n) ≤ inf
f∈Fn

Qn(f )+ Op(ηn), (1)

where ηn → 0 as n → ∞. We refer interested reader to Chen (2007) for a thorough
discussion on sieve extremum estimators.

Throughout the rest of the paper, we focus on the sieve of neural networks with one
hidden layer and sigmoid activation function. Specifically, we let

Frn =
⎧⎨
⎩α0 +

rn∑
j=1

αjσ
(
γ T
j x + γ0,j

)
: γ j ∈ Rd,αj, γ0,j ∈ R,

rn∑
j=0

|αj| ≤ Vn for some Vn > 4 and max
1≤j≤rn

d∑
i=0

|γi,j| ≤ Mn for someMn > 0

}
,

(2)

where rn,Vn,Mn ↑ ∞ as n → ∞. For theoretical simplification, we impose bounded-
ness assumption on the weights of the neural networks in Frn , which is related to the

1-regularisation when fitting a neural network. Such a method has been discussed in pre-
vious literatures (e.g. White 1989, 1990). In those papers, the consistency of the neural
network sieve estimators has been established under random designs. However, there are
few results on the asymptotic distribution of the neural network sieve estimators, which
will be established in this paper. In terms of the rate of convergence, Chen and Shen (1998)

obtained rate of convergence Op((
n

log n )
− 1+1/d

4(1+1/(2d)) ) for neural network sieve estimators.

Later on, Chen andWhite (1999) improved the convergence rate toOp((
n

log n )
− 1+2α/(d+1)

4(1+α/(d+1)) ),
where α relates to the smoothness of the true function f0 and in their paper, a central
limit theorem for smooth functional of the estimated function is also provided. In Chen
et al. (2001), rate of convergence was also obtained for stationary β-mixing data. One
important characteristic of the aformentioned rate of convergence is that as d → ∞, both
rates become Op((

n
log n )

−1/4). Similar results can also be found in Barron (1994). It is
well known from Stone (1982) that local smoothing methods suffer from the curse of
dimensionality. But such phenomenon seems to vanish for approximate sieve extremum
estimators based on neural networks. Bauer and Kohler (2019) also developed general the-
ory and conditions to justify that neural networks can be used to circumvent the issue
of curse of dimensionality. Hornik et al. (1989) showed that

⋃
nFrn is dense in F under

the sup-norm. But when considering the asymptotic properties of the sieve estimators, we
use the pseudo-norm ‖f ‖2n = n−1∑n

i=1 f
2(xi) (see Proposition 2.1 in the supplementary

material) defined on F and Frn .
With the increasing popularity of deep learning, recent research also starts to focus on

the statistical properties of deep neural networks. For example, Schmidt-Hieber (2020)
provided the rate of convergence for sparse deep neural network with Rectified Linear Unit
(ReLU) activation function under the assumption that the underlying function is a com-
position of functions in some Hölder space. Farrell et al. (2020) and Farrell et al. (2021)
established the rate of convergence for deep neural network estimators when the underly-
ing function belongs to a unit ball in a Sobolev space. It is worth pointing out that in these
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two papers, no restrictions on the boundedness of weights in neural networks are imposed.
The rate of convergence for deep ReLUneural networks has also been developed in Fabozzi
et al. (2019) and Kohler and Langer (2021). It is worth mentioning that the results in
Fabozzi et al. (2019) were developed based on the original version of this manuscript on
ArXiv. We believe that the ultimate goal of developing these theories is to perform statisti-
cal inference based on neural networks for real-world problems and the results discussed in
this paper may provide a starting point for further developments. For instance, Chen and
White (1999) developed asymptotic normality for neural network sieve extremum estima-
tors. However, to apply their result, a calculation of a series of covariance is essential, which
may be hard to accomplish in practice. Recently, Horel and Giesecke (2020) developed a
significance test based on neural networks. However, the theories in that paper are difficult
to apply and verify in practice. Using similar techniques to be discussed in this paper, Shen
et al. (2021) developed a goodness-of-fit test based on neural networks.

The remaining paper is organised as follows. In Section 2, we discuss the existence of
neural network sieve estimators. The weak consistency and rate of convergence of the neu-
ral network sieve estimators will be established in Sections 3 and 4, respectively. Section 5
focuses on the asymptotic distribution of the neural network sieve estimators. Simulation
results are presented in Section 6.

Notations: Throughout the rest of this paper, bold font alphabetic letters and Greek let-
ters are vectors. C(X ) is the set of continuous functions defined on X . The symbol �
means ‘bounded above up to a universal constant’ and an ∼ bn means an

bn → 1 as n → ∞.
For a pseudo-metric space (T, d),N(ε,T, d) is its covering number, which is the minimum
number of ε-balls needed to cover T. Its natural logarithm is the entropy number and is
denoted by H(ε,T, d).

2. Existence

A natural question to ask is whether the sieve estimator based on neural networks exists.
Before addressing this question, we first study some properties of Frn . Proposition 2.1
shows that the sigmoid function is a Lipschitz function with Lipschitz constant L = 1/4.

Proposition 2.1: A sigmoid function σ(z) = ez/(1 + ez) is a Lipschitz function on R with
Lipschitz constant 1/4.

The second proposition provides an upper bound for the envelope function supf∈Frn
|f |.

Proposition 2.2: For each fixed n,

sup
f∈Frn

‖f ‖∞ ≤ Vn.

Now we quote a general result fromWhite and Wooldridge (1991) for readers who are
not familiarwith the theories of sieve extremumestimators. The theorem tells us that under
some mild conditions, there exists a sieve approximate estimator and such an estimator is
also measurable.

Theorem 2.1 (Theorem 2.2 in White and Wooldridge (1991)): Let (�,A,P) be a com-
plete probability space and let (�, ρ) be a pseudo-metric space. Let {�n} be a sequence
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of compact subsets of �. Let Qn : �×�n → R̄ be A ⊗ B(�n)/B(R̄)-measurable, and
suppose that for each ω ∈ �, Qn(ω, ·) is lower semicontinuous on �n, n = 1, 2, . . .. Then
for each n = 1, 2, . . ., there exists θ̂n : � → �n, A/B(�n)-measurable such that for each
ω ∈ �, Qn(ω, θ̂n(ω)) = infθ∈�n Qn(ω, θ).

Note that

Qn(f ) = 1
n

n∑
i=1
(yi − f (xi))2

= 1
n

n∑
i=1
(f0(xi)+ εi − f (xi))2

= 1
n

n∑
i=1
(f (xi)− f0(xi))2 − 2

1
n

n∑
i=1

εi(f (xi)− f0(xi))+ 1
n

n∑
i=1

ε2i .

Since the randomness only comes from εi’s, it is clear thatQn is a measurable function and
for a fixed ω, Qn is continuous in f. Therefore, to show the existence of the sieve estimator,
it suffices to show that Frn is compact in C(X ), which is proved in the following lemma.

Lemma 2.1: Let X be a compact subset of Rd. Then for each fixed n, Frn is a compact set.

Proof: For each fixed n, let θn = [α0, . . . ,αrn , γ 0,1, . . . , γ0,rn , γ T
1 , . . . , γ

T
rn]

T belong to
[−Vn,Vn]rn+1 × [−Mn,Mn]rn(d+1) := �n. If n is fixed, �n is a bounded closed set and
hence it is a compact set in Rrn(d+2)+1. Consider a map

H : (�n, ‖ · ‖2) → (Frn , ‖ · ‖n)

θn �→ H(θn) = α0 +
rn∑
j=1

αjσ
(
γ T
j x + γ0,j

)

Note that Frn = H(�n). Therefore, to show that Frn is a compact set, it suffices to show
that H is a continuous map due to the compactness of�n. Let θ1,n, θ2,n ∈ �n, then

