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The goal of regression is to recover an unknown underlying function
that best links a set of predictors to an outcome from noisy observations.
In nonparametric regression, one assumes that the regression function be-
longs to a prespecified infinite-dimensional function space (the hypothesis
space). In the online setting, when the observations come in a stream, it is
computationally-preferable to iteratively update an estimate rather than refit-
ting an entire model repeatedly. Inspired by nonparametric sieve estimation
and stochastic approximation methods, we propose a sieve stochastic gradient
descent estimator (Sieve-SGD) when the hypothesis space is a Sobolev ellip-
soid. We show that Sieve-SGD has rate-optimal mean squared error (MSE)
under a set of simple and direct conditions. The proposed estimator can be
constructed with a low computational (time and space) expense: We also for-
mally show that Sieve-SGD requires almost minimal memory usage among
all statistically rate-optimal estimators.

1. Introduction. It is commonly of interest to understand the association between a
number of features (or predictors) and a quantitative outcome. To this end, one often es-
timates an underlying regression function that best links these two quantities from noisy
observations. More formally, suppose we obtain n samples, (Xi, Yi), where Xi ∈ X ⊂ Rp

denotes a p-vector of features from the ith sample we observe, and Yi ∈ R denotes the ith
outcome. Further suppose that each pair (Xi, Yi) is independently and identically distributed
(i.i.d.) from a fixed but unknown distribution ρ over X × R ⊂ Rp × R. A common target
of estimation is the conditional mean fρ(X) := Eρ[Y |X]. Under extremely mild conditions,
this conditional mean is the optimal function for predicting Y from X with regard to mean
squared error. More formally,

(1) fρ = argmin
f ∈L2

ρX

Eρ

[(
Y − f (X)

)2]
,

where L2
ρX

is the collection of all ρX-mean square integrable functions and ρX is the marginal
distribution of X. Our goal is to estimate fρ from our collection of observed data.

In order to make a tractable estimation of fρ from data, we need to make additional as-
sumptions on its smoothness/structure: The entire L2

ρX
space is too big to search within [4,

31]. We often formally assume that fρ belongs to a prespecified function space F � L2
ρX

.
This F is known as the hypothesis space of the regression problem.

If F can be indexed by a finite-dimensional parameter set � ⊂ Rd , d ∈ N+, we refer to
F as a parametric function space or a parametric class. One common parametric class is
F = {X�β | β ∈ Rd}, the set of all linear functions of X. Parametric classes can impose
overly restrictive assumptions on the form of the regression function that may not be realistic
in practice. As such, it has become popular to assume less restrictive structure: It is com-
mon to define the hypothesis space based on constraints on derivatives, monotonicity or other
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shape-related properties. Such an F is most naturally written as an infinite-dimensional sub-
set of L2

ρX
. Commonly used examples of F in the statistics community include Hölder balls,

Sobolev spaces [22, 37, 51], reproducing kernel Hilbert spaces (RKHS) [5, 11] and Besov
spaces [24]. These are known as nonparametric function spaces, as they cannot naturally
be parametrized using a finite length vector. The Sobolev ellipsoid, in particular, is a simple
and useful abstraction of many important function spaces [51]. Therefore, we focus on them
exclusively as the hypothesis spaces in this paper.

In this paper, we propose an estimator for online nonparametric regression. In online esti-
mation, the data are seen sequentially, one sample at a time. After each sample is observed,
our estimate of fρ must be updated, as a prediction may be required at any point in time
before all the available samples are processed. In an online problem with n observations, we
must sequentially construct n estimates. This is in contrast to the classical batch learning set-
ting where we collect all the data initially and perform estimation only once. In the online
setting, it is generally computationally infeasible to repeatedly refit the whole model from
scratch for each new observation. Thus, online algorithms are generally carefully developed
to permit more tractable updates after each new observation [14, 30].

An ideal estimator in online settings should be: (i) statistically rate-optimal, that is, achieve
the minimax rate for estimating fρ over F ; and (ii) computationally inexpensive to con-
struct/update. In this paper, we present such an online nonparametric estimator for use when
the hypothesis space is a Sobolev ellipsoid, which we term the Sieve Stochastic Gradient
Descent estimator (Sieve-SGD). This method can be thought of as an online version of the
classical projection estimator [49], where the latter is a specific example of sieve estimators
[21, 42]. We use the more general term “sieve” in naming our method to emphasize its non-
parametric nature and avoid confusion with the term “stochastic projection” [50]. We will
show that Sieve-SGD can achieve rate-optimal estimation error for F, a Sobolev ellipsoid,
and asymptotically uses minimal memory (up to a log factor) among all rate-optimal estima-
tors. In addition, our estimator has the same computational cost (up to a constant) as merely
examining each allocated memory location every time a new sample Xi is collected. This
intimates that in scenarios when our estimator has near optimal space complexity, it may also
have near optimal time complexity (though formal investigation of lower bounds for time
complexity in this problem is beyond the scope of the current manuscript).

The structure of our paper continues as follows. In Section 2, we briefly cover classical
results for batch, nonparametric estimation in Sobolev ellipsoids, focusing on projection esti-
mators (which motivate our method). In Section 3, we return to the online setting and explore
intuition for how one might combine projection estimation and stochastic gradient descent
(SGD) [7]. The latter is a well-studied method that has been applied fruitfully to online para-
metric regression problems. This will help motivate our proposed method, which as we will
see, can be thought of as an SGD estimator with a parameter space of increasing dimension.
In Section 4, we discuss existing nonparametric SGD estimators, and identify some notable
drawbacks of current methods. In Section 5, we introduce the formal construction of Sieve-
SGD and analyze its computational expense. From there, we show that our estimator has a
dramatically smaller “dimension” than existing methods and discuss how this helps to re-
duce the computational expense. In Section 6, we give a theoretical analysis of the statistical
properties of Sieve-SGD. In constructing our estimator, we need to decide how quickly to
grow the dimension it projects onto. Under minimal assumptions, we characterize the re-
quired growth rate and learning rate for our estimator to be statistically and computationally
(near) optimal. We will also investigate under what conditions such an optimality result is
adaptive/insensitive to our choice of the “dimension-specific learning rate.” Section 7 pro-
vides simulation studies to illustrate our theoretical results. Finally, in Section 8, we have
some further discussion of Sieve-SGD and possible future research directions.
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Notation. In this paper, we use C to denote a generic constant that does not depend
on sample size n (The value of C may be different in different parts of the manuscript).
Additionally, the notation an = �(bn) means an = O(bn) and bn = O(an). The function �x�
maps x to the largest integer smaller than x. For a vector x ∈ Rp , x(i) is the ith component
of x. The notation x ∨ y (resp., x ∧ y) is shorthand for max{x, y} (resp., min{x, y}). The
‖ · ‖∞ norm of a continuous function f is defined as ‖f ‖∞ = supx∈X |f (x)|, where X is the
domain of f .

2. Batch learning and the projection estimator. In this section, we consider estima-
tion in the classical batch setting where our estimate is constructed once after all n samples
are observed. We will begin by formally introducing a Sobolev ellipsoid: This is the hypoth-
esis space we will use throughout this manuscript. This will be followed by presenting the
classical projection estimator [49].

Consider a user-specified measure ν whose support contains X , and the corresponding
square-integrable function space L2

ν . In many interesting cases, ν can be simply taken as
Lebesgue measure over X but it is not necessary in the general form of our theory. To define a
Sobolev ellipsoid in L2

ν , suppose we have a complete orthonormal basis {ψj , j = 1,2, . . .} ⊂
L2

ν of L2
ν [26]. This means:

(i) For any f ∈ L2
ν , there exists a unique sequence (θj )

∞
j=1 ∈ �2 such that

(2) lim
N→∞

∫ ∣∣∣∣∣f (z) −
N∑

j=1

θjψj (z)

∣∣∣∣∣
2

dν(z) = 0 (completeness),

where �2 is the space of square convergent series.
(ii) {ψj } is an orthonormal system,

(3)
∫

ψi(z)ψj (z) dν(z) = δij (orthonormality),

where δij is the Kronecker delta.

We define the Sobolev ellipsoid W(s,Q, {ψj }) as

(4) W
(
s,Q, {ψj }) :=

{
f =

∞∑
j=1

θjψj

∣∣∣ ∞∑
j=1

(
θj j

s)2 ≤ Q2

}
.

