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Abstract

This paper considers the problem of nonparametric quantile regression under the

assumption that the target conditional quantile function is a composition of a se-

quence of low-dimensional functions. We study the nonparametric quantile regression

estimator using deep neural networks to approximate the target conditional quantile

function. For convenience, we shall refer to such an estimator as a deep quantile regres-

sion (DQR) estimator. We show that the DQR estimator achieves the nonparametric

optimal convergence rate up to a logarithmic factor determined by the intrinsic dimen-

sion of the underlying compositional structure of the conditional quantile function, not

the ambient dimension of the predictor. Therefore, DQR is able to mitigate the curse

of dimensionality under the assumption that the conditional quantile function has a

compositional structure. To establish these results, we analyze the approximation error

of a composite function by neural networks and show that the error rate only depends

on the dimensions of the component functions. We apply our general results to several

important statistical models often used in mitigating the curse of dimensionality, in-

cluding the single index, the additive, the projection pursuit, the univariate composite,

and the generalized hierarchical interaction models. We explicitly describe the pref-

actors in the error bounds in terms of the dimensionality of the data and show that

the prefactors depends on the dimensionality linearly or quadratically in these mod-

els. We also conduct extensive numerical experiments to evaluate the e↵ectiveness of

DQR and demonstrate that it outperforms a kernel-based method for nonparametric

quantile regression.
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1 Introduction

Consider a nonparametric regression model

Y = f0(X) + ⌘, (1.1)

where Y 2 R is a response variable, X 2 X ⇢ Rd is a d-dimensional vector of predictors,
f0 : X ! R is an unknown regression function, and ⌘ is an error term that may depend
on X. We consider the problem of nonparametric quantile regression under the assumption
that the underlying regression function is a composition of a sequence of low-dimensional
functions. We study the nonparametric quantile regression estimator using deep neural
networks to approximate the target regression function. For convenience, we shall refer to
such an estimator as a deep quantile regression (DQR) estimator.

Quantile regression (Koenker and Bassett, 1978; Koenker, 2005) is an important method
in the toolkit for analyzing the relationship between a response Y and a predictor X. Un-
like the least squares regression that models the conditional mean of Y given X, quantile
regression estimates the conditional quantiles of Y given X. Thus quantile regression is able
to describe the conditional distribution of Y given X. There is a rich literature on quantile
regression, much of the work focus on the parametric case when the conditional quantile func-
tion is assumed to be a linear function of the predictor. The linear quantile regression has
also been studied extensively in the context of regularized estimation and variable selection
in the high-dimensional settings (Li and Zhu, 2008; Belloni et al., 2011, 2019; Wang et al.,
2012; Zheng et al., 2015, 2018). In addition, there are many important studies on nonpara-
metric quantile regression. Examples include the methods using smoothing splines (Koenker
et al., 1994; He and Shi, 1994; He and Ng, 1999) and reproducing kernels (Takeuchi et al.,
2006; Sangnier et al., 2016). These studies established the convergence rate of the nonpara-
metric estimators and discussed related problems arising in quantile regression, including an
approach to dealing with the quantile crossing problem and a method for incorporating prior
qualitative knowledge such as monotonicity constraints in the conditional quantile function
estimation. An early study on nonparametric quantile regression using shallow neural net-
works is White (1992). We refer to Koenker (2005) and the references therein for a detailed
treatment of quantile regression. More discussions on nonparametric quantile regression
related to this work are given in Section 8.

To give a snapshot of quantile regressions using deep neural networks compared with the
traditional linear and the kernel quantile regressions, we look at the fitting of the univariate
regression functions “Wave”, when the error term follows a “Sine” distribution or condi-
tionally follows a normal distribution (⌘ | X = x) ⇠ 0.5 ⇥N (0, [sin(⇡x)]2). The functional
form of the “Wave” function is given in Section 7. Figure 1 presents the fitting results using
deep quantile regression (DQR), quantile regression in reproducing kernel Hilbert space (ker-
nel QR) in Sangnier et al. (2016) and traditional linear quantile regression (linear QR) in
Koenker and Bassett (1978) at the 0.25-th, the 0.50-th and the 0.75-th quantiles. Moreover,
least squares regression using deep neural networks (DLS ) is also compared with the above
methods at the 0.50-th quantile. We see that linear QR fails when the model is nonlinear,
while kernel QR and DQR yield acceptable fitting curves. In particular, DQR works best
among the methods considered in this example.
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Figure 1: The fitted quantile curves by di↵erent methods under the univariate model “Wave”
with “Sine” error. The training data is depicted as grey dots.The target quantile functions
at the quantile levels ⌧ =0.25 (yellow), 0.5 (green), 0.75 (red) are depicted as solid curves,
and the estimated quantile functions are represented by dashed curves with the same color.
From the left to right, the subfigures correspond to the methods: DQR, kernel QR and linear
QR. The fitted DLS curve (in blue) is included in the left subfigure.

In classical nonparametric statistics, including nonparametric quantile regression, the
complexity of a function such as regression function and density function is measured through
smoothness in terms of the order of the derivatives. The rate of convergence in estimating
such functions is determined by the dimension and the smoothness index (Stone, 1982).
Specifically, under the assumption that the target function f0 is in a Hölder class with a
smoothness index � > 0 (�-Hölder smooth), i.e., all the partial derivatives up to order b�c
exist and the partial derivatives of order b�c are ��b�c Hölder continuous, where b�c denotes
the largest integer strictly smaller than �, the optimal convergence rate of the prediction error
is Cdn��/(2�+d) under mild conditions (Stone, 1982), where Cd is a prefactor independent of
n but depending on d and other model parameters. When d is small, say, d = 2, assuming
the target function has a continuous second derivative, the optimal rate of convergence is
Cdn�1/3. Therefore, in the low-dimensional settings, a su�cient degree of smoothness will
overcome the adverse impact of the dimensionality on the convergence rate. Moreover, in low-
dimensional models with a small d, the impact of Cd on the convergence rate is not significant.
However, in high-dimensional models with a large d, the situation is completely di↵erent.
First, the rate of convergence can be painfully slow, unless the function f0 is assumed to have
an extremely large smoothness index �. But such an assumption is not realistic in practice.
Second, the impact of Cd can be substantial when d is large. For example, if the prefactor
Cd depends on d exponentially, it can overwhelm the convergence rate n��/(2�+d). Therefore,
it is important to clearly describe how Cd depends on the dimensionality.

Recently, several authors carried out important and inspiring studies on the convergence
properties of least squares nonparametric estimation using neural network approximation of
the regression function (Bauer and Kohler, 2019; Schmidt-Hieber et al., 2020; Chen et al.,
2019a; Kohler et al., 2019; Nakada and Imaizumi, 2019; Farrell et al., 2021). These studies
show that deep neural network regression can achieve the minimax optimal rate of con-
vergence up to a logarithmic factor for estimating the conditional mean regression function
established by Stone (1982). However, nonparametric estimation using deep neural networks
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cannot escape the well-know problem of curse of dimensionality in high-dimensions without
any conditions on the underlying model.

It is clear that smoothness is not the right measure of the complexity of a function class
in the high-dimensional settings, since smoothness does not help mitigate the curse of dimen-
sionality. An e↵ective approach to mitigating the curse of dimensionality is to consider func-
tions with a compositional structure. Deep neural network modeling has achieved impressive
success and often outperformed kernel based methods in many important applications with
high-dimensional data, including speech recognition, image classification, object detection,
drug discovery and genomics, among others (LeCun et al., 2015). Thus it is desirable to
consider statistical models in a function class that can mitigate the curse of dimensionality
and can be well approximated by deep neural networks. It has been shown that deep ReLU
networks are solutions to regularized data fitting problems in the function space consisting of
compositions of functions from the Banach spaces of second-order bounded variation (Parhi
and Nowak, 2021). Using composite functions in nonparametric regression modeling has a
long history in statistics. For example, the nonparametric additive model, which can be con-
sidered a composition of a linear function with a vector function whose components depend
on only one of the variables, has been studied by many authors (Breiman and Friedman,
1985; Stone, 1985, 1986; Hastie and Tibshirani, 1990). Recently, more general composite
functions for statistical modeling have been proposed in several interesting works (Horowitz
and Mammen, 2007; Bauer and Kohler, 2019; Schmidt-Hieber et al., 2020). Under this as-
sumption, the convergence rate Cdn��/(2�+d) could be improved to Cd,d⇤n

��/(2�+d⇤) for some
d⇤ ⌧ d, where Cd,d⇤ is a constant depending on (d⇤, d), where d⇤ is the intrinsic dimension
of the model. In these results, the convergence rate part is improved from n��/(2�+d) to
n��/(2�+d⇤). When d⇤ ⌧ d, the improvement is substantial. However, the prefactor Cd,d⇤ in
the error bounds depends on d exponentially or are not clearly described in the aforemen-
tioned works (Stone, 1985, 1986; Horowitz and Mammen, 2007; Bauer and Kohler, 2019;
Schmidt-Hieber et al., 2020). In a low-dimensional model with a small d, the impact of
the prefactor on the overall error bound is not significant. However, in a high-dimensional
model with a large d, the impact of the prefactor can be substantial, even overwhelm the
convergence rate part (Ghorbani et al., 2020). Therefore, it is important to describe how
the prefactor depends on the dimension d in the error bound.

In this paper, we establish non-asymptotic upper bounds for the excess risk and mean in-
tegrated squared error of the DQR estimator under the assumption that the target regression
function is a composite function. A novel aspect of our work is that we clearly describe how
the prefactors in the error bounds depend on the ambient dimension d and the dimensions
of the low-dimensional component functions of the composite function. Our error bounds
achieve the minimax optimal rates and significantly improve over the existing ones in the
sense that their prefactors depend linearly or quadratically on the dimension d, instead of
exponentially on d. This shows that DQR can mitigate the curse of dimensionality under
the assumption that the target regression function belongs to the class of composite func-
tions. These results are based on new approximation error bounds of composite functions
by the neural networks, which may be of independent interest. Our main contributions are
as follows.

1. We establish excess risk bounds for the proposed DQR estimator under the assumption
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that the target conditional quantile function has a compositional structure with lower-
dimensional component functions. With appropriately specified ReLU networks in
terms of depth, width and size of the network, our DQR estimator achieves near
optimal convergence rate up to a logarithmic factor under a heavy-tailed error (finite
p-th moment for p � 1) and mild regular conditions on the joint distribution of the
response and the predictor. Moreover, we show that DQR can mitigate the curse of
dimensionality in the sense that the convergence rate of the error bound depends on
the dimensions of the component functions, not the ambient dimension. We also show
that the prefactors of the error bounds depend on the ambient dimension linearly or
quadratically.

2. We derive novel approximation error results of composite functions using ReLU acti-
vated neural networks under the assumption that the component functions are Hölder
continuous. This result shows that the curse of dimensionality can be mitigated through
composition in the sense the approximate error rate depends on the intrinsic dimension
of a composite functions, instead of the ambient dimension of the function. Equally
importantly, the prefactor of the error bound is significantly improved in the sense
that it depends on the dimensionality d polynomially instead of exponentially as in the
existing results. This approximation result is the key building block in establishing the
bounds for excess risk and mean integrated squared error for DQR.

3. We apply our general results to several important statistical models often used in mit-
igating the curse of dimensionality, including the single index, the additive, the pro-
jection pursuit, the univariate composite, and the generalized hierarchical interaction
models. We show that DQR achieves the optimal convergence rate up to a logarithmic
factor under these models. We also present the prefactors of the error bounds for these
models.

4. We bridge the gap between the excess risk and the mean integrated squared error of
the DQR estimator under mild conditions. We do not require the bounded support
condition on the conditional distribution of the response given the predictor as in the
existing literature. The mean integrated squared error of our DQR estimator is shown
to converge at the near optimal rate up to a logarithmic factor, inheriting the properties
of the corresponding excess risk. The convergence rate of the mean integrated squared
error of the DQR estimator is determined by the dimensions of the component functions
and the prefactor depends polynomially on the widest layer of the composite functions.

The remainder of this paper is organized as follows. In Section 2 we describe the deep
quantile regression problem, the deep neural networks used in the estimation and the as-
sumption on the compositional structure of the conditional quantile function. In Section 3
we provide a high level description of our main results and the overall approach we take to
establish these results. In Section 4 we present non-asymptotic bounds on the excess risk
and mean integrated squared error of the DQR estimator. Section 5 includes applications of
our general error bounds to several important models in nonparametric statistics. In Section
6 we present a result on the approximation error of composite functions using deep neural
networks. In Section 7 we present simulation results demonstrating that DQR outperforms a

5



kernel nonparametric quantile regression method based on vector-valued reproducing kernel
Hilbert space (RKHS) (Sangnier et al., 2016). Section 8 contains discussions on the related
work. Concluding remarks are given in Section 9. Proofs and additional simulation results
are given in the appendix.

2 Deep quantile regression

In this section, we present the basic setup of nonparametric regression. We describe the
structure of the feedforward neural networks to be used in the estimation and define the
compositional structure for the target conditional quantile function.

For a given quantile level ⌧ 2 (0, 1), the quantile check loss function is defined by

⇢⌧ (x) = x{⌧ � I(x  0)}, x 2 R.

For a possibly random function f : Rd ! R, let Z ⌘ (X, Y ) be a random vector independent
of f . We define the risk of f under the loss function ⇢⌧ (·) by

R⌧ (f) = EZ{⇢⌧ (Y � f(X))}.

At the population level, the nonparametric quantile estimation is to find a measurable func-
tion f ⇤ : Rd ! R satisfying

f ⇤ := argmin
f

R⌧ (f) = argmin
f

EZ{⇢⌧ (Y � f(X))},

where EZ means that the expectation is taken with respect to the distribution of Z. If the
conditional ⌧ -th quantile of ⌘ given X is 0 and E(|⌘||X = x) < 1 for all x 2 X , then the
true regression function f0 is the optimal solution f ⇤ on X .

In applications, when only a random sample S ⌘ {(Xi, Yi)}ni=1
is available, we consider

the empirical risk

R⌧
n(f) =

1

n

nX

i=1

⇢⌧ (Yi � f(Xi)). (2.1)

Our goal is to construct an estimator of f0 within a certain class of functions Fn by minimizing
the empirical risk, that is,

f̂n 2 arg min
f2Fn

R⌧
n(f), (2.2)

where f̂n is called the empirical risk minimizer (ERM). We choose Fn to be a function
class consisting of deep neural networks (DNN). We will also refer to f̂n as a deep quantile
regression (DQR) estimator below.

2.1 Deep neural networks

We set the function class Fn to be FD,W,U ,S,B, a class of feedforward neural networks f� :
Rd ! R with parameter �, depth D, width W , size S, number of neurons U and f� satisfying
kf�k1  B for some 0 < B < 1, where kfk1 is the supreme norm of a function f : Rd ! R.
Note that the network parameters may depend on the sample size n, but the dependence is
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omitted in the notation for simplicity. A brief description of multilayer perceptrons (MLPs),
the commonly used feedforward neural networks, are given below. The architecture of a
MLP can be expressed as a composition of a series of functions

f�(x) = LD � � � LD�1 � � � · · · � � � L1 � � � L0(x), x 2 Rd,

where �(x) = max(0, x) is the rectified linear unit (ReLU) activation function (defined for
each component of x if x is a vector) and

Li(x) = Wix+ bi, i = 0, 1, . . . ,D,

where Wi 2 Rdi+1⇥di is a weight matrix, di is the width (the number of neurons or computa-
tional units) of the i-th layer, and bi 2 Rdi+1 is the bias vector in the i-th linear transformation
Li.

Such a network f� has D hidden layers and (D + 1) layers in total. We use a (D + 1)-
vector (w0, w1, . . . , wD)> to describe the width of each layer; particularly in nonparametric
regression problems, w0 = d is the dimension of the input and wD = 1 is the dimension
of the response . The width W is defined as the maximum width of hidden layers, i.e.,
W = max{w1, . . . , wD}; the size S is defined as the total number of parameters in the
network f�, i.e., S =

PD
i=0

{wi+1 ⇥ (wi + 1)}; the number of neurons U is defined as the
number of computational units in hidden layers, i.e., U =

PD
i=1

wi. For an MLP FD,U ,W,S,B,
its parameters satisfy the simple relationship

max{W ,D}  S  W(D + 1) + (W2 +W)(D � 1) +W + 1 = O(W2D).

2.2 Structured composite functions

Let the target quantile regression function f0 : Rd ! R be a d-dimensional function. We
assume that f0 is a composition of a series of functions hi, i = 0 . . . , q, i.e.,

f0 = hq � · · · � h0,

where hi : [ai, bi]di ! [ai+1, bi+1]di+1 . Here d0 = d and dq+1 = 1. For each hi, denote by
hi = (hij)>j=1,...,di+1

the components of hi and let ti be the maximal number of variables on
which each of hij the depends on. Note that ti  di and each hij is a ti-variate function for
j = 1, . . . , di.

Many well-known important models in semiparametric and nonparametric statistics have
a compositional structure. Examples include the single index model (Härdle et al., 1993;
Horowitz and Härdle, 1996), the additive model (Stone, 1985, 1986; Hastie and Tibshirani,
1990), the projection pursuit model (Friedman and Stuetzle, 1981), the interaction model
(Stone, 1994), the composite regression model (Horowitz and Mammen, 2007), and the
generalized hierarchical interaction model (Bauer and Kohler, 2019). We consider the bounds
for the excess risk of DQR under these models in Section 5.

In this work, we focus on the quantile regression models in which the conditional quantile
function has a compositional structure. This is the key condition we use to mitigate the curse
of dimensionality. We will only assume the Hölder continuity on the component functions
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of the composite conditional quantile function. A function h : [a1, b1]d1 ! [a2, b2]d2 is said to
be Hölder continuous with order ↵ and Hölder constant � if there exist ↵ 2 (0, 1] and � � 0
such that

kh(x)� h(y)k2  �kx� yk↵
2

(2.3)

for any x, y 2 [a1, b1]d1 .
We now describe the assumptions on the target regression function f0 in detail below.

Assumption 1 (Structured target regression function with continuous components). The
target quantile regression function f0 = hq � · · · � h0 is a composition of a series of functions
hi, i = 0 . . . , q, where hi : [ai, bi]di ! [ai+1, bi+1]di+1 with d0 = d and dq+1 = 1. For each
hi = (hij)>j=1,...,di+1

(i = 0, . . . , q), its components hij : [ai, bi]ti ! [ai+1, bi+1] (j = 1, . . . , di+1)
are Hölder continuous functions with order ↵i 2 [0, 1] and constant �i � 0, where ti is the
maximal number of variables on which each of hij depends on (ti  di). Let J ⇢ {0, . . . , q}
be a set consisting of the indices of linear transformation layers of f0 (if any) and J c :=
{0, . . . , q}\J denote the complement of J .

We will show that, if the target regression function f0 satisfies Assumption 1, the DQR
estimator can automatically adapt to the compositional structure and circumvent the curse
of dimensionality.

3 A high-level description of the results

In this section, we present a high-level description of our approach, the non-asymptotic
bounds for the excess risk and the mean integrated squared error of the DQR estimator.
Detailed statements of the results and the assumptions are given in the Sections 4-6 below.

For a DQR estimator f̂n 2 Fn defined in (2.2), we evaluate its quality via the excess risk,
defined as the di↵erence between the risks of f̂n and f0,

R⌧ (f̂n)�R⌧ (f0) = EZ⇢⌧ (f̂n(X)� Y )� EZ⇢⌧ (f0(X)� Y ).

We first establish an upper bound on the excess risk, which is the starting point of our error
analysis.

Lemma 1. For any random sample S = {(Xi, Yi)ni=1
}, the excess risk of the DQR estimator

f̂n satisfies

R⌧ (f̂n)�R⌧ (f0)  2 sup
f2Fn

|R⌧ (f)�R⌧
n(f)|+ inf

f2Fn

R⌧ (f)�R⌧ (f0), (3.1)

where R⌧
n is defined in (2.1).

The excess risk of the DQR estimator is bounded above by the sum of two terms: the
stochastic error 2 supf2Fn

|R⌧ (f) � R⌧
n(f)| and the approximation error inff2Fn R⌧ (f) �

R(f0). It is interesting to note that the upper bound no longer depends on the DQR
estimator itself, but the function class Fn, the loss function ⇢⌧ and the random sample S.

The stochastic error 2 supf2Fn
|R⌧ (f)�R⌧

n(f)| can be analyzed using the empirical pro-
cess theory (Van der Vaart and Wellner, 1996; Anthony and Bartlett, 1999; Bartlett et al.,
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2019). A key step is to calculate the complexity measure of Fn in terms of its covering
number. The details are given in Section 4.

The approximation error term inff2Fn R⌧ (f) � R⌧ (f0) measures the approximation er-
ror of the function class Fn for f0 under the loss function ⇢⌧ . To utilize the approxima-
tion theories of neural networks, we need to relate inff2Fn R⌧ (f) � R⌧ (f0) to the quantity
inff2Fn kf � f0k for some functional norm k · k. The power of neural network functions
approximating high-dimensional functions have been studied by many authors, some recent
works include Yarotsky (2017, 2018); Shen et al. (2019, 2020), among others. For a composite
function f0 under Assumption 1, we derive new approximation results in Section 6.

To clearly describe how the error bounds depend on various parameters, including the
network parameters such as depth, width and size of the network, as well as the model
parameters such as the intrinsic and ambient dimensions of the model, we present general
expressions of the stochastic errors and the approximation errors, which constitute the upper
bounds for the excess risk and the mean integrated squared error (MISE), in Theorems 1
and 2 in Section 4 below. The network parameters, similar to the bandwidth in kernel
nonparametric regression or density estimation, can be tuned as a function of the sample
size and the model dimension to obtain the best trade-o↵ between the stochastic error and the
approximation error, and therefore achieve the best overall error rate. An appealing aspect
of our results is that they clearly and explicitly describe how the prefactors in the error
bounds depend on the network parameters and the dimensionality of the model. Explicit
expressions of the bounds for the excess risk and the MISE are presented in Corollaries 2
and 3 in Section 4.

