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Neural networks have become one of the most popularly used
methods in machine learning and artificial intelligence. Due to the
universal approximation theorem (Hornik, Stinchcombe and White,
1989), a neural network with one hidden layer can approximate any
continuous function on compact support as long as the number of hid-
den units is su�ciently large. Statistically, a neural network can be
classified into a nonlinear regression framework. However, if we con-
sider it parametrically, due to the unidentifiability of the parameters,
it is di�cult to derive its asymptotic properties. Instead, we consider
the estimation problem in a nonparametric regression framework and
use the results from sieve estimation to establish the consistency, the
rates of convergence and the asymptotic normality of the neural net-
work estimators. We also illustrate the validity of the theories via
simulations.

1. Introduction. With the success of machine learning and artificial
intelligence in researches and industry, neural networks have become pop-
ularly used methods nowadays. Many newly developed machine learning
methods are based on deep neural networks and have achieved great classi-
fication and prediction accuracy. We refer interested readers to Goodfellow
et al. (2016) for more background and details. In classical statistical learn-
ing theory, the consistency and the rate of convergence of the empirical risk
minimization principle are of great interest. Many upper bounds have been
established for the empirical risk and the sample complexity based on the
growth function and the Vapnik-Chervonenkis dimension (see for example,
Vapnik (1998); Anthony and Bartlett (2009); Devroye, Györfi and Lugosi
(2013)). However, few studies have focused on the asymptotic properties for
neural networks. As Thomas J. Sargent said, “artificial intelligence is actu-
ally statistics, but in a very gorgeous phrase, it is statistics.” So it is natural
and worthwhile to explore whether neural networks possess nice asymptotic
properties. As if they do, it may be possible to conduct statistical infer-
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2 X. SHEN ET AL.

ence based on neural networks. Throughout this paper, we will focus on the
asymptotic properties of neural networks with one hidden layer.

In statistics, fitting a neural network with one hidden layer can be viewed
as a parametric nonlinear regression problem:

yi = ↵0 +
rX

j=1

↵j�
�
�T
j xi + �0,j

�
+ ✏i,

where ✏1, . . . , ✏n are i.i.d. random errors with E[✏] = 0 and E[✏2] = �
2
< 1

and �(·) is an activation function such as �(z) = 1/(1+e
�z), which is used in

this paper. White and Racine (2001) obtained the asymptotic distribution of
the resulting estimators under the assumption of the true parameters being
unique. In fact, the authors implicitly assumed that the number of hidden
units r is known. However, even if we assume that we know the number
of hidden units, it is di�cult to establish the asymptotic properties for the
parameter estimators. In section 6.1, we conducted a simulation based on
a single-layer neural network with 2 hidden units. Even for such a simple
model, the simulation result suggests that it is unlikely to obtain consistent
estimators. Moreover, since the number of hidden units is usually unknown in
practice, such an assumption can be easily violated. For example, as pointed
out in Fukumizu (1996) and Fukumizu et al. (2003), if the true function is
f0(x) = ↵�(�x), (i.e., the true number of hidden units is 1), and we fit the
model using a neural network with two hidden units, then any parameter
✓ = [↵0,↵1, . . . ,↵r, �0,1, . . . , �0,r,�T

1 , . . . ,�
T
r ]

T in the high-dimensional set

{✓ : �1 = �,↵1 = ↵, �0,1 = �0,2 = ↵2 = ↵0 = 0}[

{✓ : �1 = �2 = �, �0,1 = �0,2 = ↵0 = 0,↵1 + ↵2 = ↵}

realizes the true function f0(x). Therefore, when the number of hidden units
is unknown, the parameters in this parametric nonlinear regression problem
are unidentifiable. Theorem 1 in Wu (1981) showed that a necessary condi-
tion for the weak consistency of nonlinear least square estimators is

nX

i=1

[f(xi,✓)� f(xi,✓
0)]2 ! 1, as n ! 1,

for all ✓ 6= ✓0 in the parameter space as long as the error distribution has
finite Fisher information. Such a condition implies that when the parameters
are not identifiable, the resulting nonlinear least squares estimators will be
inconsistent, which hinders further explorations on the asymptotic proper-
ties for the neural network estimators. Liu and Shao (2003) and Zhu and

⼆三 类



ASYMPTOTICS FOR NEURAL NETWORKS 3

Zhang (2006) proposed techniques to conduct hypothesis testing under loss
of identifiability. However, their theoretical results are not easy to implement
in the neural network setting.

Even though a function can have di↵erent neural network parametriza-
tions, the function itself can be considered as unique. Moreover, due to the
Universal Approximation Theorem (Hornik, Stinchcombe and White, 1989),
any continuous function on compact support can be approximated arbitrar-
ily well by a neural network with one hidden layer. So it seems natural to
consider it as a nonparametric regression problem and approximate the un-
derlying function class through a class of neural networks with one hidden
layer. Specifically, suppose that the true nonparametric regression model is

yi = f0(xi) + ✏i,

where ✏1, . . . , ✏n are i.i.d. random variables defined on a complete probability
space (⌦,A,P) with E[✏] = 0, Var[✏] = �

2
< 1; x1, . . . ,xn 2 X ⇢ Rd are

vectors of covariates with X being a compact set in Rd and f0 is an unknown
function needed to be estimated. We assume that f0 2 F , where F is the
class of continuous functions with compact supports. Clearly, f0 minimizes
the population criterion function

Qn(f) = E
"
1

n

nX

i=1

(yi � f(xi))
2

#

=
1

n

nX

i=1

(f(xi)� f0(xi))
2 + �

2
.

A least squares estimator of the regression function can be obtained by
minimizing the empirical squared error loss Qn(f):

f̂n = argminf2FQn(f) = argminf2F
1

n

nX

i=1

(yi � f(xi))
2
.

However, if the class of functions F is too rich, the resulting least squares es-
timator may have undesired properties, such as inconsistency (van de Geer,
2000; Shen and Wong, 1994; Shen, 1997). Instead, we can optimize the
squared error loss over some less complex function space Fn, which is an
approximation of F while the approximation error tends to 0 as the sam-
ple size increases. In the language of Grenander (1981), such a sequence of
function classes is known as a sieve. More precisely, we consider a sequence
of function classes,

F1 ✓ F2 ✓ · · · ✓ Fn ✓ Fn+1 ✓ · · · ✓ F ,

__

n

⼀
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4 X. SHEN ET AL.

approximating F in the sense that
S1

n=1Fn is dense in F . In other words, for
each f 2 F , there exists ⇡nf 2 Fn such that d(f,⇡nf) ! 0 as n ! 1, where
d(·, ·) is some pseudo-metric defined on F . With some abuse of notation, an
approximate sieve estimator f̂n is defined to be

(1.1) Qn(f̂n)  inf
f2Fn

Qn(f) +Op(⌘n),

where ⌘n ! 0 as n ! 1.
Throughout the rest of the paper, we focus on the sieve of neural networks

with one hidden layer and sigmoid activation function. Specifically, we let

Frn =

8
<

:↵0 +
rnX

j=1

↵j�
�
�T
j x+ �0,j

�
: �j 2 Rd

,↵j , �0,j 2 R,

rnX

j=0

|↵j |  Vn for some Vn > 4 and max
1jrn

dX

i=0

|�i,j |  Mn for some Mn > 0

)
,

(1.2)

where rn, Vn,Mn " 1 as n ! 1. Such method has been discussed in previ-
ous literatures (e.g. White (1989) and White (1990)). In those papers, con-
sistency of the neural network sieve estimators has been established under
random designs. However, there are few results on the asymptotic distri-
bution of the neural network sieve estimators, which will be established in
this paper. Throughout this paper, we focus on the fixed design. Hornik,
Stinchcombe and White (1989) showed that

S
nFrn is dense in F under the

sup-norm. But when considering the asymptotic properties of the sieve es-
timators, we use the pseudo-norm kfk

2
n = n

�1Pn
i=1 f

2(xi) (see Proposition
7.1 in the Appendix) defined on F and Frn .

In section 2, we discuss the existence of neural network sieve estimators.
The weak consistency and rate of convergence of the neural network sieve
estimators will be established in section 3 and section 4, respectively. Sec-
tion 5 focuses on the asymptotic distribution of the neural network sieve
estimators. Simulation results are presented in section 6.

Notations: Throughout the rest of the paper, bold font alphabetic let-
ters and Greek letters are vectors. C(X ) is the set of continuous functions
defined on X . The symbol . means “bounded above up to a universal con-
stant” and an ⇠ bn means an

bn
! 1 as n ! 1. For a pseudo-metric space

(T, d), N(✏, T, d) is its covering number, which is the minimum number of
✏-balls needed to cover T . Its natural logarithm is the entropy number and
is denoted by H(✏, T, d).
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ASYMPTOTICS FOR NEURAL NETWORKS 5

2. Existence. A natural question to ask is whether the sieve estima-
tor based on neural networks exists. Before addressing this question, we
first study some properties of Frn . Proposition 2.1 shows that the sigmoid
function is a Lipschitz function with Lipschitz constant L = 1/4.

Proposition 2.1. A sigmoid function �(z) = e
z
/(1 + e

z) is a Lipschitz
function on R with Lipschitz constant 1/4.

Proof. For all z1, z2 2 R, �(z) is continuous on [z1, z2] and is di↵eren-
tiable on (z1, z2). Note that

�
0(z) = �(z)(1� �(z)) 

1

4
8z 2 R.

By using the Mean Value Theorem, we know that

�(z1)� �(z2) = �
0(�z1 + (1� �)z2)(z1 � z2),

for some � 2 [0, 1]. Hence

|�(z1)� �(z2)| = |�
0(�z1 + (1� �)z2)||z1 � z2| 

1

4
|z1 � z2|,

which means that �(z) is a Lipschitz function on R with Lipschitz constant
1/4.

The second proposition provides an upper bound for the envelope function
supf2Frn

|f |.

Proposition 2.2. For each fixed n,

sup
f2Frn

kfk1  Vn.

Proof. For any f 2 Frn with a fixed n and all x 2 X , we have

|f(x)| =

������
↵0 +

rnX

j=1

↵j�
�
�T
j x+ �0,j

�
������

 |↵0|+
rnX

j=1

|↵j |�
�
�T
j x+ �0,j

�


rnX

j=0

|↵j |  Vn.

Since the right hand side does not depend on x and f , we get

sup
f2Frn

kfk1 = sup
f2Frn

sup
x2X

|f(x)|  Vn.

⼀
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6 X. SHEN ET AL.

Now we quote a general result from White and Wooldridge (1991). The
theorem tells us that under some mild conditions, there exists a sieve ap-
proximate estimator and such an estimator is also measurable.