We refer to (θj )
∞
j=1 as the (general) Fourier coefficients of a function f . Throughout this

manuscript, we assume the measure ν, basis functions ψj and the regularity parameter s are
all known. When it is clear which ψj we are using, we will denote a Sobolev ellipsoid simply
by W(s,Q). We may also use the further simplified notation W(s) because the diameter Q

usually plays a secondary role in our theoretical analysis and the proposed method is adaptive
to it. Intuitively, by saying a function f belongs to a Sobolev ellipsoid, we are requiring its
coefficients {θj } to converge to zero faster than j−(s+1/2) (if not, the sum

∑∞
j=1(θj j

s)2 would
diverge to infinity). The larger s is, the faster the decay of θj will be, and thus the stronger
our assumption is.

Sobolev ellipsoids are popular spaces to study for two reasons: (1) They impose a useful
structure for theory and computations, especially as a basic example of hypothesis spaces
with finite metric entropy; and (2) Many natural spaces of regular functions are Sobolev
ellipsoids. For example, if X = [0,1] with ν as Lebesgue measure, then for any s > 0, the
periodic Sobolev space

(5) F =
{
f ∈ L2

ν

∣∣∣ ∫ (
f (s)(x)

)2
dx < Q2, f (k)(0) = f (k)(1), k = 0,1, . . . , s − 1

}
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can be written as a Sobolev ellipsoid, using an orthogonal basis of trigonometric functions
[51], Chapter 2. More generally, for many important RKHSs (H, 〈·, ·〉H), it is possible to
find a set of ψj such that W(s,Q, {ψj }) = {f ∈ H|‖f ‖H ≤ Q}, that is, a ball in an RKHS
is a Sobolev ellipsoid (see [12, 47]): Under mild conditions [44], a Mercer kernel K(s, t) :
X ×X →R has the following Mercer representation:

(6) K(s, t) = ∑
j∈J

λjψj (s)ψj (t),

where λj > 0, J is at most countably infinite. And {ψj } is an orthonormal system (in L2
ν)

w.r.t. some measure ν on X , and any function f ∈ H can be written as f = ∑
j∈J θjψj .

It is also known that the RKHS-norm can be identified as ‖f ‖2
H = ∑

j∈J θ2
j λ−1

j . So, a ball
in the RKHS, that is, {f ∈ H|‖f ‖H ≤ Q} is the same as a Sobolev ellipsoid spanned by
{ψj } when J = N+ and λj = j−2s . This is the case for many Sobolev-type kernels (e.g., p.
454 in [16]). When J is finite-dimensional (polynomial kernels) or λj decays exponentially
fast in j (Gaussian kernel, p. 455 in [16]), a ball in the RKHS can be characterized as some
“generalized” Sobolev ellipsoid.

In everything that follows, we will assume that fρ , our target of estimation, lives in a
known Sobolev ellipsoid W(s,Q, {ψj }); with {ψj } specified, and orthonormal w.r.t. a speci-
fied measure ν (not necessarily equal to ρX); and s known (we allow Q to be unknown).

The projection estimator is a classical estimator naturally associated with a Sobolev el-
lipsoid. We can treat it as a special case of general sieve estimation [21], Chapter 10: The
estimates can be characterized by a sequence of finite-dimensional linear spaces of increas-
ing dimension (the dimension increases with sample size). For any given f ∈ W(s,Q), the
magnitude of its Fourier coefficients must asymptotically decrease with j fast enough. Thus,
it might be sensible to consider an estimator that discards the basis functions far into the
tail. This is precisely what the projection estimator does. More formally, for a user-specified
truncation level Jn, the projection estimator is given by

(7) f̂n,Jn =
Jn∑

j=1

θ̂jψj ,

where θ̂ = (θ̂1, . . . , θ̂Jn)
� is the solution of the least square problem:

(8) min
θ∈RJn

n∑
i=1

(
Yi −

Jn∑
j=1

θjψj (Xi)

)2

.

It has been shown (e.g., [49], Theorem 1.9) that when we choose Jn = �(n1/(2s+1)) the
projection estimator is a rate-optimal estimator over W(s,Q), that is,

(9) lim sup
n→∞

sup
fρ∈W(s,Q)

E
[‖f̂n,Jn − fρ‖2

2
] = O

(
n− 2s

2s+1
)
.

This result is usually shown in the literature for Xi equally spaced, or drawn from a uniform
distribution. But in our theoretical analysis (Section 6), we allow ρX to be a much more
general distribution.

Sieve-SGD is inspired by this (batch) projection estimator. The key here is that the number
of basis functions we need to use can be dramatically smaller than the sample size, and their
analytical forms do not depend on the data (usually reproducing kernel methods use basis
functions “centered” at the feature vectors Xi). This possibility has been rarely explored [58]
by existing nonparametric online estimation research.
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3. Online learning and stochastic approximation. We now move to the online learn-
ing setting where observations are collected sequentially from a data stream, and an estimate
of our function is required after each sample. Such an infinite data stream may really exist, for
example, with simulated samples as in reinforcement learning, or the stream may serve as an
abstraction used with large-scale data sets where it is not favorable to handle all the samples
at once. It is generally computationally prohibitive to use a method developed for the “batch”
setting and completely refit it after each observation. Instead methods that iteratively update
are preferred. For example, fitting a single projection estimator (solving (8)) with n obser-
vations using Jn = n1/(2s+1) requires computation of �(n1+2/(2s+1)). Refitting a projection
estimator (from scratch) after each observation i = 1, . . . , n with Ji = �i1/(2s+1)� would re-
quire an accumulated computation of

∑n
i=1 i1+2/(2s+1) = �(n2+2/(2s+1)). This scales worse

than quadratically in n. Our goal in the online nonparametric setting is to find a statistically
rate-optimal estimator whose computation scales only slightly worse than linearly in n.

Online learning has been thoroughly studied for parametric F . Many proposed methods
are based on the concept of stochastic approximation [30]. One of the most popular meth-
ods in stochastic approximation is Stochastic Gradient Descent (SGD) [7]. In the parametric
setting, SGD gives a statistically rate-optimal estimator f̂n whose population mean-squared
error E‖f̂n − fρ‖2

L2
ρX

is of order O(n−1) [2, 3, 17]. Both vanilla SGD and its variants have

been applied to general convex loss functions and are shown to be statistically rate-optimal
under mild conditions [14, 38].

3.1. Parametric SGD. To motivate stochastic optimization in the nonparametric setting,
we first give more details on SGD for parametric classes. Here, we consider a specific class
of functions F = {f = ∑d

j=1 β(j)ψj ,β ∈ Rd} for a set of prespecified basis functions ψj :
Rp → R, j = 1, . . . , d . We use this example to illustrate the principle of (parametric) SGD.
Solving argminf ∈F E[(Y − f (X))2] reduces to solving

(10) min
β∈Rd

�(β) := min
β∈Rd

E

[(
Y −

d∑
j=1

β(j)ψj (X)

)2]
.

We assume the minimizer of �(β) exists and denote it as β∗.
If we knew the true joint distribution ρ of (X,Y ) (which never happens in practice), then

equation (10) is just a numerical optimization problem, which does not involve data. We
could use gradient descent to solve it. The gradient of � at any point β is

(11) ∇�(β) = −2E

[(
Y −

d∑
j=1

β(j)ψj (X)

)(
ψ1(X), . . . ,ψd(X)

)�]
.

Thus, the gradient descent updating rule one could use is

(12)
β̂0 = 0,

β̂n = β̂n−1 − γn∇�(β̂n−1),

where {γn} is a prespecified sequence of step-sizes (or learning rate) and β̂n ∈ Rd is the
sequence of approximations of β∗.

In practice, we do not know the joint distribution ρ: we must use data to estimate β∗.
In the framework of SGD, this is done by using the data to get unbiased estimates of the
gradients and substituting the estimates into our updating rule (12). In particular, we note that
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∇̂�(β) := −2(Yi −∑d
j=1 β(j)ψj (Xi))(ψ1(Xi), . . . ,ψd(Xi))

� is an unbiased estimator of the
gradient ∇�(β) based on one sample. This results in the SGD updating rule:

(13)

β̂0 = 0,

β̂n = β̂n−1 − γn
̂∇�(β̂n−1)

= β̂n−1 + 2γn

(
Yn −

d∑
j=1

β̂
(j)
n−1ψj(Xn)

)(
ψ1(Xn), . . . ,ψd(Xn)

)�
.

So, our estimator f̂n of fρ has the following functional update rule, derived from (13):

(14) f̂n = f̂n−1 + 2γn

(
Yn − f̂n−1(Xn)

) d∑
j=1

ψj(Xn)ψj .

Here, we have shifted to considering our estimator f̂n as a function, rather than thinking about
β̂n a vector of coefficients. This will be important in the nonparametric setting.

