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Stochastic gradient descent procedures have gained popularity for pa-
rameter estimation from large data sets. However, their statistical properties
are not well understood, in theory. And in practice, avoiding numerical insta-
bility requires careful tuning of key parameters. Here, we introduce implicit
stochastic gradient descent procedures, which involve parameter updates that
are implicitly defined. Intuitively, implicit updates shrink standard stochastic
gradient descent updates. The amount of shrinkage depends on the observed
Fisher information matrix, which does not need to be explicitly computed;
thus, implicit procedures increase stability without increasing the computa-
tional burden. Our theoretical analysis provides the first full characterization
of the asymptotic behavior of both standard and implicit stochastic gradient
descent-based estimators, including finite-sample error bounds. Importantly,
analytical expressions for the variances of these stochastic gradient-based es-
timators reveal their exact loss of efficiency. We also develop new algorithms
to compute implicit stochastic gradient descent-based estimators for general-
ized linear models, Cox proportional hazards, M-estimators, in practice, and
perform extensive experiments. Our results suggest that implicit stochastic
gradient descent procedures are poised to become a workhorse for approxi-
mate inference from large data sets.

1. Introduction. Parameter estimation by optimization of an objective func-
tion is a fundamental idea in statistics and machine learning [Fisher (1922), Hastie,
Tibshirani and Friedman (2009), Lehmann and Casella (1998)]. However, classi-
cal procedures, such as Fisher scoring, the EM algorithm or iteratively reweighted
least squares [Dempster, Laird and Rubin (1977), Fisher (1925), Green (1984)], do
not scale to modern data sets with millions of data points and hundreds or thou-
sands of parameters [National Research Council (2013)].

In particular, suppose we want to estimate the true parameter 6, € R” of a dis-
tribution f from N i.i.d. data points (X;, ¥;) such that conditional on covariate
X; € R? outcome Y; € R is distributed according to f(Y;; X, 6,). Such estima-
tion problems often reduce to optimization problems. For instance, the maximum
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likelihood estimator (MLE) is obtained by solving 0}\‘;16 = argmaxg Z,N: 1 log f(Yi;
X;,0). Classical optimization procedures, such as Newton—Raphson or Fisher
scoring, have a runtime complexity that ranges between O(Np'+¢) and O(N p**¢),
in the best case and worst case, respectively [Lange (2010)]. Quasi-Newton (QN)
procedures are the only viable alternative in practice because they have O(Np?)
complexity per iteration, or O(Np'*#) in certain favorable cases [Hennig and
Kiefel (2013)]. However, estimation from large data sets requires an even bet-
ter runtime complexity that is roughly O(Np!~¢), that is, linear in data size N
but sublinear in parameter dimension p. The first requirement on N is generally
unavoidable because all data points carry information from the i.i.d. assumption.
Sublinearity in p is therefore critical.

Such requirements have recently generated interest in stochastic optimization
procedures, especially those only relying on first-order information, that is, gradi-
ents. Perhaps the most widely popular procedure in this family is stochastic gradi-
ent descent (SGD), defined forn =1,2, ..., as
(1) 05 = 0,5, + v CuV l0g £ (Ya: X, 6,5),

n n—

where y, > 0 is the learning rate sequence, typically defined as y, = yi1n~7, y1 >
0 is the learning rate parameter, y € (0.5, 1], and C, are p x p positive-definite
matrices, also known as condition matrices.

Stochastic optimization procedures of this kind are special cases of stochastic
approximation [Robbins and Monro (1951)], where the estimation problem is not
formulated as an optimization problem but more generally as a characteristic equa-
tion. Early research considered a streaming data setting—akin to a superpopulation
setting—where the characteristic equation is

) E(Vlog f(Y; X,6,) | X) =0,

with the expectation being over the true conditional distribution of outcome Y
given covariate X. More recent research, largely in computer science and opti-
mization, considers a finite N setting with characteristic equation

3) E(Vlog f(Y; X, 05')) =0,

where the expectation is over the empirical distribution of (X, Y) in the finite data
set.? In both settings, SGD of equation (1) is well defined: in the finite population
setting of equation (3) the data point (X,,, ¥},) is a random sample with replacement
from the finite data set; in the infinite population setting of equation (2) the data
point (X,,, Y;,) is simply the nth data point in the stream.

From a computational perspective, SGD in equation (1) is appealing because it
avoids expensive matrix inversions, as in Newton—Raphson, and the log-likelihood

21f regularization is used, then equation (3) could approximate the maximum a posteriori estimate
(MAP) instead of the MLE.
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is evaluated at a single data point (X, ¥;;) and not on the entire data set. From a
theoretical perspective, SGD in equation (1) converges, under suitable conditions,
to 055 where E(log £(Y; X, 038%) | X) = 0 [Benveniste, Métivier and Priouret
(1990), Ljung, Pflug and Walk (1992), Borkar (2008)]. This condition can satisfy
both equation (2) and equation (3), implying that SGD can be used on both finite
and infinite population settings. For the rest of this paper, we assume an infinite
population setting, as it is the most natural setting for stochastic approximations.
The main difference between the data setting studied in the computer science and
optimization literature and the infinite population setting we consider here is that
we do not condition on the observed ordering of data points, but we condition on
a random ordering instead. Moreover, most of the theoretical results presented in
this paper for the infinite population setting can be applied to the finite population
setting, where instead of estimating 6, we estimate, say, the MLE, or the MAP
estimate if there is regularization.

In this paper, we introduce implicit stochastic gradient descent procedures—
implicit SGD for short—defined as

4) 05" = 6,2 + yaCaVlog f (Y X, 07),

where y,, C,, are defined as in standard SGD equation (1). Furthermore, we pro-
vide a theoretical analysis of estimators based on stochastic gradients, for both
implicit and standard procedures. To distinguish the two procedures, we will refer
to standard SGD in equation (1) as SGD with explicit updates, or explicit SGD for
short, because the next iterate Osgd can be immediately computed given ng_dl and
the data point (X, Y,). In contrast, the update in equation (4) is implicit because
the next iterate 0},‘“ appears on both sides of the equation, where the iterate was
typed in boldface to emphasize the fact.

1.1. [lustrative example. Here, we motivate the main results of this pa-
per on the comparison between implicit and explicit SGD. Let 6, € R be the
true parameter of a normal model with i.i.d. observations Y;|X; ~ N (X;0,, a?),
where the variance 0% is assumed known for simplicity. The log-likelihood is
log f(Y;; X;,0) = —%%(Yi — X;60)2, and the score function (i.e., gradient of log-
likelihood) is given by Vlog f(Y;; X;,0) = ﬁ(Yl~ — X;0)X;. Let X; be distributed
according to some unknown distribution with bounded second moment. Assume
vn = y1/n, for some y; > 0 as the learning rate. Then the explicit SGD procedure
in equation (1) is

sed sed
5) 02 = O35 + v (Yo — 0,5 X)X,
sed
= (1 - anﬁ)gyg;g_1 + VuYuXn.

Procedure (5) is the least mean squares filter (LMS) in signal processing, also
known as the Widrow—Hoff algorithm [Widrow and Hoff (1960)]. The implicit
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SGD procedure can be derived in closed form in this problem using update in
equation (4) as

60" = 6,21+ ¥ (Yo — Xu6,"™) X
1 ~ Yn
E———]L R A— 0 ‘6%
14y, X2 "*1+1+y,1xg nen

The procedure defined by equation (6) is known as the normalized least mean
squares filter (NLMS) in signal processing [Nagumo and Noda (1967)].
From equation (5), we see that it is crucial for explicit SGD to have a well-

(6)

specified learning rate parameter y;. For instance, if y; X % > 1 then Qrigd will
diverge to a value at the order of 2"/, /1, before converging to the true value
0, (see Section 2.5, Lemma 2.1). In contrast, implicit SGD is more stable to mis-
specification of the learning rate parameter y;. For example, a very large y; will
not cause divergence as in explicit SGD, but it will simply put more weight on
the nth observation Y, X, than the previous iterate 0}{31. Assuming for simplic-

ity 6,5 = 6I™ =0, it also holds 6™ = e 62", showing that implicit SGD
iterates are shrinked versions of explicit ones (see also Section 5). .

Let v> = E(X?), then by Theorem 2.2 the asymptotic variance of o)™ (and
of 058%) satisfies n Var(9™) — y2o2v2/2y102 — 1) if 202 — 1 > 0. Since
ylz/(2y1 v2 — 1) > 1/v?, it is best to set y; = 1/v%. In this case nVar(G,ilm) —
o2 /v?. Implicit SGD can thus be optimal by setting y, = Qo Xl.z)_1 in which
case ngd is exactly the OLS estimator, and Q,ilm is an approximate but more stable
version of the OLS estimator. Thus, the implicit SGD estimator 6,™ in equation (6)

inherits the efficiency properties of Q;gd, with the added benefit of being stable over
a wide range of learning rates. Overall, implicit SGD is a superior form of SGD.

1.2. Related work. Historically, the duo of explicit—implicit updates originate
from the numerical methods introduced by Euler (ca. 1770) for solving ordinary
differential equations [Hoffman and Frankel (2001)]. The explicit SGD proce-
dure was first proposed by Sakrison (1965) as a recursive statistical estimation
method and it is theoretically based on the stochastic approximation method of
Robbins and Monro (1951). Statistical estimation with explicit SGD is a straight-
forward generalization of Sakrison’s method and has recently attracted attention
in the machine learning community as a fast learning method for large-scale prob-
lems [Zhang (2004), Bottou (2010), Toulis and Airoldi (2015a)]. Applications
of explicit SGD procedures in massive data problems can be found in many di-
verse areas such as large-scale machine learning [Zhang (2004)], online EM algo-
rithm [Cappé and Moulines (2009)], image analysis and deep learning [Dean et al.
(2012)] and MCMC sampling [Welling and Teh (2011)].