Theorem 2.1 (Theorem 2.2 in White and Wooldridge (1991)). Let
(⌦,A,P) be a complete probability space and let (⇥, ⇢) be a pseudo-metric
space. Let {⇥n} be a sequence of compact subsets of ⇥. Let Qn : ⌦⇥⇥n ! R̄
be A ⌦ B(⇥n)/B(R̄)-measurable, and suppose that for each ! 2 ⌦, Qn(!, ·)
is lower semicontinuous on ⇥n, n = 1, 2, . . .. Then for each n = 1, 2, . . .,
there exists ✓̂n : ⌦ ! ⇥n, A/B(⇥n)-measurable such that for each ! 2 ⌦,
Qn(!, ✓̂n(!)) = inf✓2⇥n Qn(!, ✓).

Note that

Qn(f) =
1

n

nX

i=1

(yi � f(xi))
2

=
1

n

nX

i=1

(f0(xi) + ✏i � f(xi))
2

=
1

n

nX

i=1

(f(xi)� f0(xi))
2
� 2

1

n

nX

i=1

✏i(f(xi)� f0(xi)) +
1

n

nX

i=1

✏
2
i .

Since the randomness only comes from ✏i’s, it is clear that Qn is a measurable
function and for a fixed !, Qn is continuous in f . Therefore, to show the
existence of the sieve estimator, it su�ces to show that Frn is compact in
C(X ), which is proved in the following lemma.

Lemma 2.1. Let X be a compact subset of Rd. Then for each fixed n,
Frn is a compact set.

Proof. For each fixed n, let ✓n = [↵0, . . . ,↵rn ,�0,1, . . . , �0,rn ,�
T
1 , . . . ,�

T
rn ]

T

belong to [�Vn, Vn]rn+1
⇥ [�Mn,Mn]rn(d+1) := ⇥n. If n is fixed, ⇥n is a

bounded closed set and hence it is a compact set in Rrn(d+2)+1. Consider a
map

H : (⇥n, k · k2) ! (Frn , k · kn)

✓n 7! H(✓n) = ↵0 +
rnX

j=1

↵j�
�
�T
j x+ �0,j

�

Note that Frn = H(⇥n). Therefore, to show that Frn is a compact set, it
su�ces to show that H is a continuous map due to the compactness of ⇥n.
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ASYMPTOTICS FOR NEURAL NETWORKS 7

Let ✓1,n,✓2,n 2 ⇥n, then

kH(✓1,n)�H(✓2,n)k
2
n

=
1

n

nX

i=1

2

4↵(1)
0 +

rnX

j=1

↵
(1)
j �

⇣
�(1)T

j xi + �
(1)
0,j

⌘
� ↵

(2)
0 �

rnX

j=1

↵
(2)
j �

⇣
�(2)T

j xi + �
(2)
0,j

⌘
3

5
2


1

n

nX

i=1

2

4
���↵(1)

0 � ↵
(2)
0

���+
rnX

j=1

���↵(1)
j �

⇣
�(1)T

j xi + �
(1)
0,j

⌘
� ↵

(2)
j �

⇣
�(2)T

j xi + �
(2)
0,j

⌘���

3

5
2

=
1

n

nX

i=1

2

4
���↵(1)

0 � ↵
(2)
0

���+
rnX

j=1

|↵
(1)
j |

����
⇣
�(1)T

j xi + �
(1)
0,j

⌘
� �

⇣
�(2)T

j xi + �
(2)
0,j

⌘���+

|↵
(1)
j � ↵

(2)
j |�

⇣
�(2)T

j xi + �
(2)
0,j

⌘i2


1

n

nX

i=1

2

4
rnX

j=0

|↵
(1)
j � ↵

(2)
j |+

Vn

4

rnX

j=1

����
⇣
�(1)
j � �(2)

j

⌘T
xi

����+
����(1)0,j � �

(2)
0,j

���

3

5
2



2

4
rnX

j=0

|↵
(1)
j � ↵

(2)
j |+

Vn

4
(1 _ kxk1)

rnX

j=1

����(1)
j � �(2)

j

���
1
+
����(1)0,j � �

(2)
0,j

���

3

5
2



✓
Vn

4
(1 _ kxk1)

◆2

[rn(d+ 1)]k✓1,n � ✓2,nk
2
2.

Hence, for any ✏ > 0, we choose � = ✏/

⇣
Vn
4 (1 _ kxk1)

p
rn(d+ 1)

⌘
,. When

k✓1,n � ✓2,nk2 < �, we have

kH(✓1,n)�H(✓2,n)kn < ✏,

which implies that H is a continuous map and hence Frn is a compact set
for each fixed n.

As a corollary of Lemma 2.1 and Theorem 2.1, we can easily obtain the
existence of sieve estimator.

Corollary 2.1. Based on the notations above, for each n = 1, 2, . . .,
there exists f̂n : ⌦ ! Frn, A/B(Frn)-measurable such that Qn(f̂n(!)) =
inff2Frn

Qn(f).

3. Consistency. In this section, we are going to show the consistency
of the neural network sieve estimator. The consistency result leans heavily
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8 X. SHEN ET AL.

on the following Uniform Law of Large Numbers. We start by considering a
simple case with Vn ⌘ V for all n. In such a case,

S
nFrn is not dense in F

but rather in a subset of F with functions satisfying a certain smoothness
condition.

Lemma 3.1. Let ✏1, . . . , ✏n be i.i.d. sub-Gaussian random variables with
sub-Gaussian parameter �0. If [rn(d + 2) + 1] log[rn(d + 2) + 1] = o(n), we
have

sup
f2Frn

|Qn(f)�Qn(f)|
p⇤
�! 0.

Proof. For any � > 0, we have

P⇤

 
sup

f2Frn

|Qn(f)�Qn(f)| > �

!

=P⇤

 
sup

f2Frn

�����
1

n

nX

i=1

✏
2
i � �

2
� 2

1

n

nX

i=1

✏i (f(xi)� f0(xi))

����� > �

!

P
 �����

1

n

nX

i=1

✏
2
i � �

2

����� >
�

2

!
+ P⇤

 
sup

f2Frn

�����
1

n

nX

i=1

✏i(f(xi)� f0(xi))

����� >
�

4

!

:=(I) + (II).

For (I), based on the Weak Law of Large Numbers, we know that there
exists N1 > 0 such that for all n � N1 we have

(I) = P
 �����

1

n

nX

i=1

✏
2
i � �

2

����� >
�

2

!
<
�

2
.

Now, we are going to evaluate (II). From the sub-Gaussianity of ✏1, . . . , ✏n,
we know that ✏i(f(xi)� f0(xi)) is also sub-Gaussian with mean 0 and sub-
Gaussian parameter �0|f(xi) � f0(xi)|. Hence, by using the Hoe↵ding in-
equality,

P
 �����

1

n

nX

i=1

✏i(f(xi)� f0(xi))

����� >
�

4

!
= P

 �����

nX

i=1

✏i(f(xi)� f0(xi))

����� >
n�

4

!

 2 exp

⇢
�

n
2
�
2

32�20
Pn

i=1(f(xi)� f0(xi))2

�
.

From Proposition 2.2, we know that supf2Frn
kfkn  V . Hence, based on

Corollary 8.3 in van de Geer (2000), (II) will have an exponential bound if

⼀ 䉶
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ASYMPTOTICS FOR NEURAL NETWORKS 9

there exists some constant C, � > 0 and � > 0 satisfying V > �/� and

(3.1)
p
n� � 2C

 Z V

�/(8�)
H

1/2(u,Frn , k · kn)du _ V

!
.

Now, we are going to show that (3.1) holds in our case. It follows from
Theorem 14.5 in Anthony and Bartlett (2009), which gives an upper bound
of the covering number for Frn ,

N(✏,Frn , k·k1) 

 
4e[rn(d+ 2) + 1]

�
1
4V

�2

✏
�
1
4V � 1

�
!rn(d+2)+1

:= Ãrn,d,V ✏
�[rn(d+2)+1]

,

where Ãrn,d,V =
�
e[rn(d+ 2) + 1]V 2

/(V � 4)
�rn(d+2)+1

. By letting

Arn,d,V = log Ãrn,d,V � [rn(d+ 2) + 1]

= [rn(d+ 2) + 1]

✓
log

e[rn(d+ 2) + 1]V 2

V � 4
� 1

◆

= [rn(d+ 2) + 1] log
[rn(d+ 2) + 1]V 2

V � 4
,

and noting that V
2
� eV + 4e � 0 for all V , we have log [rn(d+2)+1]V 2

V�4 �

log V 2

V�4 � log e(V�4)
V�4 = 1. Then,

H(✏,Frn , k · k1) = logN(✏,Frn , k · k1)

= log Ãrn,d,V + [rn(d+ 2) + 1] log
1

✏

 Arn,d,V + [rn(d+ 2) + 1]
1

✏
(since log x  x� 1 for all x > 0)

 Arn,d,V

✓
1 +

1

✏

◆
.

Note that

kfk
2
n =

1

n

nX

i=1

f
2(xi) 

✓
sup
x

|f(x)|

◆2

= kfk
2
1,

60 名 Chi f
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10 X. SHEN ET AL.

we have H(✏,Frn , k · kn)  H(✏,Frn , k · k1). Then

Z V

�/(8�)
H

1/2(✏,Frn , k · kn)d✏  A
1/2
rn,d,V

Z V

0

✓
1 +

1

✏

◆1/2

d✏

= A
1/2
rn,d,V

"Z 1

0

✓
1 +

1

✏

◆1/2

d✏+

Z V

1

✓
1 +

1

✏

◆1/2

d✏

#

 A
1/2
rn,d,V


p
2

Z 1

0
✏
� 1

2d✏+
p
2(V � 1)

�

 A
1/2
rn,d,V

h
2
p
2 + 2

p
2(V � 1)

i

= 2
p
2A1/2

rn,d,V
V.

Clearly, 2
p
2A1/2

rn,d,V
V � V . Under the assumption of [rn(d+2)+1] log[rn(d+

2) + 1] = o(n), for any � > 0, there exists N2 > 0 such that for all n � N2,

4
p
2V

✓
1

n
Arn,d,V

◆1/2

<
�

4
,

i.e. (3.1) holds with C = 1 and n � N2. Hence, based on Corollary 8.3 in
van de Geer (2000), for n � N2,
(3.2)

P⇤

 
sup

f2Frn

�����
1

n

nX

i=1

✏i(f(xi)� f0(xi))

����� >
�

4
^

1

n

nX

i=1

✏
2
i  �

2

!
 exp

⇢
�

n�
2

64V 2

�
.

Since
R V
0 H

1/2(✏,Frn , k · kn)d✏ < 1, we can take � ! 1 in (3.2) to get

P⇤

 
sup

f2Frn

�����
1

n

nX

i=1

✏i(f(xi)� f0(xi))

����� >
�

4

!
 exp

⇢
�

n�
2

64V 2

�
.

Let N3 =
64V 2

�2 log 2
� , then for n � max{N2, N3}, we have

(II) = P⇤

 
sup

f2Frn

�����
1

n

nX

i=1

✏i(f(xi)� f0(xi))

����� >
�

4

!

�

2
.

Thus, we conclude that for any � > 0, by taking n � max{N1, N2, N3}, we
have

P⇤

 
sup

f2Frn

|Qn(f)�Qn(f)| > �

!
< �,

which proves the desired result.

