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Abstract
Nonparametric regression with random design is considered. Estimates are defined by
minimzing a penalized empirical L2 risk over a suitably chosen class of neural networks
with one hidden layer via gradient descent. Here, the gradient descent procedure is
repeated several times with randomly chosen starting values for the weights, and from the
list of constructed estimates the one with the minimal empirical L2 risk is chosen. Under
the assumption that the number of randomly chosen starting values and the number of
steps for gradient descent are sufficiently large it is shown that the resulting estimate
achieves (up to a logarithmic factor) the optimal rate of convergence in a projection
pursuit model. The final sample size performance of the estimates is illustrated by using
simulated data.

AMS classification: Primary 62G08; secondary 62G20.
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1. Introduction

1.1. Scope of this article

Motivated by the huge success of multilayer neural networks in applications (see, e.g.,
Schmidhuber (2015) and the literature cited therein) there has been an increasing in-
terest in the theoretical analysis of such estimates. Often this is done in the area of
nonparametric regression, and recently there has been a tremendous progress in the
theoretical understanding of least squares regression estimates based on deep neural net-
works, i.e., neural networks with many hidden layers. The corresponding theoretical
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results are based on the derivation of new approximation results for piecewise polyno-
mials by neural networks, and they make extensive use of the network structure, which
allows to exploit compository assumptions on the structure of the regression function in
order to circumvent the curse of dimensionality (cf., Kohler and Krzyżak (2017), Bauer
and Kohler (2017), Schmidt-Hieber (2017), Imaizumi and Fukumizu (2018), Eckle and
Schmidt-Hieber (2018) and Kohler, Krzyżak and Langer (2019)).

In all the articles above the neural network regression estimate is defined as a nonlinear
least squares estimate, i.e., as a function which minimizes the empirical L2 risk over
a nonlinear class of neural networks. In practice, it is usually not possible to find the
global minimum of the empirical L2 risk over a nonlinear class of neural networks and one
usually tries to find a local minimum using, for instance, the gradient descent algorithm.
So although the above theoretical results are quite impressive, there is a big gap between
the estimates studied theoretically and the estimates used in practice.

The purpose of this paper is to narrow this gap. To do this, we consider the following
question: If we define a neural network regression estimate theoretically exactly as it
is implemented in practice, can we show a rate of convergence result for this estimate?
The ultimative goal is to analyze theoretically neural network regression estimates which
are actually used in practice. As a first step in this direction we define a simple neural
network regression estimate where we use gradient descent in order to learn the weights
of a neural network with one hidden layer in a projection pursuit model. We show that
if we repeatedly apply this procedure to starting values, which are chosen randomly
from a special structure, then, for sufficiently many starting values and steps in each
procedure, we will find an estimate which achieves the optimal rate of convergence up to
a logarithmic factor in this projection pursuit model.

1.2. Nonparametric regression

We study neural network estimates in the context of nonparametric regression with ran-
dom design. Here, (X,Y ) is an R

d × R–valued random vector satisfying E{Y 2} < ∞,
and given a sample of (X,Y ) of size n, i.e., given a data set

Dn = {(X1, Y1), . . . , (Xn, Yn)} , (1)

where (X,Y ), (X1, Y1), . . . , (Xn, Yn) are i.i.d. random variables, the aim is to construct
an estimate

mn(·) = mn(·,Dn) : R
d → R

of the regression function m : Rd → R, m(x) = E{Y |X = x} such that the L2 error

∫

|mn(x)−m(x)|2PX(dx)

is “small” (see, e.g., Györfi et al. (2002) for a systematic introduction to nonparametric
regression and a motivation for the L2 error).

It is well–known that one needs smoothness assumptions on the regression function in
order to derive non–trivial results on the rate of convergence of nonparametric regression
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estimates (cf., e.g., Theorem 7.2 and Problem 7.2 in Devroye, Györfi and Lugosi (1996)
and Section 3 in Devroye and Wagner (1980)). To do this we will use the following
definition.

Definition 1 Let p = q + s for some q ∈ N0 and 0 < s ≤ 1, where N0 is the set
of nonnegative integers. A function f : Rd → R is called (p,C)-smooth, if for every
α = (α1, . . . , αd) ∈ N

d
0 with

∑d
j=1 αj = q the partial derivative ∂qf

∂x
α1
1 ...∂x

αd
d

exists and

satisfies
∣

∣

∣

∣

∂qf

∂xα1
1 . . . ∂xαd

d

(x)− ∂qf

∂xα1
1 . . . ∂xαd

d

(z)

∣

∣

∣

∣

≤ C · ‖x− z‖s

for all x, z ∈ R
d, where ‖ · ‖ denotes the Euclidean norm.