‖H(θ1,n)− H(θ2,n)‖2n

= 1
n

n∑
i=1

⎡
⎣α(1)0 +

rn∑
j=1

α
(1)
j σ

(
γ
(1)T
j xi + γ

(1)
0,j

)
− α

(2)
0 −

rn∑
j=1

α
(2)
j σ

(
γ
(2)T
j xi + γ

(2)
0,j

)⎤⎦
2

≤ 1
n

n∑
i=1

⎡
⎣∣∣∣α(1)0 − α

(2)
0

∣∣∣ + rn∑
j=1

∣∣∣α(1)j σ
(
γ
(1)T
j xi + γ

(1)
0,j

)
− α

(2)
j σ

(
γ
(2)T
j xi + γ

(2)
0,j

)∣∣∣
⎤
⎦
2
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= 1
n

n∑
i=1

⎡
⎣∣∣∣α(1)0 − α

(2)
0

∣∣∣ + rn∑
j=1

|α(1)j |
∣∣∣σ (γ (1)Tj xi + γ

(1)
0,j

)
− σ

(
γ
(2)T
j xi + γ

(2)
0,j

)∣∣∣+

|α(1)j − α
(2)
j |σ

(
γ
(2)T
j xi + γ

(2)
0,j

)⎤⎦
2

≤ 1
n

n∑
i=1

⎡
⎣ rn∑

j=0
|α(1)j − α

(2)
j | + Vn

4

rn∑
j=1

∣∣∣∣(γ (1)j − γ
(2)
j

)T
xi

∣∣∣∣ + ∣∣∣γ (1)0,j − γ
(2)
0,j

∣∣∣
⎤
⎦
2

≤
⎡
⎣ rn∑

j=0
|α(1)j − α

(2)
j | + Vn

4
(1 ∨ ‖x‖∞)

rn∑
j=1

∥∥∥γ (1)j − γ
(2)
j

∥∥∥
1
+
∣∣∣γ (1)0,j − γ

(2)
0,j

∣∣∣
⎤
⎦
2

≤
(
Vn

4
(1 ∨ ‖x‖∞)

)2
[rn(d + 1)]‖θ1,n − θ2,n‖22.

Hence, for any ε > 0, we choose δ = ε/(Vn
4 (1 ∨ ‖x‖∞)

√
rn(d + 1)),. When ‖θ1,n −

θ2,n‖2 < δ, we have

‖H(θ1,n)− H(θ2,n)‖n < ε,

which implies that H is a continuous map and hence Frn is a compact set for each
fixed n. �

As a corollary of Lemma 2.1 and Theorem 2.1, we can easily obtain the existence of sieve
estimator.

Corollary 2.1: Based on the notations above, for each n = 1, 2, . . ., there exists f̂n : � →
Frn ,A/B(Frn)-measurable such that Qn(f̂n(ω)) = inf f∈Frn Qn(f ).

3. Consistency

In this section, we are going to show the consistency of the neural network sieve estimator.
The consistency result leans heavily on the following Uniform Law of Large Numbers.

Lemma 3.1: Under the assumption of

[rn(d + 2)+ 1]V2
n log(Vn[rn(d + 2)+ 1] = o(n), as n → ∞,

we have

sup
f∈Frn

|Qn(f )− Qn(f )| p∗
−→ 0, as n → ∞.
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Proof: For any δ > 0, we have

P∗
(
sup
f∈Frn

|Qn(f )− Qn(f )| > δ

)

= P∗
(
sup
f∈Frn

∣∣∣∣∣1n
n∑

i=1
ε2i − σ 2 − 2

1
n

n∑
i=1

εi
(
f (xi)− f0(xi)

)∣∣∣∣∣ > δ

)

≤ P

(∣∣∣∣∣1n
n∑
i=1

ε2i − σ 2

∣∣∣∣∣ > δ

2

)
+ P∗

(
sup
f∈Frn

∣∣∣∣∣1n
n∑

i=1
εi(f (xi)− f0(xi))

∣∣∣∣∣ > δ

4

)

:= (I)+ (II).

It follows from theWeak Lawof LargeNumbers that (I) → 0.Now,we are going to evaluate
(II). By using the Markov’s inequality, (II) → 0 holds if

E∗
[
sup
f∈Frn

∣∣∣∣∣1n
n∑

i=1
εi(f (xi)− f0(xi))

∣∣∣∣∣
]

→ 0, as n → ∞.

Note that E[ε] = 0 and each f ∈ Frn has its corresponding parameterisation θn. Since θn
is in a compact set, there exists a sequence θn,k → θn as k → ∞ with θn,k ∈ Qrn(d+2)+1 ∩
([−Vn,Vn]rn+1 × [−Mn,Mn]rn(d+1)). Each θn,k corresponds to a function fk ∈ Frn . Based
on continuity, we have fk(x) → f (x) for each x ∈ X . From Example 2.3.4 in van der
Vaart and Wellner (1996), we know that Frn is P-measurable. Based on symmetrisation
inequality, we have

E∗
[
sup
f∈Frn

∣∣∣∣∣1n
n∑
i=1

εi(f (xi)− f0(xi))

∣∣∣∣∣
]

≤ 2EεEξ

[
sup
f∈Frn

∣∣∣∣∣1n
n∑

i=1
ξiεi

(
f (xi)− f0(xi)

)∣∣∣∣∣
]
,

where ξ1, . . . , ξn are i.i.d. Rademacher random variables independent of ε1, . . . , εn. Based
on the Strong Law of Large Numbers, there exists N1 > 0, such that for all n ≥ N1,

1
n

n∑
i=1

ε2i < σ 2 + 1, a.s.

For fixed ε1, . . . , εn,
∑n

i=1 ξiεi(f (xi)− f0(xi)) is a sub-Gaussian process indexed by f ∈
Frn . Suppose that (�, C,μ) is the probability space on which ξ1, . . . , ξn are defined and
let Y(f ,ω) = ∑n

i=1 ξi(ω)εi(f (xi)− f0(xi)) with f ∈ Frn and ω ∈ �. As we have shown
above, we have fk → f and by continuity, Y(fk,ω) → Y(f ,ω) for any ω ∈ �. This shows
that {Y(f ,ω), f ∈ Frn} is a separable sub-Gaussian process. Hence Corollary 2.2.8 in van
der Vaart and Wellner (1996) implies that there exists a universal constant K and for any
f ∗n ∈ Frn with n ≥ N1,

Eξ

[
sup
f∈Frn

∣∣∣∣∣1n
n∑
i=1

ξiεi(f (xi))− f0(xi))

∣∣∣∣∣
]

≤ Eξ

[∣∣∣∣∣1n
n∑

i=1
ξiεi(f ∗n (xi)− f0(xi))

∣∣∣∣∣
]

+ K
∫ ∞

0

√
logN

( 1
2η,Frn , d

)
n

dη
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≤ Eξ

[∣∣∣∣∣1n
n∑

i=1
ξiεi(f ∗n (xi)− f0(xi))

∣∣∣∣∣
]

+ K
∫ 2Vn

0

√√√√ logN
(

1
2
√
σ 2+1

η,Frn , ‖ · ‖∞
)

n
dη,

where for f , g ∈ Frn ,

d(f , g) =
(
1
n

n∑
i=1

ε2i (f (xi)− g(xi))2
)1/2

so that the last inequality follows by noting that supf∈Frn

∥∥f ∥∥∞ ≤ Vn and

d(f , g) ≤ ‖f − g‖∞

(
1
n

n∑
i=1

ε2i

)1/2

.

We then evaluate these two terms. For the first term, for n ≥ N1, by Cauchy–Schwarz
inequality, we have

Eξ

[∣∣∣∣∣1n
n∑

i=1
ξiεi(f ∗n (xi)− f0(xi))

∣∣∣∣∣
]

≤
(
1
n

n∑
i=1

ε2i

)1/2 (
1
n

n∑
i=1
(f ∗n (xi)− f0(xi))2

)1/2

≤
√
σ 2 + 1 sup

x∈X
|f ∗n (x)− f0(x)|, a.s.

By choosing f ∗n = πrn f0 and using the universal approximation theorem introduced by
Hornik et al. (1989), we know that supx∈X |f ∗n (xi)− f0(xi)| → 0 as n → ∞. Therefore,
for any ζ > 0, there exists N2 > 0, such that for all n ≥ N2,

sup
x∈X

|f ∗n (xi)− f0(xi)| < ζ√
σ 2 + 1

.

By choosing n ≥ N1 ∨ N2, we get

Eξ

[∣∣∣∣∣1n
n∑

i=1
ξiεi(f ∗n (xi)− f0(xi))

∣∣∣∣∣
]
< ζ a.s.