三
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Remark 3.1. Lemma 3.1 shows that if we have a fixed number of fea-
tures, the desired Uniform Law of Large Numbers holds when the number of
hidden units in the neural network sieve does not grow too fast.

Now, we are going to extend the result to a more general case. In Lemma
3.1, we assume that the errors ✏1, . . . , ✏n are i.i.d. sub-Gaussian and Vn ⌘ V .
In the following lemma, we are going to relax both restrictions.

Lemma 3.2. Under the assumption of

[rn(d+ 2) + 1]V 2
n log(Vn[rn(d+ 2) + 1] = o(n), as n ! 1,

we have
sup

f2Frn

|Qn(f)�Qn(f)|
p⇤
�! 0, as n ! 1.

Proof. As in the proof of Lemma 3.1, it su�ces to show that

(3.3) P⇤

 
sup

f2Frn

�����
1

n

nX

i=1

✏i(f(xi)� f0(xi))

����� >
�

4

!
! 0, as n ! 1.

By using the Markov’s inequality, (3.3) holds if we can show

E⇤

"
sup

f2Frn

�����
1

n

nX

i=1

✏i(f(xi)� f0(xi))

�����

#
! 0, as n ! 1.

Note that E[✏] = 0 and each f 2 Frn has its corresponding parametrization
✓n. Since ✓n is in a compact set, there exists a sequence ✓n,k ! ✓n as k ! 1

with ✓n,k 2 Qrn(d+2)+1
\ ([�Vn, Vn]rn+1

⇥ [�Mn,Mn]rn(d+1)). Each ✓n,k cor-
responds to a function fk 2 Frn . Based on continuity, we have fk(x) ! f(x)
for each x 2 X . From Example 2.3.4 in van der Vaart and Wellner (1996),
we know that Frn is P -measurable. Based on symmetrization inequality, we
have

E⇤

"
sup

f2Frn

�����
1

n

nX

i=1

✏i(f(xi)� f0(xi))

�����

#

2E✏E⇠

"
sup

f2Frn

�����
1

n

nX

i=1

⇠i✏i (f(xi)� f0(xi))

�����

#
,

where ⇠1, . . . , ⇠n are i.i.d. Rademacher random variables independent of
✏1, . . . , ✏n. Based on the Strong Law of Large Numbers, there exists N1 > 0,
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such that for all n � N1,

1

n

nX

i=1

✏
2
i < �

2 + 1, a.s.

For fixed ✏1, . . . , ✏n,
Pn

i=1 ⇠i✏i(f(xi)� f0(xi)) is a sub-Gaussian process in-
dexed by f 2 Frn . Suppose that (⌅, C, µ) is the probability space on which
⇠1, . . . , ⇠n are defined and let Y (f,!) =

Pn
i=1 ⇠i(!)✏i(f(xi) � f0(xi)) with

f 2 Frn and ! 2 ⌅. As we have shown above, we have fk ! f and by conti-
nuity, Y (fk,!) ! Y (f,!) for any ! 2 ⌅. This shows that {Y (f,!), f 2 Frn}

is a separable sub-Gaussian process. Hence Corollary 2.2.8 in van der Vaart
and Wellner (1996) implies that there exists a universal constant K and for
any f

⇤
n 2 Frn with n � N1,

E⇠

"
sup

f2Frn

�����
1

n

nX

i=1

⇠i✏i(f(xi))� f0(xi))

�����

#

= E⇠

"
1
p
n

sup
f2Frn

�����
1
p
n

nX

i=1

⇠i✏i(f(xi)� f0(xi))

�����

#

 E⇠

"�����
1

n

nX

i=1

⇠i✏i(f
⇤
n(xi)� f0(xi))

�����

#
+K

Z 1

0

s
logN

�
1
2⌘,Frn , d

�

n
d⌘

= E⇠

"�����
1

n

nX

i=1

⇠i✏i(f
⇤
n(xi)� f0(xi))

�����

#
+K

Z 2Vn

0

s
logN

�
1
2⌘,Frn , d

�

n
d⌘

 E⇠

"�����
1

n

nX

i=1

⇠i✏i(f
⇤
n(xi)� f0(xi))

�����

#
+K

Z 2Vn

0

vuut logN
⇣

1
2
p
�2+1

⌘,Frn , k · k1
⌘

n
d⌘,

where the second equality follows from Proposition 2.2. For f, g 2 Frn ,

d(f, g) =

"
nX

i=1

✓
1
p
n
✏i(f(xi)� f0(xi))�

1
p
n
✏i(g(xi)� f0(xi))

◆2
#1/2

=

 
1

n

nX

i=1

✏
2
i (f(xi)� g(xi))

2

!1/2

so that the last inequality follows by noting that

d(f, g)  kf � gk1

 
1

n

nX

i=1

✏
2
i

!1/2

.

NHsub.am870

fgyyxtk0

judl.nnniplxcKEIXult
nnkfr.de

one or
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We then evaluate these two terms. For the first term, for n � N1, by Cauchy-
Schwarz inequality, we have

E⇠

"�����
1

n

nX

i=1

⇠i✏i(f
⇤
n(xi)� f0(xi))

�����

#


1

n

nX

i=1

|✏i||f
⇤
n(xi)� f0(xi)|



 
1

n

nX

i=1

✏
2
i

!1/2 
1

n

nX

i=1

(f⇤
n(xi)� f0(xi))

2

!1/2



p
�2 + 1 sup

x2X
|f

⇤
n(x)� f0(x)|, a.s.

By choosing f
⇤
n = ⇡rnf0 and using the universal approximation theorem in-

troduced by Hornik, Stinchcombe andWhite (1989), we know that supx2X |f
⇤
n(xi)�

f0(xi)| ! 0 as n ! 1. Therefore, for any ⇣ > 0, there exists N2 > 0, such
that for all n � N2,

sup
x2X

|f
⇤
n(xi)� f0(xi)| <

⇣
p
�2 + 1

.

By choosing n � N1 _N2, we get

E⇠

"�����
1

n

nX

i=1

⇠i✏i(f
⇤
n(xi)� f0(xi))

�����

#
< ⇣ a.s.

For the second term, we use the same bound from Theorem 14.5 in Anthony
and Bartlett (2009) as we did in the proof of Lemma 3.1:

N

✓
1

2
p
�2 + 1

⌘,Frn , k · k1

◆


 
8
p
�2 + 1e[rn(d+ 2) + 1]

�
1
4Vn

�2

⌘
�
1
4Vn � 1

�
!rn(d+2)+1

:= B̃rn,d,Vn⌘
�[rn(d+2)+1]

,

where B̃rn,d,Vn =
⇣
2
p
�2 + 1e[rn(d+ 2) + 1]V 2

n /(Vn � 4)
⌘rn(d+2)+1

. Let

Brn,d,Vn = log B̃rn,d,Vn � [rn(d+ 2) + 1]

= [rn(d+ 2) + 1]

 
log

2
p
�2 + 1e[rn(d+ 2) + 1]V 2

n

Vn � 4
� 1

!

= [rn(d+ 2) + 1]

✓
log

[rn(d+ 2) + 1]V 2
n

Vn � 4
+ log(2

p
�2 + 1)

◆

 2[rn(d+ 2) + 1] log
[rn(d+ 2) + 1]V 2

n

Vn � 4
, for all n � N1 _N3,
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where N3 is chosen to satisfy rn(d + 2) + 1 � 2
p
�2 + 1. The last in-

equality then follows by noting that V
2
n � Vn + 4 � 0 for all Vn so that

log [rn(d+1)+1]V 2
n

Vn�4 � log 2
p
�2+1(Vn�4)
Vn�4 = log(2

p
�2 + 1). We also have

H

✓
1

2
p
�2 + 1

⌘,Frn , k · k1

◆
= logN

✓
1

2
p
�2 + 1

⌘,Frn , k · k1

◆

= log B̃rn,d,Vn + [rn(d+ 2) + 1] log
1

⌘

 Brn,d,Vn + [rn(d+ 2) + 1]
1

⌘

 Brn,d,Vn

✓
1 +

1

⌘

◆
,

and hence for all n � N1 _N3,

Z 2Vn

0
H

1/2

✓
1

2
p
�2 + 1

⌘,Frn , k · k1

◆
d⌘

 B
1/2
rn,d,Vn

Z 2Vn

0

✓
1 +

1

⌘

◆1/2

d⌘

= B
1/2
rn,d,Vn

"Z 1

0

✓
1 +

1

⌘

◆1/2

d⌘ +

Z 2Vn

1

✓
1 +

1

⌘

◆1/2

d⌘

#

 B
1/2
rn,d,Vn


p
2

Z 1

0
⌘
�1/2d⌘ +

p
2(2Vn � 1)

�

 4
p
2B1/2

rn,d,Vn
Vn,

which implies that

Z 2Vn

0

vuutH

⇣
1

2
p
�2+1

⌘,Frn , k · k1
⌘

n
d⌘  4

p
2n�1/2

B
1/2
rn,d,Vn

Vn

⇠ 8

r
[rn(d+ 2) + 1]V 2

n log(Vn[rn(d+ 2) + 1])

n
,

where the last part follows by noting that log V 2
n

Vn�4 ⇠ log Vn. Under the
assumption given in the Lemma, there exists N4 > 0, such that for all
n � N4, we have

r
[rn(d+ 2) + 1]V 2

n log(Vn[rn(d+ 2) + 1])

n
<
⇣

8
.
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Therefore, by choosing n � N1 _N2 _N3 _N4, we get

E⇠

"
sup

f2Frn

�����
1

n

nX

i=1

⇠i✏i(f(xi)� f0(xi))

�����

#
< 2⇣ a.s.,

i.e. E⇠
h
supf2Frn

�� 1
n

Pn
i=1 ⇠i✏i(f(xi)� f0(xi))

��
i
! 0 a.s.. Moreover, based

on what we have shown, for a su�ciently large n, we have

E⇠

"
sup

f2Frn

�����
1

n

nX

i=1

⇠i✏i(f(xi)� f0(xi))

�����

#


p
�2 + 1k⇡rnf0 � f0k1+

4
p
2KB

1/2
rn,d,Vn

n
�1/2

Vn ! 0, a s..

Since E✏
hp

�2 + 1k⇡rnf0 � f0k1 + 4
p
2KB

1/2
rn,d,Vn

n
�1/2

Vn

i
=

p
�2 + 1k⇡rnf0�

f0k1 + 4
p
2KB

1/2
rn,d,Vn

n
�1/2

Vn ! 0 < 1, by using the Generalized Domi-
nated Convergence Theorem, we know that

E⇤

"
sup

f2Frn

�����
1

n

nX

i=1

✏i(f(xi)� f0(xi))

�����

#

 2E✏E⇠

"
sup

f2Frn

�����
1

n

nX

i=1

⇠i✏i (f(xi)� f0(xi))

�����

#
! 0,

which completes the proof.

Based on the above lemmas, we are ready to state the theorem on the
consistency of neural network sieve estimators.