Stone (1982) showed that the optimal minimax rate of convergence in nonparametric
regression for (p,C)-smooth functions is n−2p/(2p+d). In case that d is large compared to
p this rate of convergence is rather slow (so called curse of dimensionality). In the sequel
we want to circumvent this curse of dimensionality by imposing the additional constraint
on the regression function that it satisfies a projection pursuit model, i.e., by assuming
that it satisfies

m(x) =

r
∑

s=1

gs(c
T
s x) (x ∈ R

d) (2)

for some r ∈ N, cs ∈ R
d, where ‖cs‖ = 1, and (p,C)-smooth functions gs : R → R

(s = 1, . . . , r). Under this assumption our aim is to show that suitably defined neural
network estimates, which can be actually implemented in an application, can achieve the
one-dimensional rate of convergence.

1.3. Main result of this article

In this paper we study neural network regression estimates using neural networks with
one hidden layer in the above projection pursuit model, i.e., we assume that the regression
function satisfies (2). We learn the weights of our neural network regression estimate by
choosing in a first step randomly vectors for the directions cs of our projection pursuit
model, by defining in a second step an appropriate starting value for the weights of our
neural network regression estimate based on the randomly chosen directions, and by
applying in a third step successively many gradient descent steps in order to optimze the
weights of our neural network. Then we repeat this whole procedure several times and
choose from the list of estimates which we get the one with the minimal error on our
training data.

Our main result is that for a sufficiently large number of repititions of this procedure
and a sufficiently large number of gradient descent steps the expected L2 error of a
truncated version of our estimate converges towards zero in the projection pursuit model
(2) in case of (p,C)–smoth functions gs (where p ≤ 1) with the rate of convergence

(

(log n)3

n

)

2p
2p+1

,
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i.e., with the optimal rate of convergence up to a logarithmic factor. Here, the rate of
convergence is independent of the dimension d of X. Hence, our neural network regression
estimate is able to circumvent the curse of dimensionality in the projection pursuit model
(2).

We achieve this result by choosing our initial weights such that the initial network
basically computes a piecewise constant function and by showing that in this case the
gradient descent is able to choose the outer weights in the neural network in an optimal
way (provided the number of gradient descent steps is sufficiently large).

1.4. Discussion of related results

It is well-known that it is possible to circumvent the curse of dimensionality by imposing
additional constraints on the structure of the regression function. Stone (1985) assumed
that the regression function is additive, i.e., that m : Rd → R satisfies

m(x(1), . . . , x(d)) = m1(x
(1)) + · · ·+md(x

(d)) (x(1), . . . , x(d) ∈ R)

for some (p,C)–smooth univariate functions m1, . . . ,md : R → R, and showed that
in this case suitably defined spline estimates achieve the corresponding univariate rate
of convergence. Stone (1994) extended this results to interaction models, where the
regression function is assumed to be a sum of functions applied to at most d∗ < d
components of x and showed that in this case suitably defined spline estimates achieve
the d∗–dimensional rate of convergence. Other classes of functions which enable us to
achieve a better rate of convergence results include single index models, where

m(x) = g(cTx) (x ∈ R
d)

for some c ∈ R
d and g : R → R (cf., e.g., Härdle and Stoker (1989), Härdle, Hall

and Ichimura (1993), Yu and Ruppert (2002), Kong and Xia (2007) and Lepski and
Serdyukova (2014)), and projection pursuit, where it is assumed that (2) holds for some
r ∈ N, cs ∈ R

d and gs : R → R (s = 1, . . . , r) (cf., e.g., Friedman and Stuetzle (1981) and
Huber (1985)). Horowitz and Mammen (2007) studied the case of a regression function,
which satisfies

m(x) = g





L1
∑

l1=1

gl1





L2
∑

l2=1

gl1,l2



. . .

Lr
∑

lr=1

gl1,...,lr(x
l1,...,lr)











 ,

where g, gl1 , . . . , gl1,...,lr are (p,C)-smooth univariate functions and xl1,...,lr are single com-
ponents of x ∈ R

d (not necessarily different for two different indices (l1, . . . , lr)). With
the use of a penalized least squares estimate for smoothing splines, they proved the rate
n−2p/(2p+1).

For the L2 error of a single hidden layer neural network, Barron (1993, 1994) proved
the dimensionless rate of convergence n−1/2 (up to some logarithmic factor), provided the
Fourier transform has a finite first moment (which basically requires that the function
becomes smoother with increasing dimension d of X). Restricting their study to the
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use of a certain cosine squasher as the activation function, McCaffrey and Gallant (1994)

showed a rate of n− 2p
2p+d+5

+ε for the L2 error of suitably defined single hidden layer neural
network estimate for (p,C)-smooth functions.