In Section 5, we consider several well-known semiparametric and nonparametric models
that are widely used to mitigate the curse of dimensionality, including the single index model,
the additive model, the projection pursuit model, the interaction model, the univariate
composite regression model, and the generalized hierarchical interaction model. We derive
explicit expressions of the error bounds when the underlying conditional quantile function
takes the form of these well-known models

As can be seen in Corollary 2 for the excess risk of the DQR estimator and the error
bounds for the models considered in Section 5, based on appropriately specified network
parameters (depth, width and size of the network), we have the following upper bound for
the excess risk,

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C0Cd,d⇤(log n)

2n�(1� 1
p)

2↵⇤
2↵⇤+t⇤ , (3.2)

where C0 is a constant only depending on the model parameters such as the smoothness
index of the underlying conditional quantile function, Cd,d⇤ is the prefactor depending on
d, the dimension of the predictor; and d⇤, determined by the dimensions of the component
functions in the composite function. The convergence rate part of the error bound (3.2),
n�(1�1/p)2↵⇤/(2↵⇤

+t⇤), is determined by the number of moments p of the response Y (see
Assumption 2 below), the smoothness index of the composite function ↵⇤, and the intrinsic
dimension of the model t⇤. If Y has sub-exponential tail probabilities, we can set p = 1.
The bound for the mean integrated squared error of the DQR estimator has a form similar
to (3.2), see Corollary 3.

Explicit expressions for Cd,d⇤ in (3.2) are given in Corollaries 2 and 3, as well as for
the examples in Section 5. For example, for the single index model (5.1), the additive
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model (5.2) and the additive model with an unknown link function (5.3), Cd,d⇤ = d2 log d.
For the interaction model (5.4), Cd,d⇤ = (Kdd⇤)2 log(Kdd⇤), where K is the number of
component functions and d⇤ is the dimension of the component functions in the model. For
the projection pursuit model (5.5), Cd,d⇤ = (max{K, d})2 log(max{K, d}), where K is the
number of component functions in the model. For the univariate composite model (5.6) and
the generalized hierarchical interaction model (5.8), the forms of Cd,d⇤ are more complicated,
they are given in Section 5.

These results demonstrate that DQR with deep neural networks can significantly atten-
uate the curse of dimensionality when the underlying conditional quantile function takes the
form of one of these models, even though the construction of the DQR estimator does not
use the specific structure of these models.

4 Non-asymptotic error bounds

In this section, we present non-asymptotic error bounds for the DQR estimator, including
bounds for the excess risk upper bounds in section 4.1 and bounds for mean integrated
squared error in 4.2. The bounds are determined by a trade-o↵ between the stochastic error
and the approximation error.

4.1 Excess risk bounds

For analyzing the stochastic error of the DQR estimator, we make the following assumption.

Assumption 2. (i) The conditional ⌧ -th quantile of ⌘ given X = x is 0 and E(|⌘||X = x) <
1 for almost every x 2 X . (ii) The support of covariates X is a bounded compact set in
Rd, and without loss of generality X = [0, 1]d. (iii) The response variable Y has a finite p-th
moment for some p > 1, i.e., there exists a finite constant M > 0 such that E|Y |p  M .

Note that throughout the paper, we focus on the case when X = [0, 1]d. In the non-
parametric regression problems, we can always first transform the predictors to a bounded
region.

For a class F of functions: X ! R, its pseudo dimension, denoted by Pdim(F), is defined
to be the largest integer m for which there exists (x1, . . . , xm, y1, . . . , ym) 2 Xm ⇥ Rm such
that for any (b1, . . . , bm) 2 {0, 1}m there exists f 2 F such that 8i : f(xi) > yi () bi = 1
(Anthony and Bartlett, 1999; Bartlett et al., 2019). For a class of real-valued functions
generated by neural networks, pseudo dimension is a natural measure of its complexity.
In particular, if F is the class of functions generated by a neural network with a fixed
architecture and fixed activation functions, we have Pdim(F) = VCdim(F) (Theorem 14.1
in Anthony and Bartlett (1999)), where VCdim(F) is the VC dimension of F . In our results,
we require the sample size n to be greater than the pseudo dimension of the class of neural
networks considered.

For a given sequence x = (x1, . . . , xn) 2 X n, let F�|x = {(f(x1), . . . , f(xn) : f 2 F�} ⇢
Rn. For a positive number �, let N (�, k · k1,F�|x) be the covering number of F�|x under the
norm k · k1 with radius �. Define the uniform covering number Nn(�, k · k1,F�) to be the
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maximum over all x 2 X of the covering number N (�, k · k1,F�|x), i.e.,

Nn(�, k · k1,F�) = max{N (�, k · k1,F�|x) : x 2 X}. (4.1)

We give an upper bound of the stochastic error in the following lemma.

Lemma 2. Consider the d-variate nonparametric regression model in (1.1) with an unknown
regression function f0. Let F� = FD,W,U ,S,B be a class of feedforward neural networks with a
continuous piecewise-linear activation function of finite pieces and f̂� 2 argminf2F�

R⌧
n(f)

be the empirical risk minimizer over F�. Assume that Assumption 2 holds and kf0k1  B
for B � 1. Then, for 2n � Pdim(F�) and any ⌧ 2 (0, 1),

sup
f2F�

|R⌧ (f)�R⌧
n(f)|  c0

max{⌧, 1� ⌧}B
n1�1/p

logN2n(n
�1, k · k1,F�), (4.2)

where c0 > 0 is a constant independent of n, d, ⌧,B,S,W and D. Moreover,

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C0

max{⌧, 1� ⌧}BSD log(S) log(n)
n1�1/p

+2 inf
f2F�

�
R⌧ (f)�R⌧ (f0)

 
, (4.3)

where C0 > 0 is a constant independent of n, d, ⌧,B,S,W and D.

Remark 1. The denominator n1�1/p in (4.2) and (4.3) can be improved to n if the response
Y is assumed to be sub-exponentially distributed, i.e., there exists a constant �Y > 0 such
that E exp(�Y |Y |) < 1. This corresponds to the case that p = +1.

The stochastic error is bounded by a term determined by the metric entropy of F� in
(4.2), which is measured by the covering number of F�. To obtain (4.3), we further bound
the covering number of F� by its pseudo dimension (VC dimension). According to Bartlett
et al. (2019), the pseudo dimension (VC dimension) of F� with piecewise-linear activation
function can be further contained and expressed in terms of its parameters D and S, i.e.,
Pdim(F�) = O(SD log(S)). This leads to the upper bound for the prediction error by the
sum of the stochastic error and the approximation error of F� to f0 in (4.3).

To derive an upper bound for the approximation error inff2F�
{R⌧ (f)�R⌧ (f0)}, we first

bound it in terms of inff2F�
kf � f0k for some functional norm k · k. In the following, we let

⌫ denote the marginal distribution of X and define kf � f0kLp(⌫) := {E|f(X)� f0(X)|p}1/p
for p 2 (0,1).

Lemma 3. Assume that Assumption 2 (i) holds. Let f0 be the target function defined in
(1.1) and R⌧ (f0) be its risk. Then, we have

inf
f2F�

{R⌧ (f)�R⌧ (f0)}  max{⌧, 1�⌧} inf
f2F�

E|f(X)�f0(X)| = max{⌧, 1�⌧} inf
f2F�

kf�f0kL1(⌫),

where ⌫ denotes the marginal distribution of X.

As a consequence of Lemma 3, we only need to give upper bounds on the approximation
error inff2F�

kf�f0kL1(⌫) to give the overall bounds on the excess risk of the ERM f̂� defined
in (2.2). Furthermore, if the conditional distributions of error given covariates satisfy proper
conditions and the risk function R(·) has a local quadratic approximation around f0, the
convergence rate results can be further improved.
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Assumption 3 (Local quadratic bound of the excess risk). There exist some constants
c0⌧ = c0⌧ (⌧, X, ⌘, f0) > 0 and �0⌧ = �0⌧ (⌧, X, ⌘, f0) > 0 which may depend on ⌧ , X, ⌘ and f0
such that

R⌧ (f)�R⌧ (f0)  c0⌧kf � f0k2L2(⌫),

for any f satisfying kf � f0kL1(X 0)  �0⌧ , where X 0 is any subset of X such that P (X 2
X 0) = P (X 2 X ).

Remark 2. Assumption 3 is generally satisfied when the conditional density of ⌘ given
X = x is positive in a neighborhood of its ⌧ -th conditional quantile.

By Lemma 3 and Assumption 3, a sharper bound for the approximation error improves
over that of Lemma 3 can be obtained and presented in the next lemma.

Lemma 4. Assume that Assumption 2 (i) and 3 hold, let f0 be the target function defined
in (1.1) and R⌧ (f0) be its risk, then we have

inf
f2F�

{R⌧ (f)�R⌧ (f0)}  c⌧ inf
f2F�

kf � f0k2L2(⌫),

where c⌧ � max
�
c0⌧ ,max{⌧, 1� ⌧}/�0⌧

 
> 0 is a constant, ⌫ denotes the marginal probability

measure of X and F� = FD,W,U ,S,B denotes the class of feedforward neural networks with
parameters D,W ,U ,S and B.

Remark 3. We establish the error bounds for approximating a composite function using
deep neural networks in Theorem 3 in Section 6. Theorem 3 can be used to bound the
approximation error term inff2F�

kf � f0kL2(⌫) in Lemmas 3 and 4, which leads to the bound
for the approximation error in Theorem 1 below.

Before stating the results for the excess risk bounds, we specify the network parameters.
For any given Ni, Li 2 N+, i 2 J c, we set the function class F� = FD,W,U ,S,B consisting of
ReLU multi-layer perceptrons with width no more than W and depth D, where

W = max
i=0,...,q

di max{4tibN1/ti
i c+ 3ti, 12Ni + 8}, (4.4)

D =
X

i2Jc

(12Li + 15) + 2|J |. (4.5)

Here recall J ⇢ {0, . . . , q} is a set collecting the indices of linear layers of f0 (if any) and
J c := {0, . . . , q}\J denotes the complement of J .

Theorem 1 (Non-asymptotic excess risk bound). Under model (1.1), suppose that Assump-
tions 1 and 2 hold, ⌫ is absolutely continuous with respect to the Lebesgue measure, and
kf0k1  B for some B � 1. Suppose the network parameters of the function class F�

are specified as in (4.4) and (4.5). Then, for 2n � Pdim(F�), the excess risk of the DQR
estimator f̂� satisfies

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C

�⌧BSD log(S) log(n)
n1�1/p

+ 2�⌧

X

i2Jc

C⇤
i �

⇤
i t

⇤
i (NiLi)

�2↵⇤
i /ti ,
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where �⌧ = max{⌧, 1 � ⌧} and C > 0 is a constant which does not depend on n, d, ⌧,B,
S, D, C⇤

i , �
⇤
i , ↵

⇤
i , Ni or Li, and C⇤

i = 18⇧
q
j=i+1↵j , �⇤

i = ⇧q
j=i�

⇧
q
k=j+1↵k

j , ↵⇤
i = ⇧q

j=i↵j and

t⇤i = (⇧q
j=i

p
tj

⇧
q
k=j↵k)/

p
ti
↵i.

Additionally if Assumption 3 also holds, we have

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C

�⌧BSD log(S) log(n)
n1�1/p

+ 2c⌧
⇥X

i2Jc

C⇤
i �

⇤
i t

⇤
i (NiLi)

�2↵⇤
i /ti

⇤2
,

where c⌧ > 0 is a constant defined in Lemma 4 and C > 0 is a constant not depending on
n, d, ⌧,B, S, D, C⇤

i , �
⇤
i , ↵

⇤
i , Ni or Li.

Remark 4. In Theorem 1, the bounds for the excess risk are explicitly expressed in terms of
the network parameters D and S and the parameters Ni and Li. , which determine the width
and the depth of the network as specified in (4.4) and (4.5). The dependence of the bounds
on the dimensions of the functions (d, tj) and the Hölder constants (↵j,�j) for the functions
is also explicitly described. These constants are given and determined by the underlying
model, so we cannot change them. The constants C and c⌧ are independent of all the above
parameters, in particular, they do not depend on the dimensions (d, tj).

Theorem 1 gives a general expression of the upper bound for the excess risk. This bound
clearly describes how the bounds depend on various parameters. The parameters that can be
changed or tuned are the network parameters given in terms of Ni and Li. We note that the
stochastic error term increases with (Ni, Li), while the approximation error term decreases
with (Ni, Li). Thus we can select (Ni, Li) to balance these two error terms, which lead to
the best error bound. We will present an explicit expression of the risk bound in Corollary
2 below. First, we state a simpler bound assuming that all the component functions in the
composition are Lipschitz continuous with ↵i = 1, i = 0, 1, . . . , q.

Corollary 1. Under model (1.1), suppose Assumptions 1 and 2 hold and all hij : Dij ! R
in Theorem 3 are Lipschitz continuous functions (↵i = 1 for i = 0, . . . , q) with Lipschitz
constants �i � 0. Given any N,L 2 N+, for i 2 J c, we set the same shape for each
subnetwork with Ni = N 2 N+ and Li = L 2 N+, and for j 2 J , we set the 3-layer
subnetwork with width (dj, 2dj, dj+1) according to Lemma 9. Suppose the network parameters
of the function class F� are specified as in (4.4) and (4.5). Then, for 2n � Pdim(F�), the
excess risk of the DQR estimator f̂� satisfies

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C

�⌧BSD log(S) log(n)
n1�1/p

+ 36�⌧

X

i2Jc

⇧k=i+1

p
tk(NiLi)

�2/ti ,

where �⌧ = max{⌧, 1 � ⌧} and C > 0 is a constant independent of n, d, ⌧,B,S,D, N or L.
Additionally if Assumption 3 also holds, we have

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C

�⌧BSD log(S) log(n)
n1�1/p

+ 648c⌧
⇥X

i2Jc

⇧k=i+1

p
tk(NiLi)

�2/ti
⇤2
,

where c⌧ > 0 is a constant defined in Assumption 3 and C > 0 is a constant independent of
n, d, ⌧,B,S,D, N or L.
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Remark 5. The log(n) factor in the stochastic error of the upper bound in Theorem 1
and Corollary 1 is due to the truncation technique used in the proof. Power of log factors,
(logn)k for some k 2 N+, are commonly seen in the results of related work, e.g., Bauer and
Kohler (2019); Schmidt-Hieber et al. (2020) and Farrell et al. (2021). By properly setting
the network size S or depth D to have order O(nc/(log n)k) for some constant c > 0 and
k 2 N+, the final convergence rate of the excess risk could be made optimal. However, this
will make the selection of the network parameters more complicated. Therefore, we will not
do so in this paper. The rate of convergence is (nearly) optimal up to a logarithmic factor
(log n)2.

We now present an explicit risk bound for the DQR estimators with three sets of network
parameters with di↵erent depth and width. All these three di↵erent specifications of the
network parameters lead to the same risk bound.

Corollary 2. Under model (1.1), suppose that Assumptions 1-3 hold, ⌫ is absolutely contin-
uous with respect to the Lebesgue measure, kf0k1  B for some B � 1 and 2n � Pdim(F�).
Let (↵⇤, t⇤) = argmin(↵⇤

i ,ti),i2Jc{↵⇤
i /ti}, �⇤ = maxi=0,...,q �⇤

i and d⇤ = maxi=0,...,q t⇤i , where
↵⇤
i ,�

⇤
i and t⇤i are defined in Theorem 1. Suppose the network parameters of the function

class F� are specified as follows:

1. (Deep and fixed width MLP) Let Ni = 1 and Li = bn(1�1/p)t⇤/(4↵⇤
+2t⇤)c. The corre-

sponding width, depth and size of the networks satisfy:

W1 = max
i=0,...,q

di max{7ti, 20},

D1 = (12bn(1�1/p)t⇤/(4↵⇤
+2t⇤)c+ 15)|J c|+ 2|J |,

S1  W2

1
D1  max

i=0,...,q
(20diti)

2 ⇥ 29qbn(1�1/p)t⇤/(4↵⇤
+2t⇤)c.

2. (Deep and wide MLP) Let Ni = bn(1�1/p)t⇤/(8↵⇤
+4t⇤)c and Li = bn(1�1/p)t⇤/(8↵⇤

+4t⇤)c.
The corresponding width, depth and size of the networks satisfy:

W2 = max
i=0,...,q

di max{4tibbn(1�1/p)t⇤/(8↵⇤
+4t⇤)c1/tic+ 3ti, 12bn(1�1/p)t⇤/(8↵⇤

+4t⇤)c+ 8},

D2 = (12bn(1�1/p)t⇤/(8↵⇤
+4t⇤)c+ 15)|J c|+ 2|J |,

S2  W2

2
D2  max

i=0,...,q
(20diti)

2 ⇥ 29qbn(1�1/p)t⇤/(4↵⇤
+2t⇤)c3/2.

3. (Fixed depth and wide MLP) Let Ni = bn(1�1/p)t⇤/(4↵⇤
+2t⇤)c and Li = 1. The corre-

sponding width, depth and size of the networks satisfy:

W3 = max
i=0,...,q

di max{4tibbn(1�1/p)t⇤/(4↵⇤
+2t⇤)c1/tic+ 3ti, 12bn(1�1/p)t⇤/(4↵⇤

+2t⇤)c+ 8},

D3 = 27|J c|+ 2|J |,
S3  W2

3
D3  max

i=0,...,q
(20diti)

2 ⇥ 29qbn(1�1/p)t⇤/(4↵⇤
+2t⇤)c2.
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Then, the excess risk satisfies

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C0Cd,d⇤(log n)

2n�(1� 1
p)

2↵⇤
2↵⇤+t⇤ , (4.6)

where Cd,d⇤ = (d⇤)2(maxi=0,...,q diti)2 log(maxi=0,...,q diti), C0 = c�⌧c⌧Bq2 log(q)(�⇤)2. Here c
is a universal constant not depending on any parameters.

In Corollary 2, three sets of di↵erent network parameters lead to the same risk bound.
Therefore, generally the choice of network parameters is not unique to achieve a desired risk
bound. Although the three sets of network parameters given in Corollary 2 yield the same
risk bound, the sizes of the networks are di↵erent. As can be seen from the expressions of
the network sizes S1, S2 and S3, we have, on the logarithmic scale,

logS1 : logS2 : logS3 = 1 :
3

2
: 2.

Therefore, the deep and fixed width network in the first network specification with width W1

and depth D1 is the most e�cient design among the three network structures in the sense
that it has the smallest network size. Corollary 2 shows that deep networks have advantages
over shallow ones in the sense that deep networks achieve the same risk bound with a smaller
network size. More detailed discussions on the relationship between convergence rate and
network structure can be found in Jiao et al. (2021).

4.2 Mean integrated squared error

The empirical risk minimization quantile estimator typically results in an estimator f̂n for
which its risk R⌧ (f̂n) is close to optimal risk R⌧ (f0) in expectation or with high probability.
However, small excess risk in general only implies in a weak sense that the ERM f̂n is close
to f0 (Remark 3.18, Steinwart (2007)). Hence, in this subsection, we bridge the gap between
the excess risk and the mean integrated squared error (MISE) of the estimated conditional
quantile function. To this end, we need the following condition on the conditional distribution
of Y given X.

Assumption 4. There exist constants � > 0 and  > 0 such that for any |�|  �,
��PY |X(f0(x) + � | x)� PY |X(f0(x) | x)

�� � |�|,

for all x 2 X up to a ⌫-negligible set, where PY |X(·|x) denotes the conditional distribution
function of Y given X = x.

Remark 6. A similar condition is assumed by Padilla and Chatterjee (2021) in studying
nonparametric quantile trend filtering. This condition is weaker than Condition 2.1 in He
and Shi (1994) and condition D.1 in Belloni et al. (2011), which require the conditional
density of Y given X = x to be bounded below near its ⌧ -th quantile.

Under Assumption 4, the self-calibration condition can be established as stated below.
This will lead to a bound on the MISE of the estimated quantile function based on a bound
for the excess risk.
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Lemma 5 (Self-calibration). Suppose that Assumption 2 (i) and Assumption 4 hold. For
any f : X ! R, denote �2(f, f0) = E

⇥
min{|f(X)� f0(X)|2, |f(X)� f0(X)|}

⇤
where  and

� > 0 are defined in Assumption 4. Then we have

�2(f, f0)  c,�
�
R⌧ (f)�R⌧ (f0)

 
,

for any f : X ! R where c,� = max{2/, 4/(�)}. More exactly, for f : X ! R satisfying
|f(x)� f0(x)|  � for x 2 X up to a ⌫-negligible set, we have

kf � f0k2L2(⌫) 
2



�
R⌧ (f)�R⌧ (f0)

 
,

otherwise we have

kf � f0kL1(⌫) 
4

�

�
R⌧ (f)�R⌧ (f0)

 
.

Remark 7. Similar self-calibration conditions can be found in Christmann and Steinwart
(2007); Steinwart et al. (2011); Lv et al. (2018) and Padilla et al. (2020). A general result is
obtained in Steinwart et al. (2011) under the so-called ⌧ -quantile of t-average type assumption
on the joint distribution P , where kf�f0kLr(⌫) is upper bounded by the q-th root of excess risk
R⌧ (f) �R⌧ (f0) for t 2 (0,1], q 2 [1,1) and r = tq/(t + 1). However, those assumptions
on the joint distribution P generally require that the conditional distribution of Y given X is
bounded, which may not be applicable to models with heavy-tailed response as in our setting,
see, e.g., Assumption 2.