Theorem 3.1. Under the notation given above, if

(3.4) [rn(d+ 2) + 1]V 2
n log(Vn[rn(d+ 2) + 1] = o(n), as n ! 1,

then
kf̂n � f0kn

p
�! 0.

Proof. Since Q is continuous at f0 2 F and Q(f0) = �
2
< 1, for any

✏ > 0, we have

inf
f :kf�f0kn�✏

Qn(f)�Qn(f0) = inf
f :kf�f0kn�✏

1

n

nX

i=1

(f(xi)� f0(xi))
2
� ✏

2
> 0.
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Hence, based on Lemma 2.1, Lemma 3.2 and Corollary 2.6 in White and
Wooldridge (1991), we have

kf̂n � f0kn
p
�! 0.

Remark 3.2. We discuss the condition (3.4) in Theorem 3.1 via some
simple examples here. If ↵j = O(1) for j = 1, . . . , rn, then Vn = O(rn) and

[rn(d+ 2) + 1]V 2
n log(Vn[rn(d+ 2) + 1]) = O(r3n log rn).

Therefore, a possible growth rate for the number of hidden units in a neural
network is rn = o

�
(n/ log n)1/3

�
. On the other hand, if we have a slow

growth rate for the number of hidden units in the neural network, such as
rn = log Vn, then we have

[rn(d+ 2) + 1]V 2
n log(Vn[rn(d+ 2) + 1]) = O((Vn log Vn)

2).

Hence, a possible growth rate for the upper bound of the weights from the
hidden layer to the output layer is Vn = o

�
n
1/2

/ log n
�
.

4. Rate of Convergence. To obtain the rate of convergence for neu-
ral network sieves, we apply Theorem 3.4.1 in van der Vaart and Wellner
(1996)van der Vaart and Wellner (1996).

Lemma 4.1. Let f⇤
n = ⇡rnf0 2 Frn. Given the above notations, for every

n and � > 8kf⇤
n � f0kn, we have

sup
�
2<kf�f⇤

nkn�,f2Frn

Qn(f
⇤
n)�Qn(f) . ��

2
.

Proof. Note that

Qn(f
⇤
n)�Qn(f) =

1

n

nX

i=1

(f⇤
n(xi)� f0(xi))

2 + �
2
�

1

n

nX

i=1

(f(xi)� f0(xi))
2
� �

2

= kf
⇤
n � f0k

2
n � kf � f0k

2
n.

In order to show the result, we first provide an upper bound for Qn(f⇤
n) �

Qn(f) in terms of kf � f
⇤
nkn. Due to the fact that k · kn is a pseudo-norm,

the triangle inequality gives

kf � f
⇤
nkn  kf � f0kn + kf

⇤
n � f0kn

= kf � f0kn � kf
⇤
n � f0kn + 2kf⇤

n � f0kn.

⼀
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Therefore, we have

kf � f0kn � kf
⇤
n � f0kn � kf � f

⇤
nk � 2kf⇤

n � f0kn,

so that for every f satisfying kf � f
⇤
nk

2
n � 16kf⇤

n � f0k
2
n, i.e., kf � f

⇤
nkn �

4kf⇤
n � f0kn, we have

kf � f0kn � kf
⇤
n � f0kn � kf � f

⇤
nkn �

1

2
kf � f

⇤
nkn =

1

2
kf � f

⇤
nkn � 0.

By squaring both sides, we obtain

1

4
kf � f

⇤
nk

2
n  kf � f0k

2
n + kf

⇤
n � f0k

2
n � 2kf � f0knkf

⇤
n � f0kn

 kf � f0k
2
n + kf

⇤
n � f0k

2
n � 2kf⇤

n � f0k
2
n

= kf � f0k
2
n � kf

⇤
n � f0k

2
n,

and hence

sup
�
2<kf�f⇤

nkn�,f2Frn

Qn(f
⇤
n)�Qn(f)  sup

kf�f⇤
nkn> �

2 ,f2Frn

kf
⇤
n � f0k

2
n � kf � f0k

2
n

 sup
kf�f⇤

nkn> �
2 ,f2Frn

✓
�
1

4
kf � f

⇤
nk

2
n

◆

. ��
2
.

Lemma 4.2. For every su�ciently large n and � > 8kf⇤
n�f0kn, we have

E⇤

2

4 sup
�
2<kf�f⇤

nkn�,f2Frn

p
n [(Qn �Qn)(f

⇤
n)� (Qn �Qn)(f)]

+

3

5 .
Z �

0

p
logN(⌘,Frn , k · k1)d⌘

Proof. Note that

(Qn �Qn)(f
⇤
n) =

1

n

nX

i=1

✏
2
i � �

2
�

2

n

nX

i=1

✏i(f
⇤
n(xi)� f0(xi))

(Qn �Qn)(f
⇤
n) =

1

n

nX

i=1

✏
2
i � �

2
�

2

n

nX

i=1

✏i(f(xi)� f0(xi)),

we have

(Qn �Qn)(f
⇤
n)� (Qn �Qn)(f) =

2

n

nX

i=1

✏i(f(xi)� f
⇤
n(xi)).
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Hence, by using the similar arguments as in the proof of Lemma 3.2 and
applying Corollary 2.2.8 in van der Vaart and Wellner (1996)van der Vaart
and Wellner (1996), we have

E⇤

2

4 sup
�
2<kf�f⇤

nkn�,f2Frn

p
n [(Qn �Qn)(f

⇤
n)� (Qn �Qn)(f)]

+

3

5

E⇤

2

4 sup
�
2<kf�f⇤

nkn�,f2Frn

�����
1
p
n

nX

i=1

✏i(f(xi)� f
⇤
n(xi))

�����

3

5

2E✏E⇠

2

4 sup
�
2<kf�f⇤

nkn�,f2Frn

�����
1
p
n

nX

i=1

⇠i✏i (f(xi)� f
⇤
n(xi))

�����

3

5

.
Z �

0

p
logN(⌘,Frn , k · k1)d⌘,

where the last inequality follows since f
⇤
n 2 Frn for a large enough n.

Now we are ready to apply Theorem 3.4.1 in van der Vaart and Wellner
(1996) to obtain the rate of convergence for neural network sieve estimators.

Theorem 4.1. Based on the above notations, if

⌘n = O
�
min{k⇡rnf0 � f0k

2
n, rn(d+ 2) log(rnVn(d+ 2))/n, rn(d+ 2) log n/n}

�
,

then

kf̂n�f0kn = Op

 
max

(
k⇡rnf0 � f0kn,

r
rn(d+ 2) log[rnVn(d+ 2)]

n
,

r
rn(d+ 2) log n

n

)!
.

Proof. Use the same bound from Theorem 14.5 in Anthony and Bartlett
(2009), we have

logN(⌘,Frn , k · kn)  logN(⌘,Frn , k · k1)

 log

 
4e[rn(d+ 2) + 1]

�
1
4Vn

�2

⌘
�
1
4Vn � 1

�
!rn(d+2)+1

= [rn(d+ 2) + 1] log
C̃rn,d,Vn

⌘
,

⼀
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where C̃rn,d,Vn = e[rn(d+2)+1]V 2
n

Vn�4 > e. Then from Lemma 3.8 in Mendelson
(2003), for � < 1,

Z �

0

p
logN(⌘,Frn , k · kn)d⌘  [rn(d+ 2) + 1]1/2

Z �

0

s

log
C̃rn,d,Vn

⌘
d⌘

. [rn(d+ 2) + 1]1/2�

s

log
C̃rn,d,Vn

�

:= �n(�).

Define h : � 7! �n(�)/�↵ = [rn(d + 2) + 1]1/2�1�↵
q

log
C̃rn,d,Vn

� . Since for
0 < � < 1 and 1 < ↵ < 2

h
0(�) = [rn(d+ 2) + 1]1/2

0

@(1� ↵)��↵

s

log
C̃rn,d,Vn

�
�

1

2

�
2

C̃rn,d,Vn

C̃rn,d,Vn

�2
log�1/2 C̃rn,d,Vn

�

1

A

= [rn(d+ 2) + 1]1/2

0

@(1� ↵)��↵

s

log
C̃rn,d,Vn

�
�

1

2
log�1/2 C̃rn,d,Vn

�

1

A

< 0,

� 7! �n(�)/�↵ is decreasing on (0,1). Let ⇢n . k⇡rnf0 � f0k
�1
n . Note that

⇢
2
n�n

✓
1

⇢n

◆
= ⇢n[rn(d+ 2) + 1]1/2 log1/2

⇣
⇢nC̃rn,d,Vn

⌘

= [rn(d+ 2) + 1]1/2⇢n

q
log ⇢n + log C̃rn,d,Vn

and

log C̃rn,d,Vn = 1 + log
[rn(d+ 2) + 1]V 2

n

Vn � 4
. log

[rn(d+ 2) + 1]V 2
n

Vn � 4

⇠ log[rnVn(d+ 2)],

we have

⇢
2
n�n

✓
1

⇢n

◆
.

p
n , rn(d+ 2)⇢2n (log ⇢n + log[rnVn(d+ 2)]) . n.

Therefore, for

⇢n . min

(✓
n

rn(d+ 2) log[rnVn(d+ 2)]

◆1/2

,

✓
n

rn(d+ 2) log n

◆1/2
)
,



20 X. SHEN ET AL.

we have ⇢2n�n
⇣

1
⇢n

⌘
. p

n. Based on these observation, Lemma 4.1, Lemma

4.2 and Theorem 3.4.1 in van der Vaart and Wellner (1996)van der Vaart
and Wellner (1996) imply that

kf̂n�⇡rnf0kn = Op

 
max

(
k⇡rnf0 � f0kn,

r
rn(d+ 2) log[rnVn(d+ 2)]

n
,

r
rn(d+ 2) log n

n

)!
.

By using the triangle inequality, we can further get

kf̂n � f0kn  kf̂n � ⇡rnf0kn + k⇡rnf0 � f0kn

= Op

 
max

(
k⇡rnf0 � f0kn,

r
rn(d+ 2) log[rnVn(d+ 2)]

n
,

r
rn(d+ 2) log n

n

)!
.

Remark 4.1. Recall that a su�cient condition to ensure consistency
is rn(d + 2)V 2

n log[rnVn(d + 2)] = o(n). Under such a condition, rn(d +
2) log[rnVn(d+ 2)]  n, the rate of convergence can be simplified to

kf̂n � f0kn = Op

 
max

(
k⇡rnf0 � f0kn,

r
rn(d+ 2) log n

n

)!
.

If we assume f0 2 F where F is the space of functions with finite first
absolute moments of the Fourier magnitude distributions, i.e.,

F =

⇢
f : Rd

! R : f(x) =

Z
exp

�
iaTx

 
dµf (a),

kµfk1 :=

Z
max(kak1, 1)d|µf |(a)  C

�
,(4.1)

where µf is a complex measure on Rd. |µf | denotes the total variation of µf ,
i.e., |µ|(A) = sup

P1
n=1 |µ(An)| and the supremum is taken over all measur-

able partitions {An}
1
n=1 of A. kak1 =

Pd
i=1 |ai| for a = [a1, . . . , ad]T 2 Rd.