For the second term, we use the same bound from Theorem 14.5 in Anthony and
Bartlett (2009) as we did in the proof of Lemma 2:

N
(

1
2
√
σ 2 + 1

η,Frn , ‖ · ‖∞
)

≤
(
8
√
σ 2 + 1e[rn(d + 2)+ 1]

( 1
4Vn

)2
η
( 1
4Vn − 1

)
)rn(d+2)+1

:= B̃rn,d,Vnη
−[rn(d+2)+1],
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where B̃rn,d,Vn = (2
√
σ 2 + 1e[rn(d + 2)+ 1]V2

n/(Vn − 4))rn(d+2)+1. Let

Brn,d,Vn = log B̃rn,d,Vn − [rn(d + 2)+ 1]

= [rn(d + 2)+ 1]

(
log

2
√
σ 2 + 1e[rn(d + 2)+ 1]V2

n
Vn − 4

− 1

)

≤ 2[rn(d + 2)+ 1] log
[rn(d + 2)+ 1]V2

n
Vn − 4

, for all n ≥ N1 ∨ N3,

where N3 is chosen to satisfy rn(d + 2)+ 1 ≥ 2
√
σ 2 + 1. The last inequality then follows

by noting that V2
n − Vn + 4 ≥ 0 for all Vn so that log

[rn(d+1)+1]V2
n

Vn−4 ≥ log 2
√
σ 2+1(Vn−4)
Vn−4 =

log(2
√
σ 2 + 1). We also have

H
(

1
2
√
σ 2 + 1

η,Frn , ‖ · ‖∞
)

= log B̃rn,d,Vn + [rn(d + 2)+ 1] log
1
η

≤ Brn,d,Vn + [rn(d + 2)+ 1]
1
η

≤ Brn,d,Vn

(
1 + 1

η

)
,

and hence for all n ≥ N1 ∨ N3,∫ 2Vn

0
H1/2

(
1

2
√
σ 2 + 1

η,Frn , ‖ · ‖∞
)

dη

≤ B1/2rn,d,Vn

∫ 2Vn

0

(
1 + 1

η

)1/2
dη

= B1/2rn,d,Vn

[∫ 1

0

(
1 + 1

η

)1/2
dη +

∫ 2Vn

1

(
1 + 1

η

)1/2
dη

]

≤ B1/2rn,d,Vn

[√
2
∫ 1

0
η−1/2 dη + √

2(2Vn − 1)
]

≤ 4
√
2B1/2rn,d,Vn

Vn,

which implies that

∫ 2Vn

0

√√√√H
(

1
2
√
σ 2+1

η,Frn , ‖ · ‖∞
)

n
dη ≤ 8

√
[rn(d + 2)+ 1]V2

n log
[rn(d+2)+1]V2

n
Vn−4

n

∼ 8

√
[rn(d + 2)+ 1]V2

n log(Vn[rn(d + 2)+ 1])
n

,

where the last part follows by noting that log V2
n

Vn−4 ∼ logVn. Under the assumption given
in the Lemma, there exists N4 > 0, such that for all n ≥ N4, we have√

[rn(d + 2)+ 1]V2
n log(Vn[rn(d + 2)+ 1])

n
<
ζ

8
.
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Therefore, by choosing n ≥ N1 ∨ N2 ∨ N3 ∨ N4, we get

Eξ

[
sup
f∈Frn

∣∣∣∣∣1n
n∑
i=1

ξiεi(f (xi)− f0(xi))

∣∣∣∣∣
]
< 2ζ a.s.,

i.e. Eξ [supf∈Frn
| 1n
∑n

i=1 ξiεi(f (xi)− f0(xi))|] → 0 a.s.. Moreover, based on what we have
shown, for a sufficiently large n, we have

Eξ

[
sup
f∈Frn

∣∣∣∣∣1n
n∑
i=1

ξiεi(f (xi)− f0(xi))

∣∣∣∣∣
]

≤
√
σ 2 + 1‖πrn f0 − f0‖∞

+ 4
√
2KB1/2rn,d,Vn

n−1/2Vn → 0, a s..

Since

Eε[
√
σ 2 + 1‖πrn f0 − f0‖∞ + 4

√
2KB1/2rn,d,Vn

n−1/2Vn]

=
√
σ 2 + 1‖πrn f0 − f0‖∞ + 4

√
2KB1/2rn,d,Vn

n−1/2Vn → 0 < ∞,

by using the Generalised Dominated Convergence Theorem, we know that

E∗
[
sup
f∈Frn

∣∣∣∣∣1n
n∑
i=1

εi(f (xi)− f0(xi))

∣∣∣∣∣
]

≤ 2EεEξ

[
sup
f∈Frn

∣∣∣∣∣1n
n∑

i=1
ξiεi

(
f (xi)− f0(xi)

)∣∣∣∣∣
]

→ 0,

which completes the proof. �

Based on the above lemmas, we are ready to state the theorem on the consistency of
neural network sieve estimators.

Theorem 3.1: Under the notation given above, if

[rn(d + 2)+ 1]V2
n log(Vn[rn(d + 2)+ 1] = o(n), as n → ∞, (3)

then

‖f̂n − f0‖n p−→ 0.

Proof: Since Q is continuous at f0 ∈ F and Q(f0) = σ 2 < ∞, for any ε > 0, we have

inf
f :‖f−f0‖n≥ε

Qn(f )− Qn(f0) = inf
f :‖f−f0‖n≥ε

1
n

n∑
i=1
(f (xi)− f0(xi))2 ≥ ε2 > 0.

Hence, based on Lemma 1, Lemma 3 and Corollary 2.6 in White and Wooldridge (1991),
we have

‖f̂n − f0‖n p−→ 0. �
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Remark 3.1: We discuss the condition (3) in Theorem 3.1 via some simple examples here.
If αj = O(1) for j = 1, . . . , rn, then Vn = O(rn) and

[rn(d + 2)+ 1]V2
n log(Vn[rn(d + 2)+ 1]) = O(r3n log rn).

Therefore, a possible growth rate for the number of hidden units in a neural network is
rn = o((n/ log n)1/3). On the other hand, if we have a slow growth rate for the number of
hidden units in the neural network, such as rn = logVn, then we have

[rn(d + 2)+ 1]V2
n log(Vn[rn(d + 2)+ 1]) = O((Vn logVn)

2).

Hence, a possible growth rate for the upper bound of the weights from the hidden layer to
the output layer is Vn = o(n1/2/ log n).

4. Rate of convergence

To obtain the rate of convergence for neural network sieves, we apply Theorem 3.4.1 in van
der Vaart and Wellner (1996).

Theorem 4.1: Based on the above notations, if

ηn = O (
min{‖πrn f0 − f0‖2n, rn(d + 2) log(rnVn(d + 2))/n, rn(d + 2) log n/n}) ,

then

‖f̂n − f0‖n

= Op

(
max

{
‖πrn f0 − f0‖n,

√
rn(d + 2) log[rnVn(d + 2)]

n
,

√
rn(d + 2) log n

n

})
.

Proof: Use the same bound from Theorem 14.5 in Anthony and Bartlett (2009), we have

logN(η,Frn , ‖ · ‖n) ≤ logN(η,Frn , ‖ · ‖∞) ≤ log

(
4e[rn(d + 2)+ 1]

( 1
4Vn

)2
η
( 1
4Vn − 1

)
)rn(d+2)+1

= [rn(d + 2)+ 1] log
C̃rn,d,Vn

η
,

where C̃rn,d,Vn = e[rn(d+2)+1]V2
n

Vn−4 > e. Then from Lemma 3.8 in Mendelson (2003),
for δ < 1,

∫ δ

0

√
logN(η,Frn , ‖ · ‖n) dη ≤ [rn(d + 2)+ 1]1/2

∫ δ

0

√
log

C̃rn,d,Vn

η
dη

� [rn(d + 2)+ 1]1/2δ

√
log

C̃rn,d,Vn

δ

:= φn(δ).
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Define h : δ �→ φn(δ)/δ
α = [rn(d + 2)+ 1]1/2δ1−α