The implicit SGD procedure is less known and not well understood. In optimiza-
tion, implicit methods have recently attracted attention under the guise of proximal
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methods, such as mirror-descent [Nemirovsky and Yudin (1983)]. In fact, the im-
plicit SGD update in equation (4) can be expressed as a proximal update:

. 1 .
(7) om = argmax{—— |6 —o,m, |\2 +log f(Yy: Xn, 9)}.
0 29

From a Bayesian perspective, 0}1“‘ is the posterior mode of a model with the stan-
dard multivariate normal N (G,ilrﬂl, vn 1) as the prior, and log f(Y,; X,,0) as the
log-likelihood of 6 for observation (X, Y,). Arguably, the normalized least mean
squares (NLMS) filter [Nagumo and Noda (1967)], introduced in equation (6),
was the first statistical model that used an implicit update as in equation (4), and
was shown to be consistent and robust under excessive input noise [Slock (1993)].
From an optimization perspective, the update in equation (7) corresponds to a
stochastic version of the proximal point algorithm by Rockafellar (1976), which
has been generalized through the idea of splitting algorithms [Lions and Mercier
(1979), Beck and Teboulle (2009), Singer and Duchi (2009)]; see also the compre-
hensive review of proximal methods in optimization by Parikh and Boyd (2013).
Additional intuition of implicit methods has been provided by Krzysztof et al.
(2007) and Nemirovski et al. (2008), who have argued that proximal methods
can fit better in the geometry of the parameter space. Bertsekas (2011) derived
the convergence rate of an implicit procedure similar to equation (4) on a fixed
data set, and compared the rates between procedures that randomly sampled data
(X5, Yy) or simply cycled through them. Toulis, Airoldi and Rennie (2014) derived
the asymptotic variance of G,i,m as estimator of 6, in the family of generalized lin-
ear models, and provided an algorithm to efficiently compute the implicit update
of equation (4) in such models and in the simplified setting where C,, = I.

1.3. Contributions. Prior work on procedures similar to implicit SGD has con-
sidered mostly an optimization setting, in which the focus is on speed of conver-
gence [for example, Bertsekas (2011)]. Instead, we focus on statistical efficiency,
that is, the sampling variability of the estimator implied by implicit and explicit
SGD procedures—the relevant analysis and the results of Theorem 2.1 and The-
orem 2.2 are novel. Furthermore, our procedure, which we generalized in Toulis
and Airoldi (2015b), is different than typical stochastic proximal gradient pro-
cedures [see, e.g., Duchi and Singer (2009), Rosasco, Villa and Vi (2014)]. In
such procedures, the parameter updates are obtained by combining a stochastic
explicit update and a deterministic implicit update. In implicit SGD, there is a
single stochastic implicit update, which prevents numerical instability.

With regard to theoretical contributions, the asymptotic statistical efficiency of
SGD procedures (both explicit and implicit) derived in Theorem 2.2 is a key contri-
bution of our work. Our analysis is in fact general enough that allowed us to derive
the asymptotic efficiency of other popular stochastic optimization procedures, no-
tably of AdaGrad [Duchi, Hazan and Singer (2011)] in equation (13) of our paper.
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The asymptotic normality of implicit SGD in Theorem 2.4 is new and enables a
novel comparison of explicit SGD and implicit SGD in terms of the normality of
their iterates, which is also a clear point of departure from the typical optimization
literature. The results in Section 2.5 are also new, and formalize the advantages of
implicit SGD over explicit SGD in terms of numerical stability.

With regard to practical contributions, Algorithm 1 and its variants presented
in the paper are a significant extension of our earlier work beyond first-order
GLMs [Toulis, Airoldi and Rennie (2014), Algorithm 1]. The key contribution
here is that these new algorithms make implicit SGD as simple to implement as
standard explicit SGD, whenever the fixed-point computation of the implicit up-
date is feasible. We provide extensive applications in Section 3 and experiments in
Section 4 of implicit SGD compared to explicit SGD. Importantly, we developed a
concrete implementation of implicit SGD through the R package sgd [Tran, Toulis
and Airoldi (2015)] available at https://cran.r-project.org/web/packages/sgd/index.
html to compare implicit SGD with state-of-art procedures, including R’s glm ()
function (Fisher scoring), biglm package, the elastic net [Friedman, Hastie and
Tibshirani (2010), glmnet], AdaGrad [Duchi, Hazan and Singer (2011)], Prox-
SVRG [Xiao and Zhang (2014)], and Prox-SAG [Schmidt, Le Roux and Bach
(2013)].

2. Theory. The norm || - || denotes the L, norm. If a positive scalar sequence
ay is nonincreasing and a,, — 0, we write a, | 0. For two positive scalar sequences
an, by, equation b, = O(a,) denotes that b, is bounded above by «,,, that is, there
exists a fixed ¢ > 0 such that b,, < ca,, for all n. Furthermore, b,, = o(a,,) denotes
that b, /a, — 0. Similarly, for a sequence of vectors (or matrices) X,, we write
X, = O(ay) to denote || X, || = O(a,), and write X, = o(a,) to denote || X, || =
o(a,). For two positive definite matrices A, B, we write A < B to express that
B — A is positive definite. The set of eigenvalues of a matrix A is denoted by
eig(A); thus, A > 0 if and only if A > O for every A € eig(A).

ASSUMPTION 2.1. The explicit SGD procedure in equation (1) and the im-
plicit SGD procedure in equation (4) operate under a combination of the following
assumptions.

(a) The learning rate sequence {y,} is defined as y, = y1n~", where y; > 0 is the
learning parameter, and y € (0.5, 1].

(b) For the log-likelihood log f(Y; X,6) there exists function ¢ such that
log f(Y; X,0) = €(X70; Y), which depends on 6 only through the natural
parameter XT6.

(c) Function ¢ is concave, twice differentiable almost surely w.r.t. natural param-
eter XT6 and Lipschitz with constant Ly w.r.t. 8.

(d) The observed Fisher information matrix fn 0) = =V2U(X'0:Y,) lAlas nonva-
nishing trace, that is, there exists constant b > 0 such that trace(Z,(0)) > b
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almost surely, for all 6. The Fisher information matrix, Z(6,) = E(fn (6,)), has
minimum eigenvalue A ; > 0 and maximum eigenvalue A s < 0o. Typical regu-
larity conditions hold [Lehmann and Casella (1998), Theorem 5.1, page 463].

(e) Every condition matrix C,, is a fixed positive-definite matrix, such that C,, =
C + O(yn), where ||C|| =1, C > 0 and symmetric, and C commutes with
Z(6y). For every Cy, mineig(Cy) = Ac > 0, and maxeig(Cy) = Ae < 00.

(f) Let B, = E(Vlog f(Yy; Xn,0,)Viog f(Yy; X5, 07 | Fu—1), then ||E, —
E| =0(Q) for all n, and ||E, — E|| — 0, for a symmetric positive-definite E.
Let 02, =Ee, 9,255/, 1600 1), then for all s > 0, Y/_, 67 = o(n) if
y =1, and o*,%s = o(1) otherwise.

REMARKS. Assumption 2.1(a) is typical in stochastic approximation as it im-
plies that ) ;s =oco and ) ; yiz < 00, as posited by Robbins and Monro (1951).
Assumption 2.1(b) narrows our focus to models for which the likelihood depends
on parameters 6 through the linear combination XT6. This family of models is
large and includes generalized linear models, Cox proportional hazards models,
and M-estimation. Furthermore, in Section 5 we discuss a significant relaxation
of Assumption 2.1(b). Assumption 2.1(c) puts a Lipschitz condition on the log-
likelihood but it is used only for deriving finite-sample error bounds in Theo-
rem 2.1—it is possible that this condition can be relaxed. Assumption 2.1(d) is
equivalent to assuming strong convexity for the negative log-likelihood, which is
typical for proving convergence in probability. The assumption on the observed
Fisher information is less standard and, intuitively, it posits that a minimum of
statistical information is received from any data point, at least for certain model
parameters. Making this assumption allows us to forgo boundedness assumptions
on the errors of stochastic gradients that were originally used by Robbins and
Monro (1951), and have since been standard. Finally, Assumption 2.1(f) posits the
typical Lindeberg conditions that are necessary to invoke the central limit theorem
and prove asymptotic normality; this assumption follows the conditions defined by
Fabian (1968) for the normality of explicit SGD procedures.

2.1. Finite-sample error bounds. Here, we derive bounds for the errors
E(6,™ — 6.]|%) on a finite sample of fixed size n.

THEOREM 2.1. Let 8, = E(||6i™ — 6,|1%). Suppose that Assumptions 2.1(a),
(b), (¢), (d) and (e) hold. Then there exist constants ng > 0 and k = 1 + 2y udrcA ¢

for some u € (0, 1] such that
AL20"
n < Mn*)/ + eXp(— logK . ¢)’ (n))[80 + K”Ol"2],
WA fhe

where I'? =4L(2))\_c2 D, yl-z < 00, and ¢, (n) = n'=vify <1,and ¢y (n) =logn if
y=1.