Theorem 3 in Makovoz (1996) shows that �n := kf0�⇡rnf0kn . r
�1/2�1/(2d)
n .

Therefore, if we let d fixed and ⇢n = �
�1
n and Vn ⌘ V in the proof of Theorem

4.1, �n must also satisfy the following inequality:

⇢
2
n�

✓
1

⇢n

◆
. ⇢nr

1/2
n log1/2

⇣
⇢nC̃rn,d,Vn

⌘
.

p
n

) ⇢
2
nrn log ⇢n + ⇢

2
nrn log rn . n

) �
�2
n (�rn log �n + rn log rn) . n

) r
1+ 1

d
n rn log rn . n.
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One possible choice of rn to satisfy such condition is rn ⇣ (n/ log n)
d

2+d . In
such a case, we obtain

kf̂n � f0kn = Op

0

@
✓

n

log n

◆� 1+1/d
4(1+1/(2d))

1

A ,

which is the same rate obtained in Chen and Shen (1998). It is interesting to
note that in the case where d = 1, we have kf̂n�f0kn = Op

�
(n/ log n)�1/3

�
.

Such rate is close to the Op(n�1/3), which is the convergence rate in non-
parametric least square problems when the class of functions considered has
bounded variation in R (see Example 9.3.3 in van de Geer (2000)). As shown
in Proposition 7.3 in the Appendix, Frn is a class of functions with bounded
variation in R. Therfore, the convergence rate we obtained makes sense.

5. Asymptotic Normality. To establish the asymptotic normality of
sieve estimator for neural network, we follow the idea in Shen (1997) and
start by calculating the Gâteaux derivative of the empirical criterion function
Qn(f) = n

�1Pn
i=1(yi � f(xi))2,

Q0
n,f0 [f � f0] = lim

t!0

1

t

"
1

n

nX

i=1

(yi � f0(xi)� t(f(xi)� f0(xi)))
2
�

1

n

nX

i=1

(yi � f0(xi))
2

#

= lim
t!0

1

n

nX

i=1

1

t

⇥
(yi � f0(xi))

2
� 2t(yi � f0(xi))(f(xi)� f0(xi))

+t
2(f(xi)� f0(xi))

2
� (yi � f0(xi))

2
⇤

= �
2

n

nX

i=1

✏i(f(xi)� f0(xi)).

Then the remainder of first-order functional Taylor series expansion is

Rn[f � f0] = Qn(f)�Qn(f0)�Q0
n,f0 [f � f0]

=
1

n

nX

i=1

(yi � f(xi))
2
�

1

n

nX

i=1

(yi � f(xi))
2 +

2

n

nX

i=1

✏i(f(xi)� f0(xi))

=
1

n

nX

i=1

(✏i + f0(xi)� f(xi))
2
�

1

n

nX

i=1

✏
2
i +

2

n

nX

i=1

✏i(f(xi)� f0(xi))

=
1

n

nX

i=1

(f(xi)� f0(xi))
2

= kf � f0k
2
n.

⼀
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As will be seen in the proof of asymptotic normality, the rate of conver-
gence for the empirical process {n

�1/2Pn
i=1 ✏i(f(xi) � f0(xi)) : f 2 Frn}

plays an important role. Here we establish a lemma, which will be used to
find the desired rate of convergence.

Lemma 5.1. Let X1, . . . , Xn be independent random variables with Xi ⇠

Pi. Define the empirical process {⌫n(f)} as

⌫n(f) =
1
p
n

nX

i=1

[f(Xi)� Pif ].

Let Fn = {f : kfk1  Vn}, ✏ > 0 and ↵ � supf2Fn
n
�1Pn

i=1Var[f(Xi)] be
arbitrary. Define t0 by H(t0,Fn, k · k1) = ✏

4 (M,n,↵), where  (M,n,↵) =

M
2
/

h
2↵

⇣
1 + MVn

2
p
n↵

⌘i
. If

(5.1) H(u,Fn, k · k1)  Anu
�r

,

for some 0 < r < 2 and u 2 (0, a], where a is a small positive number, and
there exists a positive constant Ki = Ki(r, ✏), i = 1, 2 such that

M � K1A

2
r+2
n V

2�r
r+2
n n

r�2
2(r+2) _K2A

1/2
n ↵

2�r
4 ,

we have

P⇤

 
sup
f2Fn

|⌫n(f)| > M

!
 5 exp {�(1� ✏) (M,n,↵)} .

Proof. The proof of the lemma is similar to the proof of Corollary 2.2
in Alexander (1984) and the proof of Lemma 1 in Shen and Wong (1994).
Since H(u,Fn, k · k1)  Anu

�r for some 0 < r < 2, we have

I(s, t) :=

Z t

s
H

1/2(u,Fn, k · k1)du  2(2� r)�1
A

1
2
n t

1� r
2 .

Based on the assumption of

Ant
�r
0 � H(t0,Fn, k · k1) =

✏

4
 (M,n,↵),

we have t0 

h
4An
✏ 

i1/r
. Note that  (M,n,↵) � M

2
/(4↵) if M  3

p
n↵/Vn

and 2(
p
n↵+MVn/3)  4MVn/3 if M � 3

p
n↵/Vn and hence  (M,n,↵) �

3
p
nM/(4Vn). In summary,

 (M,n,↵) �

(
M

2
/(4↵) if M < 3

p
n↵/Vn,

3
p
nM/(4Vn) if M � 3

p
n↵/Vn

.

o
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Therefore, if M � 3
p
n↵/Vn,

28✏�3/2
I

✓
✏M

64
p
n
, t0

◆
 29✏�3/2(2� r)�1

A
1/2
n t

1� r
2

0

 29✏�3/2(2� r)�1

✓
4

✏

◆ 1
r�

1
2

A
1/r
n

✓
3

4Vn

p
nM

◆ 1
2�

1
r

= K̃1A
1/r
n V

1
r�

1
2

n n
1
4�

1
2rM

1
2�

1
r ,

where K̃1 = 29✏�3/2(2� r)�1
�
4
✏

� 1
r�

1
2
�
3
4

� 1
2�

1
r . Hence

28✏�3/2
I

✓
✏M

64
p
n
, t0

◆
< M , K̃1A

1/r
n V

1
r�

1
2

n n
1
4�

1
2rM

1
2�

1
r < M

, K̃1A
1/r
n V

1
r�

1
2

n n
r�2
4r < M

1
r+

1
2

, M > K1A

2
r+2
n V

2�r
r+2
n n

r�2
2(r+2) ,

where K1 = K̃

2r
r+2
1 . On the other hand, if M < 3

p
n↵/Vn,

28✏�3/2
I

✓
✏M

64
p
n
, t0

◆
 29✏�3/2(2� r)�1

A
1/2
n t

1� r
2

0

 29✏�3/2(2� r)�1

✓
4

✏

◆ 1
r�

1
2

A
1/r
n

✓
M

2

4↵

◆ 1
2�

1
r

= K̃2A
1/r
n M

1� 2
r↵

1
r�

1
2 ,

where K̃2 = 29✏�3/2(2� r)�1
�
4
✏

� 1
r�

1
2
�
1
4

� 1
2�

1
r . Hence

28✏�3/2
I

✓
✏M

64
p
n
, t0

◆
< M , K̃2A

1/r
n M

1� 2
r↵

1
r�

1
2 < M

, K̃2A
1/r
n ↵

2�r
2r < M

2
r

, M > K2A
1/2
n ↵

2�r
4 ,

where K2 = K̃
r/2
2 . In conclusion, if M � K1A

2
r+2
n V

2�r
r+2
n n

r�2
2(r+2) _K2A

1/2
n ↵

2�r
4 ,

then 28✏�3/2
I

⇣
✏M

64
p
n
, t0

⌘
< M . By Theorem 2.1 in Alexander (1984), we

have the desired result.

As a Corollary to Lemma 5.1, we can show that the supremum of the
empirical process {n

�1/2Pn
i=1 ✏i(f(xi) � f0(xi)) : f 2 Frn} converges to 0

in probability.
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Corollary 5.1. Let ⇢n satisfy ⇢nkf̂n � f0kn = Op(1) and Frn be the
class of neural network sieves as defined in (1.2). Suppose that E[|✏|2+�] < 1

for some � > 0. Then under the conditions

(C1) rn(d+ 2)Vn log[rnVn(d+ 2)] = o(n1/4);
(C2) n⇢

�2
n /V

�
n = o(1),

we have

sup
kf�f0kn⇢�1

n ,f2Frn

�����
1
p
n

nX

i=1

✏i(f � f0)(xi)

����� = op(1).

Proof. To establish the desired result, we apply the truncation device.

P⇤

 
sup

kf�f0kn⇢�1
n ,f2Frn

�����
1
p
n

nX

i=1

✏i(f � f0)(xi)

����� & M

!

P⇤

 
sup

kf�f0kn⇢�1
n ,f2Frn

�����
1
p
n

nX

i=1

✏iI{|✏i|Vn}(f � f0)(xi)

����� & M

!

+ P⇤

 
sup

kf�f0kn⇢�1
n ,f2Frn

�����
1
p
n

nX

i=1

✏iI{|✏i|>Vn}(f � f0)(xi)

����� & M

!

:=(I) + (II)

For (I), we can apply Lemma 5.1 directly. Note that |✏I{|✏|Vn}(f�f0)(x)| 
Vn(Vn + kf0k1) . V

2
n since kf0k1 < 1 and for 0 < ⌘ < 1,

logN(⌘,Frn , k · k1)  log

 
4e[rn(d+ 2) + 1]

�
1
4Vn

�2

⌘
�
1
4Vn � 1

�
!rn(d+2)+1

= [rn(d+ 2) + 1]

✓
log C̃rn,d,Vn + log

1

⌘

◆

 [rn(d+ 2) + 1]

✓
log C̃rn,d,Vn +

1

⌘
� 1

◆

= Crn,d,Vn

✓
1 +

1

⌘

◆

 2Crn,d,Vn

1

⌘
,

品

嶼
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where C̃rn,d,Vn = e[rn(d+2)+1]V 2
n

Vn�4 and

Crn,d,Vn = [rn(d+ 2) + 1] log C̃rn,d,Vn � [rn(d+ 2) + 1]

= [rn(d+ 2) + 1] log
[rn(d+ 2) + 1]V 2

n

Vn � 4

⇠ rn(d+ 2) log[rnVn(d+ 2)].

Therefore, equation (5.1) is satisfied with r = 1 and An = 2Crn,d,Vn . Fol-

lowing from Lemma 5.1, for M & C
2/3
rn,d,Vn

V
2/3
n n

�1/6
_C

1/2
rn,d,Vn

↵
1/4, we have

(I)  5 exp {�(1� ✏) (M,n,↵)} and hence

sup
kf�f0k⇢�1

n ,f2Frn

����
1
p
n
✏iI{|✏i|Vn}(f � f0)(xi)

���� = Op

0

@C
2/3
rn,d,Vn

V
2/3
n

n1/6

1

A .