Theorem 2 (Non-asymptotic bound for mean integrated squared error). Under model (1.1),
suppose that Assumptions 1, 2 and 4 hold, ⌫ is absolutely continuous with respect to the
Lebesgue measure, and kf0k1  B for some B � 1. Then, given any Ni, Li 2 N+, i 2 J c, for
the function class of ReLU multi-layer perceptrons F� = FD,W,U ,S,B with width no larger than

W = maxi=0,...,q di max{4tibN1/ti
i c + 3ti, 12Ni + 8} and depth D =

P
i2Jc(12Li + 15) + 2|J |,

for 2n � Pdim(F�), the MISE of the DQR estimator f̂� satisfies

E
�
�2(f̂�, f0)

 
 c,��⌧

h
C
BSD log(S) log(n)

n1�1/p
+ 2

X

i2Jc

C⇤
i �

⇤
i t

⇤
i (NiLi)

�2↵⇤
i /ti

i
,

where c,� = max{4/(�), 2/} and �2(·, ·) are defined in Lemma 5, �⌧ = max{⌧, 1 � ⌧}
and C > 0 is a constant not depending on n, d, ⌧,B,S,D, C⇤

i ,�
⇤
i ,↵

⇤
i , Ni or Li, and C⇤

i =

18⇧
q
j=i+1↵j , �⇤

i = ⇧q
j=i�

⇧
q
k=j+1↵k

j , ↵⇤
i = ⇧q

j=i↵j and t⇤i = (⇧q
j=i

p
tj

⇧
q
k=j↵k)/

p
ti
↵i. Additionally

if Assumption 3 also holds, we have

Ekf̂� � f0kL⇤(⌫)  c,�
h
C
�⌧BSD log(S) log(n)

n1�1/p
+ 2c⌧

�X

i2Jc

C⇤
i �

⇤
i t

⇤
i (NiLi)

�2↵⇤
i /ti

 2
i
,

where c⌧ > 0 is a constant defined in Assumption 3 and C > 0 is a constant independent of
n, d, ⌧,B,S,D, C⇤

i ,�
⇤
i ,↵

⇤
i , Ni or Li.

Similar to Corollary 2, we have the following corollary for the MISE of the DQR estimator.
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Corollary 3. Under model (1.1), suppose that Assumptions 1-3 hold, ⌫ is absolutely contin-
uous with respect to the Lebesgue measure, kf0k1  B for some B � 1 and 2n � Pdim(F�).
Let (↵⇤, t⇤) = argmin(↵⇤

i ,ti),i2Jc{↵⇤
i /ti}, �⇤ = maxi=0,...,q �⇤

i and d⇤ = maxi=0,...,q t⇤i , where
↵⇤
i ,�

⇤
i and t⇤i are defined in Theorem 1. Suppose that the network parameters of the function

class F� are specified as follows:

1. (Deep and fixed width MLP) Let Ni = 1 and Li = bn(1�1/p)t⇤/(4↵⇤
+2t⇤)c. The corre-

sponding width, depth and size of the networks satisfy:

W1 = max
i=0,...,q

di max{7ti, 20},

D1 = (12bn(1�1/p)t⇤/(4↵⇤
+2t⇤)c+ 15)|J c|+ 2|J |,

S1  W2

1
D1  max

i=0,...,q
(20diti)

2 ⇥ 29qbn(1�1/p)t⇤/(4↵⇤
+2t⇤)c.

2. (Deep and wide MLP) Let Ni = bn(1�1/p)t⇤/(8↵⇤
+4t⇤)c and Li = bn(1�1/p)t⇤/(8↵⇤

+4t⇤)c.
The corresponding width, depth and size of the networks satisfy:

W2 = max
i=0,...,q

di max{4tibbn(1�1/p)t⇤/(8↵⇤
+4t⇤)c1/tic+ 3ti, 12bn(1�1/p)t⇤/(8↵⇤

+4t⇤)c+ 8},

D2 = (12bn(1�1/p)t⇤/(8↵⇤
+4t⇤)c+ 15)|J c|+ 2|J |,

S2  W2

2
D2  max

i=0,...,q
(20diti)

2 ⇥ 29qbn(1�1/p)t⇤/(4↵⇤
+2t⇤)c3/2.

3. (Fixed depth and wide MLP) Let Ni = bn(1�1/p)t⇤/(4↵⇤
+2t⇤)c and Li = 1. The corre-

sponding width, depth and size of the networks satisfy:

W3 = max
i=0,...,q

di max{4tibbn(1�1/p)t⇤/(4↵⇤
+2t⇤)c1/tic+ 3ti, 12bn(1�1/p)t⇤/(4↵⇤

+2t⇤)c+ 8},

D3 = 27|J c|+ 2|J |,
S3  W2

3
D3  max

i=0,...,q
(20diti)

2 ⇥ 29qbn(1�1/p)t⇤/(4↵⇤
+2t⇤)c2.

Then, we have

E
�
�2(f̂�, f0)

 
 A0Ad,d⇤(log n)

2n�(1� 1
p)

2↵⇤
2↵⇤+t⇤ , (4.7)

where Ad,d⇤ = (d⇤)2(maxi=0,...,q diti)2 log(maxi=0,...,q diti), A0 = cc,��⌧c⌧Bq2 log(q)(�⇤)2, with
c a universal constant independent of any parameters.

We note that, according to Corollary 3, the same comments about the relationship be-
tween the network sizes and the risk bound following Corollary 2 apply to the relationship
between the network size and the MISE of the DQR estimator.

5 Examples

In this section, we specialize the general results in Theorems 1 and 2 and Corollaries 2 and 3 to
several important models widely used in statistics. We explicitly describe how the prefactor
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depends on the ambient dimension and the intrinsic dimension of the model. We present
the results with Fn consisting of deep and fixed-width network functions in constructing the
DQR estimators, as such networks are more e�cient in the sense that they require a smaller
network size to achieve the optimal convergence rate compared with other shaped networks,
see Corollaries 2 and 3.

We note that, in computing the DQR estimator as defined in (2.2), we do not use the
information about the specific structure of the models considered below. This is di↵erent
from the methods in literature that are designed based on the model structure. For example,
the backfitting algorithm (Breiman and Friedman, 1985) for fitting the additive conditional
mean model (5.2) with the least squares loss specifically use the additive structure of the
model. See also Chaudhuri et al. (1997) and Horowitz and Lee (2005) for methods that esti-
mate a conditional quantile model based on the additive structure assumption. In the single
index conditional mean model, Hristache et al. (2001) described a method for estimating the
index regression coe�cient ✓. With their method and regularity conditions, the di↵erence
between the distribution of their estimator ✓̂HJS and a mean-zero multivariate normal distri-
bution converges to zero at a rate that does not depend on the dimension d of the predictor.
This suggests that a kernel estimator of the index function using ✓̂HJS in place of ✓ has the
usual one-dimensional rate of convergence that does not depend on the dimension d. Khan
(2001) also developed a two-stage method for estimating a model satisfying a monotonicity
condition on the conditional quantile function of the response variable. However, these esti-
mators heavily depend on the single index model assumption, they may not be consistent if
this model assumption is not satisfied.

Let c,� = max{4/(�), 2/} in all the examples below, where  and � are the constants
defined in Assumption 4.

5.1 Single index model

A popular semiparametric model in statistics and econometrics for mitigating the curse of
dimensionality is the single index model

f0(x) = g(✓>x), x 2 Rd, (5.1)

where g : R ! R is a univariate function and ✓ 2 Rd is a d-dimensional vector. Such f0 can
be written as a composition of functions

f0 = h1 � h0,

where h0(x) = ✓>x is a linear transformation and h1(x) = g(x). Then d0 = t0 = d, d1 =
t1 = 1 and d2 = 1 according to the definition in Assumption 1. Suppose that Assumptions
1-2 and the conditions in Theorem 1 are satisfied, where g or h1 is Hölder continuous with
order ↵1 and constant �1. Then by Theorem 1, given any N,L 2 N+, for the function class
of ReLU multi-layer perceptrons F� = FD,W,U ,S,B with width W = max{12N + 8, 2d} and
depth D = 12L+ 17, for 2n � Pdim(F�), the excess risk of the DQR estimator f̂� satisfies

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C

�⌧BSD log(S) log(n)
n1�1/p

+ 36�⌧�1(NL)�2↵1 ,
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where C > 0 is a constant not depending on n, d, ⌧,B,S,D,�1,↵1, N, L and �⌧ = max{⌧, 1�
⌧}. If we choose N = 1 and L = bn(1�1/p)/(2↵1+2)c, then S  (202 + 20)⇥ (12L + 15) + d⇥
(2d) + 2d  8⇥ 20⇥ 21⇥ 27⇥ d2 ⇥ bn(1�1/p)/(2↵1+2)c and

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 CB ⇥ d2 log(d)⇥ (log n)2n�(1�1/p)↵1/(↵1+1),

where C > 0 is a constant independent of n, d,B and ↵1.
If Assumption 3 also holds, we have

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C

�⌧BSD log(S) log(n)
n1�1/p

+ 648c⌧�
2

1
(NL)�4↵1 ,

where c⌧ > 0 is a constant defined in Lemma 4. Alternatively, if we choose N = 1 and
L = bn(1�1/p)/(4↵1+2)c, then

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C0B ⇥ d2 log(d)⇥ (log n)2n�(1� 1

p)
2↵1

2↵1+1 ,

where C0 > 0 is a constant not depending on n, d,B and ↵1.
Additionally, if Assumption 4 holds, it follows from Theorem 2 that

E
�
�2(f̂�, f0)

 
 c,�C0B ⇥ d2 log(d)⇥ (log n)2n�(1� 1

p)
2↵1

2↵1+1 .

5.2 Additive model

A well-known structured model is the additive model (Stone, 1985, 1986; Hastie and Tibshi-
rani, 1990)

f0(x1, . . . , xd) = f0,1(x1) + · · ·+ f0,d(xd), x = (x1, . . . , xd)
> 2 Rd, (5.2)

where f0,j : R ! R, j = 1, . . . , d, are univariate functions. This model is a direct nonpara-
metric extension of the linear model. It has certain appealing computational and theoretical
properties. In particular, it can be estimated with the optimal rate of convergence of the
univariate nonparametric regression (Stone, 1986). The additive function f0 can be written
as a simple composition of functions

f0 = h1 � h0,

where h0(x) = (f0,1(x), . . . , f0,d(x))> and h1(x) =
Pd

i=1
xi where x = (x1, . . . , xd)> 2 Rd.

In this case, d0 = d, t0 = 1, d1 = t1 = d and d2 = 1. Suppose that Assumption 1-2 and
those conditions in Theorem 1 are satisfied, where f0,i is Hölder continuous with order ↵0

and constant �0 for i = 1, . . . , d. Then by Theorem 1, given any N,L 2 N+, for the function
class of ReLU multi-layer perceptrons F� = FD,W,U ,S,B with width W = (12N + 8)d and
depth D = 12L+ 17, for 2n � Pdim(F�), the excess risk of the DQR estimator f̂� satisfies

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C

�⌧BSD log(S) log(n)
n1�1/p

+ 36�⌧�0

p
d(NL)�2↵0 ,
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where C > 0 is a constant that does not depend on n, d, ⌧,B,S,D,�0,↵0, N, L and �⌧ =
max{⌧, 1 � ⌧}. If we choose N = 1 and L = bn(1�1/p)/(2↵0+2)c, then S  {(20d)2 + 20d} ⇥
(12L+ 15) + d⇥ (2d) + 2d  20⇥ 21⇥ 27⇥ d2 ⇥ bn(1�1/p)/(2↵0+2)c and

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 CB ⇥ d2 log(d)⇥ (log n)2n�(1� 1

p)
↵0

↵0+1 ,

where C > 0 is a constant not depending on n, d,B and ↵0.
If Assumption 3 also holds, we have

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C

�⌧BSD log(S) log(n)
n1�1/p

+ 648c⌧�
2

0
d(NL)�4↵0 ,

where c⌧ > 0 is a constant defined in Lemma 4. Alternatively, if we choose N = 1 and
L = bn(1�1/p)/(4↵0+2)c, then

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C0B ⇥ d2 log(d)⇥ (log n)2n�(1� 1

p)
2↵0

2↵0+1 ,

where C0 > 0 is a constant not depending on n, d,B and ↵0.
Additionally, if Assumption 4 holds, it follows from Theorem 2 that

E
�
�2(f̂�, f0)

 
 c,�C0B ⇥ d2 log(d)⇥ (log n)2n�(1� 1

p)
2↵0

2↵0+1 .

5.3 Additive model with an unknown link function

The additive model with an unknown link function is

f0(x) = f1(f0,1(x1) + · · ·+ f0,d(xd)), x 2 Rd, (5.3)

where f1, f0,1, . . . , f0,d are univariate real-functions. Such f0 has one more hierarchy than
that of Additive model, which can be written as

f0 = h2 � h1 � h0,

where h0(x) = (f0,1(x), . . . , f0,d(x))>, h1(x) =
Pd

i=1
xi and h2(x) = f1(x) where x =

(x1, . . . , xd)> 2 Rd. In this case, d0 = d, t0 = 1, d1 = t1 = d, d2 = t2 = 1 and d3 = 1.
Suppose that Assumptions 1-2 and those conditions in Theorem 1 hold, where f0,i is Hölder
continuous with order ↵0 and constant �0 for i = 1, . . . , d and f1 is Hölder continuous with
order ↵2 and constant �2. By Theorem 1, given any N,L 2 N+, for the function class of
ReLU multi-layer perceptrons F� = FD,W,U ,S,B with width W = (12N + 8)d and depth
D = 24L+ 32, for 2n � Pdim(F�), the excess risk of the DQR estimator f̂� satisfies

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C

�⌧BSD log(S) log(n)
n1�1/p

+ 2�⌧{18↵2�↵2
0
d↵2/2(NL)�2↵0↵2 + 18�2(NL)�2↵2},
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where C > 0 is a constant that does not depend on n, d, ⌧,B,S,D,�0,�2,↵2, N, L and
�⌧ = max{⌧, 1 � ⌧}. If we choose N = 1 and L = bn(1�1/p)/(2↵0↵2+2)c, then S  {(20d)2 +
20d+202+20}⇥ (12L+15)+d⇥ (2d)+2d  2⇥ 20⇥ 21⇥ 27⇥d2⇥bn(1�1/p)/(2↵0↵2+2)c and

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 CB ⇥ d2 log(d)⇥ (log n)2n�(1� 1

p)
2↵0↵2
↵0↵2+1 ,

where C > 0 is a constant not depending on n, d,B and ↵0,↵2.
Additionally, if Assumption 3 holds, we have

E
�
R⌧ (f̂�)�R⌧ (f0)

 
C

�⌧BSD log(S) log(n)
n1�1/p

+ 2c⌧{18↵2�↵2
0
d↵2/2(NL)�2↵0↵2 + 18�2(NL)�2↵2}2,

where c⌧ > 0 is a constant defined in Lemma 4. Alternatively, if we choose N = 1 and
L = bn(1�1/p)/(4↵0↵2+2)c, then

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C0B ⇥ d2 log(d)⇥ (log n)2n�(1� 1

p)
2↵0↵2
↵0↵2+1 ,

where C0 > 0 is a constant not depending on n, d,B,↵0 and ↵2.
Moreover, if Assumption 4 holds, Theorem 2 implies that

E
�
�2(f̂�, f0)

 
 c,�C0B ⇥ d2 log(d)⇥ (log n)2n�(1� 1

p)
2↵0↵2
↵0↵2+1 .

5.4 Interaction model

The additive model was also generalized to an interaction model (Stone, 1994)

f0(x) =
X

I✓{1,...,d},|I|=d⇤

fI(xI), x = (x1, . . . , xd)
> 2 Rd, (5.4)

where d⇤ 2 {1, . . . , d}, I = {i1, . . . , id⇤}, 1  i1 < . . . < id⇤  d, xI = (xi1 , . . . , xid⇤ ) and all
fI are Hölder continuous d⇤-variate functions with order ↵0 and constant �0 defined on R|I|.
Let I be the collection of index set I in the summation, and let K = |I| be the cardinality
of I. For such f0, in our notation, it can be written as a composition of two functions:

f0 = h1 � h0,

where h0(x) = (f1(x), . . . , fK(x))> and h1(x) =
PK

i=1
xi for x = (x1, . . . , xK)> 2 RK . Here

d0 = d, t0 = d⇤, d1 = t1 = K and d2 = 1. Suppose that Assumptions 1-2 and the conditions
in Theorem 1 are satisfied. Then by Theorem 1, given any N,L 2 N+, for the function
class of ReLU multi-layer perceptrons F� = FD,W,U ,S,B with width W = dmax{4d⇤bN1/d⇤c+
3d⇤, 12N + 8} and depth D = 12L + 17, for 2n � Pdim(F�), the excess risk of the DQR
estimator f̂� satisfies

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C

�⌧BSD log(S) log(n)
n1�1/p

+ 36�⌧�0

p
K(NL)�2↵0 ,
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where C > 0 is a constant not depending on n, d, ⌧,B,S,D,�0,↵0, N, L and �⌧ = max{⌧, 1�
⌧}. If we chooseN = 1 and L = bn(1�1/p)/(2↵0+2)c, then S  {d2 max{7d⇤, 20}2+dmax{7d⇤, 20}}⇥
(12L+ 15) +K ⇥ (2K) + 2K  2⇥ 273 ⇥ (Kdd⇤)2 ⇥ bn(1�1/p)/(2↵0+2)c and

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 CB ⇥ (Kdd⇤)2 log(Kdd⇤)⇥ (log n)2n�(1� 1

p)
↵0

↵0+1 ,

where C > 0 is a constant not depending on n, d, d⇤, K,B and ↵0.
If Assumption 3 also holds, we have

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C

�⌧BSD log(S) log(n)
n1�1/p

+ 648c⌧�
2

0
K(NL)�4↵0 ,

where c⌧ > 0 is a constant defined in Lemma 4. If we chooseN = 1 and L = bn(1�1/p)/(4↵0+2)c,
then

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C0B ⇥ (Kdd⇤)2 log(Kdd⇤)⇥ (log n)2n�(1� 1

p)
2↵0

2↵0+1 ,

where C0 > 0 is a constant not depending on n, d, d⇤, K,B and ↵0.
Furthermore, if Assumption 4 also holds, it follows from Theorem 2 that

E
�
�2(f̂�, f0)

 
 c,�C0B ⇥ (Kdd⇤)2 log(Kdd⇤)⇥ (log n)2n�(1� 1

p)
2↵0

2↵0+1 .

5.5 Projection pursuit

The projection pursuit model assumes

f0(x) =
KX

k=1

gk(✓
>
k x), x 2 Rd, (5.5)

where K 2 N, gk : R ! R and ✓k 2 Rd (Friedman and Stuetzle, 1981). Such f0 can be
written as

f0 = h2 � h1 � h0,

where h0(x) = ⇥x is a linear transformation from Rd to RK with ⇥ = [✓1, . . . , ✓K ]>, h1(x) =
(g1(x), . . . , gK(x))> and h2(x) =

PK
i=1

xi for x = (x1, . . . , xk)> 2 RK . Correspondingly,
d0 = t0 = d, d1 = K, t1 = 1, d2 = t2 = K and d3 = 1. Suppose that Assumptions 1-2 and
those conditions in Theorem 1 are satisfied, where gi is Hölder continuous with order ↵1 and
constant �1, i = 1, . . . , K. By Theorem 1, given any N,L 2 N+, for the function class of
ReLU multi-layer perceptrons F� = FD,W,U ,S,B with width W = max{2d,K(12N + 8)} and
depth D = 12L+ 19, for 2n � Pdim(F�), the excess risk of the DQR estimator f̂� satisfies

E
�
R⌧ (f̂�)�R⌧ (f0)

 
C

�⌧BSD log(S) log(n)
n1�1/p

+ 36�⌧�1

p
K(NL)�2↵1 ,

where C > 0 is a constant that does not depend on n, d, ⌧,B,S,D,�1,↵1, N, L and �⌧ =
max{⌧, 1� ⌧}. If we choose N = 1 and L = bn(1�1/p)/(2↵1+2)c, then S  {(20K)2 + 20K}⇥
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(12L+15)+d⇥(2d)+2d+2d⇥K+K⇥2K+2K  20⇥21⇥27⇥max{K, d}2⇥bn(1�1/p)/(2↵1+2)c
and

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 CB ⇥max{K, d}2 log(max{K, d})(log n)2n�(1� 1

p)
↵1

↵1+1 ,

where C > 0 is a constant not depending on n, d,B and ↵1.
Additionally, if Assumption 3 holds, we have

E
�
R⌧ (f̂�)�R⌧ (f0)

 
C

�⌧BSD log(S) log(n)
n1�1/p

+ 648c⌧�
2

1
K(NL)�4↵1 ,

where c⌧ > 0 is a constant defined in Lemma 4. Alternatively, if we choose N = 1 and
L = bn(1�1/p)/(4↵1+2)c, then

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C0B ⇥max{K, d}2 log(max{K, d})(log n)2n�(1� 1

p)
2↵1

2↵1+1 ,

and C0 > 0 is a constant not depending on n, d,B, K and ↵1.
Furthermore, if Assumption 4 holds, Theorem 2 implies that

E
�
�2(f̂�, f0)

 
 c,�C0B ⇥max{K, d}2 log(max{K, d})(log n)2n�(1� 1

p)
2↵1

2↵1+1 .

5.6 The univariate composite model

The univariate composite model (Horowitz and Mammen, 2007) takes the form

f0(x) = m
n K1X

j1=1

mj1

⇣ K2X

j2=1

mj1,j2

h
· · ·

Kq�1X

jq�1=1

mj1,...,jq�1

n KqX

jq=1

mj1,...,jq(x
j1,...,jq)

oi⌘o
, (5.6)

wherem, m1, . . . ,mL1,...,Kq are unknown univariate functions and xj1,...,jq are one-dimensional
elements of x 2 Rd, which could be identical for two di↵erent indices (j1, . . . , jq). According
to our notation, the target function f0 can be written as

f0 = h2q � · · · � h0,

where h2q(·) = m(·) and h2i(·) = (m1,··· ,1(·), . . . ,mj1,··· ,jq�i(·), · · · ,mK1,··· ,Kq�i(·))> for i =
0, . . . , q � 1 are all univariate functions. Correspondingly, d0 = Kq, t0 = 1, d1 = t1 =
Kq, d2 = Kq�1, t2 = 1, . . . , dq�2 = K1, tq�2 = 1, d2q�1 = t2q�1 = K1, d2q = t2q = 1 and
d2q+1 = 1. Suppose that Assumptions 1-2 and those conditions in Theorem 1 hold, where
m1,··· ,1(·), . . . ,mj1,··· ,jq�i(·), · · · ,mK1,··· ,Kq�i(·) are Hölder continuous with order ↵i and con-
stant �i for i = 0, . . . , q�1, and m is Hölder continuous with order ↵q and constant �q. Then
by Theorem 1, given any N,L 2 N+, for the function class of ReLU multi-layer perceptrons
F� = FD,W,U ,S,B with width W = (12N + 8)⇧q

i=1
Ki and depth D = (12L+ 15)(q + 1) + 2q,

for 2n � Pdim(F�), the excess risk of the DQR estimator f̂� satisfies

E
�
R⌧ (f̂�)�R⌧ (f0)

 
C

�⌧BSD log(S) log(n)
n1�1/p

+ 2�⌧

qX

i=0

C⇤
i �

⇤
iK

⇤
i (NL)�2↵⇤

i ,
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where C > 0 is a constant not depending on n, d, ⌧,B,S,D, N, L, C⇤
i ,�

⇤
i ,↵

⇤
i , �⌧ = max{⌧, 1�

⌧} and C⇤
i = 18⇧

q
j=i+1↵j , �⇤

i = ⇧q
j=i�

⇧
q
k=j+1↵k

j , ↵⇤
i = ⇧q

j=i↵j and K⇤
i = (⇧q

j=i

p
Kq�j+1

⇧
q
k=j↵k).