Recently it was shown in several papers that neural networks can achieve a dimen-
sionality reduction in case that the regression function is a composition of (sums of)
functions, where each of the function is a function of at most d∗ < d variables. The first
paper in this respect was Kohler and Krzyżak (2017), where it was shown that under a
corresponding assumption suitably defined multilayer neural networks achieve the rate of
convergence n−2p/(2p+d∗) (up to some logarithmic factor) in case p ≤ 1. Bauer and Kohler
(2017) showed that this result even holds for p > 1 provided the squashing function is
suitably chosen. Schmidt-Hieber (2017) showed similar results for neural networks with
ReLU activation function. Eckle and Schmidt-Hieber (2018) showed that neural net-
works with ReLU activation function can approximate well piecewise polynomials with
rather general partitions based on the intersection of hyperplanes and used this result to
relate the error of neural network estimates to the error of piecewise polynomial parti-
tioning estimates. Kohler, Krzyżak and Langer (2019) derived a similar result for neural
networks with squashing functions as activation function and used this result to prove
that neural networks are able to circumvent the curse of dimensionality in case that the
regression function has a low local dimensionality. Results concerning the approxima-
tion of piecewise polynomials with partitions with rather general smooth boundaries by
neural networks have been derived in Imaizumi and Fukamizu (2018).

The above mentioned results show that least squares neural network regression es-
timates are able to circumvent the curse of dimensionality under much more general
assumptions than the projection pursuit model assumed in this paper. However, these
estimates cannot be computed in practice, whereas our result shows that in the projec-
tion pursuit model we can achieve this with neural networks even in the case where we
restrict ourselves to estimates which can be computed much easier.

Gradient descent has been studied in many different papers, see, e.g., Karimi, Nutini
and Schmidt (2018) and the literature cited therein. A standard reference is the mono-
graph Luenberger and Ye (2016). We also mention Poljak (1981) as an early paper, where
the case of noise corrupted function values is considered, too. Stochastic approximation
deals with the latter field, see, e.g., the monograph Kushner and Yin (2003), and here
in a classic situation the constant factor at the gradient is replaced by a decreasing fac-
tor at a vector of divided differences (multidimensional Kiefer-Wolfowitz method). The
paper of White (1989, 1992) brings together the two fields of stochastic approximation
and neural network models (see also Fabian (1994)). In Dippon and Fabian (1994) and
Dippon (1998) it is explained how gradient descent in stochastic approximation can be
combined with a slowly convergent global optimizer in order to find not only a local but
even a global minimum of a general function. The main difficulty of using such results to
derive rate of convergence results for neural network regression estimates lies in the fact
that for neural network regression estimates the neural network is using more and more
neurons with increasing sample size. This means that it is not sufficient to analyze gra-
dient descent applied to a fixed function where the number of steps is tending to infinity.
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Instead the function is changing for increasing number of steps. Basically, this requires
the ability to analyze the behaviour of gradient descent for a finite number of steps. As
far as we know such results do not exist in the literature in case of a general function
like the empirical L2 risk of a neural network (which is neither convex nor has a global
minimum or an easily analysable Hessian matrix considered as a real-valued function of
the weight vector).

There are quite a few articles in computer science where people try to prove that
backpropagation leads to good neural network estimates. Unfortunately, the approaches
used there do not lead to similarly powerful rate of convergence results for neural networks
as in our article here. For instance, Arora et al. (2018), Kawaguchi (2016), and Du
and Lee (2018) analyzed gradient descent for neural networks with linear or quadratic
activation function. For such neural networks there do not exist good approximation
results, consequently, one cannot derive from these results a rate of convergence result
comparable to that in our article. Du et al. (2018) analyzed gradient descent applied
to neural networks with one hidden layer in case of a Gaussian input distribution. They
used the expected gradient instead of the gradient in their gradient descent routine, and
therefore, their result cannot be used to derive a rate of convergence result for an estimate
learned by gradient descent as the one in our paper. Liang et al. (2018) applied gradient
descent to a modified loss function in classification, where it is assumed that the data
can be interpolated by a neural network. Here, the second assumption is not satisfied
in nonparametric regression and it is unclear whether the main idea (of simplifying the
estimation by a modification of the loss function) can also be used in a regression setting.
In Allen-Zhu, Li and Song (2019), also Kawaguchi and Huang (2019), it is shown that
gradient descent leads to a small empirical L2 risk in overparametrized neural networks.
Here, it is unclear what the L2 risk of the estimate is (and a bound on this term is
necessary in order to derive results like in our paper). In particular, due to the fact that
the networks are overparametrized, a bound on the empirical L2 risk might be not useful
for bounding the L2 risk.