√
log C̃rn ,d,Vn

δ
. Since for 0 < δ < 1 and

1 < α < 2

h′(δ) = [rn(d + 2)+ 1]1/2
⎛
⎝(1 − α)δ−α

√
log

C̃rn ,d,Vn

δ
− 1

2
δ2

C̃rn ,d,Vn

C̃rn ,d,Vn

δ2
log−1/2 C̃rn ,d,Vn

δ

⎞
⎠

= [rn(d + 2)+ 1]1/2
⎛
⎝(1 − α)δ−α

√
log

C̃rn ,d,Vn

δ
− 1

2
log−1/2 C̃rn ,d,Vn

δ

⎞
⎠

< 0,

δ �→ φn(δ)/δ
α is decreasing on (0,∞). Let ρn � ‖πrn f0 − f0‖−1

n . Note that

ρ2nφn

(
1
ρn

)
= ρn[rn(d + 2)+ 1]1/2 log1/2

(
ρnC̃rn,d,Vn

)

= [rn(d + 2)+ 1]1/2ρn
√
log ρn + log C̃rn,d,Vn

and

log C̃rn,d,Vn = 1 + log
[rn(d + 2)+ 1]V2

n
Vn − 4

� log
[rn(d + 2)+ 1]V2

n
Vn − 4

∼ log[rnVn(d + 2)],

we have

ρ2nφn

(
1
ρn

)
�

√
n ⇔ rn(d + 2)ρ2n

(
log ρn + log[rnVn(d + 2)]

)
� n.

Therefore, for

ρn � min

{(
n

rn(d + 2) log[rnVn(d + 2)]

)1/2
,
(

n
rn(d + 2) log n

)1/2
}
,

we have ρ2nφn(
1
ρn
) � √

n. Based on these observation, Lemma 1, Lemma 2 in the Sup-
plementary Materials and Theorem 3.4.1 in van der Vaart and Wellner (1996) imply
that

‖f̂n − πrn f0‖n

= Op

(
max

{
‖πrn f0 − f0‖n,

√
rn(d + 2) log[rnVn(d + 2)]

n
,

√
rn(d + 2) log n

n

})
.

By using the triangle inequality, we can further get

‖f̂n − f0‖n ≤ ‖f̂n − πrn f0‖n + ‖πrn f0 − f0‖n

= Op

(
max

{
‖πrn f0 − f0‖n,

√
rn(d + 2) log[rnVn(d + 2)]

n
,

√
rn(d + 2) log n

n

})
.

�
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Remark 4.1: Recall that a sufficient condition to ensure consistency is rn(d + 2)
V2
n log[rnVn(d + 2)] = o(n). Under such a condition, rn(d + 2) log[rnVn(d + 2)] ≤ n, the

rate of convergence can be simplified to

‖f̂n − f0‖n = Op

(
max

{
‖πrn f0 − f0‖n,

√
rn(d + 2) log n

n

})
.

If we assume f0 ∈ F whereF is the space of functions with finite first absolutemoments
of the Fourier magnitude distributions, i.e.

F =
{
f : Rd → R : f (x) =

∫
exp

{
iaTx

}
dμf (a), ‖μf ‖1

:=
∫

max(‖a‖1, 1) d|μf |(a) ≤ C
}
, (4)

where μf is a complex measure on Rd. |μf | denotes the total variation of μf , i.e. |μ|(A) =
sup

∑∞
n=1 |μ(An)| and the supremum is taken over all measurable partitions {An}∞n=1 ofA.

‖a‖1 = ∑d
i=1 |ai| for a = [a1, . . . , ad]T ∈ Rd. Theorem 3 in Makovoz (1996) shows that

δn := ‖f0 − πrn f0‖n � r−1/2−1/(2d)
n . Therefore, if we let d fixed and ρn = δ−1

n and Vn ≡ V
in the proof of Theorem 4.1, δn must also satisfy the following inequality:

ρ2nφ

(
1
ρn

)
� ρnr

1/2
n log1/2

(
ρnC̃rn,d,Vn

)
�

√
n

⇒ ρ2nrn log ρn + ρ2nrn log rn � n

⇒ r
1+ 1

d
n rn log rn � n.

One possible choice of rn to satisfy such condition is rn � (n/ log n)
d

2+d . In such a case, we
obtain

‖f̂n − f0‖n = Op

⎛
⎝( n

log n

)− 1+1/d
4(1+1/(2d))

⎞
⎠ ,

which is the same rate obtained in Chen and Shen (1998). It is interesting to note that in
the case where d = 1, we have ‖f̂n − f0‖n = Op((n/ log n)−1/3). Such rate is close to the
Op(n−1/3), which is the convergence rate in nonparametric least square problems when
the class of functions considered has bounded variation in R (see Example 9.3.3 in van de
Geer (2000)). As shown in Proposition 3 in the supplementary material, Frn is a class of
functions with bounded variation inR. Therefore, the convergence rate we obtainedmakes
sense.

5. Asymptotic normality

To establish the asymptotic normality of sieve estimator for neural networks, we follow
the idea in Shen (1997) and start by calculating the Gâteaux derivative of the empirical
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criterion function Qn(f ) = n−1∑n
i=1(yi − f (xi))2,

Q′
n,f0 [f − f0] = lim

t→0

1
t

[
1
n

n∑
i=1
(yi − f0(xi)− t(f (xi)− f0(xi)))2 − 1

n

n∑
i=1
(yi − f0(xi))2

]

= −2
n

n∑
i=1

εi(f (xi)− f0(xi)).

Then the remainder of first-order functional Taylor series expansion is

Rn[f − f0] = Qn(f )− Qn(f0)− Q′
n,f0[f − f0] = 1

n

n∑
i=1
(f (xi)− f0(xi))2 = ‖f − f0‖2n.

As will be seen in the proof of asymptotic normality, the rate of convergence for the
empirical process {n−1/2∑n

i=1 εi(f (xi)− f0(xi)) : f ∈ Frn} plays an important role. Here
we establish a lemma, which will be used to find the desired rate of convergence.

Lemma 5.1: Let X1, . . . ,Xn be independent random variables with Xi ∼ Pi. Define the
empirical process {νn(f )} as

νn(f ) = 1√
n

n∑
i=1

[f (Xi)− Pif ].

Let Fn = {f : ‖f ‖∞ ≤ Vn}, ε > 0 and α ≥ supf∈Fn
n−1∑n

i=1 Var[f (Xi)] be arbitrary.
Define t0 by H(t0,Fn, ‖ · ‖∞) = ε

4ψ(M, n,α), where ψ(M, n,α) = M2/[2α(1 + MVn
2
√
nα )].

If

H(u,Fn, ‖ · ‖∞) ≤ Anu−r, (5)

for some 0< r<2 and u ∈ (0, a], where a is a small positive number, and there exists a
positive constant Ki = Ki(r, ε), i = 1, 2 such that

M ≥ K1A
2

r+2
n V

2−r
r+2
n n

r−2
2(r+2) ∨ K2A

1/2
n α

2−r
4 ,

we have

P∗
(
sup
f∈Fn

|νn(f )| > M

)
≤ 5 exp {−(1 − ε)ψ(M, n,α)} .

Proof: The proof of the lemma is similar to the proof of Corollary 2.2 in Alexander (1984)
and the proof of Lemma 1 in Shen and Wong (1994). Since H(u,Fn, ‖ · ‖∞) ≤ Anu−r for
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some 0< r<2, we have

I(s, t) :=
∫ t

s
H1/2(u,Fn, ‖ · ‖∞) du ≤ 2(2 − r)−1A

1
2
n t1−

r
2 .

Based on the assumption of

Ant−r
0 ≥ H(t0,Fn, ‖ · ‖∞) = ε

4
ψ(M, n,α),

we have t0 ≤ [ 4An
εψ

]1/r. Note that ψ(M, n,α) ≥ M2/(4α) ifM ≤ 3
√
nα/Vn and 2(

√
nα +

MVn/3) ≤ 4MVn/3 if M ≥ 3
√
nα/Vn and hence ψ(M, n,α) ≥ 3

√
nM/(4Vn). In sum-

mary,

ψ(M, n,α) ≥
{
M2/(4α) if M < 3

√
nα/Vn,

3
√
nM/(4Vn) if M ≥ 3

√
nα/Vn

.