To specify the network parameters, we set N = 1, L = bn(1�1/p)/(2↵⇤
0+2)c and let K0 = 1.

Then S  (12L + 15)
Pq

i=0
(202⇧i

j=0
K2

j + 20⇧i
j=0

Kj) +
Pq

i=0
(2K2

i + 2KiKi+1)  20 ⇥ 21 ⇥
27⇥ (q + 1)⇧q

j=0
K2

i ⇥ bn(1�1/p)/(2↵⇤
0+2)c and

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 CB ⇥ (⇧q

j=0
Ki)

2 log(⇧q
j=0

Ki)(log n)
2n�(1� 1

p)
↵0

↵0+1 ,

where C > 0 is a constant independent of n, d,B, Ki and ↵⇤
0
.

If Assumption 3 also holds, we have
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where c⌧ > 0 is a constant defined in Lemma 4. If we chooseN = 1 and L = bn(1�1/p)/(4↵⇤
0+2)c,

then

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C0B ⇥ (⇧q

j=0
Ki)

2 log(⇧q
j=0

Ki)(log n)
2n�(1� 1

p)
↵0

↵0+1 ,

where C0 > 0 is a constant independent of n, d,B, Ki and ↵⇤
0
.

Moreover, if Assumption 4 holds, it follows from Theorem 2 that
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5.7 Generalized hierarchical interaction model

Another general model is the generalized hierarchical interaction model of order d⇤ and level
l (Bauer and Kohler, 2019). For d⇤ 2 {1, . . . , d}, l 2 N and f0 : Rd ! R, the generalized
hierarchical interaction model is defined as follows:

(a) The function f0 satisfies a generalized hierarchical interaction model of order d⇤ and
level 0, if there exist ✓1, . . . , ✓d⇤ 2 Rd and f : Rd⇤ ! R such that

f0(x) = f(✓>
1
x, . . . , ✓>d⇤x) for all x 2 Rd; (5.7)

(b) The function f0 satisfies a generalized hierarchical interaction model of order d⇤ and
level l + 1, if there exist K 2 N, gk : Rd⇤ ! R (k = 1, . . . , K) and f1,k, . . . , fd⇤,k :
Rd ! R (k = 1, . . . , K) such that f1,k, . . . , fd⇤,k(k = 1, . . . , K) satisfy a generalized
hierarchical interaction model of order d⇤ and level l and

f0(x) =
KX

k=1

gk(f1,k(x), . . . , fd⇤,k(x)) for all x 2 Rd; (5.8)

(c) the generalized hierarchical interaction model defined above is �-Hölder smooth if all
the functions involve in its definition are �-Hölder smooth.
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The generalized hierarchical interaction model includes the aforementioned models as special
cases. For instance, the single index model belongs to the class of generalized hierarchical
interaction models of order 1 and level 0; the additive model and projection pursuit cor-
respond to order 1 and level 1; the interaction model is in conformity with order d⇤ and
level 1; the univariate composite model in Horowitz and Mammen (2007) is a generalized
hierarchical interaction model of order 1 and level q+1. Moreover, the level zero generalized
hierarchical interaction model (5.7) is the semiparametric multiple index model used in the
su�cient dimension reduction (Li, 1991).

In the generalized hierarchical interaction models, the target function f0 is a composition
of multi-index model and d⇤-dimensional smooth functions, which resembles a multilayer
feedforward neural networks in terms of the compositional structure. Bauer and Kohler
(2019) showed that the convergence rate of the least squares estimator based on sigmoid or
bounded continuous activated deep regression networks is Cd,d⇤(log n)3n�2�/(2�+d⇤). However,
in their result, how the prefactor Cd,d⇤ depends on (d, d⇤) is unclear.

For the generalized hierarchical interaction model of order d⇤ and level l (d⇤ 2 {1, . . . , d}
and l 2 N) studied in Bauer and Kohler (2019), the target function f0 is a composition of
multi-index model and d⇤-dimensional smooth functions, which can be written as

f0 = h2l�1 � · · · � h0,

where h2i(·) = (m1,··· ,1(·), . . . ,mj1,··· ,jl�i
(·), · · · ,mK1,··· ,Kl�i

(·))> for i = 0, . . . , l � 1 are all

d⇤-variate functions and h2i+1(x) =
PKl�i

j=1
xj for x = (x1, . . . , xKl�i

)> 2 RKl�i and i =
0, . . . , l � 1. Correspondingly, d0 = Kl, t0 = d⇤, d1 = t1 = Kl, d2 = Kl�1, t2 = d⇤, . . . , dl�2 =
K1, tl�2 = d⇤, d2l�1 = t2l�1 = K1 and d2l = t2l = 1. Suppose that Assumptions 1-2 and those
conditions in Theorem 1 are satisfied, where m1,··· ,1(·), . . . ,mj1,··· ,jl�i

(·), · · · ,mK1,··· ,Kl�i
(·) are

Hölder continuous with order ↵i and constant �i for i = 0, . . . , l � 1. Then by Theorem 1,
given any N,L 2 N+, for the function class of ReLU multi-layer perceptrons F� = FD,W,U ,S,B
with width W = max{4d⇤bN1/d⇤c + 3d⇤, 12N + 8}⇧l

i=1
Ki and depth D = (12L + 17)l, for

2n � Pdim(F�), the excess risk of the DQR estimator f̂� satisfies
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To specify the network parameters, we choose N = 1 and L = bn(1�1/p)d⇤/(2↵⇤
0+d⇤)c. Then

we have S  (12L+15)
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where C > 0 is a constant that does not depend on n, d⇤,B, Ki and ↵⇤
0
.

If Assumption 3 also holds, we have
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where c⌧ > 0 is a constant defined in Lemma 4. Alternatively, choosing N = 1 and L =
bn(1�1/p)d⇤/(4↵⇤

0+2d⇤)c, we have
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and C0 > 0 is a constant not depending on n, d⇤,B, Ki and ↵⇤
0

Furthermore, if Assumption 4 holds, it follows from Theorem 2 that
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In summary, these examples demonstrate that the DQR estimator is able to mitigate the
curse of dimensionality by taking advantage of the compositional structure of these models.
The prefactor only depends quadratically on d, instead of exponentially on d as in the existing
results for least squares conditional mean regression using deep neural networks. However,
even with a quadratic dependence on the d, the error bounds can still be large for a large d.
In particular, based on the risk bounds obtained above, a sample size of a polynomial order
of d is needed to achieve a small excess risk.

6 Approximation of composite functions

In this section, we establish the error bound for approximating composite functions defined
in Assumption 1 using deep ReLU neural networks. To bound the excess risk in Lemma 2, we
must first bound the approximation error due to the use of neural networks in constructing
the estimator, as represented in the second term on the right side of (3.1) or (4.3). The
stochastic error term can be analyzed using the empirical process theory by computing the
cover number of the class of neural networks, as is given in (4.3). So the remaining crucial
task is to deal with the approximation error.

We will express the error bounds in terms of the network parameters, the dimensionality
of the components of f0 and their continuity indices. To describe smoothness, we use the
concept of the modulus of continuity.

Definition 1 (Modulus of continuity). For a function f : D ! R, let !f (·) denote its
modulus of continuity, i.e.,

!f (r) := sup{|f(x)� f(y)| : x, y 2 D, kx� yk2  r}, for any r � 0. (6.1)

For a uniformly continuous function f , limr!0 !f (r) = !f (0) = 0. In addition, based
on the modulus of continuity, di↵erent equicontinuous families of functions can be defined.
For instance, the modulus !f (r) = ✓r describes the ✓-Lipschitz continuity; the modulus
!f (r) = �r↵ with �,↵ > 0 describes the Hölder continuity.

In our problem, rather than imposing smoothness condition directly on the target function
f0, we make smoothness assumptions on the components of f0. We assume that the functions
hij : [ai, bi]di ! [ai+1, bi+1]di+1 are Hölder continuous with order ↵i and constant �i, i.e.,

|hij(x)� hij(y)|  �ikx� yk↵i , 8x, y 2 Dij, for j = 1, . . . , di+1.
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For ease of reference, we first state an important result on the error bounds for approx-
imating a general continuous function f0 : [0, 1]d ! R using ReLU neural networks (Shen
et al., 2020). Our error bounds on approximating a composite function build on this result.

Lemma 6 (Theorem 2.1 of Shen et al. (2020)). Given f 2 C([0, 1]d), for any L 2 N+ and
N 2 N+, there exists a function � implemented by a ReLU FNN with width max{4dbN1/dc+
3d, 12N + 8} and depth 12L+ 14 such that k�kL1(Rd)  |f(0)|+ !f (

p
d) and,

|f(x)� �(x)|  18
p
d!f (N

�2/dL�2/d), for any x 2 [0, 1]d\⌦([0, 1]d, K, �),

where K = bN1/dc2bL1/dc2 and � is an arbitrary number in (0, 1/(3K)], and the trifling
region ⌦([0, 1]d, K, �) of [0, 1]d is defined as

⌦([0, 1]d, K, �) = [d
i=1

{x = [x1, x2, ..., xd]
T : xi 2 [K�1

k=1
(k/K � �, k/K)}.

Especially, if f is Hölder continuous of order ↵ > 0 with constant �, then

|f(x)� �(x)|  18
p
d�N�2↵/dL�2↵/d, for any x 2 [0, 1]d\⌦([0, 1]d, K, �).

According to Lemma 6, for a function hi : [ai, bi]di ! [ai+1, bi+1]di+1 , each of its compo-
nents hij : [ai, bi]ti ! R can be approximated by a ReLU network. Then di such (parallel)
networks can be stacked to form a new ReLU network for approximating hi.

Lemma 7 (Parallel networks). Let h = (hj)>j : [0, 1]d ! Rm be a continuous function, and
suppose that (hj)>j , j = 1, . . . ,m, are t-variate functions with the same modulus of continuity
!(·). Then, for any L 2 N+ and N 2 N+, there exists a function � implemented by a ReLU
FNN with width dmax{4tbN1/tc + 3t, 12N + 8} and depth 12L + 14 such that k�kL1(Rd) 
maxj=1,...,m |hj(0)|+ !(

p
t) and

|h(x)� �(x)|  18
p
t!(N�2/tL�2/t), for any x 2 [0, 1]d\⌦([0, 1]d, K, �),

where K = bN1/dc2bL1/dc2 and � is an arbitrary number in (0, 1/(3K)].

By Lemma 7, for a composite function hq � · · · � h0, each function hi in the composition
can be approximated by a ReLU network h̃i under the Hölder continuity assumption. It is
thus natural to consider stacking these networks h̃i in a sequence as h̃q�. . . h̃0 to approximate
hq � . . . � h0.

Definition 2 (Norms of a vector of functions). For a function h = (hj)>j : Rdin ! Rdout with
domain D = D1 ⌦ . . .⌦Ddout, we define its supremum-norm by the sup-norm of the vectors
of its outputs,

khkL1(D) := sup
x2D

kh(x)k1,

and define its L2-norm by the L2 of the vectors of its outputs,

khkL2(D) := sup
x2D

kh(x)k2.
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Lemma 8 (Approximation by composition). Let hij : Rti ! R, i = 0, . . . , q and j =
1, . . . , di+1 be Hölder continuous functions with order ↵i 2 [0, 1] and constant �i � 0 and
let hi = (hij)>j : Rdi ! Rdi+1 be vectors of functions with domain Di. Then any functions

h̃i = (h̃ij)>j : Rdi ! Rdi+1 with h̃ij : Rti ! R, which have the same domain as hi, will satisfy,

khq � . . . h0 � h̃q � . . . h̃0kL1(D0) 
qX

i=0

⇧q
j=i+1

�
⇧

q
k=j+1↵k

j ⇧q
j=i+1

p
tj

⇧
q
k=j↵kkhi � h̃ik

⇧
q
j=i+1↵j

L1(Di)
.

Remark 8. Lemma 8 can be generalized without further di�culty for any other continuous
functions hi with di↵erent types of modulus of continuity. The generalized result is expressed
in term of the modulus of continuities of hi, where the expression is analytical but complicated
with a nested or compositional form of modulus functions.

Note that the domains of hi are generally not [0, 1]di as required in Lemma 6 and Lemma 7.
Thus the domain of the constructed ReLU networks have to be aligned with the approximated
functions hi. In light of this, we add an additional invertible linear layer Ai(·) : Di ! [0, 1]di

at the beginning of each of the subnetworks h̃i in Lemma 7 for i = 1, . . . , q. With a slight
abuse of notation, in the following we let h̃i denote the networks with an additional invertible
linear layer as their first layer. In this case, h̃i : Di ! Rdi+1 .

Moreover, there are many popular statistical models containing a linear function as a
layer in a composite function, i.e., there exists some i 2 {0, . . . , q} such that hi(x) = Tix+ui

for some matrix Ti 2 Rdi⇥di+1 and ui 2 Rdi+1 . For such a linear function hi, it is possible to
construct ReLU neural networks to approximate it perfectly.

Lemma 9 (Approximation of linear functions). Let h = (hj)>j : Rd ! Rm be a linear
function, i.e. h(x) = Tx + u with T 2 Rm⇥d and u 2 Rm. Then there exists a three-layer
ReLU neural network h̃ with width vector (d, 2d,m) such that h̃(x) = h(x) for any x 2 Rd.

By Lemma 9, the approximation of composite functions can be further improved if some
of the compositions are linear functions.

Theorem 3 (Approximation of composite functions). Let Hq = hq � . . . � h0 be a function
from [a, b]d to R and hi = (hij)>j : Di ! Rdi+1 , i = 0, . . . , q be vectors of functions with
domain Di ⇢ Rdi where hij : Dij ! R, i = 0, . . . , q and j = 1, . . . , di+1 with domain
Dij ⇢ Rti are Hölder continuous functions with order ↵i 2 [0, 1] and constant �i � 0.Then
for any Li 2 N+ and Ni 2 N+, there exist functions h̃i for i = 0, . . . , q implemented by
ReLU FNNs with width di max{4tibN1/ti

i c + 3ti, 12Ni + 8} and depth 12Li + 15 such that
kh̃ikL1

i (Rdi )  maxj=1,...,di |hij(0)|+ !(
p
ti) and

|h̃i(x)� hi(x)|  18
p
ti�i(NiLi)

�2↵i/ti , for any x 2 Di\ A�1

i (⌦([0, 1]di , K, �)),

where Ai : Di ! [0, 1]di is an invertible linear layer (the first layer of h̃i), Ki = bN1/di
i c2bL1/di

i c2
and �i is an arbitrary number in (0, 1/(3Ki)].

Furthermore, if hj are linear functions for j 2 J ⇢ {0, . . . , q} with Hölder constant
�j = 1 and order ↵j = 1, then there exists functions h̃j implemented by ReLU FNNs with
width vector (dj, 2dj, dj+1) and depth 3 such that,

|h̃j(x)� hj(x)| = 0, for any x 2 Rdj .
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Let H̃q = h̃q � . . .� h̃0 denote the function implemented by ReLU FNN with width no more

than maxi=0,...,q di max{4tibN1/ti
i c+ 3ti, 12Ni + 8} and depth

P
i2Jc(12Li + 15) + 2|J |, where

|J | denotes its cardinality and J c := {0, . . . , q}\J , then we have

|H̃q(x)�Hq(x)| 
X

i2Jc

C⇤
i �

⇤
i t

⇤
i (NiLi)

�2↵⇤
i /ti , for any x 2 [a, b]d\⌦0,

where C⇤
i = 18⇧

q
j=i+1↵j , �⇤

i = ⇧q
j=i�

⇧
q
k=j+1↵k

j , ↵⇤
i = ⇧q

j=i↵j, t⇤i = (⇧q
j=i

p
tj

⇧
q
k=j↵k)/

p
ti
↵i and

⌦0 is a subset of [a, b]d which satisfies

⌦([0, 1]di , Ki, �i) ✓ Ai � h̃i�1 � · · · � h̃0(⌦0), for i = 0, . . . , q,

where Aj is defined as identity map for j 2 J .

Remark 9. In Theorem 3, since h̃i, Ai are continuous mappings, the Lebesgue measure of
⌦0 can be arbitrarily small as �i 2 (0, 1/(3Ki)] can be arbitrarily small, thus the Lebesgue
measure of ⌦([0, 1]di , Ki, �i) can be arbitrarily small.

When all the component functions hij are Lipschitz continuous, the approximation error
bound in Theorem 3 can be simplified considerably. Because Lipschitz continuity is a rea-
sonable assumption in practice, we state the following corollary on the approximation error
for Lipschitz continuous functions.

Corollary 4. Suppose all hij : Dij ! R in Theorem 3 are Lipschitz continuous functions
(↵i = 1 for i = 0, . . . , q) with Lipschitz constant �i � 0. We set the same shape for each
subnetwork with N0 = . . . = Nq = N 2 N+ and L0 = . . . = Lq = L 2 N+, then we have

|H̃q(x)�Hq(x)|  18
qX

i=0

�
⇧q

j=i�j

��
⇧q

j=i+1

p
tj
�
(NL)�2/ti

= 18
qX

i=0

�⇤
i t

⇤
i (NL)�2/ti , for any x 2 [a, b]d\⌦0,

where �⇤
i = ⇧q

j=i�j and t⇤i = ⇧q
j=i+1

p
tj.

Furthermore , if hj are linear functions for j 2 J ⇢ {0, . . . , q}, then we have

|H̃q(x)�Hq(x)|  18
X

i2Jc

�⇤
i t

⇤
i (NL)�2/ti , for any x 2 [a, b]d\⌦0.

This lemma shows that, if ti ⌧ di, the approximation rate improves, which lessens the
curse of dimensionality.

7 Numerical studies

In this section, we compare deep quantile regression with traditional linear quantile regression
and reproducing kernel methods on simulated data. To be specific, we compare the following
methods of quantile regressions:
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• The traditional linear quantile regression as described in Koenker and Bassett (1978),
denoted by linear QR. Without regularization, the empirical risk is minimized over the
parameter space (intercept included) Rd+1 to give an linear estimator. These estimation
are implemented on Python via package statsmodels.

• Kernel-based nonparametric quantile regression as described in Sangnier et al. (2016),
denoted by kernel QR. This is a joint quantile regression method based on vector-valued
reproducing kernel Hilbert space (RKHS), which enjoys fewer quantile crossings and
enhanced performances compared to independent estimations and hard non-crossing
constraints. In our implementation, the radial basis function (RBF) kernel is chosen
and a coordinate descent primal-dual algorithm (Fercoq and Bianchi, 2019) is used via
Python package qreg.

• Deep quantile regression as described in Section 2, denoted by DQR. We implement
it in Python via Pytorch and use Adam (Kingma and Ba, 2014) as the optimization
algorithm with default learning rate 0.01 and default � = (0.9, 0.99) (coe�cients used
for computing running averages of gradients and their squares).

• Deep least squares regression, denoted by DLS. We minimize the mean square error
on the training data to get the nonparametric least square estimator using deep neural
networks. Similarly we implement it on Python via Pytorch and use Adam as the
optimization algorithm with default settings. The comparison with DLS mainly focuses
on the 0.5-th quantile curve since the conditional mean and the conditional median
coincident with each other when error is symmetric.

7.1 Estimations and Evaluations

We consider estimating the quantile curves at 5 di↵erent levels for each simulated model,
i.e., we estimate quantile curves for ⌧ 2 {0.05, 0.25, 0.5, 0.75, 0.95}. For each model f0 and
each error ⌘, according to model (1.1) we generate the training data (X train

i , Y train
i )ni=1

with
sample size n to train the empirical risk minimizer at ⌧ 2 {0.05, 0.25, 0.5, 0.75, 0.95} by
di↵erent methods, i.e.

f̂ ⌧
n 2 argmin

f2F

1

n

nX

i=1

⇢⌧ (Y
train
i � f(X train

i )),

where F is the class of linear functions, RKHS or the class of ReLU neural network functions.
For each f0 and each error ⌘, we also generate the testing data (X test

t , Y test
t )Tt=1

with sample
size T from the same distribution of the training data. Then for each obtained f̂ ⌧

n , we
calculate its testing risk on (X test

t , Y test
t )Tt=1

, i.e.,

R⌧ (f̂ ⌧
n) =

1

T

TX

t=1

⇢⌧ (Y
test
t � f̂ ⌧

n(X
test
t )).
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Moreover, for each obtained f̂ ⌧
n , we calculate the L1 distance between f̂ ⌧

n and the correspond-
ing risk minimizer f ⌧

0
, i.e.

kf̂ ⌧
n � f ⌧

0
kL1(⌫) =

1

T

TX

t=1

|f̂ ⌧
n(X

test
t )� f ⌧

0
(X test

t )|,

and we also calculate the L2 distance between f̂ ⌧
n and the corresponding risk minimizer f ⌧

0
,

i.e.

kf̂ ⌧
n � f ⌧

0
k2L2(⌫) =

1

T

TX

t=1

|f̂ ⌧
n(X

test
t )� f ⌧

0
(X test

t )|2.

All the L2 test error results are provided in the appendix. The specific forms of f ⌧
0
are given

in the part on the data generation models below.
In the simulation studies, we take T = 100, 000 as the sample size of testing data for each

data generation model. We report the mean and standard deviation of statistics including
excess risk R⌧ (f̂ ⌧

n) � R⌧ (f ⌧
0
), L1 distance and L2

2
distance over R = 10 replications under

di↵erent scenarios. For DLS, the testing risk and the excess risk are calculated in terms of
mean squares loss function other than the check loss ⇢⌧ .