1.5. Notation

Throughout the paper, the following notation is used: The sets of natural numbers,
natural numbers including 0 and real numbers are denoted by N, N0 and R, respectively.
For z ∈ R, we denote the smallest integer greater than or equal to z by ⌈z⌉. The
Euclidean norm of x ∈ R

d is denoted by ‖x‖, and ‖x‖∞ denotes its supremum norm. For
f : Rd → R let

‖f‖∞ = sup
x∈Rd

|f(x)|

denote its supremum norm. A finite collection f1, . . . , fN : Rd → R is called an ε–L1–
cover of F on xn1 = (x1, . . . , xn) ∈ (Rd)n if for any f ∈ F there exists i ∈ {1, . . . , N}
such that

1

n

n
∑

j=1

|f(xj)− fi(xj)| < ε.
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The ε–L1- covering number of F on xn1 is the size N of the smallest ε–L1– cover of F on
xn1 and is denoted by N1(ε,F , xn1 ).

1.6. Outline

The outline of this paper is as follows: In Section 2 we define our neural network regression
estimates and in Section 3 we present our main theoretical result. The finite sample size
performance of our newly proposed estimate is illustrated in Section 4 by applying it to
simulated data. The proofs are given in Section 5.

2. Definition of the estimate

In the construction of our estimate we assume that the regression function m satisfies
(2) and that the support of X is contained in the cube [−A,A]d for some given A ≥ 1.
We approximate each gs : R → R by a neural network with logistic squasher

σ(x) =
1

1 + e−x

chosen such that it is close to a piecewise constant function of the form

u 7→
K
∑

l=1

as,l · 1[bl,∞) + as,0.

As we will show in Lemma 5 below, such a neural network can be chosen of the form

u 7→
K
∑

l=1

as,l · σ(ρn · (u− bl)) + as,0,

where ρn > 0 is a large constant, and the error of this approximation will be small at
all those points, where ρn · |u− bl| is large. By replacing u with cTs x we see that we can
approximate m by networks with one hidden layer and K · r neurons in this hidden layer
defined by

fnet,(a,b)(x) =

K·r
∑

k=1

ak · σ





d
∑

j=1

bk,j · x(j) + bk,0



+ a0. (3)

Here, K · r ∈ N is the number of neurons, σ : R → R is the activation function and

ak ∈ R (k = 0, . . . ,K · r) and bk,j ∈ R (k = 1, . . . ,K · r, j = 0, . . . , d)

are the weights. The above condition that ρn · |u− bl| is large in order to achieve a small
error at point u of the above neural network approximation of the piecewise constant
function is replaced by the assumption that

min
i=1,...,n

|
d
∑

j=1

bk,j ·X(j)
i + bk,0|
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is large, which will enable us to show that our approximation is good at all x-values of
the data points. And this condition in turn will be ensured by a proper choice of the
initial weights described below.

We will learn the weights by gradient descent. More precisely, we minimize the penal-
ized empirical L2 risk

F (a,b) =
1

n

n
∑

i=1

|fnet,(a,b)(Xi)− Yi|2 +
c1
n

·
K·r
∑

k=0

a2k, (4)

where c1 > 0 is a constant, by choosing an appropriate starting value (a(0),b(0)) and by
setting

(

a(t+1)

b(t+1)

)

=

(

a(t)

b(t)

)

− λn · (∇(a,b)F )(a(t),b(t)) (5)

for some λn > 0 chosen below and t = 0, 1, . . . , tn − 1.
Next, we explain how we choose the initial values (a(0),b(0)) for our weights. As

explained above, our choice is motivated by the structure of m in the projection pursuit
model (2). Here the number r of terms in this model is a parameter of our estimate
(which we will choose data-dependent in any application, cf., Remark 2 below). In a first
step we randomly choose values

c̄1, . . . , c̄r ∈ [−1, 1]d (6)

as an independent sample from a uniform distribution on [−1, 1]d such that ‖c̄s‖ = 1
(s = 1, . . . , r). Using these values as approximation of the directions c1, . . . , cr of our
projection pursuit model, we define our initial inner weights as follows: For s ∈ {1, . . . , r}
we define

b(s−1)·K+1,0, . . . , b(s−1)·K+1,d, . . . , bs·K,0, . . . , bs·K,d

according to c̄s and to X1, . . . ,Xn: First, we choose b1, . . . , bK ∈ R such that b1 < b2 <
· · · < bK and

b1 ≤ −A ·
√
d,

bK ≥ A ·
√
d− 4 ·

√
d · A

K − 1
,

√
d · A

(n+ 1) · (K − 1)
≤ |bk+1 − bk| ≤

4 ·
√
d ·A

K − 1
(k = 1, . . . ,K − 1)

and

min
i=1,...,n,k=1,...,K

∣

∣c̄Ts Xi − bk
∣

∣ ≥
√
d ·A

(n+ 1) · (K − 1)
.