PROPERTIES OF ESTIMATORS BASED ON STOCHASTIC GRADIENTS 1701

Not surprisingly, implicit SGD in equation (4) matches the asymptotic rate of
explicit SGD in equation (1). In particular, the iterates 9,ilm have squared error with
rate O(n~7), as seen in Theorem 2.1, which is identical to the rate of error for
the explicit iterates ngd [Benveniste, Métivier and Priouret (1990), Theorem 22,
page 244]. One way to explain intuitively this similarity in convergence rates is
to assume that both explicit and implicit SGD are at the same estimate 6. Then,
using definitions in equation (1) and in equation (4), a Taylor approximation of the
gradient Vlog f (Yu; Xy, 6i™) yields

(8) AG™ (1 + y,2,(60)] ' A6,

where A@,ilm = Q}Im — 6y and A@,,Sgd = Ozgd — 8p. Therefore, as n — 00, we have

AGIM ~ A6, and the two procedures coincide.

Despite the similarity in convergence rates, the critical advantage of implicit
SGD—more generally of implicit procedures—is their robustness to initial condi-
tions and excess noise. This can be seen in Theorem 2.1 where the implicit proce-
dure discounts the initial conditions IE(HH(i)m —6,%) atan exponential rate through
the term exp(—logk - ¢, (n)). Importantly, the discounting of initial conditions
happens regardless of the specification of the learning rate. In fact, large values
of y| can lead to faster discounting, and thus possibly to faster convergence, how-
ever, at the expense of increased variance as implied by Theorem 2.2, which is
presented in the following section. The implicit iterates are therefore uncondition-
ally stable, that is, virtually any specification of the learning rate will lead to a
stable discounting of the initial conditions.

In contrast, explicit SGD is known to be very sensitive to the learning rate, and
can numerically diverge if the rate is misspecified. For example, Moulines and
Bach (2011), Theorem 1, showed that there exists a term exp(LZylznl_z”), where
L is a Lipschitz constant for the gradient of the log-likelihood, amplifying the ini-
tial conditions IE(||0(S)gGl — 6,]1%) of explicit SGD, which can be catastrophic if the
learning rate parameter y; is misspecified.> Thus, although implicit and explicit
SGD have identical asymptotic performance, they are crucially different in their
stability properties. This is investigated further in Section 2.5 and in the experi-
ments of Section 4.

2.2. Asymptotic variance and optimal learning rates. In the previous section,
we showed that 6)™ — 6, in quadratic mean, that is, the implicit SGD iterates
converge to the true model parameters 6,, similar to classical results for the ex-

plicit SGD iterates ngd. Thus, Q}Lm and Gﬁgd are consistent estimators of 6,. In the

3The Lipschitz conditions are different in the two works; however, this does not affect our conclu-
sions. Our result remains effectively unchanged if we assume Lipschitz continuity of the gradient V£
instead of the log-likelihood ¢, similar to Moulines and Bach (2011); see comment after the proof of
Theorem 2.1.
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following theorem, we show that both SGD estimators have the same asymptotic
variance.

THEOREM 2.2. Consider SGD procedures in equation (1) and in equation (4),
and suppose that Assumptions 2.1(a), (c), (d), (e) hold, where vy = 1, and that
2y1CZL(6,) > 1. The asymptotic variance of the explicit SGD estimator in equa-
tion (1) satisfies

n Var(6329) — y2(2)1CZ(6,) — )~ CZ(6,)C.
The asymptotic variance of the implicit SGD estimator in equation (4) satisfies

n Var(0™) — y2(21CZ(6,) — 1)~ CZ(6,)C.

REMARKS. Although the implicit SGD estimator O,iim is significantly more

stable than the explicit estimator ngd (Theorem 2.1), both estimators have the
same asymptotic efficiency in the limit according to Theorem 2.2. This implies
that implicit SGD is a superior form of SGD, and should be preferred when the
calculation of implicit updates in equation (4) is computationally feasible. In Sec-
tion 3, we show that this is possible in a large family of statistical models, and
illustrate with several numerical experiments in Section 4.1.

Asymptotic variance results in stochastic approximation similar to Theorem 2.2
were first obtained by Chung (1954), Sacks (1958), and followed by Fabian (1968),
Polyak and Tsypkin (1979), and several other authors [see also Ljung, Pflug and
Walk (1992), Parts I, II]. We contribute to this literature in two important ways.
First, our asymptotic variance result includes implicit SGD, which is a stochas-
tic approximation procedure with implicitly defined updates, whereas other works
consider only explicit updates. Second, in our setting we estimate recursively the
true parameters 6, of a statistical model, and thus we can exploit the typical reg-
ularity conditions of Assumption 2.1(d) to derive the asymptotic variance of 9}{“

(and 9,3gd) in a simplified closed-form. We illustrate the asymptotic variance results
of Theorem 2.2 in Section 4.1.1.

2.2.1. Optimal learning rates. Crucially, the asymptotic variance formula of
Theorem 2.2 depends on the limit of the sequence C,, used in the SGD procedures
of equation (1) and equation (4). We distinguish two classes of procedures, one
where C,, = I, known as first-order procedures, and a second class where C,, is
not trivial, known as second-order procedures.

In first-order procedures, only gradients are used in the SGD procedures. In-
evitably, no matter how we set the learning rate parameter yj, first-order SGD
procedures will lose statistical efficiency. We can immediately verify this by com-
paring the asymptotic variance in Theorem 2.2 with the asymptotic variance of

the maximum likelihood estimator (MLE), denoted by 9}\,“16, on a data set with
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N data points {(X,, Y,)},n=1,2,..., N. Under the regularity conditions of As-
sumption 2.1(d), the MLE is the asymptotically optimal unbiased estimator and
N Var(@}?,ﬂe —6,) — Z(6,)"'. By Theorem 2.2 and convergence of implicit SGD,
it holds N Var(6i" — 6,) — y2(2y1Z(6,) — 1)~'Z(6,), which also holds for lefd.
For any y; > 0, we have as an identity that

9) yE@nZ®) —1)"'T06,) =6

The proof is rather quick if we consider A; € eig(Z(6,)) and note that ylzki/
(2y1A; — 1) is the corresponding eigenvalue of the left-hand matrix in inequal-
ity (9) and 1/4; is the eigenvalue of Z(6,)~!, and that (2y1Af — 1) > 0 implies
that o

yiri/@yihi — 1) = 1/,

for every X; € eig(Z(0,)). Therefore, both SGD estimators lose information and
this loss can be quantified exactly by inequality (9). This inequality can also be
used to find the optimal choice for | given an appropriate objective. As demon-
strated in the experiments in Section 4, this often suffices to achieve estimates that
are comparable with MLE in statistical efficiency but with substantial computa-
tional gains. One reasonable objective is to minimize the trace of the asymptotic
variance matrix, that is, to set y; equal to

(10) yi = argx>nll/i£1ﬂzi:x2)\i/(2xki —1).

Equation (10) is defined under the constraint x > 1/(2A r) because Theorem 2.2
requires 2y1Z(6,) — I to be positive definite. o

Of course, the eigenvalues A; are unknown in practice and need to be estimated
from the data. This problem has received significant attention recently and several
methods exist [see El Karoui (2008), and references within]. We will use equation
(10) extensively in our experiments (Section 4) in order to tune the SGD proce-
dures. However, we note that in first-order SGD procedures, knowing the eigen-
values A; of Z(6,) does not necessarily achieve statistical efficiency because of
the spectral gap of Z(6,), that is, the ratio between its maximum eigenvalue A ¢
and minimum eigenvalue A ¢; for instance, if A y = A 7, then the choice of learning
rate parameter according to equation (10) leads to statistically efficient first-order
SGD procedures. However, this case is not typical in practice, especially in many
dimensions.

In second-order procedures, we assume nontrivial condition matrices C,. Such
procedures are called second-order because they usually leverage curvature infor-
mation from the Fisher information matrix (or the Hessian of the log-likelihood).
They are also known as adaptive procedures because they adapt their hyperparam-
eters, that is, learning rates y;, or condition matrices C,, according to observed
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data. For instance, let C, = Z(6,)~! and y1 = 1. Plugging in C,, = Z®,)" ! in
Theorem 2.2, the normalized asymptotic variance of the SGD estimators is

yE2nZ6,) 7T, — 1) ' T0.) 7 T6)T6,) " =T6,) 7",

which is the theoretically optimal asymptotic variance of the MLE, that is, the
Cramér—Rao lower bound.

Therefore, to achieve asymptotic efficiency, second-order procedures need to
estimate the Fisher information matrix at 6,. Because 6, is unknown one can
simply use C, = I(Q‘m) U lor C, = I(ngd) 1 as an iterative estimate of
Z(6,), and the same optimality result holds. This approach in second-order ex-
plicit SGD was first studied by Sakrison (1965), and later by Nevelson and
Khasminskii (1973), Chapter 8, Theorem 5.4. It was later extended by Fabian
(1978) and several other authors. Notably, Amari (1998) refers to the direction
I(Gggd) 1V]og fYy; X, 6 Sg_dl) as the “natural gradient” and uses information
geometry arguments to prove statistical optimality.

An alternative way to implement second-order procedures is to use stochastic
approximation to estimate Z(6,), in addition to the approximation procedure esti-
mating 6,. For example, Amari, Park and Fukumizu (2000) proposed the following
second-order procedure:

(11)Cn‘1:(1—an)c;_11+anvlogf(Yn;Xna 1) Viog f (Yui Xu, 077),
Qr?m:Qam]-}—ynC Vlogf(Yn,Xna n— 1)

where a, = aj/n is a learning rate sequence, separate from y,. By standard
stochastic approximation, C, ! converges to Z(6,), and thus the procedure in equa-
tion (11) is asymptotically optimal. However, there are two important problems
with this procedure. First, it is computationally costly because of matrix inver-
sions. A faster way is to apply quasi-Newton ideas. SGD-QN developed by Bordes,
Bottou and Gallinari (2009) is such a procedure where the first expensive matrix
computations are substituted by the secant condition. Second, the stochastic ap-
proximation of Z(6,) is usually very noisy in high-dimensional problems and this
affects the main approximation for 6,. Recently, more robust variants of SGD-QN
have been proposed [Byrd et al. (2016)].