7.2 Data generation: univariate models

We generate data according to model (1.1), i.e., Y = f0(X)+⌘. We consider three basic uni-
variate models, including “Linear”, “Wave” and “Triangle”, which corresponds to di↵erent
specifications of f0. The formulae are given below.

(a) Linear:

f0(x) = 2x.

(b) Wave:
f0(x) = 2x sin(4⇡x).

(c) Triangle:
f0(x) = 4(1� |x� 0.5|).

We use the linear model as a baseline model in our simulations and expect all the methods
perform well under the linear model. The “Wave” is a nonlinear smooth model and the
“Triangle” is a nonlinear continuous but non-di↵erentiable model. These models are chosen
so that we can evaluate the performance of DQR, kernel QR and linear QR under di↵erent
types of models.

For these models, we generate X uniformly from the unit interval [0, 1]. We generate the
error ⌘ from the following distributions.

(i) ⌘ follows a scaled Student’s t distribution with degrees of freedom 3, i.e., ⌘ ⇠ 0.5⇥ t(3),
denoted by t(3);
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(ii) Conditioning on X = x, the error ⌘ follows a normal distribution of which variance
depends on the covariate X, i.e., ⌘ | X = x ⇠ 0.5⇥N (0, [sin(⇡x)]2), denoted by Sine;

(iii) Conditioning on X = x, the error ⌘ follows a normal distribution of which variance
depends on the covariate X, i.e., ⌘ | X = x ⇠ 0.5⇥N (0, exp(4x� 2)), denoted by Exp.

Note that except for t(3), other two types of errors depend on the predictor X. The ⌧ -th
conditional quantile f ⌧

0
(x) of the response Y given X = x can be calculated by

f ⌧
0
(x) = f0(x) + F�1

⌘|X=x(⌧),

where F�1

⌘|X=x(·) is the inverse of the conditional cumulated distribution function of ⌘ given

X = x. For t(3) error, ⌘ is independent with X, then F�1

⌘|X=x(·) is simply the inverse of

distributional function of the 2t(3). For the Sine error, F�1

⌘|X=x(⌧) = 0.5⇥ sin(⇡x)⇥ ��1(⌧)

where ��1(·) is the inverse of the CDF of a standard normal random variable. Similarly, for
the Exp error, F�1

⌘|X=x(⌧) = 0.5⇥ exp(2x� 1)⇥ ��1(⌧). Figure 2 shows all these univariate
data generation models and their corresponding conditional quantiles at ⌧ = 0.25, 0.50, 0.75.

Figure 2: The target quantiles curves at ⌧ = 0.25, 0.50.0.75 under di↵erent models and error
distributions. From the left to the right, each column corresponds a data generation model,
“Linear”, “Wave” and “Triangle”. From the top to the bottom, each row corresponds a error
distribution, t(3), “Sine” and “Exp”.
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We generate training data with sample sizes n = 128 and set the batch size of Adam
optimization to be n/2. In all settings, we implement the empirical risk minimization of
DQR and DLS by ReLU activated fixed width multilayer perceptrons, i.e., a class of ReLU
activated multilayer perceptrons with 4 hidden layers, the width of the network are set to
be (1, 256, 256, 256, 256, 1). All weights and biases in each layer are initialized by uniformly
samples on bounded intervals according to the default initialization mechanism in PyTorch.
The fitted quantiles curves at ⌧ = 0.25, 0.5, 0.75 are shown in Figures 3-5. Summary measures
including the excess risks and the L1 test errors are summarized in Tables 1-3.

Additional simulation results with n = 512, including the estimated quantile curves at
⌧ = 0.05, 0.25,0.5,0.75 and 0.95, the corresponding excess risks, the L1 and the L2 test errors
are given in Appendix B.

It can be seen that for “Linear” model, the traditional linear QR works fine but it does
poorly in nonlinear models, e.g., in the “Wave” and the “Triangle” models. This is not
surprising since the linear model is misspecified here. kernel QR works reasonably well in
the three models considered, but has di�culty in fitting very winding or nonsmooth curves.
DQR tends to perform better than kernel QR across all the settings. In particular, DQR
successfully fits very winding and nonsmooth curves. The performance of DLS is similar to
that of DQR at the 0.5-th quantile.
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Figure 3: The fitted quantile curves by di↵erent methods under the univariate model “Lin-
ear” with di↵erent errors. The training data is depicted as grey dots.The target quantile
functions at the quantile levels ⌧ =0.25 (yellow), 0.5 (green), 0.75 (red) are depicted as solid
curves, and the estimated quantile functions are represented by dashed curves with the same
color. From the top to the bottom, the rows correspond to the errors t(3), “Sine” and “Exp”.
From the left to the right, the subfigures correspond to the methods DQR, kernel QR and
linear QR. The fitted DLS curve (in blue) is included in the left subfigure.

34



Figure 4: The fitted quantile curves by di↵erent methods under the univariate model “Wave”
with di↵erent errors. The training data is depicted as grey dots.The target quantile functions
at the quantile levels ⌧ =0.25 (yellow), 0.5 (green), 0.75 (red) are depicted as solid curves,
and the estimated quantile functions are represented by dashed curves with the same color.
From the top to the bottom, the rows correspond to the errors t(3), “Sine” and “Exp”. From
the left to the right, the subfigures correspond to the methods DQR, kernel QR and linear
QR. The fitted DLS curve (in blue) is included in the left subfigure.

35



Figure 5: The fitted quantile curves by di↵erent methods under the univariate model “Tri-
angle” with di↵erent errors. The training data is depicted as grey dots.The target quantile
functions at the quantile levels ⌧ =0.25 (yellow), 0.5 (green), 0.75 (red) are depicted as solid
curves, and the estimated quantile functions are represented by dashed curves with the same
color. From the top to the bottom, the rows correspond to the errors t(3), “Sine” and “Exp”.
From the left to the right, the subfigures correspond to the methods DQR, kernel QR and
linear QR. The fitted DLS curve (in blue) is included in the left subfigure.
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Table 1: Data is generated from “Linear” model with training sample size n = 128 and
the number of replications R = 10. The averaged excess risks and the L1 test errors with
the target with the corresponding standard deviations (in parentheses) are reported for the
estimators trained by di↵erent methods.

n = 128 t(3) Sine Exp
QuantileMethod Excess risk L1 error Excess risk L1 error Excess risk L1 error

⌧ = 0.25
DQR 0.06(0.03) 0.31(0.09) 0.02(0.01) 0.16(0.03) 0.04(0.03) 0.30(0.07)

Kernel QR 0.04(0.03) 0.26(0.08) 0.08(0.03) 0.32(0.06) 0.01(0.01) 0.17(0.06)

Linear QR 0.01(0.01)0.08(0.04)0.01(0.01)0.11(0.02)0.01(0.02)0.09(0.04)

⌧ = 0.5

DLS 0.28(0.13) 0.37(0.08) 0.06(0.04) 0.15(0.03) 0.18(0.07) 0.27(0.05)

DQR 0.10(0.04) 0.38(0.11) 0.02(0.01) 0.16(0.04) 0.05(0.03) 0.28(0.05)

Kernel QR 0.03(0.01) 0.23(0.08) 0.06(0.04) 0.22(0.10) 0.02(0.01) 0.17(0.04)

Linear QR 0.01(0.01)0.07(0.05)0.01(0.01)0.02(0.02)0.01(0.01)0.07(0.04)

⌧ = 0.75
DQR 0.08(0.05) 0.39(0.11) 0.01(0.01) 0.20(0.05) 0.05(0.02) 0.33(0.05)

Kernel QR 0.01(0.01) 0.20(0.08) 0.05(0.03) 0.32(0.13) 0.03(0.03) 0.20(0.08)

Linear QR 0.01(0.01)0.09(0.04)0.01(0.01)0.11(0.01)0.01(0.01)0.12(0.06)

Table 2: Data is generated from “Wave” model with training sample size n = 128 and the
number of replications R = 10. The averaged excess risks and the L1 test errors with the
corresponding standard deviation (in parentheses) are reported for the estimators trained by
di↵erent methods.

n = 128 t(3) Sine Exp
QuantileMethod Excess risk L1 error Excess risk L1 error Excess risk L1 error

⌧ = 0.25
DQR 0.07(0.04)0.34(0.07)0.02(0.01)0.16(0.03)0.05(0.03)0.35(0.06)
Kernel QR 0.13(0.01) 0.51(0.02) 0.17(0.01) 0.52(0.02) 0.13(0.02) 0.53(0.02)

Linear QR 0.25(0.02) 0.61(0.02) 0.25(0.01) 0.61(0.01) 0.23(0.04) 0.61(0.02)

⌧ = 0.5

DLS 0.20(0.06)0.33(0.05) 0.05(0.02)0.15(0.03) 0.21(0.06) 0.30(0.05)

DQR 0.10(0.05) 0.35(0.10)0.02(0.01) 0.18(0.02)0.05(0.02)0.29(0.06)
Kernel QR 0.15(0.02) 0.50(0.04) 0.17(0.01) 0.52(0.01) 0.16(0.03) 0.53(0.02)

Linear QR 0.25(0.02) 0.60(0.02) 0.28(0.02) 0.58(0.01) 0.21(0.03) 0.60(0.02)

⌧ = 0.75
DQR 0.09(0.04)0.44(0.13)0.01(0.01)0.20(0.03)0.07(0.03)0.35(0.06)
Kernel QR 0.10(0.02) 0.52(0.02) 0.13(0.02) 0.52(0.02) 0.13(0.03) 0.52(0.02)

Linear QR 0.14(0.01) 0.68(0.04) 0.18(0.01) 0.76(0.05) 0.12(0.01) 0.63(0.03)
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Table 3: Data is generated from “Triangle” model with training sample size n = 128 and the
number of replications R = 10. The averaged excess risks and the L1 test errors with the
corresponding standard deviation (in parentheses) are reported for the estimators trained by
di↵erent methods.

n = 128 t(3) Sine Exp
QuantileMethod Excess risk L1 error Excess risk L1 error Excess risk L1 error

⌧ = 0.25
DQR 0.05(0.03) 0.27(0.07)0.01(0.01)0.12(0.03) 0.02(0.02) 0.25(0.06)

Kernel QR0.04(0.03)0.23(0.09) 0.10(0.05) 0.36(0.07)0.01(0.01)0.20(0.05)
Linear QR 0.17(0.02) 0.55(0.03) 0.17(0.02) 0.50(0.04) 0.13(0.01) 0.59(0.02)

⌧ = 0.5

DLS 0.16(0.08) 0.29(0.07) 0.02(0.02)0.11(0.03) 0.11(0.05) 0.21(0.06)

DQR 0.06(0.03) 0.27(0.09)0.01(0.01) 0.15(0.03) 0.07(0.05) 0.30(0.07)

Kernel QR0.03(0.03)0.20(0.10) 0.05(0.03) 0.24(0.08)0.03(0.02)0.19(0.07)
Linear QR 0.14(0.01) 0.51(0.01) 0.19(0.01) 0.52(0.01) 0.11(0.01) 0.52(0.02)

⌧ = 0.75
DQR 0.07(0.04) 0.38(0.10)0.01(0.01)0.16(0.04) 0.04(0.02) 0.31(0.08)

Kernel QR0.03(0.03)0.23(0.11) 0.04(0.02) 0.26(0.09)0.03(0.01)0.18(0.05)
Linear QR 0.08(0.01) 0.53(0.02) 0.14(0.01) 0.64(0.03) 0.07(0.01) 0.51(0.02)

7.3 Data generation: multivariate models

Throughout the multivariate model simulation, we set the input dimension d = 6 and sample
X uniformly on [0, 1]6. We consider the models in Section 5 including single index model
and additive model which correspond di↵erent specifications of f0. The formulae of are given
below.

(a) Single index model:
f0(x) = exp(✓>x),

where ✓ = (2.2831,�1.4818, 5.1966, 0, 0, 0.0515)> 2 R6.

(b) Additive model:

f0(x) = exp(4(x1 � 0.5)) + 9(x2 � 0.5)2 + 10 sin(2⇡x3)� 7|x4 � 0.5|,

where x = (x1, . . . , x6)> 2 [0, 1]6.

And we generate the error ⌘ from following distributions,

(i) ⌘ follows a scaled Student’s t distribution with degree of freedom 3, i.e., ⌘ ⇠ 0.5⇥ t(3),
denoted by t(3);

(ii) Conditioning on X = x, the error ⌘ follows a normal distribution of which variance
depends on the covariate X, denoted by Sine, i.e.,

⌘ | X = x ⇠ 0.5⇥N (0, | sin(⇡⇠>x)|2)

where ⇠ = (1.8100,�1.2999, 0, 0,�2.7874, 0.3197)> 2 Rd;
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(iii) Conditioning on X = x, the error ⌘ follows a normal distribution of which variance
depends on the covariate X, denoted by Exp, i.e.,

⌘ | X = x ⇠ 0.5⇥N (0, exp(4⇠>x� 2))

where ⇠ = (1.8100,�1.2999, 0, 0,�2.7874, 0.3197)> 2 Rd.

Similarly, the ⌧ -th conditional quantile f ⌧
0
(x) of response Y given X = x can be calculated

by
f ⌧
0
(x) = f0(x) + F�1

⌘|X=x(⌧),

where F�1

⌘|X=x(·) is the inverse of the conditional cumulated distribution function of ⌘ given
X = x.

We generate training data with sample size n = 512 and train the estimators in the
same way as in the univariate model simulations. Summary measures including the excess
risks and the L1 test errors based on R = 10 replications are summarized in Tables 4-5.
Additional simulation results with n = 1024, including the estimated quantile curves at ⌧ =
0.05, 0.25,0.5,0.75 and 0.95, the corresponding excess risks, the L1 and the L2 test errors are
given in Appendix B.

We see that for the nonlinear multivariate models considered in the simulation studies,
especially for single index model, DQR performs significantly better than kernel QR and
linear QR, in the sense that DQR estimates have smaller excess risks and L1 test errors in
all the scenarios.

Table 4: Data is generated from single index model with training sample size n = 512 and
the number of replications R = 10. The averaged excess risks and L1 test errors with the
corresponding standard deviation (in parentheses) are reported for the estimators trained by
di↵erent methods.

n = 512 t(3) Sine Exp
QuantileMethod Excess risk L1 error Excess risk L1 error Excess risk L1 error

⌧ = 0.25
DQR 17.05(12.02) 2.50(0.78) 17.71(11.38) 2.08(0.45) 17.66(10.83) 2.19(0.45)
Kernel QR 1299.84(98.46) 26.37(0.39) 1301.01(98.12) 26.40(0.37) 1301.02(98.44)26.444(0.38)

Linear QR 3406.75(88.87)47.584(0.45) 3408.65(80.14) 47.70(0.42) 3402.89(84.86) 47.76(0.43)

⌧ = 0.5

DLS 97.952(46.86) 2.07(0.24) 98.78(38.52) 2.27(1.33) 87.27(26.93) 1.79(0.18)
DQR 31.48(30.99) 6.08(3.39) 24.20(22.29) 5.043(3.09) 33.68(26.67) 4.26(2.69)

Kernel QR2358.61(213.79) 24.26(0.35) 2362.17(213.94) 24.26(0.36)2363.70(213.50) 24.25(0.36)

Linear QR 5664.87(282.83) 44.82(0.25) 5669.25(287.26) 44.832(0.25)5667.21(289.23) 44.84(0.26)

⌧ = 0.75
DQR 49.37(34.46) 5.59(4.87) 44.42(42.23)3.007(1.90) 27.52(27.79) 9.20(4.74)
Kernel QR3293.03(311.42) 26.02(0.34) 3298.69(308.74) 26.10(0.33)3299.32(308.81)26.168(0.33)

Linear QR 5410.39(496.13)58.366(3.08)5419.965(499.63) 58.30(3.02)5422.32(499.93)58.336(2.99)
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Table 5: Data is generated from additive model with training sample size n = 512 and the
number of replications R = 10. The averaged excess risks and the L1 test errors with the
corresponding standard deviation (in parentheses) are reported for the estimators trained by
di↵erent methods.

n = 512 t(3) Sine Exp
Quantile Method Excess risk L1 error Excess risk L1 error Excess risk L1 error

⌧ = 0.25

DQR 0.28(0.04) 0.75(0.05) 0.14(0.03) 0.44(0.05) 0.12(0.03) 0.44(0.09)
Kernel QR 4.48(0.29) 3.291(0.06) 4.218(0.23) 3.25(0.07) 4.55(0.27) 3.40(0.07)

Linear QR 9.20(0.78) 4.79(0.17) 8.97(0.40) 4.79(0.09) 9.51(0.80) 4.96(0.19)

⌧ = 0.5

DLS 0.93(0.15) 0.72(0.05) 0.28(0.04) 0.40(0.03) 0.261(0.07) 0.35(0.05)
DQR 0.35(0.08) 0.72(0.06) 0.16(0.03) 0.45(0.03) 0.16(0.05) 0.39(0.07)

Kernel QR 3.63(0.49) 2.90(0.04) 3.21(0.39) 2.85(0.04) 3.50(0.47) 2.88(0.04)

Linear QR 7.04(0.78) 4.03(0.04) 6.52(0.63) 4.04(0.03) 7.17(0.74) 4.04(0.03)

⌧ = 0.75

DQR 0.45(0.08) 0.80(0.06) 0.18(0.04) 0.(0.047) 0.18(0.04) 0.41(0.07)
Kernel QR 1.58(0.26) 3.21(0.07) 1.41(0.16) 3.30(0.09) 1.63(0.23) 3.31(0.09)

Linear QR 2.47(0.28) 4.69(0.11) 2.44(0.32) 4.88(0.18) 2.56(0.27) 4.84(0.11)

8 Related work

There were several important early works on nonparametric quantile regression using neural
networks. White (1992) established the consistency of nonparametric conditional quantile
estimators using shallow neural networks. Chen and White (1999) obtained convergence
rate in the Sobolev norm for a large class of single hidden layer feedforward neural networks
with a smooth activation functions, assuming the target function satisfies certain smoothness
conditions. Chen et al. (2020) considered quantile treatment e↵ect estimation and estab-
lished asymptotic distributional properties for the treatment e↵ect estimator in the presence
of a infinite-dimensional parameter that is estimated using deep neural networks. In this
semiparametric framework, to establish the asymptotic normality of a finite-dimensional pa-
rameter, it is necessary to derive the convergence rate of the infinite-dimensional nuisance
parameter.

Recently, Padilla et al. (2020) studied the nonparametric quantile regression with ReLU
neural networks. They established an upper bound on the mean integrated squared error
of the empirical risk minimizer. As a consequence, they derived a nearly optimal error
bound when the target quantile function is a composed of Hölder smooth functions. They
also derived a minimax nonparametric estimation rate with Gaussian errors when the target
quantile regression function belongs to a Besov space without a compositional structure.
Their approach follows the method of Schmidt-Hieber et al. (2020), which studied the least
squares nonparametric regression using ReLU neural networks to approximate the regression
function. In particular, for approximating a composite function, Padilla et al. (2020) used
the approximation results from Schmidt-Hieber et al. (2020). Therefore, the error bounds
obtained by Padilla et al. (2020) are similar to the results of Schmidt-Hieber et al. (2020).
In particular, the prefactor of their error bounds is of the order O(2d) unless the size S of
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the network grows exponentially with respect to the dimension d. A prefactor of the order
O(2d) is big even for a moderate d, which can dominate the error bound.

Another important di↵erence between Padilla et al. (2020) and our work concerns the
neural networks used in constructing the estimators. In Padilla et al. (2020), they assume
that all the parameters (weights and biases) of the network are bounded by one and the
networks are sparse as in Schmidt-Hieber et al. (2020). We do not make such assumptions.
We note that such assumptions are usually not satisfied in training neural network models
in practice.

A unique aspect of the quantile loss is that a bound on the excess risk does not auto-
matically lead to a bound for the mean squared error of the estimated quantile regression
function. This is di↵erent from the squared loss whose excess risk bound directly leads to a
bound on the mean squared error of the estimated regression function. In Steinwart et al.
(2011), under the ⌧ -quantile of p-average type condition on the joint distribution of (X, Y ),
a general result is given: the Lr(⌫) distance (⌫ denotes the distribution of the predictor)
between any function f and the target f0 can be bound by the q-th root of the excess risk
for some r, q > 0. This problem was also considered in Christmann and Steinwart (2007);
Lv et al. (2018); Padilla et al. (2020) and Padilla and Chatterjee (2021). However, these
existing results require that the conditional distribution of Y given X is bounded, which
does not apply to our setting where we allow the response to have heavy tails.

There are several recent important studies on least squares nonparametric regression
using deep neural networks. Examples include Bauer and Kohler (2019); Chen et al. (2019a);
Nakada and Imaizumi (2019); Schmidt-Hieber (2019); Kohler et al. (2019) and Farrell et al.
(2021). In particular, Bauer and Kohler (2019) assumed that the activation function satisfies
certain smoothness conditions, which excludes the use of ReLU activation; Schmidt-Hieber
et al. (2020) and Farrell et al. (2021) considered the ReLU activation function. Bauer and
Kohler (2019) and Schmidt-Hieber et al. (2020) assumed that the regression function has
a compositional structure. These studies adopt a construction of function approximation
using deep neural networks similar to that of Yarotsky (2017), which will lead to a prefactor
depending on the dimension d exponentially. For a large d, a prefactor that depends on d
exponentially will severely deteriorate the quality of the error bound. In comparison, the
prefactor in the error bounds in our work has a polynomial dependence on d. Therefore, there
is a significant improvement in our results in terms of mitigating the curse of dimensionality.