Such a choice is always possible, e.g., we can set b1 = −
√
d·A−2·

√
d·A/((n+1)·(K−1))

and define bk (k = 2, . . . ,K) by subdividing the interval

[

−
√
d · A+ (k − 2) · 2 ·

√
d ·A

K − 1
,−

√
d ·A+ (k − 1) · 2 ·

√
d ·A

K − 1

]
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into (n+1) equidistant subintervals of length 2 ·
√
d ·A/((K−1) ·(n+1)) and by choosing

bk as the midpoint of one of those intervals which does not contain any of the n values
c̄Ts Xi (such an interval must exist since not every one of the n+ 1 disjoint intervals can
contain one of the above n points). As soon as we have chosen b1, . . . , bK we define
b(s−1)·K+k,j (s = 1, . . . , r, k = 1, . . . ,K, j = 0, . . . , d) such that we have for some ρn > 0
chosen below (cf., Theorem 1 below)

d
∑

j=1

b(s−1)·K+k,j · x(j) + b(s−1)·K+k,0 = ρn · (c̄Ts x− bk) for all x ∈ R
d,

namely, we set

b(s−1)·K+k,j = ρn · c̄(j)s and b(s−1)·K+k,0 = −ρn · bk
(s = 1, . . . , r, k = 1, . . . ,K, j = 1, . . . , d). Then, we choose al = 0 for all l ∈ {0, . . . ,K ·r}.

After this choice of (a(0),b(0)) we define (a(t+1),b(t+1)) recursively by (5) for λn > 0
and t = 0, 1, . . . , tn − 1.

We repeat this whole procedure In times, and let

m̃n

be the neural network which achieves the smallest penalized empirical L2 error (4) among
all the In networks. Finally we truncate our estimate by selecting some βn > 0 and by
setting

mn(x) = Tβnm̃n(x),

where Tβnz = max{min{z, βn},−βn} for z ∈ R.

3. Main result

Our main result is the following theorem.

Theorem 1 Let n ≥ 2, let A ≥ 1 and let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be independent
and identically distributed random variables with values in [−A,A]d × R. Set m(x) =
E{Y |X = x} and assume that (X,Y ) satisfies

E
(

ec2·|Y |2
)

< ∞ (7)

for some constant c2 > 0, and that m satisfies

m(x) =

r
∑

s=1

gs(c
T
s x) (x ∈ R

d)

for some r ∈ N, cs ∈ [−1, 1]d, where ‖cs‖ = 1, and gs : R → R (s = 1, . . . , r). Assume
that gs is (p,C)-smooth for s ∈ {1, . . . , r}, where p ∈ (0, 1] and C > 0 are fixed. Define
the regression estimate mn as in Section 2 with

σ(x) =
1

1 + e−x
,
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with parameter r as in the above projection pursuit model, and with the other parameters
chosen by

βn = c3 · log n, K = Kn = ⌈(n/(log n)3)1/(2p+1)]⌉, λn =
1

3 ·K · r , ρn = n2 ·K,

and
tn = Kn · n · (log n)2 and In = ⌈(log n)−3·r·d/(2p+1) · nr·d/(2p+1)⌉.

Then mn satisfies

E

∫

|mn(x)−m(x)|2PX(dx) ≤ c4 ·
(

(log n)3

n

)

2p
2p+1

for some constant c4 > 0 which does not depend on n.

Remark 1. According to Stone (1982) the rate of convergence in the above theorem is
optimal up to a logarithmic factor in case of a (p,C)-smooth projection pursuit model.
Because of the fact that this rate of convergence is independent of the dimension d of X,
the above theorem shows that our newly proposed computable neural network regression
estimate is able to circumvent the curse of dimensionality in case that the regression
function satisfies the assumption of projection pursuit. We should however mention
that the number of repitions In of the initial random choices of the directions c̄s and
correspondingly the number of repititions of the tn gradient descent steps is rather huge.
Remark 2. The parameters r and Kn, and also In, of the above algorithm depend
on the projection pursuit model and hence are unknown in any application. However,
it is easy to choose them data-dependently by using, e.g., the splitting of the sample
technique as explained in the next section. In this way it is possible to define an estimate
which does not depend on the value of r of the projection pursuit model and which is
nevertheless able to achieve the rate of convergence in Theorem 1.