Another notable adaptive procedure is AdaGrad [Duchi, Hazan and Singer
(2011)], which is defined as

C, ' =C, | +diag(Vlog f(Y; Xu., 03°5)Viog f (Yu: X, 6799)7),
(12)
eada Qada + ]/ICI/ZVlng(Yn, X”’eada)

where diag(-) takes the diagonal matrix of its matrix argument, and the learning
rate is set constant to y;,, = y1. AdaGrad can be considered a second-order proce-
dure because it tries to approximate the Fisher information matrix; however, it only



PROPERTIES OF ESTIMATORS BASED ON STOCHASTIC GRADIENTS 1705

uses gradient information so technically it is first-order. Under appropriate condi-
tions, C, ! — diag(Z(6,)) and a simple modification in the proof of Theorem 2.2
can show that the asymptotic variance of the AdaGrad estimate is given by

(13) /n Var(6292) — %diag(ﬂe*))_l/z'

This result reveals an interesting trade-off achieved by AdaGrad and a subtle
contrast to first-order SGD procedures. The asymptotic variance of AdaGrad is
O(1/4/n), which indicates significant loss of information. However, this rate is at-
tained regardless of the specification of the learning rate parameter y;.* In contrast,
as shown in Theorem 2.2, first-order SGD procedures require 2y;Z(6,) — I > 0 in
order to achieve the O(1/n) rate, and the rate is significantly worse if this condi-
tion is not met. For instance, Nemirovski et al. (2008) give an example of misspec-
ification of y; where the rate of first-order explicit SGD is O(rn %), and ¢ can be
arbitrarily small. The variance result in equation (13) is illustrated in the numerical
experiments of Section 4.1.1.

2.3. Optimality with averaging. As shown in Section 2.2.1, Theorem 2.2 im-
plies that first-order SGD procedures can be statistically inefficient, especially in
many dimensions. One surprisingly simple idea to achieve statistical efficiency is
to combine larger learning rates with averaging of the iterates. In particular, we
consider the procedure

oM = 9im | 1y, Vlog f(Yu; Xp, 0™),
(14)

— 1 &

m
o=~ Zel. :
i=1

where G,ilm are the typical implicit SGD iterates in equation (4), and y, = y1n~ 7,
y €[0.5, 1). Under suitable conditions, the iterates 6i™ are asymptotically effi-
cient. This is formalized in the following theorem.

THEOREM 2.3.  Consider the SGD procedure defined in equation (14) and
suppose Assumptions 2.1(a), (c), (d) and (e) hold, where y € [0.5,1). Then Q}lm
converges to 0, in probability and is asymptotically efficient, that is,

n Var(6im) — Z(6,) .

4This follows from a property of recursions [Toulis and Airoldi (2017), Lemma 2.4]. On a high-
level, the term y,,_1/yx is important for the variance rates of AdaGrad and SGD. When y,, o< 1/n, as
in Theorem 2.2, it holds that y,, 1 /yn =1+ yu/y1 + O(ynz), which explains the quantity 27(6,) —
I/y1 in first-order SGD. The rate O(1/n) is attained only if 2Z(0x) — I/y1 > 0. When y;, o 1/4/n,
as in AdaGrad, it holds that y,,_1/yn = 1 + o(y,) and the rate O(1/4/n) is attained without any
additional requirements.
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REMARKS. In the context of explicit stochastic approximations, averaging
was first proposed and analyzed by Ruppert (1988) and Bather (1989). Ruppert
(1988) argued that larger learning rates in stochastic approximation uncorrelates
the iterates allowing averaging to improve efficiency. Polyak and Juditsky (1992)
expanded the scope of averaging by proving asymptotic optimality in more general
explicit stochastic approximations that operate under suitable conditions similar
to Theorem 2.3. Polyak and Juditsky (1992) thus proved that slowly converging
stochastic approximations can be improved by using larger learning rates and av-
eraging of the iterates. Recent work has analyzed explicit updates with averaging
[Zhang (2004), Xu (2011), Bach and Moulines (2013), Shamir and Zhang (2012)],
and has shown their superiority in numerous learning tasks. More recently, Toulis,
Tran and Airoldi (2016) derived the finite-sample error bounds of the averaged
implicit SGD estimator.

2.4. Asymptotic normality. Asymptotic distributions, or more generally in-
variance principles, are well studied in classical stochastic approximation [Ljung,
Pflug and Walk (1992), Chapter I1.8]. In this section, we leverage Fabian’s theo-
rem [Fabian (1968)] to show that iterates from implicit SGD are asymptotically
normal.

THEOREM 2.4.  Suppose that Assumptions 2.1(a), (¢), (d), (e), (f) hold. Then
the iterate 6)™ of implicit SGD in equation (4) is asymptotically normal, such that

n?/2(6im —6,) — N, (0, ),
where ¥ = y12(2y1 CZ®,) —D~cz®,)C.

REMARKS. The combined results of Theorems 2.1, 2.2 and 2.4 indicate that
implicit SGD is numerically stable and has known asymptotic variance and distri-
bution. Therefore, contrary to explicit SGD that has severe stability issues, implicit
SGD emerges as a stable estimation procedure with known standard errors, which
enables typical statistical tasks, such as confidence intervals, hypothesis testing
and model checking. We show empirical evidence supporting this claim in Sec-
tion 4.1.2.

2.5. Stability. To illustrate the stability, or lack thereof, of both SGD esti-
mators in small-to-moderate samples, we simplify the SGD procedures and in-
spect the size of the biases E(@;gd — 6,) and E(@,ilm — 6,). In particular, based
on Theorem 2.1, we simply assume the Taylor expansion Vlog f (Yy; X;,6,) =
—7Z(6,)(6, —6,) + O(yn); to simplify further we ignore the remainder term O(y,).

Under this simplification, the SGD procedures in equation (1) and in equa-
tion (4) can be written as follows:

(15) E(6:2 — 6,) = (I — y,Z(6,))E(6°%, —6,) = Pl'b,

n—1

(16) E(6™ —6,) = (I + y,Z(6,)) "E(0™, — 6,) = Q" by,
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where P/' =[[/_,(I —viZ(6.), O =T11;—, I + ¥iZ(6,))" ", and by denotes the
initial bias of the two procedures from a common starting point 8y. Thus, the matri-
ces P and Q' describe how fast the initial bias decays for the explicit and implicit
SGD, respectively. In the limit, P{' — 0 and Q] — 0 [Toulis and Airoldi (2017),
proof of Lemma 2.4], and thus both methods are asymptotically stable.

However, the explicit procedure has significant stability issues in small-to-
moderate samples. By inspection of equation (15), the magnitude of P’ is domi-
nated by A ¢ f» the maximum eigenvalue of Z(6,). Furthermore, the rate of conver-
gence is dominated by A Afs the minimum eigenvalue of Z(6,).> For stability, it is
desirable |1 — y1A;| < 1, for all eigenvalues A; € eig(Z(6,)). This implies the re-
quirement y; < 2 /ﬁ for stability. Furthermore, Theorem 2.2 implies the require-
ment y; > 1/2) ¢ for fast convergence. This is problematic in high-dimensional

settings because E is typically orders of magnitude larger than A 7. Thus, the re-
quirements for stability and speed of convergence are in conflict in explicit proce-
dures: to ensure stability we need a small learning rate parameter yj, thus paying a
high price in convergence which will be at the order of O(n_ylk—f), and vice versa.

In contrast, the implicit procedure is unconditionally stable. The eigenvalues of
Q' are A, = /A +y12i/j)=0n" vi*i) Critically, it is no longer required
to have a srnall )/1 for stability because the eigenvalues of Q' are always less than
one. We summarize these findings in the following lemma.

LEMMA 2.1. Let E = maxeig(Z(0,)), and suppose v, = y1/n and ylﬁ >
1. Then the maximum eigenvalue of P|' satisfies

maxmaxel Pl 2)’1“ N A
a g( 1 [\ V1

For the implicit method,
max max eig(Q') = O(1).

n>0

REMARKS. Lemma 2.1 shows that in the explicit SGD procedure the effect
from the initial bias can be amplified in an arbitrarily large way before fading out,
if the learning rate is misspecified (i.e., if y1 3> 1/A 7). This sensitivity of explicit
SGD is well known and requires problem-specific considerations to be avoided
in practice, for example, preprocessing, small-sample tests, projections, truncation
[Chen, Lei and Gao (1988)]. In fact, there exists voluminous work, which is still
ongoing, in designing learning rates to stabilize explicit SGD; see, for example,
a review by George and Powell (2006). Implicit procedures render such ad-hoc
designs obsolete because they remain stable regardless of learning rate design, and
still maintain the asymptotic convergence and efficiency properties of explicit SGD
procedures.

5To see this, note that the eigenvalues of P|' are A; =[I;A=niAi/D = O(n M Yif 0 < yya; <
1. See also the proof of Lemma 2.1.
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3. Applications. Here, we show how to apply implicit SGD in equation (4)
for estimation in generalized linear models, Cox proportional hazards, and more
general M-estimation problems. We start by developing an algorithm that effi-
ciently computes the implicit update in equation (4), and is applicable to all afore-
mentioned models.