Therefore, ifM ≥ 3
√
nα/Vn,

28ε−3/2I
(
εM
64

√
n
, t0

)
≤ 29ε−3/2(2 − r)−1A1/2

n t1−
r
2

0

≤ 29ε−3/2(2 − r)−1
(
4
ε

) 1
r − 1

2
A1/r
n

(
3

4Vn

√
nM

) 1
2− 1

r

= K̃1A
1/r
n V

1
r − 1

2
n n

1
4− 1

2r M
1
2− 1

r ,

where K̃1 = 29ε−3/2(2 − r)−1( 4
ε
)
1
r − 1

2 ( 34 )
1
2− 1

r . Hence

28ε−3/2I
(
εM
64

√
n
, t0

)
< M ⇔ K̃1A

1/r
n V

1
r − 1

2
n n

1
4− 1

2r M
1
2− 1

r < M

⇔ K̃1A
1/r
n V

1
r − 1

2
n n

r−2
4r < M

1
r + 1

2

⇔ M > K1A
2

r+2
n V

2−r
r+2
n n

r−2
2(r+2) ,

where K1 = K̃
2r
r+2
1 . On the other hand, ifM < 3

√
nα/Vn,

28ε−3/2I
(
εM
64

√
n
, t0

)
≤ 29ε−3/2(2 − r)−1A1/2

n t1−
r
2

0

≤ 29ε−3/2(2 − r)−1
(
4
ε

) 1
r − 1

2
A1/r
n

(
M2

4α

) 1
2− 1

r

= K̃2A
1/r
n M1− 2

r α
1
r − 1

2 ,

where K̃2 = 29ε−3/2(2 − r)−1( 4
ε
)
1
r − 1

2 ( 14 )
1
2− 1

r . Hence

28ε−3/2I
(
εM
64

√
n
, t0

)
< M ⇔ K̃2A

1/r
n M1− 2

r α
1
r − 1

2 < M

⇔ K̃2A
1/r
n α

2−r
2r < M

2
r

⇔ M > K2A
1/2
n α

2−r
4 ,



16 X. SHEN ET AL.

where K2 = K̃r/2
2 . In conclusion, if M ≥ K1A

2
r+2
n V

2−r
r+2
n n

r−2
2(r+2) ∨ K2A

1/2
n α

2−r
4 , then

28ε−3/2I( εM64
√
n , t0) < M. By Theorem 2.1 in Alexander (1984), we have the desired

result. �

As a Corollary to Lemma 5.1, we can show that the supremum of the empirical process
{n−1/2∑n

i=1 εi(f (xi)− f0(xi)) : f ∈ Frn} converges to 0 in probability.

Corollary 5.1: Let ρn satisfy ρn‖f̂n − f0‖n = Op(1) and Frn be the class of neural network
sieves as defined in (2). Then under the conditions

(C1) rn(d + 2)Vn log[rnVn(d + 2)] = o(n1/4);
(C2) nρ−2

n /Vλn = o(1),

we have

sup
‖f−f0‖n≤ρ−1

n ,f∈Frn

∣∣∣∣∣ 1√
n

n∑
i=1

εi(f − f0)(xi)

∣∣∣∣∣ = op(1).

Proof: To establish the desired result, we apply the truncation device.

P∗
⎛
⎝ sup

‖f−f0‖n≤ρ−1
n ,f∈Frn

∣∣∣∣∣ 1√
n

n∑
i=1

εi(f − f0)(xi)

∣∣∣∣∣ � M

⎞
⎠

≤ P∗
⎛
⎝ sup

‖f−f0‖n≤ρ−1
n ,f∈Frn

∣∣∣∣∣ 1√
n

n∑
i=1

εiI{|εi|≤Vn}(f − f0)(xi)

∣∣∣∣∣ � M

⎞
⎠

+ P∗
⎛
⎝ sup

‖f−f0‖n≤ρ−1
n ,f∈Frn

∣∣∣∣∣ 1√
n

n∑
i=1

εiI{|εi|>Vn}(f − f0)(xi)

∣∣∣∣∣ � M

⎞
⎠

:= (I)+ (II).

For (I), we can apply Lemma 6 directly. Note that |εI{|ε|≤Vn}(f − f0)(x)| ≤ Vn(Vn +
‖f0‖∞) � V2

n since ‖f0‖∞ < ∞ and for 0 < η < 1,

logN(η,Frn , ‖ · ‖∞) ≤ log

(
4e[rn(d + 2)+ 1]

( 1
4Vn

)2
η
( 1
4Vn − 1

)
)rn(d+2)+1

≤ [rn(d + 2)+ 1]
(
log C̃rn,d,Vn + 1

η
− 1

)

= Crn,d,Vn

(
1 + 1

η

)

≤ 2Crn,d,Vn

1
η
,
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where C̃rn,d,Vn = e[rn(d+2)+1]V2
n

Vn−4 and

Crn,d,Vn = [rn(d + 2)+ 1] log C̃rn,d,Vn − [rn(d + 2)+ 1] ∼ rn(d + 2) log[rnVn(d + 2)].

Therefore, Equation (5) in themain text is satisfied with r = 1 andAn = 2Crn,d,Vn . Follow-
ing from Lemma 6, forM � C2/3

rn,d,Vn
V2/3
n n−1/6 ∨ C1/2

rn,d,Vn
α1/4, we have (I) ≤ 5 exp{−(1 −

ε)ψ(M, n,α)} and hence

sup
‖f−f0‖≤ρ−1

n ,f∈Frn

∣∣∣∣ 1√
n
εiI{|εi|≤Vn}(f − f0)(xi)

∣∣∣∣ = Op

(
C2/3
rn,d,Vn

V2/3
n

n1/6

)
.

From (C1),

C2/3
rn,d,Vn

V2/3
n

n1/6
∼
(
rn(d + 2)Vn log[rnVn(d + 2)]

n1/4

)2/3
= op(1).

For (II), by using the Cauchy–Schwarz inequality, we have

∣∣∣∣∣1n
n∑

i=1
εiI{|εi|>Vn}(f − f0)(xi)

∣∣∣∣∣ ≤
(
1
n

n∑
i=1

ε2i I{|εi|>Vn}

)1/2

‖f − f0‖n.

Then it follows from the Markov inequality that

(II) ≤ P

⎛
⎝(1

n

n∑
i=1

ε2i I{|εi|>Vn}

)1/2

ρ−1
n � Mn−1/2

⎞
⎠ � M−2nρ−2

n E[ε2I|ε|>Vn]

� M−2nρ−2
n

E[|ε|2+λ]
Vλn

.

Based on condition (C2), we have (II) → 0, and

sup
‖f−f0‖n≤ρ−1

n ,f∈Frn

∣∣∣∣∣1n
n∑

i=1
εiI{|εi|>Vn}(f − f0)(xi)

∣∣∣∣∣ = op(1).

Combining the results we obtained above, we get

sup
‖f−f0‖n≤ρ−1

n ,f∈Frn

∣∣∣∣∣ 1√
n

n∑
i=1

εi(f − f0)(xi)

∣∣∣∣∣ = op(1).

�
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Remark 5.1: Condition (C2) can be further simplified using the results fromTheorem 4.1.
If

ηn = O (
min{‖πrn f0 − f0‖2n, rn(d + 2) log(rnVn(d + 2))/n, rn(d + 2) log n/n}) ,

then

ρ−1
n � max

{
‖πrn f0 − f0‖n,

√
rn(d + 2) log[rnVn(d + 2)]/n,

√
rn(d + 2) log n/n

}
.

It follows from condition (C1) that

ρ−1
n � max

{
‖πrn f0 − f0‖n,

√
rn(d + 2) log n/n

}
.

For simplicity, we assume that ρ−1
n � √

rn(d + 2) log n/n, which holds for functions hav-
ing finite first absolute moments of the Fourier magnitude distributions as discussed at the
end of Section 4.4. Then in this case,

nρ−2
n /Vλn � rn(d + 2) log n/Vλn ,

so that condition (C2) becomes rn(d + 2) log n/Vλn → 0.

Now we are going to establish the asymptotic normality for neural network estimators.
For f ∈ {f ∈ Frn : ‖f − f0‖n ≤ ρ−1

n }, we consider a local alternative

f̃n(f ) = (1 − δn)f + δn(f0 + ι), (6)

where 0 ≤ δn = η
1/2
n = o(n−1/2) is chosen such that ρnδn = o(1) and ι(x) ≡ 1.