3.2. From parametric SGD to nonparametric SGD. In this subsection, we discuss the
intuition in moving from SGD in a finite-dimensional parametric space to an infinite-
dimensional space.

We assume fρ ∈ W(s,Q, {ψj }) ⊂ L2
ν . Since ψj is a complete basis of L2

ν , we can always
find an expansion of fρ w.r.t. {ψj }:

(15) f =
∞∑

j=1

θjψj .

In Section 3.1, we already discussed the SGD updating rule for a d-dimensional model
f (X) = ∑d

j=1 β(j)ψj (X). In the nonparametric scenario, the number of basis function is
increased from d to infinity: This causes problems if care is not taken.

One might naturally consider applying a direct analog to the finite-dimensional SGD rule
(14) here (we omit the constant 2):

(16) f̂n = f̂n−1 + γn

(
Yn − f̂n−1(Xn)

) ∞∑
j=1

ψj(Xn)ψj .

Unfortunately, we run into a severe problem: The series
∑∞

j=1 ψj(Xn)ψj does not converge
even if all ψj are bounded (it is direct to check when Xn = 0 and ψj are trigonometric
functions). However, as we assume fρ ∈ W(s), we know that those higher order components,
ψj , j � 1 should have very small coefficients. Thus, one natural solution is to use a different
step-size per component that decreases as j increases. By doing “less fitting” for larger j ,
we can stabilize our update (smaller variance), and yet might still appropriately fit the overall
regression function. In particular, one might modify (16) to

(17) f̂n = f̂n−1 + γn

(
Yn − f̂n−1(Xn)

) ∞∑
j=1

tjψj (Xn)ψj ,

where the component-specific (or dimension-specific) learning rates tj > 0 are monotonically
decreasing with j . For tj decreasing fast enough and uniformly bounded ψj , the function se-
ries

∑∞
j=1 tjψj (Xn)ψj is absolutely convergent. Now (17) becomes a sensible nonparametric

SGD updating rule when the hypothesis space is a Sobolev ellipsoid. In addition, sometimes∑∞
j=1 tjψj (Xn)ψj actually has a simply characterized closed form (in particular, for many
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RKHS). In such cases, (17) results in a relatively straightforward algorithm. More specifi-
cally, one can show that when tj = j−2s and γn = �(n−1/(2s+1)), the average

(18) f̄n := 1

n

n∑
i=1

f̂i

is a rate-optimal estimator of fρ ∈ W(s). This was recently proposed (though motivated quite
differently) in the context of RKHS hypothesis spaces [13]. The authors there engage directly
with the kernel function for the RKHS (though their updating rule is equivalent to equation
(17)). This will be discussed in more detail in Section 4. Our work engages and extends
these ideas (in combination with sieve estimation) to form a statistically rate-optimal online
estimator with greatly reduced computational and memory complexity.

4. Related work. Nonparametric online learning is a relatively new area. A few re-
markable functional stochastic approximation algorithms have been proposed in the last two
decades [9, 13, 34, 48, 55]. The key ideas in that body of work are intimately related to those
mentioned in Section 3.2, however, they engage those ideas from a different direction: They
assume that the hypothesis function space F is an RKHS, and then leverage the kernel in
that space. In particular, the RKHS structure makes it possible to take the gradient of the
evaluation functional Lx(f ) := f (x), with respect to the RKHS inner product 〈·, ·〉K , that is,

(19) Lx(f + εg) = f (x) + εg(x) = Lx(f ) + ε〈g,Kx〉K.

Thus, Kx(·) := K(x, ·) ∈ F is the gradient of functional Lx at f . However, one cannot do
this in the general L2

ρX
space where the evaluation functional is no longer a bounded operator.

Thus, when F is an RKHS associated with kernel K , there is a simple nonparametric SGD
updating rule for minimizing E[(Y − f (X))2] over F :

(20)
f̂0 = 0,

f̂n = f̂n−1 + γn

(
Yn − f̂n−1(Xn)

)
K(Xn, ·).

Here, because the gradient is taken with respect to the RKHS inner product, we do not have
the issue encountered in (16) where our series representation of the “gradient” actually did
not converge. In fact, by working with the RKHS inner product, we implicitly carry out the
proposal of Section 3.2 and decrease the component-specific learning rate of higher order
terms. More specifically, we usually have the Mercer expansion of the kernel function,

(21) K(x, z) =
∞∑

j=1

tjψj (x)ψj (z),

with respect to an orthonormal basis {ψj } of L2
ν . For many common RKHSs, we have

tj = �(j−u) for some u > 1 [16], Appendix A. Thus, (20) corresponds precisely to the
previously discussed update (17). Most popular RKHS have a kernel K(x, z) with a closed-
form representation, and thus, rather than having to store an infinite number of coefficients,
after n steps the estimate from (20) would take the form of a weighted linear combination of
n kernel functions [13]:

(22) f̂n =
n∑

i=1

biK(Xi, ·).

Although such estimators (with one more Polyak averaging step (18)) have been shown to
give rate-optimal MSE [13], updating them with a new observation (Xn+1, Yn+1) usually
involves evaluating n kernel functions at Xn+1, with computational expense of order �(n).
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This is in contrast with the constant update cost of �(d) in parametric SGD, where d is the
dimension of the parameter space. Thus, the time expense of nonparametric kernel SGD will
accumulate at order �(n2). Also, one is required to store the n feature-values {Xi}ni=1 to
evaluate the estimator, which results in �(n) space expense. This relatively large time and
space complexity indicates that those kernel-based SGD estimators are not ideal as methods
that are nominally designed to deal with large data sets.

There has been some work in the literature aimed at improving the computational aspects
of kernel SGD methods [29, 32, 43]. These methods select a subset of the n kernel functions
centered at the feature vectors and use them as basis functions to construct estimators (which
is also related to Nyström projection). Neither the statistical performance nor the computa-
tional expense of the aforementioned work is guaranteed to be optimal. Also, the theoretical
analysis in that work typically requires the noise variable to have extremely light tails.

There has also been recent work [9, 34] aimed at improving kernel SGD algorithms by
leveraging approximate second-order information (SGD only uses the first-order informa-
tion). The estimator in [34] is shown to give rate-optimal MSE and has better (theoretical)
computational efficiency than the vanilla kernel SGD mentioned above. However, these algo-
rithms are usually dramatically more complicated and have a couple of hyperparameters that
need to be tuned.

There is another branch of research also called “online nonparametric regression” that
engages with a different but related setting [18, 40]. They do not aim to directly minimize the
(population) generalization error. Their definition of “regret” is based on comparing a running
average of prediction error and the empirical risk minimizer’s training error. Formally, it
is defined as

∑n
i=1 l(Ŷi , Yi) − inff ∈F

∑n
i=1 l(f (Xi), Yi), where Ŷi is the prediction of the

algorithm based on the first i − 1 observations, l is a convex loss and F is the hypothesis
function space. While this is an interesting area of research, and might be used to engage with
population generalization error (using online-to-batch techniques), it is a less direct treatment
than what we are considering in this work.

5. Online learning and the projection estimator: Sieve-SGD. In this section, we com-
bine ideas from the projection estimator (in the batch learning setting), and stochastic gradient
descent to develop an estimator that is suitable for online nonparametric regression. The es-
timator we will propose achieves the minimax rate for MSE over a Sobolev ellipsoid, and is
much more computationally efficient than standard kernel SGD methods.

As a reminder, the kernel SGD estimator based on (20) has minimax rate optimal
MSE. When

∑∞
j=1 tjψi(s)ψj (t) has an available closed form, it requires �(n) memory

and has �(n2) time expense for sequentially processing n observations. We aim to im-
prove this, and furthermore, to propose an effective estimator appropriate for cases where∑∞

j=1 tjψi(s)ψj (t) has no closed form.
Motivated by the projection estimator, we opt to use truncated series in the updating rule,

modifying (17) (or equivalently (20)) to get

(23) f̂n = f̂n−1 + γn

(
Yn − f̂n−1(Xn)

) Jn∑
j=1

tjψj (Xn)ψj .

Here, Jn is an increasing sequence of integers that grows as we collect more observations.
When Jn is larger, the updating rule (23) is closer to our original form (17), however, a
smaller Jn is desirable because it results in a lower computational expense. Part of our task
is identifying a “minimal” Jn that still maintains favorable statistical properties.