Since by using (C1),

C
2/3
rn,d,Vn

V
2/3
n

n1/6
⇠

✓
rn(d+ 2)Vn log[rnVn(d+ 2)]

n1/4

◆2/3

= op(1).

For (II), by using the Cauchy-Schwarz inequality, we have
�����
1

n

nX

i=1

✏iI{|✏i|>Vn}(f � f0)(xi)

����� 
 
1

n

nX

i=1

✏
2
i I{|✏i|>Vn}

!1/2

kf � f0kn.

Then it follows from the Markov inequality that

(II) = P⇤

 
sup

kf�f0kn⇢�1
n ,f2Frn

�����
1

n

nX

i=1

✏iI{|✏i|>Vn}(f � f0)(xi)

����� & Mn
�1/2

!

 P

0

@
 
1

n

nX

i=1

✏
2
i I{|✏i|>Vn}

!1/2

⇢
�1
n & Mn

�1/2

1

A

= P
 
1

n

nX

i=1

✏
2
i I{|✏i|>Vn} & M

2
n
�1
⇢
2
n

!

. M
�2

n⇢
�2
n E[✏2I|✏|>Vn

]

. M
�2

n⇢
�2
n

E[|✏|2+�]
V �
n

.

Based on condition (C2), we have (II) ! 0, and

sup
kf�f0kn⇢�1

n ,f2Frn

�����
1

n

nX

i=1

✏iI{|✏i|>Vn}(f � f0)(xi)

����� = op(1).

In
-

-
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Combining the results we obtained above, we get

sup
kf�f0kn⇢�1

n ,f2Frn

�����
1
p
n

nX

i=1

✏i(f � f0)(xi)

����� = op(1)

Remark 5.1. Condition (C2) can be further simplified using the results
from Theorem 4.1. If

⌘n = O
�
min{k⇡rnf0 � f0k

2
n, rn(d+ 2) log(rnVn(d+ 2))/n, rn(d+ 2) log n/n}

�
,

then

⇢
�1
n ⇣ max

n
k⇡rnf0 � f0kn,

p
rn(d+ 2) log[rnVn(d+ 2)]/n,

p
rn(d+ 2) log n/n

o
.

It follows from condition (C1) that

⇢
�1
n ⇣ max

n
k⇡rnf0 � f0kn,

p
rn(d+ 2) log n/n

o
.

For simplicity, we assume that ⇢�1
n ⇣

p
rn(d+ 2) log n/n, which holds for

functions having finite first absolute moments of the Fourier magnitude dis-
tributions as discussed at the end of section 4.4. Then in this case,

n⇢
�2
n /V

�
n ⇣ rn(d+ 2) log n/V �

n ,

so that condition (C2) becomes rn(d+ 2) log n/V �
n ! 0.

Now we are going to establish the asymptotic normality for neural network
estimators. For f 2 {f 2 Frn : kf � f0kn  ⇢

�1
n }, we consider a local

alternative

(5.2) f̃n(f) = (1� �n)f + �n(f0 + ◆),

where 0  �n = ⌘
1/2
n = o(n�1/2) is chosen such that ⇢n�n = o(1) and

◆(x) ⌘ 1.

Theorem 5.1 (Asymptotic Normality). Suppose that 0  ⌘n = o(n�1)
and conditions (C1) and (C2) in Corollary 5.1 hold. We further assume that
the following two conditions hold

(C3) supf2Frn :kf�f0kn⇢�1
n

k⇡rn f̃n(f)� f̃n(f)kn = Op(⇢n�2n);

(C4) supf2Frn :kf�f0kn⇢�1
n

1
n

Pn
i=1 ✏i

⇣
⇡rn f̃n(f)(xi)� f̃n(f)(xi)

⌘
= Op(�2n),
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then
1
p
n

nX

i=1

h
f̂n(xi)� f0(xi)

i
d
�! N (0,�2).

Before we proceed to the proof of the theorem, let us focus on the condi-
tions given in the theorem. Note that if (C1) holds, we have

rn(d+ 2)V 2
n log[rnVn(d+ 2)]  [rn(d+ 2)]4V 4

n (log[rnVn(d+ 2)])4 = o(n),

so it is a su�cient condition to ensure the consistency of the neural net-
work sieve estimator. As in Remark 3.2, we consider some simple scenarios
here. If Vn = O(rn), then rn(d + 2)Vn log[rnVn(d + 2)] = O

�
r
2
n log rn

�
so

that a possible growth rate for rn is rn = o
�
n
1/8

/(log n)2
�
. On the other

hand, if rn = log Vn, then rn(d + 2)Vn log[rnVn(d + 2)] = O
�
Vn(log Vn)2

�

and a possible growth rate for Vn is Vn = o(n1/4
/(log n)2). Thus, in both

cases, the growth rate required for the asymptotic normality of neural net-
work sieve estimator is slower than the growth rate required for the consis-
tency as given in Remark 3.2. One explanation is that due to the Universal
Approximation Theorem, a neural network with one hidden layer can ap-
proximate a continuous function on compact support arbitrarily well if the
number of hidden units is su�ciently large. Therefore, if the number of hid-
den units is too large, the neural network sieve estimator f̂n may be very
close to the best projector of the true function f0 in Frn so that the error
Pn

i=1

h
f̂n(xi)� f0(xi)

i
could be close to zero, resulting a small variation.

By allowing slower growth rate of the number of hidden units can increase

the variations of
Pn

i=1

h
f̂n(xi)� f0(xi)

i
, which makes the asymptotic nor-

mality more reasonable. On the other hand, condition (C3) and condition
(C4) are similar conditions as in Shen (1997), which are known for conditions
on approximation error. These conditions indicate that the approximation
rate of a single layer neural network cannot be too slow, otherwise it may
require a huge number of samples to reach the desired approximation error.
Therefore, the conditions in the theorem can be considered as a trade-o↵
between bias and variance.

Proof of Theorem 5.1. The main idea of the proof is to use the func-
tional Taylor series expansion for Qn(f) and then carefully bound each term
in the expansion. For any f 2 {f 2 Frn : kf � f0kn  ⇢

�1
n },

Qn(f) = Qn(f0) +Q0
n,f0 [f � f0] +Rn[f � f0]

=
1

n

nX

i=1

✏
2
i �

2

n

nX

i=1

✏i(f(xi)� f0(xi)) +
1

n

nX

i=1

(f(xi)� f0(xi))
2
.(5.3)
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Note that

kf̃n(f)� f0kn = k(1� �n)f̂n + �n(f0 + ◆)� f0kn

= k(1� �n)(f̂n � f0) + �n◆kn

 (1� �n)kf̂n � f0kn + �n,

and since �n = o(n�1/2), we can know that with probability tending to 1,
kf̃n(f)�f0kn  ⇢

�1
n . Then replacing f in (5.3) by f̂n and ⇡rn f̃n(f) as defined

in (5.2), we get

Qn(f̂n) =
1

n

nX

i=1

✏
2
i �

2

n

nX

i=1

✏i(f̂n(xi)� f0(xi)) + kf̂n � f0k
2
n

Qn(⇡rn f̃n(f)) =
1

n

nX

i=1

✏
2
i �

2

n

nX

i=1

✏i(⇡rn f̃n(f)(xi)� f0(xi)) + k⇡rn f̃n(f)� f0k
2
n.

Subtracting these two equations yields

Qn(f̂n) = Qn(⇡rn f̃n(f)) +
2

n

nX

i=1

✏i

⇣
⇡rn f̃n(f)(xi)� f̂n(xi)

⌘
+ kf̂n � f0k

2
n � k⇡rn f̃n(f)� f0k

2
n.

Now note that

k⇡rn f̃n(f)� f0k
2
n = k⇡rn f̃n(f)� f̃n(f) + f̃n(f)� f0k

2
n

= k⇡rn f̃n(f)� f̃n(f) + (1� �n)f̂n + �n(f0 + ◆)� f0k
2
n

= k⇡rn f̃n(f)� f̃n(f) + (1� �n)(f̂n � f0) + �n◆k
2
n

=
D
⇡rn f̃n(f)� f̃n(f) + (1� �n)(f̂n � f0) + �n◆,

⇡rn f̃n(f)� f̃n(f) + (1� �n)(f̂n � f0) + �n◆

E

= k⇡rn f̃n(f)� f̃n(f)k
2
n + (1� �n)

2
kf̂n � f0k

2
n + �

2
n

+ 2(1� �n)
D
⇡rn f̃n(f)� f̃n(f), f̂n � f0

E

+ 2�n
D
⇡rn f̃n(f)� f̃n(f), ◆

E

+ 2(1� �n)�n
D
f̂n � f0, ◆

E

 (1� �n)
2
kf̂n � f0k

2
n + 2(1� �n)

D
f̂n � f0, �n◆

E
+ �

2
n

+ 2(1� �n)k⇡rn f̃n(f)� f̃n(f)knkf̂n � f0kn

+ 2�nk⇡rn f̃n(f)� f̃n(f)kn + k⇡rn f̃n(f)� f̃n(f)k
2
n,
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where the last inequality follows from the Cauchy-Schwarz inequality. Since

2

n

nX

i=1

✏i

⇣
⇡rn f̃n(f)(xi)� f̂n(xi)

⌘
=

2

n

nX
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✏i

⇣
⇡rn f̃n(f)(xi)� f̃n(f)(xi) + f̃n(f)(xi)� f̂n(xi)

⌘

=
2

n

nX
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⇣
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�
2

n
�n
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i=1

✏i

⇣
f̂n(xi)� f0(xi)
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�

2

n
�n

nX

i=1

✏i,

by the definition of f̂n, we have

�Op(�
2
n)  inf

f2Frn

Qn(f)�Qn(f̂n)

 Qn(⇡rn f̃n(f))�Qn(f̂n)

= k⇡rn f̃n(f)� f0k
2
n � kf̂n � f0k

2
n �
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n

nX
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⇣
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⌘
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2
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⇣
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⌘
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⇣
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+ 2�nk⇡rn f̃n(f)� f̃n(f)kn + k⇡rn f̃n(f)� f̃n(f)k
2
n

�
2

n

nX

i=1

✏i

⇣
⇡rn f̃n(f)(xi)� f̃n(f)(xi)

⌘
+

2

n
�n

nX

i=1

✏i

⇣
f̂n(xi)� f0(xi)

⌘

+
2

n
�n

nX

i=1

✏i +Op(�
2
n),

(5.4)

where the last inequality follows by noting that (1��n)2�1 = �2�n+�2n  �
2
n.

From the condition (C1), we can get

[rn(d+ 2) + 1]V 2
n log[rnVn(d+ 2) + 1]

 ([rn(d+ 2) + 1]Vn log[rnVn(d+ 2) + 1])4 = o(n).