Finally, we should mention that there have been a great deal of e↵orts to deal with the
curse of dimensionality by assuming that the distribution of the predictor is supported on
a lower dimensional manifold. Many methods have been developed under this condition,
including local regression (Bickel and Li, 2007; Cheng and Wu, 2013; Aswani et al., 2011),
kernel methods (Kpotufe and Garg, 2013), Gaussian process regression (Yang and Dunson,
2016), and deep neural networks (Nakada and Imaizumi, 2019; Schmidt-Hieber, 2019; Chen
et al., 2019b,a; Kohler et al., 2019; Farrell et al., 2021; Jiao et al., 2021). Several studies
have focused on representing the data on the manifold itself, e.g., manifold learning or
dimensionality reduction (Pelletier, 2005; Hendriks, 1990; Tenenbaum et al., 2000; Donoho
and Grimes, 2003; Belkin and Niyogi, 2003; Lee and Verleysen, 2007). If a high-dimensional
data vector can be well represented by a lower-dimensional feature, the problem of curse of
dimensionality can be attenuated.
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9 Conclusion

In recent years, there have been intensive e↵orts devoted to understanding the properties of
deep neural network modeling by researchers from various fields, including applied mathe-
matics, machine learning, and statistics. In particular, much work has been done to study
the properties of the least squares nonparametric regression estimators using deep neural
networks. This line of work showed that a key factor for the success of deep neural network
modeling is its ability to accurately and adaptively approximate high-dimensional functions.
Indeed, although neural networks models had been developed many years ago and it had been
shown that they can serve as universal approximators to multivariate functions, only recently
the advantages of deep networks over shallow networks in approximating high-dimensional
functions were clearly demonstrated.

In this work, we study the convergence properties of nonparametric quantile regression
using deep neural networks. To mitigate the curse of dimensionality, we assume that the
target quantile regression function has a compositional structure. Based on the recent results
on the approximation power of deep neural networks, we show that composite functions can
be well approximated by neural networks with error rate determined by the intrinsic dimen-
sion of the function, not the ambient dimension. We established non-asymptotic bounds
for the excess risk of deep quantile regression and the mean squared error of the estimated
quantile regression function. We explicitly describe how these bounds depend on the network
parameters (e.g., depth and width), the intrinsic dimension and the ambient dimension. Our
error bounds significantly improve over the existing ones in the sense that their prefactors
depend linearly or quadratically on the ambient dimension d, instead of exponentially on
d. We also provide explicit error bounds, including the prefactors, for several well-known
semiparametric and nonparametric regression models that have been widely used to mitigate
the curse of dimensionality.

Our results are obtained based on the key assumption that the conditional quantile func-
tion has a compositional structure. This assumption provides an e↵ective way for mitigating
the curse of dimensionality in nonparametric estimation problems. In the future work, it
would be interesting to also consider other conditions that can help lessen the curse of dimen-
sionality, such as the low-dimensional support assumption for the predictor that has been
used in the context of least squares regression. Another problem that deserves further study
is to generalize the results in this work to the setting with a general convex losses, including
robust loss functions, and other regression problems such as nonparametric Cox regression.
We hope to study these problems in the future.
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Appendix

In the appendix, we give the proofs of the theoretical results in the paper and provide
additional simulation results.

A Appendix: Proofs

A.1 Proof of Lemma 1

Proof. By the definition of the empirical risk minimizer, for any f 2 Fn, we have R⌧
n(f̂n) 

R⌧
n(f). Therefore,

R⌧ (f̂n)�R⌧ (f0) =R⌧ (f̂n)�R⌧
n(f̂n) +R⌧

n(f̂n)�R⌧
n(f) +R⌧

n(f)�R⌧ (f) +R⌧ (f)�R⌧ (f0)

R⌧ (f̂n)�R⌧
n(f̂n) +R⌧

n(f)�R⌧ (f) +R⌧ (f)�R⌧ (f0)

=
�
R⌧ (f̂n)�R⌧

n(f̂n)
 
+
�
R⌧

n(f)�R⌧ (f)
 
+
�
R⌧ (f)�R⌧ (f0)

 

2 sup
f2Fn

|R⌧ (f)�R⌧
n(f)|+

�
R⌧ (f)�R⌧ (f0)

 
.

Since the above inequality holds for any f 2 Fn, Lemma 1 is proved by choosing f satisfying
f 2 arg inff2Fn R⌧ (f).

A.2 Proof of Lemma 2

Proof. Let S = {Zi = (Xi, Yi)}ni=1
be a sample form the distribution of Z = (X, Y ) and

S 0 = {Z 0
i = (X 0

i, Y
0
i )}ni=1

be another sample independent with S. Define g(f, Zi) = ⇢⌧ (f(Xi)�
Yi) � ⇢⌧ (f0(Xi) � Yi) for any f and sample Zi. Note that the empirical risk minimizer f̂�
defined in Lemma 1 depends on the sample S, and its excess risk is ES0{

Pn
i=1

g(f̂�, Z 0
i)/n}

and its prediction error (expected excess risk) is

E
�
R⌧ (f̂�)�R⌧ (f0)

 
= ES[ES0{ 1

n

nX

i=1

g(f̂�, Z
0
i)}]. (A.1)

Next we will take 3 steps to complete the proof of Lemma 2.

Step 1: Prediction error decomposition

Define the ‘best in class’ estimator f ⇤
� as the estimator in the function class F� = FD,W,U ,S,B

with minimal L risk:
f ⇤
� = arg min

f2F�

R⌧ (f).

The approximation error of f ⇤
� is R⌧ (f ⇤

�)�R⌧ (f0). Note that the approximation error only
depends on the function class FD,W,U ,S,B and the distribution of data. By the definition of
empirical risk minimizer, we have

ES{
1

n

nX

i=1

g(f̂�, Zi)}  ES{
1

n

nX

i=1

g(f ⇤
� , Zi)}. (A.2)
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Multiply 2 by the both sides of (A.2) and add it up with (A.1), we have

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 ES

h 1
n

nX

i=1

�
� 2g(f̂�, Zi) + ES0g(f̂�, Z

0
i)
 i

+ 2ES{
1

n

nX

i=1

g(f ⇤
� , Zi)}

 ES

h 1
n

nX

i=1

�
� 2g(f̂�, Zi) + ES0g(f̂�, Z

0
i)
 i

+ 2
�
R(f ⇤

�)�R(f ⇤)
 
.

(A.3)

It is seen that the prediction error is upper bounded by the sum of a expectation of a
stochastic term and approximation error.

Step 2: Bounding the stochastic term

Next, we will focus on giving an upper bound of the first term on the right-hand side in
(A.3), and handle it with truncation and classical chaining technique of empirical process.
In the following, for ease of presentation, we write G(f, Zi) = ES0{g(f, Z 0

i)} � 2g(f, Zi) for
f 2 F�.

Given a �-uniform covering of F�, we denote the centers of the balls by fj, j = 1, 2, ...,N2n,
where N2n = N2n(�, k · k1,F�) is the uniform covering number with radius � (� < B) under
the norm k·k1, whereN2n(�, k·k1,F�) is defined in (4.1). By the definition of covering, there
exists a (random) j⇤ such that kf̂�(x) � fj⇤(x)k1  � on x = (X1, . . . , Xn, X 0

1
, . . . , X 0

n) 2
X 2n, i.e., |f̂�(x) � fj⇤(x)|  � for all x 2 {X1, . . . , Xn, X 0

1
, . . . , X 0

n}. Recall that g(f, Zi) =
⇢⌧ (f(Xi)� Yi)� ⇢⌧ (f0(Xi)� Yi) and ⇢⌧ (a) = a(⌧ � I(a < 0)). Denote �⌧ = max{⌧, 1� ⌧},
then by the Lipschitz property of ⇢⌧ , for a, b 2 R

|⇢⌧ (a)� ⇢⌧ (b)|  max{⌧, 1� ⌧}|a� b| = �⌧ |a� b|,

and for i = 1, . . . , n

|g(f̂�, Zi)� g(fj⇤ , Zi)|  �⌧�,

|ES0{g(f̂�, Z 0
i)}� ES0{g(fj⇤ , Z 0

i)}|  �⌧�.

Then we have,

ES

� 1
n

nX

i=1

g(f̂�, Zi)}  1

n

nX

i=1

ES

�
g(fj⇤ , Zi)}+ �⌧�

and

ES

h 1
n

nX

i=1

G(f̂�, Zi)
i
 ES

h 1
n

nX

i=1

G(fj⇤ , Zi)
i
+ 3�⌧�. (A.4)

Let �n � B � 1 be a positive number who may depend on the sample size n. Denote
T�n as the truncation operator at level �n, i.e., for any Y 2 R, T�nY = Y if |Y |  �n and
T�nY = �n · sign(Y ) otherwise. Define the function f ⇤

�n
: X ! R pointwisely by

f ⇤
�n
(x) = arg min

f(x):kfk1�n

E
�
⇢⌧ (f(X)� T�nY )|X = x

 
,
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for each x 2 X . Besides, recall that kf ⇤k1  B  �n and

f0(x) = arg min
f(x):kfk1�n

E
�
⇢⌧ (f(X)� Y )|X = x

 
.

Then for any f satisfying kfk1  �n, the definition above implies that E{⇢⌧ (f ⇤
�n
(Xi) �

T�nYi)}  E{⇢⌧ (f(Xi) � T�nYi)} and E{⇢⌧ (f0(Xi) � Yi)}  E{⇢⌧ (f(Xi) � Yi)}. For any
f 2 F�, we let g�n(f, Zi) = ⇢⌧ (f(Xi)� T�nYi)� ⇢⌧ (f ⇤

�n
(Xi)� T�nYi). Then we have

E{g(f, Zi)} = E{g�n(f, Zi)}+ E{⇢⌧ (f(Xi), Yi)� ⇢⌧ (f(Xi), T�nYi)}
+ E{⇢⌧ (f ⇤

�n
(Xi)� T�nYi)� ⇢⌧ (f

⇤(Xi)� T�nYi)}
+ E{⇢⌧ (f0(Xi)� T�nYi)� ⇢⌧ (f0(Xi)� Yi)}

 E{g�n(f, Zi)}+ E|⇢⌧ (f(Xi)� Yi)� ⇢⌧ (f(Xi)� T�nYi)|
+ E|⇢⌧ (f0(Xi)� T�nYi)� ⇢⌧ (f0(Xi)� Yi)|

 E{g�n(f, Zi)}+ 2�⌧E{|T�nYi � Yi|}
 E{g�n(f, Zi)}+ 2�⌧E

�
||Yi|I(|Yi| > �n)

 

 E{g�n(f, Zi)}+ 2�⌧E{|Yi||Yi|p�1/�p�1

n }
 E{g�n(f, Zi)}+ 2�⌧E|Yi|p/�p�1

n .

By Assumption 2, the response Y has finite p-moment and thus E|Yi|p < 1. Similarly,

E{g�n(f, Zi)} = E{g(f, Zi)}+ E{⇢⌧ (f0(Xi)� Yi)� ⇢⌧ (f
⇤
�n
(Xi)� Yi)}

+ E{⇢⌧ (f(Xi)� T�nYi)� ⇢⌧ (f(Xi)� Yi)}
+ E{⇢⌧ (f ⇤

�n
(Xi)� Yi)� ⇢⌧ (f

⇤
�n
(Xi)� T�nYi)}

 E{g(f, Zi)}+ E|⇢⌧ (f(Xi)� T�nYi)� ⇢⌧ (f(Xi)� Yi)|
+ E|⇢⌧ (f ⇤

�n
(Xi)� Yi)� ⇢⌧ (f

⇤
�n
(Xi)� T�nYi)|

 E{g(f, Zi)}+ 2�⌧E|Yi|p/�p�1

n .

Note that above inequalities also hold for g(f, Z 0
i) and g�n(f, Z

0
i).

By Assumption 2, the response Y has finite p-moment and thus E|Yi|p < 1. Then for
any f 2 F�, define G�n(f, Zi) = ES0{g�n(f, Z

0
i)}� 2g�n(f, Zi) and we have

ES

h 1
n

nX

i=1

G(fj⇤ , Zi)
i
 ES

h 1
n

nX

i=1

G�n(fj⇤ , Zi)
i
+ 6�⌧E|Yi|p/�p�1

n . (A.5)

Besides, by Assumption 2, for any f 2 F� we have |g�n(f, Zi)|  4�⌧�n and �2

g(f) :=
Var(g�n(f, Zi))  E{g�n(f, Zi)2}  4�⌧�nE{g�n(f, Zi)}. For each fj and any t > 0, let
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u = t/2 + �2

g(fj)/(8�⌧�n), by applying the Bernstein inequality,
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.

This leads to a tail probability bound of
Pn

i=1
G�n(fj⇤ , Zi)/n, which is

P
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43
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Then for an > 0,
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.

Choose an = log(2N2n) · 43�⌧�n/n, we have

ES

h 1
n

nX

i=1

G�n(fj⇤ , Zi)
i
 43�⌧�n(log(2N2n) + 1)

n
. (A.6)

Set � = 1/n and �n = c1 max{B, n1/p} and combine (A.3), (A.4), (A.5) and (A.6), we get

E
�
R⌧ (f̂�)�R⌧ (f0)

 


c2�⌧B logN2n(
1

n , k · k1,F�)

n1�1/p
+ 2

�
R⌧ (f ⇤

�)�R⌧ (f0)
 
, (A.7)

where c2 > 0 is a constant does not depend on n, d,mathcalB and �⌧ . This proves (4.2).
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Step 3: Bounding the covering number

Lastly, we will give an upper bound on the covering number by the VC dimension of F�

through its parameters. Denote Pdim(F�) by the pseudo dimension of F�, by Theorem 12.2
in Anthony and Bartlett (1999), for 2n � Pdim(F�)

N2n(
1

n
, k · k1,F�) 

⇣ 2eBn2

Pdim(F�)

⌘Pdim(F�)

.

Besides, based on Theorem 3 and 6 in Bartlett et al. (2019), there exist universal constants
c, C such that

c · SD log(S/D)  Pdim(F�)  C · SD log(S).
Combine the upper bound of the covering number and pseudo dimension with (A.7), we have

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 c3�⌧B

log(n)SD log(S)
n1�1/p

+ 2
�
R⌧ (f ⇤

�)�R⌧ (f0)
 
, (A.8)

for some constant c3 > 0 not dependent on n, d, ⌧,B,S and D. Therefore, (4.3) follows. This
completes the proof of Lemma 2.

A.3 Proof of Lemma 3

Under Assumption 2, the function f0 is the risk minimizer. Then for any f 2 F�, we have

R⌧ (f)�R⌧ (f0) = E{⇢⌧ (f(X)� Y )� ⇢⌧ (f0(X)� Y )}  max{⌧, 1� ⌧}E{|f(X)� f0(X)|},

thus

inf
f2F�

{R⌧ (f)�R⌧ (f0)}  max{⌧, 1�⌧} inf
f2F�

E|f(X)�f0(X)| = max{⌧, 1�⌧} inf
f2F�

kf�f0kL1(⌫),

where ⌫ denotes the marginal probability measure of X and F� = FD,W,U ,S,B denotes the
class of feedforward neural networks with parameters D,W ,U ,S and B.

A.4 Proof of Lemma 4

As in the proof of Lemma 3, for any f 2 F�, we firstly have

R⌧ (f)�R⌧ (f0)  �⌧E{|f(X)� f0(X)|},

where �⌧ = max{⌧, 1 � ⌧}. Then for function f 2 F� satisfying kf � f0kL1(X 0) > �0⌧ , we
have

R⌧ (f)�R⌧ (f0)  �⌧E{|f(X)� f0(X)|}

 �⌧E
� |f(X)� f0(X)|2

�0⌧

 

 �⌧

�0⌧
kf(X)� f0(X)k2L2(⌫).
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Secondly, with Assumption 3, we also have

R⌧ (f)�R⌧ (f0)  c0⌧kf � f0k2L2(⌫),

for any f satisfying kf � f0kL1(X 0)  �0⌧ .
There exists a constant c⌧ � max{c0⌧ ,�⌧/�0⌧} such that

R⌧ (f)�R⌧ (f0)  c⌧kf � f0k2L2(⌫),

for any f 2 F�, where X 0 is any subset of X such that P (X 2 X 0) = P (X 2 X ).

A.5 Proof of Lemma 7

Proof. Consider the subnetworks approximating hij in Lemma 6, each of them with width
max{4tbN1/tc+3t, 12N+8} and depth 12L+14 has an approximation rate 18

p
t!(N�2/tL�2/t)

on its trifling region ⌦j := ⌦([0, 1]t, K, �). Paralleling these d equal-depth networks re-
sult in a wider network with width d ⇥ max{4tbN1/tc + 3t, 12N + 8}, depth 12L + 14
and trifling region ⌦([0, 1]d, K, �) which covers the projection of all ⌦j onto [0, 1]d, i.e.
[j=1,...,dProj[0,1]d(⌦j) ⇢ ⌦([0, 1]d, K, �).

A.6 Proof of Lemma 8

Proof. Recall that hij : Rti ! R, i = 0, . . . , q and j = 1, . . . , di+1 are Hölder continuous
functions with order ↵i 2 [0, 1] and constant �i � 0 and hi = (hij)>j : Rdi ! Rdi+1 are

vectors of functions with domain Di. Let Hi = hi � . . . � h0 and H̃i = h̃i � . . . � h̃0 for
i = 0, . . . , q. Let Sij ⇢ {1, . . . , di+1} be the support of the ti-variate function hij and denote
xSij by the di+1-dimensional vector x restricted to the ti-dimensional subspace according to
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the index Sij. then

khq � . . . h0 � h̃q � . . . h̃0kL1(D0)

=khq �Hq�1 � hq � H̃q�1 + hq � H̃q�1 � h̃q � H̃q�1kL1(D0)

khq �Hq�1 � hq � H̃q�1kL1(D0) + khq � H̃q�1 � h̃q � H̃q�1kL1(D0)

 max
j=1,...,dq+1

sup
x2D0

|hqj �Hq�1(x)� hqj � H̃q�1(x)|+ khq � h̃qkL1(Dq)

 max
j=1,...,dq+1

!hqj( sup
x2D0

kHq�1(x)Sij � H̃q�1(x)Sij
k2) + khq � h̃qkL1(Dq)

 max
j=1,...,dq+1

!hqj(
p

tqkHq�1 � H̃q�1kL1(D0)) + khq � h̃qkL1(Dq)

�qt
↵q/2
q kHq�1 � H̃q�1k↵q

L1(D0)
+ khq � h̃qkL1(Dq)

�qt
↵q/2
q

�
�q�1t

↵q�1/2
q�1

kHq�2 � H̃q�2k↵q�1

L1(D0)
+ khq�1 � h̃q�1kL1(Dq�1)

�↵q

+ khq � h̃qkL1(Dq)

�q�
↵q

q�1
t↵q/2
q t

↵q↵q�1/2
q�1

kHq�2 � H̃q�2k↵q↵q�1

L1(D0)

+ �qt
↵q/2
q khq�1 � h̃q�1k↵q

L1(Dq�1)
+ khq � h̃qkL1(Dq)


qX

i=0

⇧q
j=i+1

�
⇧

q
k=j+1↵k

j ⇧q
j=i+1

p
tj

⇧
q
k=j↵kkhi � h̃ik

⇧
q
j=i+1↵j

L1(Di)
.

The third inequality follows from kxk2 
p
dkxk1 for a vector x 2 Rd. The fourth inequality

follows from the definition of Hölder continuity. The second last inequality follows from
(a+ b)↵  a↵ + b↵ for all a, b � 0 and ↵ 2 [0, 1].

A.7 Proof of Lemma 9

Proof. We start our proof from the most simple case where h : Rd ! R be a linear com-
bination operator, i.e., h(x) = Tx + u with T = (t1, . . . , td) 2 R1⇥d being a row vector
and u 2 R being a scalar. Then we can construct a three-layer ReLU neural network
h̃(x) = W2�(W1x+ b1)+ b2 with width (d, 2d, 1) where �(·) is the ReLU activation function,
b1 = 0, b2 = u,

W1 =

2

6666666664

1 0 0 · · · · · · 0 0
�1 0 0 · · · · · · 0 0
0 1 0 0 0 · · · 0
0 �1 0 0 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · · · · · · · · · · 0 1
0 · · · · · · · · · · · · 0 �1

3

7777777775

,

and W2 = (t1,�t1, t2,�t2, . . . , td�1,�td�1, td,�td)1⇥2d is a 2d-dimensional row vector. And
it is easy to verify that h̃(x) = h(x), for any x 2 Rd. More generally, when T = (tij) 2 Rm⇥d

and u 2 Rm, we can construct the three-layer network with width (d, 2d,m) in a similar
manner where W1, b1 and b2 are kept the same as above but W2 2 Rm⇥2d is constructed

54

supll hixill
∞

λ EDo .

N—Ʃ

—
←O - xaa .

: =
sp {f.x 3 -fiy 3 : x-yi1 ≤ r }haj ( x )

- hai—
wic

" ∞



analogically by stacking m many 2d-dimensional vectors together, i.e.,

W2 =

2

64
t11 �t11 t12 �t12 · · · t1d �t1d
...

. . . . . . . . . . . . . . .
...

tm1 �tm1 tm2 �tm2 · · · tmd �tmd

3

75 .

In such a way, the constructed h̃ satisfies h̃(x) = h(x) for any x 2 Rd.

A.8 Proof of Theorem 3

Proof. In Lemma 6 and Lemma 7, the domain of the approximated functions are required
to be [0, 1]d. In light of this, the Lemmas can not be directly applied to each hi of the
composition since in general neither the domain of hi is [0, 1]di nor the range of hi is [0, 1]di+1 .
Thus the domain of the constructed ReLU networks have to be aligned with the approximated
functions hi. Considering this, we can add an additional invertible linear layer Ai(·) : Di !
[0, 1]di at the beginning of each of the subnetworks h̃i in Lemma 7 for 0 = 1, . . . , q to
accommodate to general hi. In the following, we introduce the accommodation in details.

Note that all hi, i = 0, . . . , q are continuous functions on bounded domain Di, where
D0 = [a, b]d and hi�1 � . . . � h0([a, b]d) ✓ Di for i = 1, . . . , q. Without loss of generality, we
can let ai := minj=1,...,di�1 infx2[a,b]d h(i�1)j�. . .�h0(x) and bi := maxj=1,...,di�1 supx2[a,b]d h(i�1)j�
. . . � h0(x) for i = 1, . . . , q. Then we can view hi as functions with domain [ai, bi]di . Further,
for each i 2 {0, . . . , q}, these exists an invertible linear transformation Ai(x) = �(Wix + bi)
where Wi 2 Rdi⇥di is a diagonal matrix with equivalent entries 1/(bi�ai), bi 2 Rdi is a vector
with equivalent components �ai/(bi�ai) and �(·) is the ReLU activation function such that
Ai is an invertible transformation from [ai, bi]di to [0, 1]di . Now we can apply Lemma 7 to
build up networks approximate hi on domains [ai, bi]di .