4. Application to simulated data

In this section we illustrate the finite sample size performance of our newly proposed
estimate by applying it to simulated data.

The simulated data which we use is defined as follows: We choose d = 4, X uniformly
distributed on [−1, 1]d, ǫ standard normal and independent of X, and we define Y by

Y = mj(X) + σ · τj · ǫ, (8)

where mj : [−1, 1]d → R is described below, τj > 0 is a scaling value defined below and
σ is chosen from {0.05, 0.2} (j ∈ {1, 2}). As regression function we use

m1(x1, x2, x3, x4) = 2 · sin
(

2 · π√
4

· (−x1 + x2 − x3 + x4)

)

,
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so m1 satisfies a single index model, and

m2(x1, x2, x3, x4)

= 4 · sin
(

2 · π√
4

· (−x1 + x2 − x3 + x4)

)

+
7

2 + 1√
30

· (x1 − 2 · x2 + 3 · x3 − 4 · x4)
,

hence m2 satisfies a single index model with r = 2 terms. τj is chosen approximately as
IQR of samples of size 100, 000 of m(X), and we use the concrete values τ1 = 2.8289 and
τ2 = 5.2841. From this distribution we generate samples of size n = 100 and n = 200
and apply our newly proposed neural network regression estimate and two alternative
regression estimates to these samples. Then we compute the L2 errors of these three
estimates approximately by using the empirical L2 error εL2,N̄ (·) on an independent
sample of X of size N̄ = 10, 000. Since this error strongly depends on the behavior of
the correct function mj , we consider it in relation to the error of the simplest estimate
for mj we can think of, a completely constant function (whose value is the average of the
observed data according to the least squares approach). Thus, the scaled error measure
we use for evaluation of the estimates is εL2,N̄ (mn,i)/ε̄L2,N̄(avg), where ε̄L2,N̄ (avg) is the
median of 50 independent realizations of the value one obtains if one plugs the average
of n observations into εL2,N̄ (·). To a certain extent, this quotient can be interpreted as
the relative part of the error of the constant estimate that is still contained in the more
sophisticated approaches. The resulting scaled errors of course depend on the random
sample of (X,Y ), and to be able to compare these values nevertheless we repeat the
whole computation 25 times and report the median and the interquartile range of the 25
scaled errors for each of our three estimates.

Our first estimate Tps is a smoothing spline estimate with parameter chosen by gen-
eralized cross validation as implemented in the routine Tps() of the library fields in R.

Our second estimate neighbor is a nearest neighbor estimate where the number of
nearest neighbors is chosen from the set {1, 2, 4, 8, 16, 32} by splitting of the sample.
Here we split our sample in a learning sample of size nl = 0.8 · n and a testing sample of
size nt = 0.2 · n. We compute the estimate for all parameter values from the above set
using the learning sample, compute the corresponding empirical L2 risk on the testing
sample and choose the parameter value which leads to the minimal empirical L2 risk on
the testing sample.

Our third estimate neural is our newly proposed neural network estimate presented
in this paper, which we have implemented in R. Here the parameters r and K of the
estimate are chosen via splitting of the sample (as described above) from the set {1, 2}
and {5, 10, 20}, respectively. In order to accelerate the computation of this estimate we
use only In = 50 random choices for the vectors of directions in the computation of the
estimate for each parameter value.

The results are summarized in Table 1 and in Table 2. As we can see from the reported
scaled errors, our newly proposed neural network estimate outperforms in both cases in
all four settings both the smoothing spline estimate and the nearest neighbor estimate.
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m1 m2

noise 5% 20% 5% 20%

ε̄L2,N̄(avg) 2.0154 2.0219 10.3521 10.3627

approach median (IQR) median (IQR) median (IQR) median (IQR)

Tps 1.18 (0.17) 1.19 (0.14) 0.89 (0.09) 0.98 (0.17)
neighbor 1.06 (0.15) 1.13 (0.27) 0.91 (0.07) 0.92 (0.08)
neural 0.52 (0.34) 0.46 (0.25) 0.42 (0.16) 0.56 (0.15)

Table 1: Median and IQR of the scaled empirical L2 error of estimates for m1 and m2

for sample size n = 100.

m1 m2

noise 5% 20% 5% 20%

ε̄L2,N̄(avg) 2.0125 2.0109 10.3127 10.3192

approach median (IQR) median (IQR) median (IQR) median (IQR)

Tps 0.75 (0.08) 0.82 (0.17) 0.55 (0.05) 0.64 (0.08)
neighbor 0.88 (0.08) 0.96 (0.08) 0.70 (0.07) 0.77 (0.10)
neural 0.44 (0.29) 0.44 (0.31) 0.34 (0.19) 0.40 (0.22)

Table 2: Median and IQR of the scaled empirical L2 error of estimates for m1 and m2

for sample size n = 200.