Combining with Theorem 3.1, we obtain that kf̂n � f0kn = op(1) and hence

�
2
nkf̂n � f0k

2
n = op(�2n). From condition (C3), we have

2(1� �n)kf̂n � f0knk⇡rn f̃n(f)� f̃n(f)kn  2kf̂n � f0knk⇡rn f̃n(f)� f̃n(f)kn

= Op
�
⇢
�1
n ⇢n�

2
n

�
= Op(�

2
n).

Similarly, since ⇢n�n = o(1), we have

2�nk⇡rn f̃n(f)� f̃n(f)kn = Op(�n · ⇢n�
2
n) = op(�

2
n)

k⇡rn f̃n(f)� f̃n(f)k
2
n = Op(⇢

2
n�

4
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2
n).

Based on condition (C4), we know that
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⌘
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2
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and from Corollary 5.1, we also have
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It follows from these observations that

�2(1� �n)
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E
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2�n
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✏i  Op(�
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2
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which implies that
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D
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E
+

1

n

nX

i=1

✏i  Op(�n) + op(n
�1/2) = op(n

�1/2).
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By replacing ◆ with �◆, we can obtain the same result and hence
�����

D
f̂n � f0, ◆

E
�

1

n

nX

i=1

✏i

����� 

�����(1� �n)
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���
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�1/2).

Therefore,
D
f̂n � f0, ◆

E
=

1

n

nX

i=1

✏i + op(n
�1/2),

and the desired result follows from the classical Central Limit Theorem.

Theorem 5.1 can be used directly for hypothesis testing of neural network
with one hidden layer if we know the variance of the random error �2. In
practice, this is rarely the case. To perform hypothesis testing when �

2 is
unknown, it is natural to find a good estimator of �2 and use a “plug-in”
test statistic. A natural estimator for �2 is

�̂
2
n =

1

n

nX

i=1

⇣
yi � f̂n(xi)

⌘2
= Qn

⇣
f̂n

⌘
.

We then need to establish the asymptotic normality for the statistic 1
�̂n

p
n

Pn
i=1

h
f̂n(xi)� f0(xi)

i
.

Theorem 5.2 (Asymptotic Normality for Plug-in Statistic). Suppose
that f0 2 C(X ), where X ⇢ Rd is a compact set and 0  ⌘n = o

�
n
�1
�
.

Then under the conditions as stated in Theorem 5.1, we have
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�̂n
p
n
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h
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Proof. Note that

�̂
2
n = Qn(f̂n) =

1

n

nX

i=1

⇣
yi � f̂n(xi)

⌘2
=

1

n

nX

i=1

⇣
f0(xi) + ✏i � f̂n(xi)

⌘2

=
1

n

nX

i=1

⇣
f̂n(xi)� f0(xi)

⌘2
�

2

n

nX

i=1

✏i

⇣
f̂n(xi)� f0(xi)

⌘
+

1

n

nX

i=1

✏
2
i

=
1

n

nX

i=1

✏
2
i �

2

n

nX

i=1

✏i

⇣
f̂n(xi)� f0(xi)

⌘
+ kf̂n � f0k

2
n



32 X. SHEN ET AL.

Based on the rate of convergence of f̂n we obtained in Theorem 4.1 and
condition (C1), we know that

���f̂n � f0

���
2

n
= O

⇤
p

✓
max

⇢
k⇡rnf0 � f0k

2
n,
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.
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n = o
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⇢
2
n�

4
n

�
= o(n�1/2) and under (C1), we have

✓
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◆
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✓
log n

n3/4

◆
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which implies that
���f̂n � f0

���
2

n
= op(n�1/2). Moreover, by the same argu-

ments as in the proof of Theorem 5.1, we can show that
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Therefore,
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Based on the Weak Law of Large Numbers, we know that 1
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2
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�
2 + op(1). Therefore,
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2
n = Qn(f̂n) = �
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and it follows from the Slutsky’s Theorem and Theorem 5.1, we obtain
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�̂n

1

�
p
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nX
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h
f̂n(xi)� f0(xi)

i
d
�! N (0, 1).

6. Simulation Studies. In this section, simulations were conducted to
check the validity of the theoretical results obtained in the previous sections.
We first used a simple simulation to show that it is hard for the parameter
estimators in a neural network with one hidden layer to reach parametric
consistency. Then the consistency of the neural network sieve estimators
was examined under various simulation scenarios. Finally, we evaluated the
asymptotic normality of the neural network sieve estimators.
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6.1. Parameter Inconsistency. As mentioned in the introduction, due to
the loss of identifiability of the parameters, the parameter estimators ob-
tained from a neural network model are unlikely to be consistent. In this
simulation, we use empirical results to confirm such observations. We simu-
lated the response through the following model:

(6.1) yi = f0(xi) + ✏i, i = 1, . . . , n,

where the total sample size n = 500, x1, . . . , xn ⇠ i.i.d.N (0, 1), ✏1, . . . , ✏n ⇠

i.i.d.N (0, 0.12). The true model is a single-layer neural network with two
hidden units.

(6.2) f0(xi) = �1 + �(2xi + 1)� �(�xi + 1),

When we conducted the simulation, we fitted the simulated data with a
single-layer neural network to fit the data by setting the learning rate as
0.1 and performing 3e4 iterations for the back propagation. The cost after
3e4 iterations is 0.0106. Table 1 summarizes the estimated values of the
parameters in this model.

Table 1: Comparison of the true parameters and the estimated parameters in a
single-layer neural network with 2 hidden units.

Estimated Values
Weights Biases

�1 �2 ↵1 ↵2 �0,1 �0,2 ↵0

True Value 2.00 -1.00 1.00 -1.00 1.00 1.00 -1.00

Estimated Value 0.82 1.30 -0.34 -0.58 -0.03 -0.03 -1.04

Based on the results in Table 1, it is clear that the estimators for most of
the weights and biases (except ↵0) are far from reaching consistency. On the
other hand, if we look at the curve of the true function and the curve of the
fitted function as shown in Figure 1, we can see that most parts are fitted
extremely well except for the tail parts. The approximation error kf̂ � f0kn

is almost zero as shown in the Figure. This suggests that we should study
the asymptotic properties of the estimated function instead of the estimated
parameters in the neural network.

6.2. Consistency for Neural Network Sieve Estimators. In this simula-
tion, we are going to check the consistency result from Section 3 and the
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Fig 1: Comparison of the true function and the fitted function under the
simulation model (6.1). The black curve is the true function defined in
(6.2) and the blue dashed curve is the fitted curve obtained after fit-
ting the neural network model. “Err” stands for the sqaure of empirical
`2 distance between the esimated function and the true function, that is

Err = (1/n)
Pn

i=1

h
f̂n(xi)� f0(xi)

i2
.
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validity of the assumption made in Theorem 3.1. Based on our construc-
tion of the neural network sieve estimators, in each sieve space Frn , there
is a constraint on the `1 norm for ↵:

Prn
i=0 |↵i|  Vn. So finding the nearly

optimal function in Frn for Qn(f) is in fact a constrained optimization prob-
lem. A classical way to conduct this optimization is through introducing a
Lagrange multiplier for each constraint. Nevertheless, it is usually hard to
find an explicit connection between the Lagrange multiplier and the upper
bound in the inequality constraint. Instead, we use the subgradient method
as discussed in section 7 in Boyd and Mutapcic (2008). The basic idea is to
update the parameter ↵0, . . . ,↵rn through

↵
(k+1)
i = ↵

(k)
i � �kg

(k)
, i = 0, . . . , rn

where �k > 0 is a step size and �k is chosen to be 0.1/ log(e+ k) throughout
the simulation, which is known as a nonsummable diminishing step size rule.
g
(k) is a subgradient of the objective or the constraint function

Prn
j=0 |↵j |�Vn

at ↵(k). More specifically, we take

g
(k)

2

(
@↵(k)Qn(f) if

Prn
j=0 |↵j |  Vn

@↵(k)

Prn
j=0 |↵j | if

Prn
j=0 |↵j | > Vn

.

The updating equations of �1, . . .�rn , �0,1, . . . , �0,rn remains the same as
those in the classical gradient descent algorithm.

We still used equation (6.1) to simulate response, but assumed that the
random error ✏1, . . . , ✏n are i.i.d. N (0, 0.72). For the true function f0(x), we
considered the following three functions:

(1) A neural network with a single hidden layer and 2 hidden units, which
is the same as in equation (6.2).

(2) A trigonometric function:

(6.3) f0(x) = sin
⇣
⇡

3
x

⌘
+

1

3
cos

⇣
⇡

4
x+ 1

⌘

(3) A continuous function having a non-di↵erential point

(6.4) f0(x) =

(
�2x if x  0
p
x
�
x�

1
4

�
if x > 0

We then trained a neural network using the subgradient method mentioned
above and set the number of iterations used for fitting as 20,000. We chose
the growth rate on the number of hidden units rn = n

1/4 and the upper
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bound for `1 norm of the weights and bias from the hidden layer to the
output layer Vn = 10n1/4. Such choice satisfies the condition mentioned in
Remark 3.2 and hence satisfies the condition in Theorem 3.1. We compared
the errors kf̂n � f0k

2
n and the least square errors Qn(f̂n) under di↵erent

sample sizes. The results are summarized in Table 2.

Table 2

Comparison of errors kf̂n � f0k2n and the least square errors Qn(f̂n) after 20,000

iterations under di↵erent sample sizes.

Sample Sizes
Neural Network Sine Piecewise Continuous

kf̂n � f0k2n Qn(f̂n) kf̂n � f0k2n Qn(f̂n) kf̂n � f0k2n Qn(f̂n)

50 3.33E-2 0.519 6.04E-2 0.513 6.20E-1 1.124

100 2.79E-2 0.552 3.04E-2 0.587 3.20E-1 0.920

200 6.05E-3 0.500 1.05E-2 0.501 2.51E-1 0.786

500 8.15E-3 0.484 1.19E-2 0.499 3.26E-1 0.769

1000 3.02E-3 0.475 1.54E-2 0.480 2.98E-2 0.489

2000 2.88E-3 0.500 9.72E-3 0.506 1.69E-2 0.515

As we can see from Table 2, the errors kf̂n�f0k
2
n overall has a decreasing

pattern as the sample size increases. There are some cases where the error
becomes a little bit larger when the sample sizes increases (e.g. the errors
using 500 samples in all scenarios is larger than those errors using 200 sam-
ple). One explanation is that the number of hidden units increase from 3 (for
200 samples) to 4 (for 500 samples) under our simulation setup, which adds
variation to the estimation performance. Overall, the table shows that the es-
timated function f̂n is indeed consistent in the sense that kf̂n�f0kn = o

⇤
p(1).

Figure 2 plots the fitted functions and the true function, from which we can
straightforwardly visualize the result more and draw the conclusions.