For any Li 2 N+ and Ni 2 N+, there exists functions h̃i for i 2 J c implemented by
ReLU FNNs with width di max{4tibN1/ti

i c + 3ti, 12Ni + 8} and depth 12Li + 15 such that
kh̃ikL1

i (Rdi )  maxj=1,...,di |hij(0)|+ !(
p
ti) and

|h̃i(x)� hi(x)|  18
p
ti�i(NiLi)

�2↵i/ti , for any x 2 Di\ A�1

i (⌦([0, 1]di , K, �)),

where A�1

i : [ai, bi]di ! [0, 1]di is the inverse of above defined linear transformation Ai (the

first layer of h̃i), Ki = bN1/di
i c2bL1/di

i c2 and �i is an arbitrary number in (0, 1/(3Ki)]. And
the trifling region ⌦([0, 1]d, K, �) of [0, 1]d is defined as

⌦([0, 1]d, K, �) = [d
i=1

{x = [x1, x2, ..., xd]
T : xi 2 [K�1

k=1
(k/K � �, k/K)},

and
A�1

i (⌦([0, 1]di , K, �)) = {x 2 Rdi : A(x) 2 ⌦([0, 1]di , K, �}.

By Lemma 9, for j 2 J , there exists functions h̃j implemented by 3-layer ReLU FNNs
with width vector (dj, 2dj, dj+1) such that

|h̃j(x)� hj(x)| = 0 for any x 2 Rdj .
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To approximate the composited function Hq = hq � . . . � h0 : [a, b]d ! R, we let H̃q =
h̃q � . . . � h̃0 be the composition of above defined h̃i, which is a function implemented by

ReLU FNN with width max{maxi2Jc di max{4tibN1/ti
i c + 3ti, 12Ni + 8},maxj2J 2dj} and

depth
P

i2Jc(12Li + 15) + 2|J |. Then by applying Lemma 8, we have

|H̃q(x)�Hq(x)|


X

i2Jc

⇧q
j=i+1

�
⇧

q
k=j+1↵k

j ⇧q
j=i+1

p
tj

⇧
q
k=j↵k

�
18
p
ti�i

�⇧q
j=i+1↵j(NiLi)

�2(⇧
q
j=i↵j)/ti


X

i2Jc

18⇧
q
j=i+1↵j⇧q

j=i�
⇧

q
k=j+1↵k

j

⇧q
j=i

p
tj

⇧
q
k=j↵k

p
ti
↵i

(NiLi)
�2(⇧

q
j=i↵j)/ti

=
X

i2Jc

C⇤
i �

⇤
i t

⇤
i (NiLi)

�2↵⇤
i /ti , for any x 2 [a, b]d\⌦0,

where �j = ↵j = 1 for j 2 J , C⇤
i = 18⇧

q
j=i+1↵j , �⇤

i = ⇧q
j=i�

⇧
q
k=j+1↵k

j , ↵⇤
i = ⇧q

j=i↵j, t⇤i =

(⇧q
j=i

p
tj

⇧
q
k=j↵k)/

p
ti
↵i and ⌦0 is a subset of [a, b]d which satisfies

⌦([0, 1]di , Ki, �i) ✓ Ai � h̃i�1 � . . . � h̃0(⌦0), for i = 0, . . . , q,

where Aj is defined as identity map for j 2 J . Note that since ↵i 2 [0, 1], further we have
C⇤

i  18 and t⇤i  ⇧q
j=i

p
tj  ⇧q

j=0

p
tj.

A.9 Proof of Theorem 1

Proof. By Theorem 3, given any Ni, Li 2 N+, i 2 J c, for the function class of ReLU
multi-layer perceptrons F� = FD,W,U ,S,B with width W = max{maxi2Jc di max{4tibN1/ti

i c+
3ti, 12Ni + 8},maxj2J 2dj} and depth D =

P
i2Jc(12Li + 15) + 2|J |, there exists a f ⇤

� such
that

|f ⇤
�(x)� f0(x)| 

X

i2Jc

C⇤
i �

⇤
i t

⇤
i (NiLi)

�2↵⇤
i /ti , for any x 2 [a, b]d\⌦0,

where C⇤
i = 18⇧

q
j=i+1↵j , �⇤

i = ⇧q
j=i�

⇧
q
k=j+1↵k

j , ↵⇤
i = ⇧q

j=i↵j, t⇤i = (⇧q
j=i

p
tj

⇧
q
k=j↵k)/

p
ti
↵i and

⌦0 is a subset of [a, b]d which satisfies

⌦([0, 1]di , Ki, �i) ✓ Ai � h̃i�1 � . . . � h̃0(⌦0), for i = 0, . . . , q,

whereAi are defined as in Theorem 3. Note that the Lebesgue measure of each ⌦([0, 1]di , Ki, �i)
is no more than �i(Ki�1)d which can be arbitrarily small since �i 2 (0, 1/(3Ki)) can be arbi-
trarily small. Thus the preimage or inverse image of ⌦([0, 1]di , Ki, �i) under Ai � h̃i�1 � . . .� h̃0

can has arbitrarily small Lebesgue measure since all Ai, h̃i are continuous mappings. As a
consequence, the Lebesgue measure of ⌦0 can be arbitrarily small by choosing arbitrarily
small �i. Besides, ⌫ (the probability measure of X) is absolutely continuous with respect to
Lebesgue measure, then we have

EX |f ⇤
�(X)� f0(X)| = kf ⇤

� � f0kL2(⌫) 
X

i2Jc

C⇤
i �

⇤
i t

⇤
i (NiLi)

�2↵⇤
i /ti .
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Combining Lemma 2-3, we have for 2n � Pdim(F�), the prediction error of the DQR esti-
mator f̂� satisfies

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C

�⌧BSD log(S) log(n)
n1�1/p

+ 2�⌧

X

i2Jc

C⇤
i �

⇤
i t

⇤
i (NiLi)

�2↵⇤
i /ti ,

where �⌧ = max{⌧, 1�⌧} and C > 0 is a constant does not depend on n, d, ⌧,B,S,D, C⇤
i ,�

⇤
i ,↵

⇤
i , Ni

or Li, and C⇤
i = 18⇧

q
j=i+1↵j , �⇤

i = ⇧q
j=i�

⇧
q
k=j+1↵k

j , ↵⇤
i = ⇧q

j=i↵j and t⇤i = (⇧q
j=i

p
tj

⇧
q
k=j↵k)/

p
ti
↵i .

If Assumption 3 additionally holds, then combining Lemma 2,4, the approximation result
can be directly applied,

E
�
R⌧ (f̂�)�R⌧ (f0)

 
 C

�⌧BSD log(S) log(n)
n1�1/p

+ 2c⌧
⇥X

i2Jc

C⇤
i �

⇤
i t

⇤
i (NiLi)

�2↵⇤
i /ti

⇤2
,

where c⌧ > 0 is a constant defined in Lemma 4.

A.10 Proof of Lemma 5

Proof. By equation (B.3) in Belloni and Chernozhukov (2011), for any scalar w, v 2 R we
have

⇢⌧ (w � v)� ⇢⌧ (w) = �v{⌧ � I(w  0)}+
Z v

0

{I(w  z)� I(w  0)}dz.

Given any f and X = x, let w = Y �f0(X), v = f(X)�f0(X) with |f(x)�f0(x)|  �. Then
given X = x, taking conditional expectation on above equation with respect to Y | X = x,
we have

E{⇢⌧ (Y � f(X))� ⇢⌧ (Y � f0(X)) | X = x}
=E

⇥
� {f(X)� f0(X)}{⌧ � I(Y � f(X)  0)} | X = x

⇤

+ E
⇥ Z f(X)�f0(X)

0

{I(Y � f0(X)  z)� I(Y � f0(X)  0)}dz | X = x
⇤

=0 + E
⇥ Z f(X)�f0(X)

0

{I(Y � f0(X)  z)� I(Y � f0(X)  0)}dz | X = x
⇤

=

Z f(x)�f0(x)

0

{PY |X(f0(x) + z)� PY |X(f0(x))}dz

�
Z f(x)�f0(x)

0

|z|dz

=


2
|f(x)� f0(x)|2.
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Suppose f(x)� f0(x) > �, then similarly we have

E{⇢⌧ (Y � f(X))� ⇢⌧ (Y � f0(X)) | X = x}

=

Z f(x)�f0(x)

0

{PY |X(f0(x) + z)� PY |X(f0(x))}dz

�
Z f(x)�f0(x)

�/2

{PY |X(f0(x) + �/2)� PY |X(f0(x))}dz

�(f(x)� f0(x)� �/2)(�/2)

��

4
|f(x)� f0(x)|.

The case f(x) � f0(x)  �� can be handled similarly as in Padilla and Chatterjee
(2021). The conclusion follows combining the three di↵erent cases and taking expectation
with respect to X of above obtained inequality.

A.11 Proof of Theorem 2

Proof. Theorem 2 follows directly from Theorem 1 and Lemma 5.

B Additional simulation results

In this section, we provide additional simulation results, including the estimated quantile
curves at ⌧ = 0.05, 0.25,0.5,0.75, and 0.95, the corresponding excess risks, the L1 and the
L2 test errors. To make this section self-contained as much as possible, we also include the
detailed description of the simulation studies in the main text of the paper.

We consider the following quantile regression methods:

• The traditional linear quantile regression as described in Koenker and Bassett (1978),
denoted by linear QR. Without regularization, the empirical risk is minimized over the
parameter space (intercept included) Rd+1 to give an linear estimator. These estimation
are implemented on Python via package statsmodels.

• Kernel-based nonparametric quantile regression as described in Sangnier et al. (2016),
denoted by kernel QR. This is a joint quantile regression method based on vector-valued
reproducing kernel Hilbert space (RKHS), which enjoys few quantile crossing and en-
hanced performances compared to independent estimations and hard non-crossing con-
straints. In our implementation, the radial basis function (RBF) kernel is chosen and
a coordinate descent primal-dual algorithm (Fercoq and Bianchi, 2019) is used via
Python package qreg.

• Deep quantile regression as described in Section 2, denoted by DQR. We implement
it in Python via Pytorch and use Adam (Kingma and Ba, 2014) as the optimization
algorithm with default learning rate 0.01 and default � = (0.9, 0.99) (coe�cients used
for computing running averages of gradients and their squares).
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• Deep least squares regression, denoted by DLS. We minimize the mean square error
on the training data to get the nonparametric least square estimator using deep neural
networks. Similarly we implement it on Python via Pytorch and use Adam as the
optimization algorithm with default settings. The comparison with DLS mainly focuses
on the 0.5-th quantile curve since the conditional mean and the conditional median
coincident with each other when error is symmetric.

B.1 Estimations and Evaluations

We consider estimating the quantile curves at 5 di↵erent levels for each simulated model,
i.e., we estimate quantile curves for ⌧ 2 {0.05, 0.25, 0.5, 0.75, 0.95}. For each model f0 and
each error ⌘, according to model (1.1) we generate the training data (X train

i , Y train
i )ni=1

with
sample size n to train the empirical risk minimizer at ⌧ 2 {0.05, 0.25, 0.5, 0.75, 0.95} by
di↵erent methods, i.e.

f̂ ⌧
n 2 argmin

f2F

1

n

nX

i=1

⇢⌧ (Y
train
i � f(X train

i )),

where F is the class of linear functions, RKHS or the class of ReLU neural network functions.
For each f0 and each error ⌘, we also generate the testing data (X test

t , Y test
t )Tt=1

with sample
size T from the same distribution of the training data. Then for each obtained f̂ ⌧

n , we
calculate its testing risk on (X test

t , Y test
t )Tt=1

, i.e.,

R⌧ (f̂ ⌧
n) =

1

T

TX

t=1

⇢⌧ (Y
test
t � f̂ ⌧

n(X
test
t )).

Moreover, for each obtained f̂ ⌧
n , we calculate the L1 distance between f̂ ⌧

n and the correspond-
ing risk minimizer f ⌧

0
, i.e.

kf̂ ⌧
n � f ⌧

0
kL1(⌫) =

1

T

TX

t=1

|f̂ ⌧
n(X

test
t )� f ⌧

0
(X test

t )|,

and we also calculate the L2 distance between f̂ ⌧
n and the corresponding risk minimizer f ⌧

0
,

i.e.

kf̂ ⌧
n � f ⌧

0
k2L2(⌫) =

1

T

TX

t=1

|f̂ ⌧
n(X

test
t )� f ⌧

0
(X test

t )|2.

All the L2 test error results are provided in the appendix. The specific forms of f ⌧
0
are given

in the part on the data generation models below.
In the simulation studies, we take T = 100, 000 as the sample size of testing data for each

data generation model. We report the mean and standard deviation of statistics including
excess risk R⌧ (f̂ ⌧

n) � R⌧ (f ⌧
0
), L1 distance and L2

2
distance over R = 10 replications under

di↵erent scenarios. For DLS, the testing risk and the excess risk are calculated in terms of
mean squares loss function other than the check loss ⇢⌧ .
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B.2 Data generation: univariate models

We generate data according to model (1.1), i.e., Y = f0(X)+⌘. We consider three basic uni-
variate models, including “Linear”, “Wave” and “Triangle”, which corresponds to di↵erent
specifications of f0. The formulae are given below.

1. Linear:

f0(x) = 2x.

2. Wave:
f0(x) = 2x sin(4⇡x).

3. Triangle:
f0(x) = 4(1� |x� 0.5|).

We use the linear model as a baseline model in our simulations and expect all the methods
perform well under the linear model. The “Wave” is a nonlinear smooth model and the
“Triangle” is a nonlinear continuous but non-di↵erentiable model. These models are chosen
so that we can evaluate the performance of DQR, kernelQR and linearQR under di↵erent
types of models.

For these models, we generate X uniformly from the unit interval [0, 1]. We generate the
error ⌘ from the following distributions.

1. ⌘ follows a scaled Student’s t distribution with degrees of freedom 3, i.e., ⌘ ⇠ 0.5⇥t(3),
denoted by t(3);

2. Conditioning on X = x, the error ⌘ follows a normal distribution whose variance
depends on the covariate X, i.e., ⌘ | X = x ⇠ 0.5⇥N (0, [sin(⇡x)]2), denoted by Sine;

3. Conditioning on X = x, the error ⌘ follows a normal distribution whose variance
depends on the covariate X, i.e., ⌘ | X = x ⇠ 0.5⇥N (0, exp(4x�2)), denoted by Exp.

Note that except for t(3), other two types of errors depend on the predictor X. The ⌧ -th
conditional quantile f ⌧

0
(x) of the response Y given X = x can be calculated by

f ⌧
0
(x) = f0(x) + F�1

⌘|X=x(⌧),

where F�1

⌘|X=x(·) is the inverse of the conditional cumulated distribution function of ⌘ given

X = x. For t(3) error, ⌘ is independent with X, then F�1

⌘|X=x(·) is simply the inverse of

distributional function of the 2t(3). For the Sine error, F�1

⌘|X=x(⌧) = 0.5⇥ sin(⇡x)⇥ ��1(⌧)

where ��1(·) is the inverse of the CDF of a standard normal random variable. Similarly,
for the Exp error, F�1

⌘|X=x(⌧) = 0.5 ⇥ exp(2x � 1) ⇥ ��1(⌧). Figure B.1 shows all these
univariate data generation models and their corresponding conditional quantiles at ⌧ =
0.05,0.25,0.5,0.75,0.95.

We generate training data with sample sizes n = 128, 512 and set the batch size of Adam
optimization to be n/2. In all settings, we implement the empirical risk minimization of
DQR and DLS by ReLU activated fixed width multilayer perceptrons, i.e., a class of ReLU
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activated multilayer perceptrons with 4 hidden layers, the width of the network are set to
be (1, 256, 256, 256, 256, 1). All weights and biases in each layer are initialized by uniformly
samples on bounded intervals according to the default initialization mechanism in PyTorch.
The fitted quantiles curves at ⌧ = 0.05, 0.25, 0.5, 0.75, 0.95 are shown in Figure B.2-B.7.
Summary measures including the excess risks and the L1 test and the L2

2
errors based on

R = 10 replications are summarized are summarized in Tables B.1-B.3.

Figure B.1: The target quantiles curves at ⌧ = 0.05, 0.25, 0.5, 0.75, 0.95 under di↵erent mod-
els and error distributions. From the left to the right, each column corresponds a data
generation model, i.e., “Linear”, “Wave” and “Triangle”. From the top to the bottom, each
row corresponds a error distribution, i.e. t(3), “Sine” and “Exp”.
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Figure B.2: The fitted quantile curves by di↵erent methods under univariate model “Linear”
with di↵erent errors. The training data is depicted as grey dots.The target quantile functions
at ⌧ = 0.05, 0.25, 0.5, 0.75, 0.95 are depicted as solid curves in di↵erent colors, and colored
dashed curves represent the corresponding estimates. From the top to the bottom, each row
corresponds a certain type of error: t(3), “Sine” and “Exp”. From the left to right, each
column corresponds a certain estimation method: DQR, kernel QR and linear QR. Fitted
DLS curves are contained in the DQR plots.
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Figure B.3: The fitted quantile curves by di↵erent methods under univariate model “Lin-
ear” with di↵erent errors. The training data is depicted as grey dots.The target quantile
functions at ⌧ = 0.05, 0.5, 0.95 are depicted as solid curves in di↵erent colors, and colored
dashed curves represent the corresponding estimates. From the top to the bottom, each row
corresponds a certain type of error: t(3), “Sine” and “Exp”. From the left to right, each
column corresponds a certain estimation method: DQR, kernel QR and linear QR. Fitted
DLS curves are contained in the DQR plots.
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Figure B.4: The fitted quantile curves by di↵erent methods under univariate model “Wave”
with di↵erent errors. The training data is depicted as grey dots.The target quantile functions
at ⌧ = 0.05, 0.25, 0.5, 0.75, 0.95 are depicted as solid curves in di↵erent colors, and colored
dashed curves represent the corresponding estimates. From the top to the bottom, each row
corresponds a certain type of error: t(3), “Sine” and “Exp”. From the left to right, each
column corresponds a certain estimation method: DQR, kernel QR and linear QR.
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Figure B.5: The fitted quantile curves by di↵erent methods under univariate model “Wave”
with di↵erent errors. The training data is depicted as grey dots.The target quantile functions
at ⌧ = 0.05, 0.5, 0.95 are depicted as solid curves in di↵erent colors, and colored dashed curves
represent the corresponding estimates. From the top to the bottom, each row corresponds
a certain type of error: t(3), “Sine” and “Exp”. From the left to right, each column corre-
sponds a certain estimation method: DQR, kernel QR and linear QR. Fitted DLS curves
are contained in the DQR plots.
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Figure B.6: The fitted quantile curves by di↵erent methods under univariate model “Tri-
angle” with di↵erent errors. The training data is depicted as grey dots.The target quantile
functions at ⌧ = 0.05, 0.25, 0.5, 0.75, 0.95 are depicted as solid curves in di↵erent colors, and
colored dashed curves represent the corresponding estimates. From the top to the bottom,
each row corresponds a certain type of error: t(3), “Sine” and “Exp”. From the left to right,
each column corresponds a certain estimation method: DQR, kernel QR and linear QR.
Fitted DLS curves are contained in the DQR plots.
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Figure B.7: The fitted quantile curves by di↵erent methods under univariate model “Tri-
angle” with di↵erent errors. The training data is depicted as grey dots.The target quantile
functions at ⌧ = 0.05, 0.5, 0.95 are depicted as solid curves in di↵erent colors, and colored
dashed curves represent the corresponding estimates. From the top to the bottom, each row
corresponds a certain type of error: t(3), “Sine” and “Exp”. From the left to right, each
column corresponds a certain estimation method: DQR, kernel QR and linear QR. Fitted
DLS curves are contained in the DQR plots.
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Table B.1: Data is generated from “Linear” model with training sample size n = 128 or 512 and the number

of replications R = 10. The averaged excess risks, the L1 and the L2
2 test errors with the corresponding

standard deviations (in parentheses) are reported for the estimators trained by di↵erent methods.

n = 128 t(3) Sine Exp

Quantile Method Excess risk L1 L2

2
Excess risk L1 L2

2
Excess risk L1 L2

2

⌧ = 0.05

DQR 0.028(0.016) 0.563(0.074) 0.450(0.114) 0.022(0.011) 0.225(0.043) 0.103(0.038) 0.033(0.019) 0.463(0.085) 0.451(0.181)

Kernel QR 0.003(0.009) 0.223(0.118) 0.083(0.075) 0.094(0.084) 0.478(0.167) 0.333(0.181) 0.001(0.008) 0.339(0.102) 0.194(0.098)

Linear QR 0.002(0.010) 0.182(0.073) 0.049(0.041) 0.008(0.003) 0.244(0.021) 0.100(0.035) 0.002(0.014) 0.183(0.065) 0.063(0.050)

⌧ = 0.25

DQR 0.058(0.029) 0.305(0.090) 0.187(0.093) 0.021(0.009) 0.160(0.027) 0.049(0.020) 0.037(0.026) 0.302(0.068) 0.197(0.083)

Kernel QR 0.039(0.025) 0.255(0.082) 0.098(0.059) 0.083(0.034) 0.323(0.058) 0.138(0.041) 0.005(0.011) 0.172(0.061) 0.045(0.031)

Linear QR 0.007(0.007) 0.084(0.039) 0.010(0.008) 0.006(0.003) 0.109(0.015) 0.016(0.004) 0.003(0.016) 0.085(0.043) 0.013(0.013)

⌧ = 0.5

DLS 0.284(0.134) 0.366(0.078) 0.284(0.133) 0.057(0.044) 0.146(0.031) 0.057(0.043) 0.176(0.071) 0.269(0.052) 0.174(0.070)

DQR 0.097(0.042) 0.379(0.112) 0.313(0.177) 0.015(0.007) 0.155(0.035) 0.044(0.017) 0.054(0.025) 0.282(0.048) 0.168(0.068)

Kernel QR 0.028(0.013) 0.230(0.083) 0.086(0.046) 0.056(0.039) 0.220(0.097) 0.090(0.057) 0.024(0.010) 0.168(0.035) 0.040(0.012)

Linear QR 0.004(0.004) 0.071(0.048) 0.008(0.010) 0.001(0.003) 0.022(0.021) 0.001(0.002) 0.006(0.009) 0.070(0.035) 0.008(0.007)