3.1. Efficient computation of implicit updates. The main difficulty in applying
implicit SGD is the solution of the multidimensional fixed-point equation (4). In
a large family of models where the likelihood depends on the parameter 6, only
through the natural parameter X T6,, the solution of the fixed-point equation is
feasible and computationally efficient. We prove the general result in Theorem 3.1.

For the rest of this section, we will treat £(XT76; Y) as a function of the natural
parameter X760 for a fixed outcome Y. Thus, ¢/(X76;Y) will refer to the first
derivative of £ with respect to XT6 with fixed Y.

THEOREM 3.1. Suppose Assumption 2.1(b) holds, then the gradient of the
log-likelihood is a scaled version of covariate X, that is, for every 60 € R? there is
a scalar ) € R such that

Viog f(Y; X,0)=)1X.

Thus, the gradient in the implicit update in equation (4) is a scaled version of the
gradient calculated at the previous iterate, that is,

(17) Vliog f(Yu; Xn, 6™) = 1, Viog f (Yy; X, 6 )),
where the scalar A, satisfies

(18) At/ (X] w) =10 (XTOIml + Yl (X] Y)XTCr X Yn).

n’n— 1; n’n— l;
REMARKS. Theorem 3.1 implies that computing the implicit update in equa-
tion (4) reduces to numerically solving the one-dimensional fixed-point equation
for A,—this idea is implemented in Algorithm 1. As shown in the proof of Theo-
rem 3.1, this implementation is fast because A, lies on an interval B,, of size O(y).
We also note that Theorem 3.1 can be readily extended to cases with linearly sep-
arable regularizers, for instance, regularizers using the L norm ||0] = )_; |6;|. In
such cases, there are additional fixed-point equations as in Step 9 of Algorithm 1
that involve the components of the regularizer. More generally, for families of
models that do not satisfy Assumption 2.1(b) there are methods to approximately
perform the implicit update—we discuss one such method in Section 3.3.

3.2. Generalized linear models. In this section, we apply implicit SGD to es-
timate generalized linear models (GLMs). In such models, Y,, follows an expo-
nential distribution conditional on X,,, and E(Y,, | X,,) = h(X'6,), where h is the
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Algorithm 1: Efficient implementation of implicit SGD in equation (4)
1: forallne{1,2,...} do

2:  # compute search bounds B,

3 < vl (XA0M Yy

4 B, < [0,r,]

5. if r, <0 then

6: B, < [r,, 0]

7. endif

8:  #solve fixed-point equation by a root-finding method
9 &=yl (Xp0™ +EXNCuXn; Yn), E €B,
10: Ay, < §&/my

11:  # following update is equivalent to update in equation (4)
122 6" < 0", +vur,CyViog f(Yy: X, 6,0 ))
13: end for

transfer function of the GLM model [Nelder and Wedderburn (1972)]. Further-
more, the gradient of the GLM log-likelihood for parameter value 0 at data point
(Xn, Yy) is given by

(19) Viog f(Yn; Xu, 0) =[Yy — h(X]0)]X

The conditional variance of Y, is Var(Y, | X,) = h'(X;6,)X, X}, and thus the
Fisher information matrix is Z(0) = E(h'(X}60) X, X}). Thus, the SGD procedures
in equation (1) and in equation (4) can be written as

(20) 0380 = 0% 1y, Cul Y, — R(XTO)] X0,
1) oM = 6im | 41, C,[Yy — h(X]O™)]X

Implementation of explicit SGD is straightforward. Implicit SGD can be im-
plemented through Algorithm 1. In particular, log f(Y; X,0) = £(X76; Y) with
£(n; Y) =Y — h(n). In typical GLMs, # is twice-differentiable and also A'(1) > 0
because it is proportional to the conditional variance of Y given X, thus fulfilling
Assumption 2.1(b). In the simplified case where C,, = I, the identity matrix, for
all n, Algorithm 1 simplifies to Algorithm 2, which was first derived by Toulis,
Airoldi and Rennie (2014). We make extensive experiments using Algorithm 2 in
Section 4.2.

3.3. Cox proportional hazards model. Here, we apply SGD to estimate a Cox
proportional hazards model, which is a popular model in survival analysis [Cox
(1972), Klein and Moeschberger (2003)]. Multiple variations of the model exist
but for simplicity we will analyze one simple variation that is popular in practice
[Davison (2003)]. Consider N individuals, indexed by i, with observed survival
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Algorithm 2: Estimation of GLMs with first-order implicit SGD (C,, = I)
1: foralln e{l,2,...} do
: 'n <—J/n[Yn—h(X29,l,I31)]

2

3. B, < [0,r,]

4 if r, <0 then

5: B, < [r,, 0]

6: end if

7. E=ylY, —h(XJO™ +E(X,P)]. & € B,
g8 Ompm X,

9: end for

times Y;, failure indicators d;, and covariates X;. The survival times can be as-
sumed ordered, Y| < Y2 < --- < Yy, whereas d; = 1 denotes failure (e.g., death)
and d; = 0 indicates censoring (e.g., patient dropped out of study). Given a failure
for unit i (d; = 1) at time Y;, the risk set 'R; is defined as the set of individuals
that could possibly fail at Y;, that is, all individuals except those who failed or
were censored before Y;. In our simplified model, R; = {i,i + 1, ..., N}. Define
ni (0) = exp(X ZT 0), then the log-likelihood ¢ for 6 is given by Davison (2003),
Chapter 10,

N
(22) €O0; X, Y) = "[di — Hi(0)n; (9)] X;,
i=1

where H;(0) = Zj:ieRj dj(Qker; Mk (0))~!. In an online setting, where N is infi-
nite and data points (X;, ¥;) are oll)served one at a time, future observations affect
the likelihood of previous ones, as can be seen by inspection of equation (22).
Therefore, we apply SGD assuming fixed N to estimate the MLE 0}\‘,‘16. As men-
tioned in Section 1, our theory in Section 2 can be applied unchanged if we only
substitute 6,, the true parameter, with the MLE 9?}16.

A straightforward implementation of explicit SGD in equation (1) for the Cox
model is shown in Algorithm 3. For implicit SGD in equation (4), we have the

Algorithm 3: Explicit SGD for Cox proportional hazards model
1 forn=1,2,...do
2 i < sample(1, N)

3 H; <_Zj:ie7€

d;
T Yher; m@ED
= d
4 | wa—1 < [di — Hni(02)]
ne = 0% 4+ yw,1Cu X,

wn
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Algorithm 4: Implicit SGD for Cox proportional hazards model

1 forn=1,2,...do
2 i < sample(1, N)

3 Hi ZJJGRJ Yker; M6, ))

4 | w®) =d; — Himi(®)

5 Wy <~ w(@")CrX;

6 )\nw(e,llrgl) = w(e,llrgl + YnAn Wa)

7 | M =0" 4,0, W,

update

(23) O =0 + yaldi — H; (0)™)mi (O3™)] X,

which is similar to the implicit procedure for GLMs in equation (21). However,
the log-likelihood term d; — H; (G,ilm) n; (9}1‘“) does not satisfy the conditions of As-
sumption 2.1(b) because H;(6) may be increasing or decreasing since it depends
on terms X ]T.Q, j #i. Thus, Theorem 3.1 cannot be applied.

One idea to circumvent this problem is to simply compute H; (-) on the previous
update 9,"1“_11 instead of the current Q,ilm. Then update (23) becomes

(24) O =0 + yuldi — Hi (0™ )i (™)) X,

which now satisfies Assumption 2.1(b) since H; (Gril“_ll) is constant with respect to

G,ilm. This idea is implemented in Algorithm 4, but can be more generally applied
in models that don’t satisfy Assumption 2.1(b); see Section 5 for a discussion.

3.4. M-estimation. Given N observed data points (X;, ¥;) and a convex func-
tion p : R — R, the M-estimator is defined as

N
(25) 6™ = arg nbinX;p(Yi — X/0),
1=

where it is assumed Y; = X lT 0, + ¢;, and &; are i.1.d. zero mean-valued noise. M-
estimators are especially useful in robust statistics [Huber (1964)] because ap-
propriate choice of p can reduce the influence of outliers in data. Typically, p is
twice-differentiable around zero. In this case,

(26) E(p'(Y — XT6™)X) =0,

where the expectation is over the empirical data distribution. Thus, according
to Section 1, SGD procedures can be applied to approximate the M-estimator
0™ . There has been increased interest in the literature for fast approximation of
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Algorithm 5: Implicit SGD for M-estimation

1 forn=1,2,...do

i < sample(1l, N)

w(®) = p'(Yi — X]6)

Anw(Glel) <« w(@,i”_ll + ynknw(QJZT])CnX,-) # implicit update
oM« 9im 4 A w(O™ NCy X

wn A W N

M-estimators due to their robustness [Donoho and Montanari (2016), Jain, Tewari
and Kar (2014)]. The implicit SGD procedure for approximating M-estimators is
defined in Algorithm 5, and is a simple adaptation of Algorithm 1.

Importantly, the conditions of Assumption 2.1(b) are met because p is convex,
and thus p” > 0. Thus, Step 4 of Algorithm 5 is a straightforward application of
Algorithm 1 by simply setting ¢'(X,6I™ ; Y,) = p'(¥,, — X16i™). The asymptotic
variance of Q,i?m is also easy to derive. If § = E(X,X N, C, = C > such that S
and C commute, Y2 = E(p/(¢;)?), and v(z) = E(p’(g; + z)), Theorem 2.2 can be

leveraged to show that
(27) n Var(6™) — (20 (0)CS — 1)~ CSC.