It turns out there are 2 ways to control the bias-variance tradeoff. One can use the trun-
cation level Jn, or the component specific step-sizes tj . If the truncation level is used, then
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the methodology is more analogous to a projection estimator. In this case, so long as tj is
not too large (controlling the variance in the dynamics of SGD) or too small (controlling the
bias term), we would get (near) optimal statistical performance for a relatively wide range
of choices for tj . We give formal results related to this in Section 6.3. If, instead, we con-
trol the bias-variance tradeoff using tj then our estimator is more analogous to kernel-SGD.
In this case, the first-order terms for bias and variance are determined by the sequence {tj }
and Jn just needs to be sufficiently large (such that we do not induce excess bias). We give
formal results for this in Section 6.2. This second way to control the tradeoff is similar to
using a truncated basis for penalized regression in the batch learning setting. For example, in
[23] and [54], Section 5.2, the authors propose to estimate fρ by solving a penalized regres-
sion spline problem, where they use a reduced spline basis for improved computation (rather
than including a knot at every point). The bias/variance trade-off there is controlled via the
penalty: They are careful to include enough basis elements so that the use of a reduced basis
only contributes a second-order term to the bias.

We will next give details of our proposal. For this proposal, we are assuming that fρ ∈
W(s,Q, {ψj }) ⊂ L2

ν , and that s is known. Based on this, we choose our component specific
step-sizes as tj = j−2ω (for some 1/2 < ω ≤ s). We also define

(24) Kω
x,Jn

(·) =
Jn∑

j=1

j−2ωψj (x)ψj (·).

In addition to simplifying exposition, this notation relates our method to (21). The function
Kω

x,Jn
(·) can be seen as a truncated approximation of the kernel function

(25) Kω
x,∞(·) =

∞∑
j=1

j−2ωψj (x)ψj (·)

that drops all the ψj with index j > Jn.

5.1. Sieve stochastic gradient descent. We now explicitly give our Sieve Stochas-
tic Gradient Descent algorithm (Sieve-SGD) for estimation of fρ in a Sobolev ellipsoid
W(s,Q, {ψj }).

Let Jn = �nα� for some specified α > 0 and ω ∈ (1/2, s]. The parameter α is usually
taken between (2s + 1)−1 and 1. We use γi to denote the step-size (learning rate) of the ith
update and typically choose γi = �(i−1/(2s+1)). The construction of Sieve-SGD estimators
is formally described in Algorithm 1.

We refer to the function f̄i as the Sieve-SGD estimate of fρ . We will later show that f̄i

has rate-optimal MSE for estimating any fρ ∈ W(s). In Algorithm 1, we use the language of
“updating a function,” but in practice one would update the coefficient vector corresponding
to the functions {ψj }Jn

j=1. In Appendix A [60], we attach a presentation of the algorithm that
works directly with the coefficients. This estimator is quite simple, though it does require
apriori selection/knowledge of {ψj } and s (which can be done using a held-out validation
set in practice). Unfortunately, showing its favorable statistical properties (in Section 6) is
somewhat more complex.

5.2. Computational expense. After examining the updating rule above, one can see that
f̂i has the form:

(28) f̂i(x) =
Ji∑

j=1

bjψj (x).
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Proposed Algorithm 1: Sieve Stochastic Gradient Descent (Sieve-SGD)

Set α,ω > 0, step-size {γi} and basis functions {ψj }. Initialize f̄0 = f̂0 = 0.
For i = 1,2, . . .:

1. Calculate Ji = �iα�, collect data pair (Xi, Yi).
2. Update f̂i :

(26)
f̂i = f̂i−1 + γi

(
Yi − f̂i−1(Xi)

) Ji∑
j=1

j−2ωψj (Xi)ψj

= f̂i−1 + γi

(
Yi − f̂i−1(Xi)

)
Kω

Xi,Ji

3. Polyak averaging: Update f̄i by

(27)

f̄i = 1

i + 1

i∑
k=0

f̂k

(
= i

i + 1
f̄i−1 + 1

i + 1
f̂i

)

This requires storing the coefficients {bj }Ji

j=1 in memory. The main computational burden

of each update step is calculating f̂i−1(Xi) and Kω
Xi,Ji

. Both require evaluating Ji basis

functions at Xi . Thus, the computational expense of the “Update f̂i” step above is of or-
der Ji = �(iα) when we take evaluating one basis function at one point as O(1). And the
total expense of processing n samples is of order �(n1+α). The space expense is of the same
order �(iα): We need only store coefficients of Ji basis functions. In Section 6.4, we will
show that, under mild conditions, this memory complexity is near optimal among all estima-
tors with rate-optimal MSE.

This compares favorably with standard kernel SGD (22), which uses i basis functions at
step i: Our estimator uses fewer when α < 1; as we will show later, α can be taken as small
as (2s + 1)−1, which is a substantial improvement. In practice, the parameter α can either be
selected based on our assumptions about s (belief on the smoothness of fρ ) or heuristically
tuned for empirical performance.

5.3. General convex loss. Although the main focus of this paper is regression with
squared-error loss, our algorithm has a straightforward extension to general convex loss. Sup-
pose we want to minimize the population loss,

(29) E
[
�
(
Y,f (X)

)]
,

over all functions f ∈ W(s,Q, {ψj }) and the loss function �(Y, ·) is convex for each Y . In
this case, we need only modify step 2 of the Sieve-SGD estimator in Section 5.1. Given loss
�(·, ·), the updating rule for f̂i takes the general form:

2’) Update f̂i :

(30) f̂i = f̂i−1 + γi

∂

∂v
�(u, v)

∣∣∣∣
(Yi ,f̂i−1(Xi))

Kω
Xi,Ji

.
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For example, with Y = {1,−1} considering nonparametric logistic regression, the loss func-
tion one would use is �(Y,f (X)) = log(1 + exp(−Yf (X))). In this case, we have

(31)
∂

∂v
�(u, v)

∣∣∣∣
(Yi ,f̂i−1(Xi))

= (
1 + exp

(
Yif̂i−1(Xi)

))−1
Yi ∈ R.

Theoretical guarantees for Sieve-SGD using general convex loss are beyond the scope of
this paper. However, in Section 7 we provide simulated experiments that show the empirical
performance of Sieve-SGD for nonparametric logistic regression. These empirical results
intimate that perhaps similar theoretical guarantees to those shown for squared-error-loss
hold in a more general setting.

5.4. Choice of basis functions and multivariate problems. In practice, there are many
available choices of univariate ψj that in general lead to interesting (Sobolev-type) hypothesis
spaces. For example,

(32) ψ1(x) = 1, ψj = √
2 cos

(
(j − 1)πx

)
, for j ≥ 2.

This set of basis functions are the “eigenfunctions” of Sobolev spaces over [0,1] (Ap-
pendix A.2 in [39]), which means they are orthogonal w.r.t. to the Lebesgue inner product
and the Sobolev inner product simultaneously. The corresponding Sobolev ellipsoid does not
impose periodicity assumptions of fρ and is very convenient to use in practice. Among many
other choices, we can also use algebraic polynomials, or a combination of algebraic polyno-
mials and (periodic) Fourier basis [15].

In most applications, the covariate Xi’s take value in Rp where p > 1. In some situations,
there are some “canonical” choices of basis function ψ(x) : Rp → R that people might use
for identifying their (multivariate) Sobolev ellipsoid. For example, when considering estimat-
ing a function on a sphere S2, ψj could be taken as the orthonormal spherical harmonics ([27,
36]).

In many situations, the basis functions ψj can conveniently be taken as a tensor product of
a one-dimensional complete basis, and Sieve-SGD can be directly applied in this multivariate
setting. If we are using a univariate Sobolev ellipsoid to represent a ball in an RKHS, then the
ellipsoid defined by the tensor product basis will correspond to a ball in the RKHS spanned by
the tensor product kernel (though care needs to be taken with the ordering of the basis vectors
[59]). Some technical details and numerical examples on this can be found in Appendix B
and the references therein. In all of these cases, our theoretical results will hold (so long as
the function fρ belongs to the specified space).