5. Proofs

5.1. Learning of linear penalized least squares estimates by gradient
descent

Let (x1, y1), . . . , (xn, yn) ∈ R
d × R, let K ∈ N, let B1, . . . , BK : Rd → R and let c1 > 0.

In this subsection we consider the problem to minimize

F (a) =
1

n

n
∑

i=1

|
K
∑

k=1

ak ·Bk(xi)− yi|2 +
c1
n

· ‖a‖2, (9)

where

a = (a1, . . . , aK)T and ‖a‖2 =
K
∑

j=1

a2j ,

by gradient descent. To do this, we choose a(0) ∈ R
K and set

a(t+1) = a(t) − λn · (∇aF )(a(t)) (10)

for some properly chosen λn > 0.

Lemma 1 Let F : RK → R be a differentiable function and define a(t+1) by (10), where

λn =
1

Ln
(11)

12



for some Ln > 0. Let aopt ∈ R
K be arbitrary.

a) If
‖(∇aF )(a1)− (∇aF )(a2)‖ ≤ Ln · ‖a1 − a2‖ (a1,a2 ∈ R

K) (12)

holds, then we have

F (a(t+1))− F (a(t)) ≤ − 1

2 · Ln
· ‖(∇aF )(a(t))‖2.

b) If inequality (12) and, in addition,

‖(∇aF )(a)‖2 ≥ ρn · (F (a)− F (aopt)) (a ∈ R
K) (13)

hold for some ρn > 0, then we have

F (a(t+1))− F (aopt) ≤
(

1− ρn
2 · Ln

)

· (F (a(t))− F (aopt)).

Proof. Lemma 1 follows from well-known bounds in the literature, see, e.g., Karimi,
Nutini and Schmidt (2018). For the sake of completeness a complete proof is given in
the supplementary material. �

Lemma 2 Let F be defined by (9). Then we have for any a1,a2 ∈ R
K

‖(∇aF )(a1)− (∇aF )(a2)‖ ≤
(

2 ·
K
∑

k=1

1

n

n
∑

i=1

Bk(xi)
2 +

2 · c1
n

)

· ‖a1 − a2‖.

Proof. We have

F (a) =
1

n
· (B · a− y)T · (B · a− y) +

c1
n

· aT · a

where
B = (Bj(xi))1≤i≤n,1≤j≤K and y = (y1, . . . , yn)

T .

Consequently,

(∇aF )(a) =
2

n
·
(

BTBa−BTy
)

+
2 · c1
n

· a

and

‖(∇aF )(a1)− (∇aF )(a2)‖ ≤ ‖ 2
n
·BTB · (a1 − a2)‖+

2 · c1
n

· ‖a1 − a2‖.

By applying twice the Cauchy-Schwarz inequality we get

∥

∥

∥

∥

2

n
·BTB · a

∥

∥

∥

∥

2

=
K
∑

j=1

(

K
∑

k=1

(
2

n

n
∑

i=1

Bj(xi) ·Bk(xi)) · ak
)2

≤
K
∑

j=1

K
∑

k=1

(
2

n

n
∑

i=1

Bj(xi) ·Bk(xi))
2 · ‖a‖2

13



≤
K
∑

j=1

K
∑

k=1

4 · 1
n

n
∑

i=1

Bj(xi)
2 · 1

n

n
∑

i=1

Bk(xi))
2 · ‖a‖2

=

(

2 ·
K
∑

k=1

1

n

n
∑

i=1

Bk(xi)
2

)2

· ‖a‖2,

which implies the assertion. �

Lemma 3 Let F be defined by (9) and choose aopt such that

F (aopt) = min
a∈RK

F (a).

Then for any a ∈ R
K we have

‖(∇aF )(a)‖2 ≥ 4 · c1
n

· (F (a) − F (aopt)).

Proof. Set

B = (Bj(xi))1≤i≤n,1≤j≤K and A =
1

n
·BT ·B+

c1
n

· 1,

where 1 is the unit matrix. Then A is positive definite and hence regular, from which
we can conlcude

F (a) =
1

n
· (B · a− y)T · (B · a− y) +

c1
n

· aT · a

= aTAa− 2yT 1

n
Ba+

1

n
yTy

= (a−A−1 1

n
BTy)TA(a−A−1 1

n
BTy) + F (aopt),

where

F (aopt) =
1

n
yTy − yT · 1

n
·BA−1 · 1

n
·BTy.