Historically, one of the first applications of explicit stochastic approximation pro-
cedures in robust estimation was due to Martin and Masreliez (1975). The asymp-
totic variance (27) was first derived, only for the explicit SGD case, by Poljak and
Tsypkin (1980) using stochastic approximation theory from Nevelson and Khas-
minskii (1973).

4. Simulation and data analysis. Here, we demonstrate the computational
and statistical advantages of the SGD estimation procedures in equation (1) and in
equation (4). For our experiments we developed a new R package, namely sgd,
which has been published on CRAN. All experiments were conducted on a sin-
gle laptop running Linux Ubuntu 13.x with 8 cores@2.4 GHz, 16 Gb of RAM
memory and 256 Gb of physical storage with SSD technology. A separate set of
experiments, which is presented in the supplemental article [Toulis and Airoldi
(2017), Section 3], focuses on comparisons of implicit SGD with popular machine
learning methods on typical estimation tasks.

4.1. Numerical results. In this section, we aim to illustrate the theoretical re-
sults of Section 2, namely the result on asymptotic variance (Theorem 2.2) and
asymptotic normality (Theorem 2.4) of SGD procedures.

4.1.1. Asymptotic variance. In this experiment, we use a normal linear model
following Xu (2011). The procedures we test are explicit SGD in equation (1),
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implicit SGD in equation (4), and AdaGrad in equation (12). For simplicity, we
use first-order SGD, that is, C,, = I. In the experiment we calculate the empirical
variance of said procedures for 25 values of their common learning rate parame-
ter y1 in the interval [1.2, 10]. For every value of y;, we calculate the empirical
variances through the following process, repeated for 150 times. First, we set 6, =
(1,1,..., DT € R? as the true parameter value. For iterations n = 1,2, ..., 1500,
we sample covariates as X, ~ N, »(0,8), where § is diagonal with elements uni-
formly on [0.5, 5]. The outcome Y}, is then sampled as Y,| X, ~ N(X6,,1). In
every repetition, we store the iterate 659 for every tested procedure and then cal-
culate the empirical variance of stored iterates over all 150 repetitions.

For any fixed learning rate parameter y;, we set y, = y1/n for implicit SGD and
¥, = y1 for AdaGrad. For explicit SGD, we set ,, = min (0.3, yvi/(n+ | X, ||2)> in
order to stabilize its updates. This trick is necessary by the analysis of Section 2.5.
In particular, the Fisher information matrix here is Z(6,) = E(X,X)) =S, and
thus the minimum eigenvalue is A r = 0.5 and the maximum is ﬁ = 5. Therefore,

for stability we require y; < 2/ ﬁ = 0.4 and for fast convergence we require y; >
1/(2X ¢) = 1. The two requirements are incompatible, which indicates that explicit
SGD can have serious stability issues.

For given y; > 1, the asymptotic variance of SGD procedures after n iterations
is (1/ n)yl2 (2918 — I)~'S, by Theorem 2.2. The asymptotic variance of AdaGrad
after n iterations is equal to (y1/2+/n)S~!/? by equation (13). The log traces of
the empirical variance of the SGD procedures and AdaGrad in this experiment are
shown in Figure 1. The x-axis corresponds to different values of the learning rate
parameter y1, and the y-axis corresponds to the log trace of the empirical variance
of the iterates for all three different procedures. We also include curves for the
theoretical values of the empirical variances.

We see that our theory predicts well the empirical variances of all methods. Ex-
plicit SGD performs on par with implicit SGD for moderate values of y;, however,
it required a modification in its learning rate to make it work. Furthermore, ex-
plicit SGD quickly becomes unstable at larger values of y; (see, e.g., its empirical
variance for y; = 10), and in several instances, not considered in Figure 1, it nu-
merically diverged. On the other hand, AdaGrad is stable to the specification of
y1 and tracks its theoretical variance well. However, it gives inefficient estimators
because their variance has order O(1/4/n). Implicit SGD effectively combines sta-
bility and good statistical efficiency. First, it remains very stable to the entire range
of the learning rate parameter ;. Second, its empirical variance is O(1/n) and is
tracks closely the theoretical value predicted by Theorem 2.2 for all y;.

4.1.2. Asymptotic normality. In this experiment, we use the normal linear
model in the setup of Section 4.1.1 to check the asymptotic normality result of
Theorem 2.4. For simplicity, we only test first-order implicit SGD in equation (4)
and first-order explicit SGD.
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F1G. 1. Simulation with normal model. The x-axis corresponds to learning rate parameter y1; the
y-axis curves corresponds to log trace of the empirical variance of tested procedures (explicit/implicit
SGD, AdaGrad). Theoretical asymptotic variances of SGD and AdaGrad are plotted as well. Implicit
SGD is stable and its empirical variance is very close to its asymptotic value. Explicit SGD becomes
unstable at large y|. AdaGrad is statistically inefficient but remains stable to large learning rates.

In the experiment, we define a set of learning rates (0.5, 1, 3, 5, 6, 7). For every
learning rate, we take 400 samples of N (8 —6,)TE !0y —6,), where N = 1200
and 6y denotes either QISng or 9}\‘,“. The matrix X is the asymptotic variance matrix
in Theorem 2.4, and 6, = 10exp(—2- (1,2, ..., p)), is the true parameter value.
We use the ground-truth values both for ¥ and 6,, as we are only interested to test
normality of the iterates in this experiment. We also tried p =5, 10, 100 as the pa-
rameter dimension. Because the explicit SGD procedure was very unstable across
experiments we only report results for p = 5. Results on the implicit procedure for
larger p are given in the supplemental article [Toulis and Airoldi (2017)], where
we also include results for a logistic regression model.

By Theorem 2.4 for implicit SGD, and by classical normality results for ex-
plicit SGD [Fabian (1968), Ljung, Pflug and Walk (1992)], the quadratic form
N@Oy—0,)TE 1Oy —0,)isa chi-squared random variable with p degrees of free-
dom. Thus, for every procedure we plot this quantity against independent samples
from a X,2, distribution and visually check for deviations. As before, we tried to sta-
bilize explicit SGD as much as possible by setting y, = min(0.3, y1/(n + | X, [1?)).
This worked in many iterations, but not for all. Iterations for which explicit SGD
diverged were not considered. For implicit SGD, we simply set y,, = y1/n without
additional tuning.

The results of this experiment are shown in Figure 2. The vertical axis on the
grid corresponds to different values of the learning rate parameter y;, and the hori-
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Fi1G. 2. Simulation with normal model. The x-axis corresponds to the SGD procedure (explicit
or implicit) for various values of the learning rate parameter, y1 € {0.5,1,3,5,7}. The histograms
(x-axis) for the SGD procedures are 500 replications of SGD where at each replication we only store
the quantity N (O — 0,71 (On — 04), for every method (N = 1200); the theoretical covariance
matrix X is different for every learning rate and is given in Theorem 2.2. The data generative model
is the same as in Section 4.1.1. We observe that implicit SGD is stable and follows the nominal
chi-squared distribution. Explicit SGD becomes unstable at larger y| and its distribution does not

follow the nominal one well. In particular, the distribution of N (Gis\}gd —0,)TX -1 (0;\,gd —04) becomes
increasingly heavy-tailed as the learning rate parameter gets larger, and eventually diverges for
y1 =T

zontal axis has histograms of N (O —6,)TZ 10y —6,), and also includes samples
from a X52 distribution for visual comparison.

We see that the distribution N (0™ — 6,)TE =1 (9™ — 6,) of the implicit iterates
follows the nominal chi-squared distribution. This also seems to be unaffected by
the learning rate parameter. However, the distribution of N (9;,gd —9)Tx ! (Gf\}gd —
6,) does not follow a chi-squared distribution, except for small learning rate pa-
rameter values. For example, as the learning rate parameter increases, the distri-
bution becomes more heavy-tailed (e.g., for y; = 6), indicating that explicit SGD
becomes unstable. Particularly for y; = 7 explicit SGD diverged in almost all repli-
cations, and thus a histogram could not be constructed.

4.2. Comparative performance analysis. In this section, we aim to illustrate
the performance of implicit SGD estimation against deterministic estimation pro-
cedures that are optimal. The goal is to investigate the extent to which implicit
SGD can be as fast as deterministic methods, and to quantify how much statistical
efficiency needs be sacrificed to accomplish that.
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4.2.1. Experiments with glm () function. The built-in function glm() in
R performs deterministic maximum-likelihood estimation through iterative re-
weighted least squares. In this experiment, we wish to compare computing time
and MSE between first-order implicit SGD and glm (). Our simulated data set
is a simple normal linear model constructed as follows. First, we sample a binary
p X p design matrix X = (x;;) such that x;; = 1 (intercept) and P(x;; =1) =
ii.d., where s € (0, 1) determines the sparsity of X. We set s = 0.08 indicat-
ing that roughly 8% of the X matrix will be nonzero. We generate 6, by sam-
pling p elements from (—1, —0.35,0,0.35, 1) with replacement. The outcomes
are Y; = Xl-TQ* + &, where &; ~N(0, 1) ii.d., and X; = (xij) is the p x 1 vector
of i’s covariates. By GLM properties,

1 S S RY
S ) SZ s2
ZO.) =E(n'(X]6,)X;X]) = s2 s 52
2
N N
N S2 N

Slightly tedious algebra can show that the eigenvalues of Z(6,) are s(1 — s)
with multiplicity (p — 2) and the two solutions of x% — A(s)x + B(s) =0, where
A)=14+s+ s2(p —2) and B(s) = s(1 — s). It is thus possible to use the anal-
ysis of Section 2.2 and equation (10) to derive a theoretically optimal learning
rate. We sample 200 pairs (p, N) for the problem size, uniformly in the ranges
p ~ [10,500] and N ~ [500, 50,000], and obtain running times and MSE of the
estimates from implicit SGD and glm (). Finally, we then run a regression of
computing time and MSE against the problem size (N, p).