A common alternative approach in multivariate problems is to impose some additional
structure on the hypothesis space to make estimation more tractable. This is particularly true
when the feature dimension p is large. One popular model is the nonparametric additive
model [25, 46, 57], which is thought to effectively balance model flexibility and interpretabil-
ity. For x ∈ Rp , we might consider assuming/imposing an additive structure on the regression
function:

(33) fρ(x) =
p∑

k=1

fρ,k

(
x(k)),

where each of the component functions fρ,k belong to a Sobolev ellipsoid Wk(sk,Qk, {ψjk}).
For ease of exposition, in (33), we assume E[Y ] = 0 to avoid the need for a common inter-
cept term. For a more complete version with common intercept, see Appendix B. For a fixed
dimension p, when all Wk = W ∗ (for some Sobolev ellipsoid W ∗), the minimax rate for esti-
mating such an additive model is identical (up to a multiplicative constant p) to the minimax
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rate in the analogous one-dimension nonparametric regression problem with the same hy-
pothesis space W ∗ [41, 46]. For the additive model (33), the updating rule (26) of Sieve-SGD
could be replaced by

(34) f̂i = f̂i−1 + γi

(
Yi −

p∑
k=1

f̂i−1,k

(
X

(k)
i

)) p∑
k=1

Jik∑
j=1

j−2ωkψjk

(
X

(k)
i

)
ψjk.

Here, Jik is the truncation level of kth dimension when the sample size = i and f̂i−1,k is the
estimate of fρ,k . Most of the theory that we develop in Section 6 could apply here.

6. Generalization guarantees of Sieve-SGD. In this section, we show Sieve-SGD
achieves the minimax rate for nonparametric estimation in Sobolev ellipsoids under mild
assumptions. We also show that Sieve-SGD has near minimal memory complexity among all
estimators that are minimax rate-optimal for estimation in a Sobolev ellipsoid. The condi-
tions on the hyperparameters can be used as theoretical guidance when applying Sieve-SGD
to real data problems.

6.1. Model assumptions. We begin by listing the conditions we will require in our proof.
They reflect different aspects of the problem: independent observations (A1), distribution of
X (A2), the hypothesis space assumed for fρ (A3) and tail behavior of the noise (A4). These
conditions ensure the MSE rate-optimality of Sieve-SGD.

A1 (i.i.d. data) The data points (Xn,Yn)n∈N ∈X ×R are independently, identically sampled
from a distribution ρ(X,Y ).

A2 (feature distribution) Let ν be a user-specified measure that is strictly positive on X .
Assume the distribution of feature X, ρX , is absolutely continuous w.r.t. ν. Let pX =
dρX/dν denote its Radon–Nikodym derivative. We assume for some u, � such that 0 <

� < u < ∞:

� ≤ pX(x) ≤ u for all x ∈ X

A3 (Sobolev ellipsoid) Let {ψj }∞j=1 be a set of uniformly bounded (‖ψj‖∞ ≤ M), continu-

ous, orthonormal basis of L2
ν . We assume the regression function fρ falls in a Sobolev

ellipsoid, with basis functions given by {ψj }, that is, for some s > 1/2, Q < ∞,

(35) fρ ∈ W
(
s,Q, {ψj })

A4 (noise) One of the following two assumptions is satisfied by the noise variable ε = Y −
fρ(X):

• ε is bounded by some Cε almost surely.
• ε is independent of the features, X, and has a finite second moment E[ε2] = C2

ε .

Note 1: The lower bound requirement of pX in A2 may be due to artifacts in our proof.
In reality, especially when the dimension of our feature-space X is large, such a requirement
may be hard to satisfy. According to our simulation results, Sieve-SGD still achieves the
minimax rate even when ρX has a strictly smaller support than ν. As compared with other
work in nonparametric online learning [13, 48, 55], our assumptions are more direct. We
discuss this in detail later in this section.

Note 2: In Assumption A3, we do not require ψj to be orthonormal w.r.t. ρX (and it is
in general not true), but only require them to be orthonormal w.r.t. the known measure ν. In
many cases, ν might be taken to be Lesbesgue (or uniform) measure over a domain containing
X , as this is the canonical measure under which function spaces such as Sobolev spaces
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and Besov spaces are defined. As long as the density function pX satisfies A2, using the
nonorthonormal (w.r.t. ρX) basis functions, ψj , does not prevent Sieve-SGD from having
rate-optimal MSE.

Note 3: It is a common convention to think about a hypothesis space where the Sobolev
(type) norm of the regression function is bounded by a constant Q (A3), rather than just
< ∞. Such a bounded space has a finite minimax rate: the exponent is determined by s, and
the constant is proportional to Q (see also note 5 under Theorem 6.1). We also would like
to note that the proposed algorithm does not use radius Q at any point and the theoretical
guarantee is adaptive w.r.t. Q. (More specifically, the final bounds given in Appendix D.3
and Lemma D.1 have ‖fρ‖K , which can be thought of as the effective value for Q, on the
right-hand side.)

6.2. Rate optimality when tj = j−2s . In this section, we present the rate-optimality re-
sults of Sieve-SGD when we choosing the component-specific learning rate to be tj = j−2s

(or ω = s in (26)). In this setting, our theoretical analysis treats Sieve-SGD as a truncated-
version (in the basis expansion domain) of a “correct” kernel SGD procedure (we will discuss
the “incorrect” version very soon in Section 6.3, and show that it can actually still have fa-
vorable statistical and computational properties). Here is the main result in this setting.

THEOREM 6.1. Assume A1–A4. Set the component-specific learning rate as tj = j−2s .
Also, set the overall learning rate to be γn = γ0n

−1/(2s+1) with γ0 ≤ (2M2ζ(2s))−1, where
ζ(k) = ∑∞

i=1 i−k . Choose the number of basis functions to be Jn ≥ nα log2 n ∨ 1 for an arbi-
trary α ≥ (2s + 1)−1.

Then the MSE of Sieve-SGD (27) converges at the following rate:

(36) E‖f̄n − fρ‖2
L2

ρX

= O
(
n− 2s

2s+1
)
.

This implies that Sieve-SGD is a minimax rate-optimal estimator of fρ over W(s,Q, {ψj }).

We now discuss our assumptions and results in more detail, and relate them to what is
currently in the literature.

Note 1: In the analysis of many reproducing kernel methods for nonparametric estima-
tion [13, 48, 56], the spectrum of the covariance operator plays an important role in con-
trolling the statistical behavior of estimators. It is conventional in the community to make
assumptions associated with this spectrum, which we find less natural than our related as-
sumptions A2 and A3. The covariance operator is an analog of the covariance matrix in
infinite-dimensional spaces. For our problem setting, one natural covariance operator TX is
defined as

(37)

TX : L2
ρX

→ L2
ρX

,

g �→
∫
X

g(τ)

( ∞∑
j=1

j−2sψj (τ )ψj

)
dρX(τ).

A direct analysis of the spectrum of TX is hard. However, there is a simpler operator that we
have in hand, which we can relate TX to

(38)

Tν : L2
ν → L2

ν,

g �→
∫
X

g(τ)

( ∞∑
j=1

j−2sψj (τ )ψj

)
dν(τ ).
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We know the eigensystem of Tν : It is exactly (j−2s,ψj ) (eigenvalue, eigenfunction). It is di-
rect to check because {ψj }’s are orthonormal w.r.t. ν, so

∫
ψj(τ)

∑∞
j=1 j−2sψj (τ )ψj dν(τ ) =

j−2sψj . As an additional contribution, our work shows that with the simple assumptions A2
and A3, we can get knowledge about TX’s eigenvalues from those of Tν .

LEMMA 6.2. Given assumptions A2, A3, the j th eigenvalue, λj , (sorted in a decreasing
order) of TX satisfies λj = �(j−2s).

Moreover, the upper bound of the density in A2 ensures the upper bound in Lemma 6.2
(λj = O(j−2s)), and the lower bound of the density ensures the other half of the result.
The proof of the above lemma uses the underlying connection between the eigenvalues of
an operator and its metric entropy. For rigorous definitions and proof of Lemma 6.2, see
Appendix C.

Although the exact result of Lemma 6.2 is not used in the proof of Theorem 6.1 (or Theo-
rem 6.3), we still present it here since it may be of interest itself and the stated results are less
technical and easier to comprehend. The proof of the more technical version (Lemma C.14)
follows very closely to that of Lemma 6.2. In that more general version, we investigate the
spectrum of covariance operators of form: T ω

X,Jn
(f ) = ∫

f (τ)(
∑Jn

j=1 j−2ωψj (x)ψj ) dρX(τ).
To prove Theorem 6.1, we need to engage with a series of RKHSs with kernels given by

(39)

Ks
Jn

: X ×X →R,

(s, t) �→
Jn∑

j=1

j−2sψj (s)ψj (t).

While we discuss our work in the context of Sobolev ellipsoids, there is an equivalent for-
mulation directly in RKHS. See Appendix C for more discussion. Although an explicit form
for Ks

Jn
is not in general necessary or accessible for Sieve-SGD, the existence (i.e., the ab-

solute convergence of the infinite sum) of Ks
Jn

is a direct consequence of A3. This is enough
for theoretical analysis. For kernel SGD methods, a fixed kernel (with Jn = ∞) is used and
there is only one relevant RKHS. This means, on average, kernel SGD is applying the same
procedure each iteration; but for Sieve-SGD, we need to engage with a series of increasing
RKHSs (on average, Sieve-SGD may not be doing the same thing between iterations). As a
side contribution, we present how to handle such a more technically involved case.