Theorem 5.1 (Asymptotic Normality): Suppose that 0 ≤ ηn = o(n−1) and conditions
(C1) and (C2) in Corollary 5.1 hold. We further assume that the following two conditions
hold:

(C3) supf∈Frn :‖f−f0‖n≤ρ−1
n

‖πrn f̃n(f )− f̃n(f )‖n = Op(ρnδ
2
n);

(C4) supf∈Frn :‖f−f0‖n≤ρ−1
n

1
n
∑n

i=1 εi(πrn f̃n(f )(xi)− f̃n(f )(xi)) = Op(δ
2
n),

then

1√
n

n∑
i=1

[
f̂n(xi)− f0(xi)

]
d−→ N (0, σ 2).

Proof: Themain idea of the proof is to use the functional Taylor series expansion forQn(f )
and then carefully bound each term in the expansion. For any f ∈ {f ∈ Frn : ‖f − f0‖n ≤
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ρ−1
n },

Qn(f ) = Qn(f0)+ Q′
n,f0 [f − f0] + Rn[f − f0]

= 1
n

n∑
i=1

ε2i − 2
n

n∑
i=1

εi(f (xi)− f0(xi))+ 1
n

n∑
i=1
(f (xi)− f0(xi))2. (7)

Note that

‖f̃n(f )− f0‖n = ‖(1 − δn)f̂n + δn(f0 + ι)− f0‖n
= ‖(1 − δn)(f̂n − f0)+ δnι‖n
≤ (1 − δn)‖f̂n − f0‖n + δn,

and since δn = o(n−1/2), we can know that with probability tending to 1, ‖f̃n(f )− f0‖n ≤
ρ−1
n . Then replacing f in (7) by f̂n and πrn f̃n(f ), we get

Qn(f̂n) = 1
n

n∑
i=1

ε2i − 2
n

n∑
i=1

εi(f̂n(xi)− f0(xi))+ ‖f̂n − f0‖2n

Qn(πrn f̃n(f )) = 1
n

n∑
i=1

ε2i − 2
n

n∑
i=1

εi(πrn f̃n(f )(xi)− f0(xi))+ ‖πrn f̃n(f )− f0‖2n.

Subtracting these two equations yields

Qn(f̂n) = Qn(πrn f̃n(f ))+ 2
n

n∑
i=1

εi

(
πrn f̃n(f )(xi)− f̂n(xi)

)

+ ‖f̂n − f0‖2n − ‖πrn f̃n(f )− f0‖2n.
Now note that

‖πrn f̃n(f )− f0‖2n = ‖πrn f̃n(f )− f̃n(f )+ f̃n(f )− f0‖2n
= ‖πrn f̃n(f )− f̃n(f )+ (1 − δn)(f̂n − f0)+ δnι‖2n
≤ (1 − δn)

2‖f̂n − f0‖2n + 2(1 − δn)
〈
f̂n − f0, δnι

〉
+ δ2n

+ 2(1 − δn)‖πrn f̃n(f )− f̃n(f )‖n‖f̂n − f0‖n
+ 2δn‖πrn f̃n(f )− f̃n(f )‖n + ‖πrn f̃n(f )− f̃n(f )‖2n,

where the last inequality follows from the Cauchy–Schwarz inequality. Since

2
n

n∑
i=1

εi

(
πrn f̃n(f )(xi)− f̂n(xi)

)
= 2

n

n∑
i=1

εi

(
πrn f̃n(f )(xi)− f̃n(f )(xi)+ f̃n(f )(xi)− f̂n(xi)

)

= 2
n

n∑
i=1

εi

(
πrn f̃n(f )(xi)− f̃n(f )(xi)

)

− 2
n
δn

n∑
i=1

εi

(
f̂n(xi)− f0(xi)

)
− 2

n
δn

n∑
i=1

εi,
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by the definition of f̂n, we have

−Op(δ
2
n) ≤ inf

f∈Frn
Qn(f )− Qn(f̂n) ≤ Qn(πrn f̃n(f ))− Qn(f̂n)

≤ (1 − δn)
2‖f̂n − f0‖2n − ‖f̂n − f0‖2n + 2(1 − δn)δn

〈
f̂n − f0, ι

〉
+ 2(1 − δn)‖f̂n − f0‖n‖πrn f̃n(f )− f̃n(f )‖n
+ 2δn‖πrn f̃n(f )− f̃n(f )‖n + ‖πrn f̃n(f )− f̃n(f )‖2n

− 2
n

n∑
i=1

εi

(
πrn f̃n(f )(xi)− f̃n(f )(xi)

)
+ 2

n
δn

n∑
i=1

εi

(
f̂n(xi)− f0(xi)

)

+ 2
n
δn

n∑
i=1

εi + Op(δ
2
n)

≤ δ2n‖f̂n − f0‖2n + 2(1 − δn)δn

〈
f̂n − f0, ι

〉
+ 2(1 − δn)‖f̂n − f0‖n‖πrn f̃n(f )− f̃n(f )‖n
+ 2δn‖πrn f̃n(f )− f̃n(f )‖n + ‖πrn f̃n(f )− f̃n(f )‖2n

− 2
n

n∑
i=1

εi

(
πrn f̃n(f )(xi)− f̃n(f )(xi)

)
+ 2

n
δn

n∑
i=1

εi

(
f̂n(xi)− f0(xi)

)

+ 2
n
δn

n∑
i=1

εi + Op(δ
2
n), (8)

where the last inequality follows by noting that (1 − δn)
2 − 1 = −2δn + δ2n ≤ δ2n. From the

condition (C1), we can get

[rn(d + 2)+ 1]V2
n log[rnVn(d + 2)+ 1]

≤ (
[rn(d + 2)+ 1]Vn log[rnVn(d + 2)+ 1]

)4 = o(n).

Combining with Theorem 2, we obtain that ‖f̂n − f0‖n = op(1) and hence δ2n‖f̂n − f0‖2n =
op(δ2n). From condition (C3), we have

2(1 − δn)‖f̂n − f0‖n‖πrn f̃n(f )− f̃n(f )‖n ≤ 2‖f̂n − f0‖n‖πrn f̃n(f )− f̃n(f )‖n
= Op

(
ρ−1
n ρnδ

2
n
) = Op(δ

2
n).

Similarly, since ρnδn = o(1), we have

2δn‖πrn f̃n(f )− f̃n(f )‖n = Op(δn · ρnδ2n) = op(δ2n)

‖πrn f̃n(f )− f̃n(f )‖2n = Op(ρ
2
nδ

4
n) = op(δ2n).

Based on condition (C4), we know that

2
n

n∑
i=1

εi

(
πrn f̃n(f )− f̃n(f )

)
= Op(δ

2
n),
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and from Corollary 5.1, we also have

2
n
δn

n∑
i=1

εi

(
f̂n(xi)− f0(xi)

)
= op(δn · n−1/2).

It follows from these observations that

−2(1 − δn)
〈
f̂n − f0, δnι

〉
+ 2δn

n

n∑
i=1

εi ≤ Op(δ
2
n)+ op(δ2n)+ op(δn · n−1/2),

which implies that

−(1 − δn)
〈
f̂n − f0, ι

〉
+ 1

n

n∑
i=1

εi ≤ Op(δn)+ op(n−1/2) = op(n−1/2).

By replacing ι with −ι, we can obtain the same result and hence∣∣∣∣∣
〈
f̂n − f0, ι

〉
− 1

n

n∑
i=1

εi

∣∣∣∣∣ ≤
∣∣∣∣∣(1 − δn)

〈
f̂n − f0, ι

〉
− 1

n

n∑
i=1

εi

∣∣∣∣∣ + δn

∣∣∣〈f̂n − f0, ι
〉∣∣∣

≤ op(n−1/2)+ δn‖f̂n − f0‖n
= op(n−1/2).