⌧ = 0.75

DQR 0.077(0.049) 0.392(0.110) 0.327(0.206) 0.012(0.013) 0.196(0.046) 0.070(0.034) 0.046(0.017) 0.329(0.052) 0.200(0.054)

Kernel QR 0.011(0.007) 0.195(0.077) 0.063(0.047) 0.049(0.034) 0.326(0.129) 0.205(0.182) 0.028(0.026) 0.198(0.076) 0.072(0.067)

Linear QR 0.002(0.002) 0.087(0.039) 0.012(0.008) 0.003(0.003) 0.108(0.012) 0.016(0.004) 0.007(0.005) 0.121(0.062) 0.026(0.023)

⌧ = 0.95

DQR 0.073(0.034) 0.684(0.145) 0.669(0.256) 0.014(0.008) 0.310(0.050) 0.155(0.048) 0.038(0.021) 0.448(0.094) 0.361(0.140)

Kernel QR 0.020(0.022) 0.331(0.164) 0.183(0.158) 0.029(0.015) 0.429(0.103) 0.274(0.123) 0.023(0.009) 0.444(0.069) 0.283(0.100)

Linear QR 0.003(0.005) 0.224(0.088) 0.077(0.064) 0.006(0.002) 0.237(0.017) 0.090(0.024) 0.005(0.004) 0.187(0.094) 0.058(0.062)

n = 512 t(3) Sine Exp

Quantile Method Excess risk L1 L2

2
Excess risk L1 L2

2
Excess risk L1 L2

2

⌧ = 0.05

DQR 0.001(0.005) 0.401(0.038) 0.223(0.043) 0.003(0.002) 0.118(0.022) 0.026(0.011) 0.001(0.004) 0.303(0.039) 0.209(0.050)

Kernel QR 0.006(0.007) 0.203(0.059) 0.065(0.035) 0.012(0.007) 0.273(0.089) 0.145(0.101) 0.005(0.005) 0.266(0.096) 0.140(0.067)

Linear QR 0.002(0.009) 0.137(0.070) 0.032(0.035) 0.005(0.001) 0.224(0.006) 0.079(0.010) 0.001(0.005) 0.132(0.016) 0.026(0.005)

⌧ = 0.25

DQR 0.019(0.012) 0.192(0.044) 0.070(0.036) 0.004(0.003) 0.083(0.020) 0.013(0.005) 0.002(0.008) 0.207(0.030) 0.094(0.041)

Kernel QR 0.027(0.011) 0.180(0.057) 0.053(0.027) 0.034(0.018) 0.177(0.051) 0.048(0.021) 0.002(0.009) 0.159(0.067) 0.043(0.031)

Linear QR 0.001(0.003) 0.042(0.015) 0.003(0.002) 0.004(0.001) 0.099(0.006) 0.013(0.001) 0.005(0.004) 0.056(0.012) 0.007(0.004)

⌧ = 0.5

DLS 0.074(0.040) 0.186(0.062) 0.074(0.040) 0.010(0.006) 0.066(0.019) 0.010(0.006) 0.045(0.022) 0.136(0.041) 0.046(0.023)

DQR 0.030(0.013) 0.195(0.036) 0.084(0.046) 0.002(0.004) 0.110(0.023) 0.020(0.008) 0.001(0.006) 0.157(0.022) 0.050(0.018)

Kernel QR 0.016(0.014) 0.137(0.062) 0.035(0.027) 0.037(0.029) 0.171(0.076) 0.058(0.047) 0.020(0.018) 0.133(0.049) 0.032(0.020)

Linear QR 0.001(0.001) 0.036(0.016) 0.002(0.002) 0.001(0.002) 0.009(0.008) 0.001(0.001) 0.000(0.003) 0.029(0.017) 0.002(0.001)

⌧ = 0.75

DQR 0.032(0.006) 0.277(0.024) 0.165(0.040) 0.003(0.003) 0.140(0.026) 0.028(0.011) 0.006(0.007) 0.190(0.032) 0.065(0.029)

Kernel QR 0.008(0.007) 0.146(0.054) 0.037(0.025) 0.015(0.013) 0.200(0.076) 0.059(0.035) 0.017(0.011) 0.141(0.059) 0.037(0.021)

Linear QR 0.001(0.000) 0.033(0.012) 0.002(0.001) 0.003(0.002) 0.100(0.006) 0.013(0.002) 0.004(0.001) 0.060(0.012) 0.006(0.003)

⌧ = 0.95

DQR 0.028(0.011) 0.598(0.123) 1.281(1.633) 0.001(0.003) 0.205(0.034) 0.063(0.025) 0.005(0.004) 0.266(0.056) 0.119(0.049)

Kernel QR 0.004(0.003) 0.168(0.061) 0.047(0.026) 0.006(0.005) 0.247(0.090) 0.101(0.069) 0.010(0.006) 0.307(0.089) 0.148(0.081)

Linear QR 0.001(0.002) 0.137(0.082) 0.036(0.041) 0.006(0.001) 0.224(0.005) 0.077(0.007) 0.003(0.001) 0.124(0.010) 0.026(0.010)
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Table B.2: Data is generated from “Wave” model with training sample size n = 128 or 512 and the number

of replications R = 10. The averaged excess risks, the L1 and the L2
2 test errors with the corresponding

standard deviations (in parentheses) are reported for the estimators trained by di↵erent methods.

n = 128 t(3) Sine Exp

Quantile Method Excess risk L1 L2

2
Excess risk L1 L2

2
Excess risk L1 L2

2

⌧ = 0.05

DQR 0.040(0.026) 0.634(0.100) 0.593(0.249) 0.027(0.014) 0.253(0.061) 0.122(0.056) 0.023(0.014) 0.452(0.082) 0.409(0.130)

Kernel QR 0.033(0.004) 0.511(0.037) 0.366(0.051) 0.068(0.010) 0.542(0.031) 0.415(0.049) 0.048(0.007) 0.636(0.074) 0.570(0.151)

Linear QR 0.088(0.026) 0.672(0.063) 0.847(0.208) 0.079(0.007) 0.713(0.056) 0.888(0.103) 0.078(0.012) 0.660(0.016) 0.816(0.072)

⌧ = 0.25

DQR 0.072(0.038) 0.339(0.071) 0.251(0.143) 0.021(0.009) 0.161(0.032) 0.050(0.021) 0.048(0.027) 0.350(0.059) 0.287(0.109)

Kernel QR 0.130(0.014) 0.506(0.023) 0.358(0.037) 0.169(0.007) 0.517(0.015) 0.358(0.024) 0.126(0.015) 0.529(0.023) 0.365(0.034)

Linear QR 0.245(0.021) 0.608(0.017) 0.707(0.067) 0.252(0.011) 0.612(0.012) 0.745(0.048) 0.229(0.044) 0.610(0.017) 0.690(0.086)

⌧ = 0.5

DLS 0.203(0.063) 0.327(0.047) 0.203(0.064) 0.050(0.023) 0.148(0.031) 0.050(0.023) 0.205(0.060) 0.296(0.049) 0.206(0.061)

DQR 0.099(0.054) 0.348(0.101) 0.412(0.573) 0.020(0.006) 0.179(0.020) 0.058(0.013) 0.050(0.024) 0.290(0.059) 0.187(0.084)

Kernel QR 0.145(0.020) 0.504(0.043) 0.373(0.092) 0.172(0.011) 0.519(0.011) 0.360(0.022) 0.157(0.028) 0.526(0.019) 0.368(0.038)

Linear QR 0.247(0.023) 0.595(0.016) 0.586(0.019) 0.280(0.016) 0.583(0.002) 0.581(0.019) 0.210(0.027) 0.597(0.017) 0.595(0.029)

⌧ = 0.75

DQR 0.090(0.038) 0.443(0.134) 0.376(0.274) 0.013(0.008) 0.202(0.030) 0.070(0.023) 0.065(0.029) 0.347(0.055) 0.239(0.076)

Kernel QR 0.095(0.015) 0.516(0.019) 0.365(0.038) 0.127(0.016) 0.516(0.015) 0.358(0.024) 0.128(0.032) 0.523(0.022) 0.403(0.062)

Linear QR 0.135(0.010) 0.679(0.040) 0.712(0.093) 0.176(0.005) 0.756(0.050) 1.064(0.198) 0.124(0.013) 0.629(0.030) 0.653(0.075)

⌧ = 0.95

DQR 0.077(0.030) 0.766(0.249) 2.252(4.679) 0.016(0.011) 0.304(0.058) 0.155(0.057) 0.055(0.027) 0.515(0.091) 0.451(0.166)

Kernel QR 0.026(0.011) 0.528(0.027) 0.397(0.047) 0.052(0.042) 0.578(0.046) 0.494(0.080) 0.041(0.007) 0.565(0.044) 0.498(0.087)

Linear QR 0.021(0.005) 0.866(0.133) 1.122(0.285) 0.047(0.004) 0.987(0.087) 2.085(0.458) 0.029(0.001) 0.660(0.044) 0.723(0.102)

n = 512 t(3) Sine Exp

Quantile Method Excess risk L1 L2

2
Excess risk L1 L2

2
Excess risk L1 L2

2

⌧ = 0.05

DQR 0.004(0.004) 0.367(0.049) 0.179(0.048) 0.004(0.002) 0.139(0.026) 0.033(0.012) 0.006(0.005) 0.277(0.040) 0.169(0.060)

Kernel QR 0.025(0.007) 0.427(0.027) 0.259(0.042) 0.061(0.011) 0.473(0.019) 0.320(0.021) 0.036(0.012) 0.494(0.036) 0.323(0.045)

Linear QR 0.082(0.009) 0.622(0.019) 0.770(0.073) 0.075(0.002) 0.684(0.026) 0.831(0.049) 0.091(0.011) 0.665(0.021) 0.886(0.080)

⌧ = 0.25

DQR 0.015(0.007) 0.183(0.037) 0.055(0.020) 0.005(0.002) 0.098(0.015) 0.016(0.004) 0.005(0.006) 0.203(0.036) 0.096(0.037)

Kernel QR 0.091(0.008) 0.424(0.021) 0.244(0.020) 0.160(0.017) 0.478(0.035) 0.311(0.052) 0.102(0.022) 0.447(0.019) 0.262(0.031)

Linear QR 0.240(0.017) 0.597(0.011) 0.684(0.051) 0.243(0.007) 0.602(0.009) 0.711(0.035) 0.227(0.019) 0.602(0.007) 0.675(0.037)

⌧ = 0.5

DLS 0.055(0.019) 0.174(0.029) 0.055(0.019) 0.013(0.004) 0.082(0.011) 0.013(0.004) 0.044(0.023) 0.135(0.026) 0.044(0.024)

DQR 0.029(0.012) 0.200(0.034) 0.099(0.092) 0.002(0.003) 0.119(0.015) 0.022(0.006) 0.014(0.018) 0.216(0.041) 0.102(0.045)

Kernel QR 0.096(0.018) 0.415(0.042) 0.237(0.055) 0.152(0.014) 0.476(0.019) 0.310(0.032) 0.113(0.012) 0.449(0.014) 0.260(0.019)

Linear QR 0.242(0.009) 0.581(0.004) 0.565(0.004) 0.280(0.010) 0.579(0.002) 0.577(0.013) 0.216(0.015) 0.584(0.007) 0.569(0.008)

⌧ = 0.75

DQR 0.040(0.014) 0.326(0.059) 0.306(0.214) 0.001(0.003) 0.149(0.024) 0.035(0.012) 0.012(0.007) 0.223(0.030) 0.084(0.020)

Kernel QR 0.065(0.013) 0.418(0.023) 0.244(0.025) 0.116(0.015) 0.494(0.026) 0.333(0.044) 0.088(0.010) 0.464(0.021) 0.295(0.036)

Linear QR 0.132(0.008) 0.661(0.028) 0.718(0.083) 0.175(0.006) 0.726(0.034) 0.949(0.128) 0.123(0.004) 0.632(0.022) 0.663(0.058)

⌧ = 0.95

DQR 0.033(0.015) 0.664(0.309) 2.215(4.597) 0.002(0.003) 0.219(0.037) 0.073(0.025) 0.011(0.006) 0.311(0.055) 0.172(0.058)

Kernel QR 0.019(0.005) 0.432(0.025) 0.254(0.034) 0.036(0.010) 0.544(0.036) 0.448(0.061) 0.029(0.005) 0.497(0.047) 0.374(0.076)

Linear QR 0.018(0.002) 0.796(0.073) 1.108(0.183) 0.045(0.001) 0.977(0.034) 2.108(0.174) 0.030(0.001) 0.729(0.039) 0.935(0.115)
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Table B.3: Data is generated from “Triangle” model with training sample size n = 128 or 512 and the num-

ber of replications R = 10. The averaged excess risks, the L1 and the L2
2 test errors with the corresponding

standard deviations (in parentheses) are reported for the estimators trained by di↵erent methods.

n = 128 t(3) Sine Exp

Quantile Method Excess risk L1 L2

2
Excess risk L1 L2

2
Excess risk L1 L2

2

⌧ = 0.05

DQR 0.025(0.013) 0.519(0.096) 0.386(0.130) 0.011(0.006) 0.176(0.035) 0.060(0.024) 0.013(0.014) 0.350(0.058) 0.316(0.122)

Kernel QR 0.012(0.014) 0.270(0.077) 0.108(0.049) 0.073(0.078) 0.409(0.153) 0.244(0.166) 0.002(0.004) 0.378(0.061) 0.237(0.080)

Linear QR 0.081(0.038) 0.650(0.160) 0.621(0.325) 0.039(0.001) 0.401(0.023) 0.263(0.024) 0.086(0.023) 0.774(0.069) 0.857(0.163)

⌧ = 0.25

DQR 0.045(0.025) 0.268(0.071) 0.144(0.079) 0.012(0.007) 0.122(0.028) 0.028(0.014) 0.019(0.022) 0.250(0.064) 0.176(0.094)

Kernel QR 0.037(0.026) 0.227(0.089) 0.083(0.062) 0.097(0.050) 0.355(0.074) 0.175(0.068) 0.009(0.012) 0.199(0.052) 0.075(0.059)

Linear QR 0.167(0.021) 0.553(0.028) 0.436(0.053) 0.166(0.015) 0.502(0.042) 0.387(0.070) 0.125(0.013) 0.586(0.017) 0.485(0.040)

⌧ = 0.5

DLS 0.155(0.082) 0.289(0.071) 0.155(0.082) 0.024(0.016) 0.111(0.033) 0.024(0.016) 0.110(0.049) 0.214(0.056) 0.110(0.050)

DQR 0.058(0.033) 0.272(0.092) 0.157(0.102) 0.013(0.006) 0.146(0.030) 0.039(0.014) 0.071(0.049) 0.301(0.065) 0.217(0.098)

Kernel QR 0.032(0.030) 0.202(0.097) 0.073(0.065) 0.053(0.031) 0.236(0.076) 0.089(0.060) 0.031(0.023) 0.192(0.074) 0.057(0.040)

Linear QR 0.140(0.010) 0.508(0.012) 0.355(0.031) 0.189(0.006) 0.519(0.009) 0.375(0.022) 0.110(0.007) 0.518(0.015) 0.378(0.039)

⌧ = 0.75

DQR 0.070(0.038) 0.380(0.101) 0.256(0.144) 0.003(0.005) 0.164(0.041) 0.044(0.021) 0.041(0.024) 0.306(0.081) 0.193(0.088)

Kernel QR 0.025(0.027) 0.228(0.106) 0.091(0.077) 0.038(0.021) 0.260(0.088) 0.103(0.060) 0.025(0.013) 0.180(0.052) 0.052(0.030)

Linear QR 0.075(0.005) 0.528(0.016) 0.405(0.041) 0.135(0.004) 0.636(0.033) 0.612(0.118) 0.066(0.005) 0.507(0.024) 0.393(0.067)

⌧ = 0.95

DQR 0.054(0.024) 0.583(0.123) 0.498(0.158) 0.004(0.006) 0.224(0.057) 0.084(0.046) 0.036(0.035) 0.394(0.087) 0.318(0.188)

Kernel QR 0.017(0.015) 0.328(0.109) 0.162(0.097) 0.053(0.054) 0.423(0.145) 0.264(0.126) 0.028(0.019) 0.447(0.077) 0.305(0.137)

Linear QR 0.015(0.007) 0.633(0.103) 0.718(0.298) 0.042(0.006) 0.907(0.118) 1.526(0.603) 0.017(0.003) 0.501(0.068) 0.422(0.151)

n = 512 t(3) Sine Exp

Quantile Method Excess risk L1 L2

2
Excess risk L1 L2

2
Excess risk L1 L2

2

⌧ = 0.05

DQR 0.004(0.005) 0.409(0.049) 0.208(0.046) 0.002(0.002) 0.098(0.021) 0.021(0.009) 0.003(0.004) 0.270(0.036) 0.171(0.050)

Kernel QR 0.001(0.011) 0.236(0.093) 0.088(0.071) 0.020(0.009) 0.365(0.067) 0.221(0.070) 0.005(0.004) 0.330(0.056) 0.186(0.058)

Linear QR 0.058(0.009) 0.552(0.028) 0.438(0.056) 0.039(0.001) 0.407(0.014) 0.270(0.014) 0.073(0.010) 0.754(0.029) 0.798(0.068)

⌧ = 0.25

DQR 0.010(0.004) 0.171(0.037) 0.044(0.014) 0.003(0.002) 0.093(0.028) 0.013(0.006) 0.003(0.005) 0.202(0.020) 0.095(0.021)

Kernel QR 0.033(0.029) 0.200(0.102) 0.077(0.075) 0.042(0.014) 0.292(0.048) 0.123(0.036) 0.009(0.008) 0.157(0.033) 0.038(0.013)

Linear QR 0.146(0.010) 0.525(0.011) 0.384(0.023) 0.160(0.005) 0.484(0.018) 0.359(0.031) 0.132(0.015) 0.586(0.009) 0.480(0.017)

⌧ = 0.5

DLS 0.047(0.030) 0.157(0.044) 0.046(0.029) 0.008(0.004) 0.060(0.014) 0.008(0.004) 0.031(0.020) 0.114(0.037) 0.030(0.020)

DQR 0.017(0.007) 0.155(0.037) 0.046(0.021) 0.002(0.001) 0.095(0.022) 0.012(0.005) 0.004(0.006) 0.172(0.033) 0.061(0.030)

Kernel QR 0.030(0.035) 0.201(0.106) 0.072(0.076) 0.029(0.015) 0.192(0.060) 0.067(0.036) 0.031(0.030) 0.186(0.079) 0.066(0.052)

Linear QR 0.135(0.007) 0.505(0.003) 0.342(0.005) 0.186(0.005) 0.508(0.006) 0.348(0.011) 0.103(0.002) 0.523(0.005) 0.394(0.015)

⌧ = 0.75

DQR 0.035(0.015) 0.317(0.076) 0.305(0.277) 0.005(0.001) 0.146(0.026) 0.027(0.008) 0.004(0.007) 0.196(0.031) 0.057(0.022)

Kernel QR 0.018(0.022) 0.223(0.106) 0.082(0.076) 0.029(0.022) 0.264(0.083) 0.098(0.052) 0.018(0.016) 0.171(0.067) 0.049(0.035)

Linear QR 0.071(0.002) 0.535(0.013) 0.407(0.033) 0.131(0.002) 0.625(0.010) 0.567(0.030) 0.061(0.002) 0.493(0.013) 0.351(0.028)

⌧ = 0.95

DQR 0.034(0.016) 0.814(0.341) 1.721(1.850) 0.001(0.001) 0.184(0.030) 0.046(0.012) 0.002(0.003) 0.236(0.067) 0.085(0.042)

Kernel QR 0.006(0.010) 0.224(0.108) 0.086(0.086) 0.018(0.028) 0.290(0.157) 0.129(0.118) 0.014(0.006) 0.372(0.075) 0.187(0.067)

Linear QR 0.010(0.005) 0.588(0.051) 0.554(0.146) 0.039(0.001) 0.858(0.023) 1.178(0.081) 0.015(0.001) 0.466(0.024) 0.310(0.046)

B.3 Data generation: multivariate models

Throughout the multivariate model simulation, we set the input dimension d = 6 and sample
X uniformly on [0, 1]6. We consider the models in Section 5 including single index model
and additive model which correspond di↵erent specifications of f0. The formulae of are given
below.
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1. Single index model:
f0(x) = exp(✓>x),

where ✓ = (2.2831,�1.4818, 5.1966, 0, 0, 0.0515)> 2 R6.

2. Additive model:

f0(x) = exp(4(x1 � 0.5)) + 9(x2 � 0.5)2 + 10 sin(2⇡x3)� 7|x4 � 0.5|,

where x = (x1, . . . , x6)> 2 [0, 1]6.

And we generate the error ⌘ from following distributions,

1. ⌘ follows a scaled Student’s t distribution with degree of freedom 3, i.e., ⌘ ⇠ 0.5⇥ t(3),
denoted by t(3);

2. Conditioning on X = x, the error ⌘ follows a normal distribution whose variance
depends on the covariate X, denoted by Sine, i.e.,

⌘ | X = x ⇠ 0.5⇥N (0, | sin(⇡⇠>x)|2)

where ⇠ = (1.8100,�1.2999, 0, 0,�2.7874, 0.3197)> 2 Rd;

3. Conditioning on X = x, the error ⌘ follows a normal distribution whose variance
depends on the covariate X, denoted by Exp, i.e.,

⌘ | X = x ⇠ 0.5⇥N (0, exp(4⇠>x� 2))

where ⇠ = (1.8100,�1.2999, 0, 0,�2.7874, 0.3197)> 2 Rd.

Similarly, the ⌧ -th conditional quantile f ⌧
0
(x) of Y given X = x can be calculated by

f ⌧
0
(x) = f0(x) + F�1

⌘|X=x(⌧),

where F�1

⌘|X=x(·) is the inverse of the conditional cumulated distribution function of ⌘ given
X = x.

We generate training data with sample sizes n = 512, 1024 and train the estimators in the
same way as in the univariate model simulations. Summary measures including the excess
risks and the L1 test and the L2

2
errors based on R = 10 replications are summarized in

Tables B.4-B.7.
We see that for the nonlinear multivariate models considered, especially for single index

model, DQR performs significantly better than kernel QR and linear QR across all settings
of error distributions.
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