Note 2: In contrast to our assumption A3, the hypothesis spaces in [13, 34, 48, 55] are de-
scribed in terms of “TX” and its eigendecomposition. This unfortunately obfuscates difficul-
ties related to verifying those conditions when analyzing their statistical performance (though
applying the learning algorithm in practice does not need the knowledge of the eigensystem).
In particular, because ρX is involved in the definition of TX (37), we need knowledge of (gen-
erally unknown) ρX to characterize TX , and understand its eigenvalues and eigenfunctions.

More specifically, in the literature we mentioned above, it is often assumed that for some
r ∈ [1/2,1] (Definition C.6),

(40)
∥∥T −r

X (fρ)
∥∥2
L2

ρX

< ∞.

This can be related to a Sobolev ellipsoid-type condition

(41)
∥∥T −r

X (fρ)
∥∥2
L2

ρX

=
∞∑

j=1

λ−2r
j θ2

j < ∞ where fρ =
∞∑

j=1

θjφj ,

where (λj ,φj )
∞
j=1 are the eigenvalue and eigenfunctions of operator TX , and φj ’s are or-

thonormal w.r.t. L2
ρX

. Unfortunately, we cannot directly engage with (λj ,φj )
∞
j=1, since cal-

culating them requires knowledge of ρX . Thus, assumptions formulated in the language of
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T −r
X are difficult to directly understand. In contrast, our assumptions translate to analyzing

the spectrum of Tν , which has no dependence on ρX , and its spectrum can been directly
calculated (as noted above).

Note 3: For parametric SGD methods, usually a bound on the second moment of the gradi-
ent vector is required to guarantee rate-optimal performance (both theoretically and in prac-
tice). Formally, for optimization problem (10), it is usually required that E[‖∇�(β)‖2] ≤
R2 < ∞ for all β ∈Rd [6, 14].

For nonparametric stochastic approximation, there is a similar regularity requirement
for the “gradient.” Assumptions A2–A3 are enough to ensure this for Sieve-SGD. In our
proof, we show that there exists a number R < ∞ such that for all x ∈ X and any Jn,
we have ‖Ks

x,Jn
‖2
K ≤ R2. This result is listed in Lemma D.1 where R2 = M2ζ(2s) and

ζ(k) = ∑∞
i=1 i−k . In Theorem 6.1, we required γ0 to be smaller than (2M2ζ(2s))−1 to ensure

our theoretical guarantees.
Note 4: For completeness, here we state the minimax rate of our nonparametric regression

problem over a Sobolev ellipsoid:

(42) lim inf
n→∞ inf

f̂

sup
fρ∈W(s,Q,{ψj })

E
[
n

2s
2s+1 ‖f̂ − fρ‖2

L2
ρX

] ≥ C,

where the infimum ranges over all possible functions f̂ that are sufficiently measurable. For
a derivation of this lower bound, see [52], Chapter 15. Many other online methods we men-
tioned in Section 4 can achieve this lower bound, however, their computational expense is in
general unfavorable compared with the proposed method.

Also, the bound (36) should not be understood as a dimension-free result. When the fea-
ture X ∈ Rp is a multivariate vector, the parameter s should be treated as s = s∗/p, where
s∗ is, for example, the order of derivative that we assume the regression function fρ has.
Plugging this into the result presented in Theorem 6.1 gives a dimension-dependent bound of
order n−2s∗/(2s∗+p) in which both the smoothness assumption and dimension show up in the
exponent. Such a bound is minimax optimal when learning in a (large) homogeneous mul-
tivariate space [45]. In practice, one can usually achieve better performance by leveraging
other low-dimensional structures (See Section 5.4 and Appendix B).

6.3. Robustness of tj for properly chosen Jn. In Section 6.2, we presented the opti-
mality guarantees of Sieve-SGD in the case when the component-specific learning rate is
chosen as the most “natural” value, that is, tj = j−2s . In that case, Sieve-SGD is statisti-
cally optimal so long as the number of basis functions does not increase too slowly, that
is, Jn ≥ n1/(2s+1) log2(n). Specifically, when Jn = ∞, the Sieve-SGD updating rule reduces
to the kernel SGD updating rule (20) with kernel Ks∞(Xn, ·) = ∑∞

j=1 j−2sψj (Xn)ψj (·). So
long as we have access to the closed form of Ks∞(Xn, ·), the corresponding kernel SGD esti-
mator is also statistically optimal under the same conditions. In such a scenario, Sieve-SGD
can be seen as a truncated-version of a “correct” kernel SGD method with much better com-
putational properties.

Although truncating the kernel in the spectral domain may be seen as an extension of kernel
SGD, it can alternatively be seen as related to projection estimators: In that case, however,
two pieces of Theorem 6.1 may seem unnatural: (1) the strict requirement on tj (= j−2s); and
(2) the fact that we only lower bound the truncation rate, rather than requiring a precise value
for the growth of Jn. In the case of the original Theorem 6.1, the bias-variance tradeoff is
actually not balanced via truncation. Instead, it is balanced directly using the tj . The required
lower bound on the truncation rate is just given to ensure that we do not accrue excess bias.
Alternatively, to better parallel projection estimators, it might seem more natural to directly
use the number of basis functions Jn to control the bias-variance tradeoff (there is nothing
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akin to tj in (8)). In this section, we will explore this idea: that if we are more precise in
specifying Jn, perhaps we can be more flexible with tj .

More specifically, we are interested in milder conditions on the sequence (tj ) such that
if we properly select the rate at which our “dimension” increases (i.e., the rate at which Jn

grows), Sieve-SGD would still attain its favorable statistical and computational properties.
Since we will be using Jn as the tuning parameter to balance bias and variance, one might ex-
pect kernel SGD, which sets Jn = ∞, would not always have optimal statistical performance
for all sequences (tj ) satisfying the “milder” conditions. This is confirmed via the following
theorem: For Sieve-SGD, one can actually use large componentwise step-sizes that need only
satisfy tj < j−1 for any smoothness class W(s), so long as the truncation level is appropri-
ately set; while the largest tj that can be used for kernel-SGD (without truncation) needs to
ensure tj < j−(s+1/2), which depends on the smoothness of fρ .

THEOREM 6.3. Assume A1–A4. Set the component-specific learning rate to be tj =
j−2ω with 1/2 < ω ≤ s. Choose the learning rate to be γn = γ0n

−1/(2s+1), with γ0 ≤
M2ζ(2ω)/2. Choose the number of basis functions to be Jn = n1/(2s+1) log2 n ∨ 1.

Then the MSE of Sieve-SGD (27) converges at the following near optimal rate:

(43) E‖f̄n − fρ‖2
L2

ρX

= O
(
n− 2s

2s+1 log2 n
)
.

Note 1: The requirement of tj < j−1 is to guarantee a finite “second moment” of the gra-
dient (as in Note 3 under Theorem 6.1). In this theorem, once this minimal requirement is
satisfied, the decay rate of tj does not influence either the statistical guarantees or the compu-
tational expense of the estimators — both of these are determined entirely by the truncation
level. As we will discuss very soon in Section 6.4, the choice of Jn = n1/(2s+1) log2 n in
Theorem 6.3 and Theorem 6.1 would result in algorithms that are both statistically and com-
putationally near optimal up to a polylog term.

Note 2: The most direct form of the projection estimator determines the basis functions’
coefficients by solving a (unpenalized) least square problem (8) in which there are no learn-
ing rates involved. It is the truncation level Jn that determines the bias-variance trade-off
and statistical performance. In Theorem 6.3, we present a stochastic approximation analog
to that result. From a reproducing-kernel methodology perspective, Theorem 6.1 investigates
the cases when the capacity of the kernel (ω) matches the source smoothness (s); in The-
orem 6.3, we show under what conditions the mismatch between these two quantities do
not affect the statistical (and computational) properties of Sieve-SGD. It is very common
to discuss the generalization ability of a reproducing kernel method in the literature when
the kernel capacity does not match the source smoothness. For example, in [13] the authors
use a pair of parameters (r, α) to state the hypothesis space and the capacity of the kernels.
The smoothness of the hypothesis space is determined by the product of the two parameters
rα. When r �= 1/2, they are considering using a kernel whose capacity does not match the
smoothness of fρ . Their proposed method must modify the learning rate properly to recover
rate optimality (or it is impossible due to saturation).