Therefore, 〈
f̂n − f0, ι

〉
= 1

n

n∑
i=1

εi + op(n−1/2),

and the desired result follows from the classical Central Limit Theorem. �

Let us focus on the conditions given in the theorem. Note that if (C1) holds, we have

rn(d + 2)V2
n log[rnVn(d + 2)] ≤ [rn(d + 2)]4V4

n
(
log[rnVn(d + 2)]

)4 = o(n),

so it is a sufficient condition to ensure the consistency of the neural network sieve esti-
mator. As in Remark 3.1, we consider some simple scenarios here. If Vn = O(rn), then
rn(d + 2)Vn log[rnVn(d + 2)] = O(r2n log rn) so that a possible growth rate for rn is rn =
o(n1/8/(log n)2). On the other hand, if rn = logVn, then rn(d + 2)Vn log[rnVn(d + 2)] =
O(Vn(logVn)

2) and a possible growth rate for Vn is Vn = o(n1/4/(log n)2). Thus, in both
cases, the growth rate required for the asymptotic normality of neural network sieve esti-
mator is slower than the growth rate required for the consistency as given in Remark 3.1.
One explanation is that due to the Universal Approximation Theorem, a neural network
with one hidden layer can approximate a continuous function on compact support arbi-
trarily well if the number of hidden units is sufficiently large. Therefore, if the number of
hidden units is too large, the neural network sieve estimator f̂n may be very close to the
best projector of the true function f0 in Frn so that the error

∑n
i=1[f̂n(xi)− f0(xi)] could

be close to zero, resulting a small variation. By allowing slower growth rate of the number of
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hidden units can increase the variations of
∑n

i=1[f̂n(xi)− f0(xi)], whichmakes the asymp-
totic normalitymore reasonable. On the other hand, condition (C3) and condition (C4) are
similar conditions as in Shen (1997), which are known for conditions on approximation
error. These conditions indicate that the approximation rate of a single layer neural net-
work cannot be too slow, otherwise it may require a huge number of samples to reach the
desired approximation error. Therefore, the conditions in the theorem can be considered
as a trade-off between bias and variance.

Theorem 5.1 can be used directly for hypothesis testing of neural network with one
hidden layer if we know the variance of the random error σ 2. In practice, this is rarely
the case. To perform hypothesis testing when σ 2 is unknown, it is natural to find a good
estimator of σ 2 and use a ‘plug-in’ test statistic. A natural estimator for σ 2 is

σ̂ 2
n = 1

n

n∑
i=1

(
yi − f̂n(xi)

)2 = Qn

(
f̂n
)
.

We then need to establish the asymptotic normality for the statistic 1
σ̂n

√
n
∑n

i=1[f̂n(xi)−
f0(xi)].

Theorem 5.2 (Asymptotic Normality for Plug-in Statistic): Suppose that f0 ∈ C(X ),
where X ⊂ Rd is a compact set and 0 ≤ ηn = o(n−1). Then under the conditions as stated
in Theorem 5.1, we have

1
σ̂n

√
n

n∑
i=1

[
f̂n(xi)− f0(xi)

]
d−→ N (0, 1).

Proof: Note that

σ̂ 2
n = Qn(f̂n) = 1

n

n∑
i=1

(
yi − f̂n(xi)

)2 = 1
n

n∑
i=1

(
f0(xi)+ εi − f̂n(xi)

)2

= 1
n

n∑
i=1

(
f̂n(xi)− f0(xi)

)2 − 2
n

n∑
i=1

εi

(
f̂n(xi)− f0(xi)

)
+ 1

n

n∑
i=1

ε2i

= 1
n

n∑
i=1

ε2i − 2
n

n∑
i=1

εi

(
f̂n(xi)− f0(xi)

)
+ ‖f̂n − f0‖2n

Based on the rate of convergence of f̂n we obtained in Theorem 4.1 and condition (C1), we
know that ∥∥∥f̂n − f0

∥∥∥2
n

= O∗
p

(
max

{
‖πrn f0 − f0‖2n,

rn(d + 2) log n
n

})
.

Under (C3), ‖πrn f0 − f0‖2n = o(ρ2nδ4n) = o(n−1/2) and under (C1), we have(
rn(d + 2) log n

n

)
≤ o

(
n1/4 log n

n

)

= o
(
log n
n3/4

)
= o(n−1/2),
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which implies that ‖f̂n − f0‖2n = op(n−1/2). Moreover, by the same arguments as in the
proof of Theorem 5.1, we can show that

2
n

n∑
i=1

εi

(
f̂n(xi)− f0(xi)

)
= op(n−1/2).

Therefore,

Qn(f̂n) = 1
n

n∑
i=1

ε2i + op(n−1/2).

Based on the Weak Law of Large Numbers, we know that 1
n
∑n

i=1 ε
2
i = σ 2 + op(1).

Therefore,

σ̂ 2
n = Qn(f̂n) = σ 2 + op(1),

and it follows from the Slutsky’s Theorem and Theorem 5.1 in the main text, we obtain

1
σ̂n

√
n

n∑
i=1

[
f̂n(xi)− f0(xi)

]
= σ

σ̂n

1
σ
√
n

n∑
i=1

[
f̂n(xi)− f0(xi)

]
d−→ N (0, 1). �

6. Simulation studies

In this section, simulations were conducted to check the validity of the theoretical results
obtained in the previous sections. The consistency of the neural network sieve estimators
was examined under various simulation scenarios. Finally, we evaluated the asymptotic
normality of the neural network sieve estimators. For illustration purpose, we only include
the simulations where the dimension of the covariates is 1. More simulations for the
multivariate cases are given in the supplementary materials.

6.1. Consistency for neural network sieve estimators

In this simulation, we are going to check the consistency result from Section 3 and the
validity of the assumption made in Theorem 3.1. Based on our construction of the neural
network sieve estimators, in each sieve space Frn , there is a constraint on the 
1 norm for
α:

∑rn
i=0 |αi| ≤ Vn. So finding the nearly optimal function in Frn for Qn(f ) is in fact a

constrained optimisation problem. A classical way to conduct this optimisation is through
introducing a Lagrange multiplier for each constraint. Nevertheless, it is usually hard to
find an explicit connection between the Lagrange multiplier and the upper bound in the
inequality constraint. Instead, we use the subgradient method as discussed in section 7 in
Boyd and Mutapcic (2008). The basic idea is to update the parameter α0, . . . ,αrn through

α
(k+1)
i = α

(k)
i − δkg(k), i = 0, . . . , rn,

where δk > 0 is a step size and δk is chosen to be 0.1/ log(e + k) throughout the simulation,
which is known as a nonsummable diminishing step size rule. g(k) is a subgradient of the
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objective or the constraint function
∑rn

j=0 |αj| − Vn at α(k). More specifically, we take

g(k) ∈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂α(k)Qn(f ) if
rn∑
j=0

|αj| ≤ Vn

∂α(k)
∑rn

j=0 |αj| if
rn∑
j=0

|αj| > Vn.
.

Table 1. Comparisonof errors‖f̂n − f0‖2n and the least square errorsQn(f̂n)after 20,000 iterationsunder
different sample sizes.

Neural network Sine Piecewise continuous

Sample sizes ‖f̂n − f0‖2n Qn(f̂n) ‖f̂n − f0‖2n Qn(f̂n) ‖f̂n − f0‖2n Qn(f̂n)

50 3.33E−2 0.519 6.04E−2 0.513 6.20E−1 1.124
100 2.79E−2 0.552 3.04E−2 0.587 3.20E−1 0.920
200 6.05E−3 0.500 1.05E−2 0.501 2.51E−1 0.786
500 8.15E−3 0.484 1.19E−2 0.499 3.26E−1 0.769
1000 3.02E−3 0.475 1.54E−2 0.480 2.98E−2 0.489
2000 2.88E−3 0.500 9.72E−3 0.506 1.69E−2 0.515

Figure 1. Comparison of the true function and the fitted function for three different types of non-linear
functions. The top panel shows the scenario when the true function is a single layer neural network; the
middle panel shows the scenario when the true function is a sine function, and the bottom panel shows
the scenario when the true function is a continuous function having a non-differentiable point. As we
can see from all the cases, the fitted curve becomes closer to the truth as the sample size increases.
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Figure 2. Normal Q–Q plot for n−1/2∑n
i=1[f̂n(xi)− f0(xi)] various sample sizes. The true function f0 is

a single-layer neural network with two hidden units as defined in (10).

The updating equations of γ 1, . . . γ rn , γ0,1, . . . , γ0,rn remain the same as those in the
classical gradient descent algorithm.