6.3. Asymptotic Normality for Neural Network Sieve Estimators. The
last part of the simulation focuses on the asymptotic normality derived in
Theorem 5.1. We still considered the same types of true functions as de-
scribed in section 6.2 but sampled the random errors from the standard nor-
mal distribution. In this simulation, we still used the subgradient method
to obtain the fitted model. The number of iterations used for fitting was
set at 20,000. What is di↵erent from section 6.2 is the growth rates for rn

and Vn set in this simulation. As mentioned in section 5, the growth rates
required for asymptotic normality are slower than those required for consis-
tency. Therefore, we chose rn = n

1/8 and Vn = 10n1/10. Such choice satisfies
the condition (C1) in Theorem 5.1. In order to get the normal Q-Q plot for
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Fig 2: Comparison of the true function and the fitted function for three
di↵erent types of non-linear functions. The top panel shows the scenario
when the true function is a single layer neural network; the middle panel
shows the scenario when the true function is a sine function, and the bottom
panel shows the scenario when the true function is a continuous function
having a non-di↵erentiable point. As we can see from all the cases, the
fitted curve becomes closer to the truth as the sample size increases.
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n
�1/2Pn

i=1

h
f̂n(xi)� f0(xi)

i
, we repeated the simulation 200 times.

Figure 3 to Figure 5 are the normal Q-Q plots under di↵erent nonlinear
functions and various sample sizes. From the figures, we found that the

statistic n�1/2Pn
i=1

h
f̂n(xi)� f0(xi)

i
fit the normal distribution pretty well

under all simulation scenarios. It is also worth to note that the Q-Q plots
looks similar under all simulation scenarios. This is what we would expect

since the limiting distribution for the statistic n�1/2Pn
i=1

h
f̂n(xi)� f0(xi)

i

is N (0, 1) under all scenarios. Another implication we can obtain from the

Q-Q plots is that the statistic n
�1/2Pn

i=1

h
f̂n(xi)� f0(xi)

i
is robust to the

choice of f0. Therefore, as long as the true function f0 is continuous, N (0, 1)

is a good asymptotic distribution for n
�1/2Pn

i=1

h
f̂n(xi)� f0(xi)

i
, which

facilitates hypothesis testing.
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Fig 3: Normal Q-Q plot for n
�1/2Pn

i=1

h
f̂n(xi)� f0(xi)

i
various sample

sizes. The true function f0 is a single-layer neural network with 2 hidden
units as defined in (6.2).
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Fig 4: Normal Q-Q plot for n
�1/2Pn

i=1

h
f̂n(xi)� f0(xi)

i
various sample

sizes. The true function f0 is a trigonometric function as defined in (6.3).



40 X. SHEN ET AL.

-3 -2 -1 0 1 2 3

-2
-1

0
1

2
3

Sample Size = 50

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

Sample Size = 100

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

-3 -2 -1 0 1 2 3

-2
-1

0
1

2
3

Sample Size = 200

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

-3 -2 -1 0 1 2 3

-2
-1

0
1

2

Sample Size = 300

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

-3 -2 -1 0 1 2 3

-2
-1

0
1

2
3

Sample Size = 400

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

-3 -2 -1 0 1 2 3

-2
-1

0
1

2
3

Sample Size = 500

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

Fig 5: Normal Q-Q plot for n
�1/2Pn

i=1

h
f̂n(xi)� f0(xi)

i
various sample

sizes. The true function f0 is a continuous function having a non-di↵erential
point as defined in (6.4).
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Besides the Q-Q plots, we also conducted the normality tests to check

whether n
�1/2 Pn

i=1

h
f̂n(xi)� f0(xi)

i
follows the standard normal distri-

bution. Specifically, we used the Shapiro-Wilks test and the Kolmogorov-
Smirnov test to perform the normality test. Table 3 summarizes the p-values
for both normality tests. As we observed from Table 3, in all cases, we failed

to reject that n�1/2Pn
i=1

h
f̂n(xi)� f0(xi)

i
follows the standard normal dis-

tribution.

Table 3

Summary of results from the Shapiro-Wilks test and the Kolmogorov-Smirnov test. We

use “NN”, “TRI” and “ND” to denote a neural network described in (6.2), a

trigonometric function described in (6.3) and a continuous function having a

non-di↵erential point described in (6.4), respectively.

Sample Sizes
Shapiro-Wilks Test Kolmogorov-Smirnov Test

NN TRI ND NN TRI ND

50 0.878 0.884 0.881 0.584 0.597 0.595

100 0.098 0.095 0.095 0.472 0.508 0.484

200 0.940 0.944 0.944 0.731 0.719 0.708

300 0.884 0.888 0.872 0.976 0.986 0.973

400 0.514 0.525 0.513 0.670 0.754 0.708

500 0.768 0.778 0.768 0.733 0.769 0.733

7. Discussion. We have investigated the asymptotic properties, includ-
ing the consistency, rate of convergence, and asymptotic normality for neural
network sieve estimators with one hidden layer. While in practice, the num-
ber of hidden unites is often chosen ad hoc, it is important to note that
the conditions in the theorems provide theoretical guidelines on choosing
the number of hidden units for a neural network with one hidden layer to
achieve the desired statistical properties. The validity of the conditions made
in the theorems has also been checked through simulation results. Theorem
5.1 and Theorem 5.2 can be served as preliminary work for conducting hy-
pothesis testing on H0 : f0 = h0 for a fixed function h0. However, there is
currently no simple way to check conditions (C3) and (C4) in the theorem,
which requires further researches on local entropy numbers for classes of
neural networks.

The work conducted in this paper mainly focuses on sieve estimators based
on neural networks with one hidden layer and standard sigmoid activation
function. The work presented in this paper can be extended in several ways.
The main theorems in this paper depend heavily on the covering number
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or the entropy number of the function class consisting of neural network
with one hidden layer. Theorem 14.5 in Anthony and Bartlett (2009) pro-
vides a general upper bound for the covering number of a function class
consisting of deep neural networks with Lipshitz continuous activation func-
tions. Therefore, it is possible to extend our results discussed in this paper
to a deep neural network with Lipshitz continuous activation functions. It
is also worthwhile to investigate asymptotic properties of other commonly
used deep learning models such as convolutional neural networks (CNNs)
and recurrent neural networks (RNNs).

When we train a deep neural network, we usually need to face an overfit-
ting issue. In practice, regularization is frequently used to reduce overfitting.
Another natural extension of the work discussed in this paper is to modify
the loss function by involving some regularization terms. By taking regu-
larization into account, we believe the theories could have a much broader
application in real world scenarios.
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Appendix. In this appendix, we are going to explore some basic prop-
erties of the parameter space (F , k · kn) discussed in the main text.

Proposition 7.1. The space (F , k · kn) is a pseudo-normed space.

Proof. Note that kfkn =
�
1
n

Pn
i=1 f

2(xi)
�1/2

.

(i) Based on the definition of k · kn, it is clear that kfkn � 0, for any
f 2 F .

(ii) For any � 2 R and f 2 F ,

k�fkn =

 
1

n

nX

i=1

�
2
f
2(xi)

!1/2

= |�|kfkn.

(iii) For any f, g 2 F ,

kf + gkn =

 
1

n

nX

i=1

(f(xi) + g(xi))
2

!1/2

=

 
nX

i=1

✓
1
p
n
f(xi) +

1
p
n
g(xi)

◆2
!1/2



 
nX

i=1

✓
1
p
n
f(xi)

◆2
!1/2

+

 
nX

i=1

✓
1
p
n
g(xi)

◆2
!1/2

= kfkn + kgkn,
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where we applied the triangle inequality to the classical Euclidean
norm.

Therefore, we showed that (F , k · kn) is a pseudo-normed space.

Proposition 7.2. There is an pseudo-inner product on F such that
kfk

2 = hf, fi for any f 2 F . Moreover, the pseudo-inner product is given
by

hf, gi =
1

n

nX

i=1

f(xi)g(xi), 8f, g 2 F .

Proof. Based on the theorem attributed to Fréchet, von Neumann and
Jordan (see for example, Proposition 14.1.2 in Blanchard and Brüning (2015)),
to show the existence of the inner product, it su�ces to check the parallel-
ogram law of the pseudo-norm and the corresponding pseudo-inner product
can be obtained via the polarization identity. To check to validity of the
parallelogram law, we note that for any f, g 2 F ,

kf + gk
2
n + kf � gk

2
n =

1

n

nX

i=1

(f(xi) + g(xi))
2 +

1

n

nX

i=1

(f(xi)� g(xi))
2

=
1

n

nX

i=1

f
2(xi) +

2

n

nX

i=1

f(xi)g(xi) +
1

n

nX

i=1

g
2(xi)

+
1

n

nX

i=1

f
2(xi)�

2

n

nX

i=1

f(xi)g(xi) +
1

n

nX

i=1

g
2(xi)

=
2

n

nX

i=1

f
2(xi) +

2

n

nX

i=1

g
2(xi)

= 2kfk2n + 2kgk2n.

Hence, the parallelogram law is satisfied based on the pseudo-norm, and the
pseudo-inner product does exist. By using the polarization identity, for any
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f, g 2 F , we have

hf, gi =
1

4

�
kf + gk

2
n � kf � gk

2
n

�

=
1

4

 
1

n

nX

i=1

f
2(xi) +

2

n

nX

i=1

f(xi)g(xi) +
1

n

nX

i=1

g
2(xi)�

1

n

nX

i=1

f
2(xi)

+
2

n

nX

i=1

f(xi)g(xi)�
1

n

nX

i=1

g
2(xi)

!

=
1

n

nX

i=1

f(xi)g(xi).

Let

G =

⇢
g : R ! R,

Z ��g0(z)
�� dz  M

�

be the class of functions of bounded variation in R (see Example 9.3.3 in
van de Geer (2000)). The following proposition shows that Frn ⇢ G for a
fixed n.

Proposition 7.3. For a fixed n, Frn ⇢ G.

Proof. For any f 2 Frn , we have

f(x) = ↵0 +
rnX

j=1

↵j� (�jx+ �0,j) ,

so that

f
0(x) =

rnX

j=1

↵j�j� (�jx+ �0,j) [1� � (�jx+ �0,j)] .

Without loss of generality, we assume that �j 6= 0 for j = 1, . . . , rn. Note
that

Z
|f

0(x)|dx =

Z
������

rnX

j=1

↵j�j� (�jx+ �0,j) [1� � (�jx+ �0,j)]

������
dx



rnX

j=1

|↵j ||�j |

Z
�(�jx+ �0,j)[1� �(�jx+ �0,j)]dx



rnX

j=1

|↵j |
|�j |

�j

Z
�(uj)(1� �(uj))duj ,
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where in the last inequality, we let uj = �jx+�0,j . Clearly, |�j |/�j = sign(�j).
Moreover, since

Z
�(x)(1� �(x))dx =

Z
e
x

(1 + ex)2
dx

=

Z 1

0

1

(1 + u)2
du (by letting u = e

x)

= �(1 + u)�1
��1
0

= 1,

for a fixed n, we have

Z
|f

0(x)|dx 

rnX

j=1

|↵j |sign(�j) 
rnX

j=1

|↵j |  Vn.

Therefore, f 2 G and the desired result follows.
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Blanchard, P. and Brüning, E. (2015). Mathematical methods in Physics: Distribu-

tions, Hilbert space operators, variational methods, and applications in quantum physics

69. Birkhäuser.
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