Comparing their results with Theorem 6.3, there are ω such that the kernel SGD estimator,
using kernel Kω∞(Xn, ·) = ∑∞

j=1 j−2ωψj (Xn)ψj (·), may not be optimal no matter how we
modify the learning rate γn (described as “saturation” in [13]). Whereas for Sieve-SGD using
the truncated “kernels” Kω

Jn
(Xn, ·) = ∑Jn

j=1 j−2ωψj (Xn)ψj (·), the statistical and computa-
tion performance can still be jointly near optimal. Theorem 6.3 is formally similar to such
a “source-capacity” discussion, but the results are quite different in nature—in particular, it
is the truncation level that “saves” us, and allows a much larger mismatch between kernel
capacity and source smoothness.
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Note 3: The overall proof structures of Theorem 6.1 and Theorem 6.3 are similar; the
difference is in the proof of Theorem 6.1 we need Lemma D.4 and related technical results,
but for Theorem 6.3 we use Lemma E.1 instead.

Note 4: We also provide some intuition for using a decreasing learning rate γn: For rate-
optimal parametric SGD methods with averaging, the learning rate γn can be taken as a
constant γ0. However, the employed constant γ0 is inversely proportional to the dimension of
parameter (assuming each dimension of the feature has a bounded support) [3], which is, in
some sense, consistent with our results (though we have seen no other results in the literature
that engage with a dimension that increases as the learning process proceeds). We require the
learning rate to be a decreasing sequence so that it can cancel out the effect of increasing the
estimator dimension: The increasing dimension would have resulted in a noise variance that
is increasing if care was not taken.

6.4. Near optimal space expense. In this section, we will show that Sieve-SGD is asymp-
totically (nearly) space-optimal for estimating fρ in a Sobolev ellipsoid under the conditions
listed in Section 6.1. We will show that, even with computer round-off error, Sieve-SGD only
needs �(n1/(2s+1) log3 n) bits to achieve the minimax rate for MSE (or off by a log2(n) term
when ω �= s as stated in Theorem 6.3), and further, that there is no estimator with o(n1/(2s+1))

bits of space expense that can achieve the minimax rate for estimating fρ ∈ W(s,Q). In our
analysis, we note that computers cannot store decimals in infinite precision, and formally deal
with a modified version of our algorithm that stores coefficients in fixed precision (that grows
in n): This necessitates the extra log(n) term (compared with the number of basis function
needed in Theorem 6.1 and 6.3). The modified algorithm with fixed, but growing precision
still results in the same MSE when a round-off error is not considered.

We first give a more formal definition of the space expense of an estimator in our analy-
sis. A regression estimator can be seen as a mapping Mn from the data Zn

1 = {(Xi, Yi)|i =
1,2, . . . , n} to a function f̂n ∈ F . For any such Mn that can be engaged by a computer,
must be decomposable into an “encoder-decoder” pair (En,Dn). Here, En represents the
“encoder” that compresses the information into computer memory. Formally, we define En

to be a mapping from Zn
1 to a binary sequence of length bn. And the corresponding Dn is

the “decoder” of the binary sequence that translates the information saved in memory back
to a mathematical object f̂n. Generally, the binary sequence length bn will increase with n:
As more information is contained in the data, we need more memory to store an increasingly
accurate estimate of our regression function.

Given an estimator that can decomposed into a pair (En,Dn), one can see that the de-
composition is not unique. There are, in fact, infinitely many pairs that are trivially different
from each other for any such estimator. Moreover, En, Dn’s can be random mappings if we
allow random algorithms: For example, random forests include additional randomness due to
bootstrapping/variable selection. In order to be more precise regarding memory complexity
constraints, we introduce the following formalization.

DEFINITION 6.4 (bn-sized estimator). Given a sequence of integers (bi)i∈N, we say an
estimator Mn : (X ×R)n → F is a bn-sized estimator if it satisfies the following conditions:

1. For every n, there exists an encoder mapping En : (X × R)n → {0,1}bn , and a de-
coder mapping Dn : {0,1}bn → F such that

(44) Mn = Dn ◦ En

2. The decoder Dn is a known, fixed mapping. En can be either a random or fixed
mapping.



SIEVE-SGD FOR ONLINE REGRESSION 2865

We use the sample mean as a toy example to illustrate the above definition. In practice, the
sample mean is usually a 64-sized estimator of the population mean. Here, 64 stands for the
number of bits needed to represent a double-precision floating point number. In this case, the
size bn = 64 does not increase with sample size n. However, not every real number can be
arbitrarily precisely specified by a fixed-length floating-point number, so a careful asymptotic
analysis of estimation of the mean suggests that perhaps we should store a sample mean with
growing levels of precision, that is, bn would need to grow with n. A binary sequence of
length s can specify 2s real numbers, so to achieve the O(n−1) statistically optimal bound
for mean estimation, a log(n)-sized version of sample mean is formally required. In practice,
64-bit precision is generally more than enough for mean estimation. Nevertheless, in this
manuscript we aim to give a more formal and precise asymptotic analysis of our Sieve-SGD
estimator.

Readers who are more familiar with computational complexity theory may find our defini-
tion similar to a (probabilistic) Turing machine. However, in our framework the machine does
not use binary sequences on tapes as input and output; nor do we need to identify the basic
operations on the “machine.” We aimed to remove unnecessary complexity for readers with a
more statistical background. Discussion of Turing machines using finite length working tape
can be found in [1], Chapter 4.

To construct Sieve-SGD estimators that achieve (near) optimal MSE, we only need to store
the coefficients of the Jn = �(n1/(2s+1) log2 n) basis functions. However, as in our example
with the sample mean, we need to be careful about the precision with which we store those
coefficients. We need to determine: (i) how small we require the round-off error to be in
order to maintain the statistical optimality of Sieve-SGD, and (ii) how much space expense
is required to achieve such precision. In Appendix F.1, we identify how round-off error is
introduced into the system and how it decreases as more bits are used to store each coefficient.
In Corollary F.2, we show that by using �(logn) bits per coefficient, a O(n1/(2s+1) log3 n)-
sized version of Sieve-SGD can achieve the same optimal convergence rate as in the infinite
precision setting (or equivalently round-off error-free setting).

Combining the above result with the following theorem, we can conclude that no MSE
rate-optimal estimator can require less memory by a polynomial factor than Sieve-SGD.

THEOREM 6.5. Let bn be a sequence of integers, and bn = o(n1/(2s+1)). Let M(bn) be
the collection of all bn-sized estimators, then we have

(45) lim
n→∞ inf

Mn∈M(bn)
sup

fρ∈W(s,Q,{ψj })
E

[
n

2s
2s+1

∥∥Mn

(
Zn

1
) − fρ

∥∥2
L2

ρX

] = ∞,

that is, no such bn-sized estimators can be rate-optimal.

This theorem tells us we cannot find any minimax rate-optimal o(n1/(2s+1))-sized esti-
mator. Thus, the best rate-optimal estimator one can expect to find is a �(n1/(2s+1))-sized
estimator: Sieve-SGD’s space expense only misses this lower bound by a polylogarithmic
factor.

We give the proof of the above theorem in Appendix F.2. Although here we focus on
regression in Sobolev spaces, the technique used can be applied to other hypothesis spaces.
The proof is based on the concept that metric-entropy is the minimal number of bits needed
to represent an arbitrary function from a function space up to ε-error, which can be traced
back to [28]. Also, following a very similar argument, one can prove that no constant-sized
estimator can be rate-optimal (or even consistent) for parametric regression problems. We
discuss this further in the Appendix F.2. We also include some discussion of the time expense
in Section 8.
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TABLE 1
Settings of simulation studies. B4(x) = x4 − 2x3 + x2 − 1

30 is the 4th Bernoulli polynomial. {x} indicates the
fractional part of x

Example 1 Example 2

True fρ B4(x) 4
√

2
∑50

j=1(−1)j+1j−4 sin((2j − 1)πx/2)

Ellipsoid para. s 2 3
Jn n0.21 n0.10 and n0.15 and n0.43

tj j−1.02 & j−4 j−6

ψj (x) sin(2π�j/2�x), j is even
√

2 sin(
(2j−1)πx

2 )

cos(2π�j/2�x), j is odd
Kernel K(s, t) − 1

24B4({s − t}) min(s, t)

Noise Unif[−0.02,0.02] or Unif[−0.2,0.2] Normal(0,1)

γ0 3 1

7. Simulation study.

7.1. Sieve-SGD for online regression. In this section, we illustrate both the statistical
and computational properties of Sieve-SGD with simulated examples. The two examples we
use have different fρ , W(s,Q, {ψj }) and ρX . The user-specified measure ν is taken as the
uniform distribution over [0,1] in both. We provide the details of our simulation settings
in Table 1. These two examples are designed for verifying our theoretical guarantees: The
fρ we use have known explicit series expansion or is constructed explicitly using the basis
function ψj (to ensure the truth is hard enough to learn in the assumed Sobolev ellipsoid). In
Appendix B, we provide more numerical examples to better mimic the practical application:
We engage with multivariate features and compare Sieve-SGD with many popular machine
learning methods.