We simulated the response through the following model:

yi = f0(xi)+ εi, i = 1, . . . , n, (9)

where the total sample size n varies from 50 to 2000, x1, . . . , xn ∼ i.i.d. N (0, 1),
ε1, . . . , εn ∼ i.i.d.N (0, 0.72). For the true function f0(x), we considered the following three
functions:

(1) A neural network with a single hidden layer and two hidden units:

f0(xi) = −1 − σ(2xi + 1)+ σ(−xi + 1). (10)

(2) A trigonometric function:

f0(x) = sin
(π
3
x
)

+ 1
3
cos

(π
4
x + 1

)
(11)

(3) A continuous function having a non-differential point

f0(x) =
⎧⎨
⎩

−2x if x ≤ 0
√
x
(
x − 1

4

)
if x > 0. (12)
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Figure 3. Normal Q–Q plot for n−1/2∑n
i=1[f̂n(xi)− f0(xi)] various sample sizes. The true function f0 is

a trigonometric function as defined in (11).

We then trained a neural network using the subgradient method mentioned above and
set the number of iterations used for fitting as 20,000. We chose the growth rate on the
number of hidden units rn = n1/4 and the upper bound for 
1 norm of the weights and bias
from the hidden layer to the output layer Vn = 10n1/4. Such choice satisfies the condition
mentioned in Remark 3.1 and hence satisfies the condition in Theorem 3.1. We compared
the errors ‖f̂n − f0‖2n and the least square errors Qn(f̂n) under different sample sizes. The
results are summarised in Table 1.

As we can see from Table 1, the errors ‖f̂n − f0‖2n overall has a decreasing pattern as
the sample size increases. There are some cases where the error becomes a little bit larger
when the sample sizes increases (e.g. the errors using 500 samples in all scenarios is larger
than those errors using 200 sample). One explanation is that the number of hidden units
increases from3 (for 200 samples) to 4 (for 500 samples) under our simulation setup, which
adds variation to the estimation performance. Overall, the table shows that the estimated
function f̂n is indeed consistent in the sense that ‖f̂n − f0‖n = o∗

p(1). Figure 1 plots the
fitted functions and the true function, from which we can straightforwardly visualise the
result more and draw the conclusions.

6.2. Asymptotic normality for neural network sieve estimators

The last part of the simulation focuses on the asymptotic normality derived inTheorem5.1.
We still considered the same types of true functions as described in Section 6.1 but sampled
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Figure 4. Normal Q–Q plot for n−1/2∑n
i=1[f̂n(xi)− f0(xi)] various sample sizes. The true function f0 is

a continuous function having a non-differential point as defined in (12).

the random errors from the standard normal distribution. In this simulation, we still used
the subgradientmethod to obtain the fittedmodel. The number of iterations used for fitting
was set at 20,000. What is different from Section 6.1 is the growth rates for rn and Vn set in
this simulation. As mentioned in Section 5, the growth rates required for asymptotic nor-
mality are slower than those required for consistency. Therefore, we chose rn = n1/8 and
Vn = 10n1/10. Such choice satisfies the condition (C1) in Theorem 5.1. To get the normal
Q–Q plot for n−1/2∑n

i=1[f̂n(xi)− f0(xi)], we repeated the simulation 200 times.
Figures 2 to 4 are the normal Q–Q plots under different nonlinear functions and vari-

ous sample sizes. From the figures, we found that the statistic n−1/2∑n
i=1[f̂n(xi)− f0(xi)]

fit the normal distribution pretty well under all simulation scenarios. It is also worth to
note that the Q–Q plots looks similar under all simulation scenarios. This is what we
would expect since the limiting distribution for the statistic n−1/2∑n

i=1[f̂n(xi)− f0(xi)]
is N (0, 1) under all scenarios. Another implication we can obtain from the Q–Q plots
is that the statistic n−1/2∑n

i=1[f̂n(xi)− f0(xi)] is robust to the choice of f0. Therefore, as
long as the true function f0 is continuous, N (0, 1) is a good asymptotic distribution for
n−1/2∑n

i=1[f̂n(xi)− f0(xi)], which facilitates hypothesis testing.
Besides the Q–Q plots, we also conducted the normality tests to check whether n−1/2∑n
i=1[f̂n(xi)− f0(xi)] follows the standard normal distribution. Specifically, we used the

Shapiro–Wilks test and the Kolmogorov–Smirnov test to perform the normality test.
Table 2 summarises the p-values for both normality tests. As we observed from Table 2, in
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Table 2. Summary of results from the Shapiro–Wilks test and the Kolmogorov–Smirnov test. We use
‘NN’, ‘TRI’ and ‘ND’ to denote a neural network described in (10), a trigonometric function described
in (11) and a continuous function having a non-differential point described in (12), respectively.

Shapiro–Wilks test Kolmogorov–Smirnov test

Sample sizes NN TRI ND NN TRI ND

50 0.878 0.884 0.881 0.584 0.597 0.595
100 0.098 0.095 0.095 0.472 0.508 0.484
200 0.940 0.944 0.944 0.731 0.719 0.708
300 0.884 0.888 0.872 0.976 0.986 0.973
400 0.514 0.525 0.513 0.670 0.754 0.708
500 0.768 0.778 0.768 0.733 0.769 0.733

all cases, we failed to reject that n−1/2∑n
i=1[f̂n(xi)− f0(xi)] follows the standard normal

distribution.

7. Discussion

We have investigated the asymptotic properties, including the consistency, rate of conver-
gence and asymptotic normality for neural network sieve estimators with one hidden layer.
While in practice, the number of hidden unites is often chosen ad hoc, it is important to
note that the conditions in the theorems provide theoretical guidelines on choosing the
number of hidden units for a neural network with one hidden layer to achieve the desired
statistical properties. The validity of the conditions made in the theorems has also been
checked through simulation results. Theorems 5.1 and 5.2 depend on the knowledge of the
underlying function f0, which is typically unknown in practice. Therefore, if we assume f0
has some certain form, the results can be applied and served as preliminary work for con-
ducting hypothesis testing onH0 : f0 = h0 for a fixed function h0. On the other hand, since
multiple functions can lead to the same value of n−1∑n

i=1 f0(xi), the testmay not be power.
The asymptotic normality results are crucial in developing more sophisticated significance
test methods for neural networks (Shen et al. 2022).

The work conducted in this paper mainly focuses on sieve estimators based on neu-
ral networks with one hidden layer and standard sigmoid activation function. The work
presented in this paper can be extended in several ways. The main theorems in this
paper depend heavily on the covering number or the entropy number of the function
class consisting of neural network with one hidden layer. Theorem 14.5 in Anthony and
Bartlett (2009) provides a general upper bound for the covering number of a function class
consisting of deep neural networks with Lipchitz continuous activation functions. There-
fore, it is possible to extend our results discussed in this paper to a deep neural networkwith
Lipchitz continuous activation functions. It is also worthwhile to investigate asymptotic
properties of other commonly used deep learning models such as convolutional neural
networks (CNNs) and recurrent neural networks (RNNs).

On the other hand, although homoscedasticity is assumed in the previous discussions,
it can be relaxed to take heteroscedasticity into consideration. To see this, if E[ε2i ] =
φ2ς2(xi), then under the assumptions that |ς(·)| ≤ ς for someς > 0 and

∑
i Var[ε

2
i ]/i

2 <

∞, the proof of Lemma 3.1 can go through. The only modifications to be made are to use
Kolmogorov Strong Law of Large Numbers to show (I) → 0 and to change σ 2 to ς2φ2
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later on. Therefore, the consistency result still holds under heteroskedasticity with the afor-
mentioned two assumptions satisfied. Moreover, after a clear examination on the proof
of Theorems 4.1, 5.1 and 5.2, it is easy to see that only the consistency part is involved
with heteroskedasticity. Therefore, these results still hold under the aforementioned two
assumptions.

When we train a deep neural network, we usually need to face an overfitting issue. In
practice, regularisation is frequently used to reduce overfitting. Another natural extension
of the work discussed in this paper is to modify the loss function by involving some regu-
larisation terms. By taking regularisation into account, we believe the theories could have
a much broader application in real-world scenarios.
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