The results are shown in Table 1. We observe that implicit SGD scales better
in both sample size N, and especially in the model size p. We also observe that
this significant computational gain does not come with much efficiency loss. In
fact, averaged over all samples, the MSE of the implicit SGD is 10% higher than
the MSE of glm (), with a standard error of £0.005. Furthermore, the memory

TABLE 1
Parameters from regressing computation time and MSE against (N, p) in log-scale for glm () and
implicit GLM. Computation time for glm () is roughly O(pl'47 N) and for implicit SGD, it is
O( po‘zN 09y, Implicit SGD scales better in parameter dimension p, whereas MSE for both methods
are comparable, at the order of O(/p/N)

Time (sec) MSE
Method log p (se) log N (se) log p (se) log N (se)
glm() function 1.46 (0.019) 1.03 (0.02) 0.52 (0.007) —0.52 (0.006)

implicit SGD 0.19 (0.012) 0.9 (0.01) 0.58 (0.007) —0.53 (0.006)
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TABLE 2
Comparison of implicit SGD with biglm. MSE is defined as ||0n — 0x||/||6g — 6«||. Values “*”
indicate out-of-memory errors. biglm was run in combination with the £ £3f package to map big
data files to memory. Implicit SGD used a similar but slower ad-hoc method. The table reports
computation times excluding file access

Procedure
biglm Implicit SGD

)/ N Size (GB) Time (secs) MSE Time (secs) MSE
le2 le5 0.021 2.32 0.028 24 0.028
le2 5e5 0.103 8.32 0.012 7.1 0.012
le2 le6 0.206 16 0.008 14.7 0.009
le2 le7 2.1 232 0.002 127.9 0.002
le2 le8 20.6 * * 1397 0.00

le3 le6 2.0 * * 31.38 0.153
le4 le5 2.0 * * 25.05 0.160

requirements (not reported in Table 1) are roughly O(Np?) for glm () and only
O(p) for implicit SGD.

4.2.2. Experiments with biglm. The package biglm is a popular choice for
fitting GLMs with data sets where N is large but p is small.® It works in an iterative
way by splitting the data set in many parts, and by updating the model parameters
using incremental QR decomposition [Miller (1992)], which results in only O( pz)
memory requirement. In this experiment, we compare implicit SGD with biglm
on larger data sets of Section 4.2.1. with small p and large N such that Np remains
roughly constant.

The results are shown in Table 2. We observe that implicit SGD is significantly
faster at a very small efficiency loss. The difference is more dramatic at large p; for
example, when p = 10° or p = 10*, biglm quickly runs out of memory, whereas
implicit SGD works without problems.

4.2.3. Experiments with glmnet. The glmnet package in R [Friedman,
Hastie and Tibshirani (2010)] is a deterministic optimization algorithm for gener-
alized linear models that uses the elastic net. It performs a component-wise update
of the parameter vector, utilizing thresholding from the regularization penalties
for more computationally efficient updates. One update over all parameters costs
roughly O(Np) operations. Additional computational gains are achieved when the
design matrix is sparse because fewer components are updated per each iteration.

6See http://cran.r-project.org/web/packages/biglm/index.html for the biglm package. biglm is
part of the High-Performance Computing (HPC) task view of the CRAN project here http://cran.
r-project.org/web/views/HighPerformanceComputing.html.


http://cran.r-project.org/web/packages/biglm/index.html
http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://cran.r-project.org/web/views/HighPerformanceComputing.html
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Comparing implicit SGD with glmnet. Table reports running times (in secs.) and MSE for both
procedures. The MSE of glmnet is calculated as the median MSE over the 100 grid values of
regularization parameter computed by default | Friedman, Hastie and Tibshirani (2010)]

Correlation (p)

Method Metric 0 0.2 0.6 0.9
N =1000, p =10
glmnet time (sec) 0.005 0.005 0.008 0.022
mse 0.083 0.085 0.099 0.163
sgd time (sec) 0.011 0.011 0.011 0.011
mse 0.042 0.042 0.049 0.053
N =5000, p =50
glmnet 0.058 0.067 0.119 0.273
0.044 0.046 0.057 0.09
sgd 0.059 0.056 0.057 0.057
0.019 0.02 0.023 0.031
N = 100,000, p =200
glmnet 2.775 3.017 4.009 10.827
0.017 0.017 0.021 0.033
sgd 1.475 1.464 1.474 1.446
0.004 0.004 0.004 0.006

In this experiment, we compare implicit SGD with glmnet on a subset of
experiments in the original package release [Friedman, Hastie and Tibshirani
(2010)]. In particular, we implement the experiment of Section 5.1 in that paper,
as follows. First, we sample the design matrix X ~ N, (0, £), where ¥ = b*U +1
and U is the p x p matrix of ones. The parameter b = /p /(1 — p), where p is the
target correlation of columns of X, is controlled in the experiments. The outcomes
are Y = X6, + o’¢, where 9;-‘ = (—1)/ exp(—2(j — 1)/20), and ¢ is a standard
p-variate normal. The parameter o is tuned to achieve a predefined signal-noise
ratio. We report average computation times in Table 3 over 10 replications, which
expands Table 1 of Friedman, Hastie and Tibshirani (2010).

First, we observe that implicit SGD is consistently faster than the glmnet
method. In particular, the SGD method scales better at larger p following a sub-
linear growth as noted in Section 4.2.1. Interestingly, it is also not affected by
covariate correlation, whereas glmnet gets slower as more components need to
be updated at every iteration. For example, with correlation p = 0.9 and N = 1e5,
p =200, the SGD method is almost 10x faster.

Second, to compare glmnet with implicit SGD in terms of MSE we picked
the median MSE produced by the grid of regularization parameters computed by
glmnet. We picked the median because glmnet is a deterministic method and
so at the best regularization value its MSE will be lower than the MSE of implicit
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SGD. However, implicit SGD seems to perform better against the median perfor-
mance of glmnet. Furthermore, Table 3 indicates a clear trend where, for bigger
dimensions p and higher correlation p, implicit SGD is performing better than
glmnet in terms of efficiency as well. We obtain similar results in a comparison
on a logistic regression model, which we present in Section 3 of the supplemental
article [Toulis and Airoldi (2017)].

4.2.4. Cox proportional hazards. In this experiment, we test the performance
of implicit SGD on estimating the parameters of a Cox proportional hazards model
in a setup that is similar to the numerical example of Simon et al. (2011), Section 3.

We consider N = 1000 units with covariates X ~ A(0, ¥), where ¥ = 0.2U +
I, and U is the matrix of ones. We sample times as Y; ~ Expo(n;(6,)), where
ni(0) = exp(XiT 0), and 6, = (6, k) is a vector with p = 20 elements defined as
O,k = 2(—1) "% exp(—0.1k). Time ¥; is censored, and thus d; = 0, according to
probability (1 +exp(—a(Y; — q))*l), where ¢ is a quantile of choice (set here
as ¢ = 0.8), and a is set such that min{Y;} is censored with a prespecified prob-
ability (set here as 0.1%). We replicate 50 times the following process. First, we
run implicit SGD for 2N iterations, and then measure MSE ||0,i1m — 6,3, for all
n=1,2,...,2N. To set the learning rates, we use equation (10), where the Fisher
matrix is diagonally approximated, through the AdaGrad procedure (12). We then
take the 5%, 50% and 95% quantiles of MSE across all repetitions and plot them
against iteration number 7.

The results are shown in Figure 3 (left panel). In the figure, we also plot (hori-
zontal dashed lines) the 5% and 95% quantiles of the MSE of the MLE, assumed to
be the best MSE achievable for SGD. We observe that implicit SGD performs well
compared to MLE in this small-sized problem. In particular, implicit SGD, under
the aforementioned generic tuning of learning rates, converges to the region of
optimal MLE in a few thousands of iterations. In experiments with explicit SGD,

mean squared error
Mean squared error

Ne i

\ =
. =

L 2 e

2500 5000
Iteration Iteration

FI1G. 3. Left panel: 5%—-95% quantile band of implicit SGD estimates (in cyan) against 5%—-95%
band of the MLE (dashed lines) for a Cox proportional hazards model (50 replications); Right panel:
5%-95% quantile band of implicit SGD estimates (in cyan) against median MLE (dashed line) on
an M-estimation task (100 replications).
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we were not able to replicate this performance because of numerical instability.
We note that there are no standard implementations of explicit SGD for estimating
Cox proportional hazards models, to our best knowledge.

4.2.5. M-estimation. In this experiment, we test the performance of implicit
SGD, in particular Algorithm 5, on a M-estimation problem in a setup that is sim-
ilar to the simulation example of Donoho and Montanari (2016), Example 2.4.

We set N = 1000 data points and p = 200 as the parameter dimension. We sam-
ple 6, as a random vector with norm [|6,| = 6,/p, and sample the design matrix
as X ~N(0, (1/N)I). The outcomes are sampled i.i.d. from a contaminated nor-
mal distribution, that is, with probability 95%, Y,, ~ N (X ¥0,, 1) and Y,, = 10 with
probability 5%.

The results over 2000 iterations of implicit SGD are shown in Figure 3 (right
panel). In the figure, we plot the 5% and 95% quantiles of MSE of implicit SGD
over 100 replications of the experiment. We also plot (horizontal dashed line) the
median MSE of the MLE estimator, computed using the coxph built-in command
of R. We observe that SGD converges steadily to the best possible MSE. Similar
behavior was observed under various modifications of the simulation parameters.