EXAMPLE 1. In this example, we examine the empirical performance of Sieve-SGD
and compare it with two other methods in batch or online nonparametric regression: kernel
ridge regression (KRR) [52] and kernel SGD [13]. We will see that the relationship between
generalization error E‖f̄n − fρ‖2

2 and sample size corresponds well with our theoretical ex-
pectations presented in Theorem 6.1 (Figure 1).

The true regression function we chose for Example 1 is also used in the analysis of kernel
SGD [13]. In that paper, kernel SGD with Polyak averaging is compared with other (kernel-
based) nonparametric online estimators [48, 55], and has been shown to have similar or better
performance, so we include only kernel SGD with averaging as the reference online estima-
tor. We also note that although KRR performs slightly better than online methods, its time
expense (which is of order �(n3) per update) is dramatically more than online estimators
(kernel SGD �(n), Sieve-SGD �(Jn), per update).

We compare the empirical performance of Sieve-SGD under two different distributions
of X. In Figure 1, panel (A), X has an uniform distribution over [0,1], and in panel (B) it has
a distribution with a strictly smaller support (uniform over [0.25,0.75]). The trigonometric
basis functions we use are orthonormal w.r.t. ν, the Lebesgue measure over [0,1] (panel (A))
but not w.r.t. the one in panel (B). Although the only the feature distribution in panel (A)
satisfies the distribution assumption in A2, in both cases Sieve-SGD achieves the optimal
rate. This is a heuristic evidence indicating the lower bound requirement in A2 may be due
to some artifacts in the proof.
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FIG. 1. Example 1, log10 ‖f̄n − fρ‖2
2 against log10 n. The black line has slope = −4/5, which represents the

optimal rate. Each curve is calculated as the average of 100 repetitions. (A) X is uniformly distributed over [0,1].
In this setting, SNR ∼ 3. (B) X has a distribution in which ψj are not orthonormal. We present the results with
very large noise, SNR ∼ 0.03. Due to different computational costs, we chose different maximum n for different
methods.

EXAMPLE 2. In this example, we consider the performance of Sieve-SGD under differ-
ent Jn = �nα� (number of basis functions). The fρ we use is explicitly constructed with basis
functions ψj(x) = √

2 sin((2j − 1)πx/2) and we tune the proposed method based on the
(correct) assumption that it belongs to Sobolev ellipsoid W(3,Q, {ψj }) (see Theorem 4.1 of
[26], Chapter 1, for completeness and orthonormality of {ψj }).

According to Theorem 6.1, in order to guarantee statistical optimality, we need α ≥ (2s +
1)−1 ∼ 0.14. We consider several values of α, one below this threshold, and two above it:

(46) 0.10 <
1

2s + 1
∼ 0.14 < 0.15 < 0.43.

As we can see from Figure 2(A), when α = 0.15 and 0.43, Sieve-SGD is rate-optimal
as expected. When α = 0.10, we are using too few basis functions, which results in the sub-
optimal statistical performance. Such a suboptimality is because of the bias term: there are too
few basis functions used. In fact, the parameter setting α = 0.1 is so small that there are only
3 basis functions used when n = 105. To verify the above statement, we can briefly calculate

FIG. 2. Example 2, effect of truncation exponents α = 0.10,0.15,0.43. (A) Statistical performance,
log10 ‖f̄n − fρ‖2

2 against log10 n. The black line has slope = −6/7, which represents the optimal rate. Each
curve is calculated as the average of 100 repetitions. (B) The accumulated CPU time to process n observations.
The black line is the CPU time of kernel SGD, included for a benchmark.
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FIG. 3. Example 3, empirical performance of Sieve-SGD in a nonparametric logistic regression problem. Plot
log10(l(f̄n) − l(f ∗)) against log10 n. The black line has slope = −2/3. Each curve is calculated as the average
of 100 repetitions.

when the second and the third basis functions are added in: (103)0.1 ∼ 2, this corresponds to
the first acceleration of the learning rate around log10(n) = 3; similarly, (104.8)0.1 ∼ 3, which
explains the second one.

In Figure 2(B), we show the CPU time for reference. For Sieve-SGD, the accumulated
CPU time should be on the order of �(n1+α): The larger α, the more basis functions required,
the slower the algorithm. We also include the CPU time of kernel SGD with averaging as
a benchmark, which has a cumulative computational expense of order �(n2). The code is
written in R (4.0.4), and runs on (the CPU of) a machine with 1 Intel Core m3 processor, 1.2
GHz, with 8 GB of RAM.

7.2. Sieve-SGD for alternative convex losses. In this section, we provide the results of
an experiment applying Sieve-SGD to online nonparametric logistic regression. Although
this manuscript gives no theoretical guarantees in this setting, it is still of interest to see the
empirical performance of Sieve-SGD for general convex loss.

EXAMPLE 3. In this setting, the distribution of class labels Y was generated by Y ∼
2 Ber(g(X)) − 1, where (g(x))−1 = 1 + exp(−5(1 − 2|x − 0.5|)); and the distribution of
X was uniform over [0,1]. Thus, the minimizer f ∗ of loss E[�(Y,f (X))] = E[log(1 +
exp{−Yf (X)})] is f ∗ = 5(1 − 2|x − 0.5|).

When we apply the Sieve-SGD estimator (30) to this problem, we assume

(47) f ∗ ∈ W
(
1,Q,

{√
2 sin

(
(2j − 1)πx/2

)})
.

We try several α = 0.10,0.33,0.50, all with γ0 = 6. As we can see from Figure 3, the regret
E[�(f̄n)− �(f ∗)] converges to zero at an apparent rate of n−2/3 when α = 0.33,0.50 (which
would agree with our result for squared error loss). When the number of basis functions
increases too slowly (here is α = 0.10), the regret decreases slowly after ∼ 10 observations
(for similar reason of overflowing bias term as we noted in Section 7.1).

8. Discussion. In this paper, we considered online nonparametric regression in a Sobolev
ellipsoid. We proposed the Sieve Stochastic Gradient Descent estimator (Sieve-SGD), an on-
line estimator inspired by both (a) the nonparametric projection estimator, which is a special
realization of general sieve estimators; and (b) estimators constructed using stochastic gradi-
ent descent algorithms. By using an increasing number of basis functions, Sieve-SGD has a
rate-optimal estimation error and is computationally very efficient.
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For online learning problems with general convex losses, the optimal estimation rate de-
pends on both the hypothesis space and loss function (e.g., whether it is Lipschitz or strongly
convex). In this paper, we did not establish theoretical guarantees for Sieve-SGD when ap-
plied to a general convex loss, however, we gave some empirical evidence that it can perform
well there. We believe our proof techniques might be extended beyond squared-error loss,
perhaps using ideas in [3, 10, 34, 35].

We have seen a rich collection of work in the past decade targeting the optimality of esti-
mators under computational (especially time expense) constraints. A lot of those results are
established in the context of sparse PCA and related sparse-low-rank matrix problems, for
example, [8, 19, 20, 33, 53, 61]. The main focus of these work is usually comparing the statis-
tical performance of the best polynomial-time algorithm with that of the “optimal” algorithm
without any computational restrictions. By relating their statistical problem with a known NP
problem [1], they can usually show the suboptimality of polynomial-time algorithms under
the famous conjecture P �= NP . However, for the nonparametric regression problem in this
paper, there is a polynomial-time estimator that can achieve the global minimax rate. It is of
theoretical interest to know if there are any statistically rate-optimal online estimators that
require less than �(n1+1/(2s+1)) time expense: We hypothesize that there are not.
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SUPPLEMENTARY MATERIAL

A sieve stochastic gradient descent estimator for online nonparametric regression in
Sobolev ellipsoids: Supplementary material (DOI: 10.1214/22-AOS2212SUPP; .pdf). We
provide more discussion on the application of our proposed methods. The complete proof of
the theoretical results is also provided.
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