4.3. National morbidity-mortality air pollution (NMMAPS) study. The
NMMAPS study [Samet et al. (2000), Dominici et al. (2002)] analyzed the risks
of air pollution to public health. Several cities (108 in the US) are included in the
study with daily measurements covering more than 13 years (roughly 5000 days)
including air pollution data (e.g., concentration of CO in the atmosphere) together
with health outcome variables such as number of respiratory-related deaths.

The original study fitted a Poisson generalized additive model (GAM), sepa-
rately for each city due to data set size. Recent research [Wood, Goude and Shaw
(2015)] has developed procedures similar to biglm’s iterative QR decomposition
to fit all cities simultaneously on the full data set with approximately N = 1.2
million observations and p = 802 covariates (7 Gb in size). In this experiment,
we construct a GAM model using data from all cities in the NMMAPS study in a
process that is very similar (but not identical) to the data set of Wood, Goude and
Shaw (2015).

Our final data set has N = 1,426,806 observations and p = 794 covariates in-
cluding all cities in the NMMAPS study (8.6 GB in size), and is fit using a sim-
ple first-order implicit SGD procedure with C,, = I and y; = 1. The runtime for
implicit SGD was roughly 120 seconds, which is 6x faster than the 12 minutes
reported by Wood, Goude and Shaw (2015) on a similar computer. We cannot di-
rectly compare the estimates from the two procedures because the datasets used
were different. However, we can compare the estimates of our model with the
estimates of glm () on a random small subset of the data. For that purpose, we
subsampled N = 50,000 observations and p = 50 covariates (19.5 MB in size)
and fit the smaller data set using implicit SGD and glm (). A scatter plot of the
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FIG. 4. Estimates of implicit SGD (y-axis) and glm () (x-axis) on a subset of the NMMAPS data
set with N = 50,000 observations and p = 50 covariates, which is roughly 5% of the entire data set.

estimates is shown in Figure 4. The estimates of the implicit of the SGD procedure
are very close to MLE, while further replications of the aforementioned testing
process revealed the same pattern indicating that implicit SGD converged on all
replications.

S. Discussion. The theory in Section 2 suggests that implicit SGD is numer-
ically stable and has known asymptotic variance and asymptotic distribution. The
experiments in Section 4 show that the empirical properties of SGD are well pre-
dicted by theory. In contrast, explicit SGD is unstable and cannot work well with-
out problem-specific tuning. Thus, we conclude that implicit SGD is a principled
estimation procedure and is superior to widely-used explicit SGD procedures.

Intuitively, implicit SGD leverages second-order information at every iteration,
although second-order quantities do not need to be computed in equation (4). To
demonstrate this, we build upon the argument that was first introduced in Section 1
and equation (8), which is repeated below for convenience:

AG™ 2 [1 + y,Z(60; X, Yo)] ' 263

here, AGIM = 9im — gy and A6 = 655 — 6y, and the matrix Z(00; X, Y,) =
—Vv2 log f(Yu; Xu,0)lo=g, is the observed Fisher information at 6p. In other
words, the implicit procedure is a shrinked version of the explicit one, where the
shrinkage factor depends on the observed information.
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Naturally, the implicit SGD iterate Q}Im has also a Bayesian interpretation. In
particular, 6!™ is the posterior mode of a Bayesian model defined as

010™, ~ N (0™ |, ¥, Cy),
(28)
Ynlxn, 8 ~ f(! Xn, 0)

The explicit SGD update ngd can be written as in equation (28); however, f needs

to be substituted with its linear approximation around OZ%dl. Thus, equation (28)
provides an alternative explanation why implicit SGD is more principled than ex-
plicit SGD. Furthermore, it indicates possible improvements for implicit SGD. For
example, the prior in equation (28) could be chosen to fit better the parameter space
(e.g., 0, being on the simplex). Krzysztof et al. (2007) and Nemirovski et al. (2008)
have argued that appropriate implicit updates can fit better in the geometry of the
parameter space, and thus converge faster. Setting up the parameters of the prior is
also crucial. Whereas in explicit SGD there is no statistical intuition behind learn-
ing rates y,, equation (28) reveals that in implicit SGD the terms (y,,C )~ ! encode
the statistical information up to iteration n. It follows immediately that it is opti-
mal, in general, to set y,C,, =71 0,)"! /n, which is a special case of Theorem 2.2.

The Bayesian formulation of equation (28) also explains the stability of implicit
SGD. In Theorem 2.1, we showed that the initial conditions are discounted at an
exponential rate, regardless of misspecification of the learning rates. This stabil-
ity of implicit SGD allows several ideas for improvements. For example, constant
learning rates could be used in implicit SGD to speed up convergence toward a
region around 6,. A sequential hypothesis test could decide on whether G,ilm has
reached that region or not, and switch to the theoretically optimal 1/n rate accord-
ingly. Alternatively, we could run implicit SGD with AdaGrad learning rates and
switch to 1/n rates when the theoretical O(1/4/n) variance of AdaGrad becomes
larger than the O(1/n) variance of implicit SGD. Such schemes using constant
rates with explicit SGD are very hard to do in practice because of instability.

Regarding statistical efficiency, a key technical result in this paper is that the
asymptotic variance of implicit SGD can be calculated exactly using Theorem 2.2.
Optimal learning rates were suggested in equation (10) that depend on the eigen-
values of the unknown Fisher matrix Z(6,). In this paper, we used second-order
procedures of Section 2.2.1 to iteratively estimate the eigenvalues, however bet-
ter methods are certainly possible and could improve the performance of implicit
SGD. For example, it is known that typical iterative methods usually overesti-
mate the largest eigenvalue and underestimate the smallest eigenvalue, in small-to-
moderate samples. This crucially affects the behavior of stochastic approximations
with learning rates that depend on sample eigenvalues. Empirical Bayes methods
have been shown to be superior in iterative estimation of eigenvalues of large ma-
trices [Mestre (2008)], and it would be interesting to apply such methods to design
the learning rates of implicit SGD procedures.
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Regarding computational efficiency, we developed Algorithm 1 which imple-
ments implicit SGD on a large family of statistical models. However, the trick
used in fitting the Cox proportional hazards model in Section 3.3 can be more gen-
erally applied to models outside this family. For example, assume a log-likelihood
gradient of the form s(XT760;Y)G(0; X, Y), where both its scale s(-) and direc-
tion G(-) depend on model parameters 6; this violates conditions of Assump-
tion 2.1(b). The implicit update in equation (4)—where C,, = I for simplicity—
would be 0IM = 0Im  + y,5(X10I™; ¥,)G(6™; X,, Y,), which cannot be com-
puted by Algorithm 1. One way to circumvent this problem is to use an im-
plicit update only on the scale and use an explicit update on the direction, that
18, Qrilm = 9}1“_11 + yns(X,IO,ilm; Y,,)G(len_ll; Xy, Yy). This form of updates expands
the applicability of implicit SGD.

Finally, hypothesis testing and construction of confidence intervals using SGD
estimates is an important issue that has remained unexplored. In experiments of
Section 4.1.2, we showed that implicit SGD is indeed asymptotically normal in
several simulation scenarios. However, as SGD procedures are iterative, there
needs to be a rigorous and general method to decide whether SGD iterates have
converged to the asymptotic regime. Several methods, such as bootstrapping the
data set, could be used for that. Furthermore, conservative confidence intervals
could be constructed through multivariate Chebyshev inequalities or other strate-
gies [Marshall and Olkin (1960)].

5.1. Concluding remarks. In this paper, we introduced a new stochastic gra-
dient descent procedure that uses implicit updates at every iteration, which we
termed implicit SGD. Equation (8) shows, intuitively, that the iterates of implicit
SGD are a shrinked version of the standard iterates, where the shrinkage factor
depends on the observed Fisher information matrix. Thus, implicit SGD combines
the computational efficiency of first-order methods with the numerical stability of
second-order methods.

In a theoretical analysis, we derived nonasymptotic upper bounds for the mean-
squared errors of implicit SGD iterates, and the asymptotic variance of both ex-
plicit and implicit SGD iterates. Our analysis quantifies the efficiency loss of SGD
procedures, and suggests principled strategies to calibrate a hyperparameter that is
common to both explicit and implicit SGD procedures, known as the learning rate.
We illustrated the use of implicit SGD for statistical estimation in generalized lin-
ear models, Cox proportional hazards model, and general M-estimation problems.

Viewed as statistical estimation procedures, our results suggest that implicit
SGD has the same asymptotic efficiency to explicit SGD. However, the implicit
procedure is significantly more stable than the explicit one with respect to mis-
specification of the learning rate. In general, explicit SGD procedures are sensitive
to outliers and to misspecification of the learning rates, making it impossible to
apply without problem-specific tuning. In theory and in extensive experiments, im-
plicit procedures emerge as principled iterative estimation methods because they
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are numerically stable, they are robust to tuning of hyperparameters, and their stan-
dard errors are well predicted by theory. Thus, implicit stochastic gradient descent
is poised to become a workhorse of estimation from large data sets in statistical
practice.
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SUPPLEMENTARY MATERIAL

Supplement to ‘“Asymptotic and finite-sample properties of estimators
based on stochastic gradients” (DOI: 10.1214/16-AOS1506SUPP; .pdf). The
proofs of all technical results are provided in an online supplement [Toulis and
Airoldi (2017)]. There, we also provide numerical results that extend the results in
Section 4 of this article—referred to as the “main paper” in the supplement.
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