Using

bTAb ≥ c1
n

· bTb

and AT = A we conclude

F (a)− F (aopt)

= ((A1/2)T (a−A−1 1

n
BTy))TA1/2(a−A−1 1

n
BTy)

≤ n

c1
· ((A1/2)T (a−A−1 1

n
BTy))TAA1/2(a−A−1 1

n
BTy)

=
n

c1
· ((A)T (a−A−1 1

n
BTy))TA(a−A−1 1

n
BTy)

14



=
n

c1
· (Aa− 1

n
BTy)T (Aa− 1

n
BTy)

=
n

4 · c1
· (2Aa− 2

n
BTy)T (2Aa− 2

n
BTy)

=
n

4 · c1
· ‖(∇aF )(a)‖2 ,

where the last equality follows from

(∇aF )(a) = ∇a

(

aTAa− 2yT 1

n
Ba+

1

n
yTy

)

= 2Aa− 2

n
BTy.

�

5.2. Result for neural networks with one hidden layer

In this subsection we study neural networks with one hidden layer, which are defined by

fnet,(a,b)(x) =
K
∑

k=1

ak · σ





d
∑

j=1

bk,j · x(j) + bk,0



+ a0 (14)

(compare (3)), where K ∈ N is the number of neurons, σ : R → R is the activation
function and where the weights

ak (k = 0, . . . ,K) and bk,j ∈ R (k = 1, . . . ,K, j = 0, . . . , d)

are learned by gradient descent. More precisely, we minimize

F (a,b) =
1

n

n
∑

i=1

|fnet,(a,b)(xi)− yi|2 +
c1
n

·
K
∑

k=0

a2k (15)

(compare (4)) by choosing an appropriate starting value (a(0),b(0)) and by setting
(

a(t+1)

b(t+1)

)

=

(

a(t)

b(t)

)

− λn · (∇(a,b)F )(a(t),b(t)) (16)

for some λn > 0 chosen below.
Our main idea is, that in the case of the logistic squasher

σ(x) =
1

1 + e−x
(x ∈ R),

the neural network (14) is for appropriate weigths bk,j close to a linear combination of
indicator functions, and in this case the gradient descent will change the inner weights
bk,j only slightly. From this we will conclude from our results for linear least squares
estimates that for such networks the gradient descent leads to estimates where the outer
weights ak are chosen optimally.

In Lemma 5 below we study the approximation of Hölder continuous functions by
neural networks of the above form in the case of univariate functions and networks. To
do this, we will need the following auxiliary result.
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Lemma 4 Let σ be the logistic squasher.
a) For any x ∈ R we have

|σ(x)− 1[0,∞)(x)| ≤ e−|x|.

b) For any b ∈ R, c > 0 and x ∈ R we have

|σ(c · (x− b))− 1[b,∞)(x)| ≤ e−c·|x−b|.

Proof. a) For x ≥ 0 we have

|σ(x)− 1[0,∞)(x)| = 1− 1

1 + e−x
=

e−x

1 + e−x
≤ e−x = e−|x|.

And for x < 0 we get

|σ(x)− 1[0,∞)(x)| =
1

1 + e−x
≤ ex = e−|x|.

b) From c > 0 and a) we get

|σ(c · (x− b))− 1[b,∞)(x)| = |σ(c · (x− b))− 1[0,∞)(c · (x− b))| ≤ e−|c·(x−b)| = e−c·|x−b|.

�

Lemma 5 Let σ be the logistic squasher. Let c̄ ∈ [−1, 1]d with ‖c̄‖ = 1 and let g : R → R

be (p,C)-smooth for some p ∈ (0, 1] and C > 0. Let ρn > 0, K ∈ N and choose
b1, b2, . . . , bK ∈ R such that b1 < b2 < · · · < bK and

b1 ≤ −A ·
√
d,

bK ≥ A ·
√
d− 4 · A ·

√
d

K − 1

and
A ·

√
d

(n+ 1) · (K − 1)
≤ |bk+1 − bk| ≤

4 · A ·
√
d

K − 1
(k = 1, . . . ,K − 1).

Let
a0 = g(b1) and ak = g(bk)− g(bk−1) (k = 1, . . . ,K).

Then we have

sup
x∈[−A,A]d

∣

∣

∣

∣

∣

a0 +

K
∑

k=1

ak · σ(ρn · (c̄Tx− bk))− g(c̄Tx)

∣

∣

∣

∣

∣

≤ 3 · (4 ·A ·
√
d)p · C

(K − 1)p
+C · (4 ·A ·

√
d)p · (K − 1)1−p · e−

ρn·(A·
√

d)
(n+1)·(K−1) .
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Proof. We have
∣

∣

∣

∣

∣

a0 +
K
∑

k=1

ak · σ(ρn · (c̄Tx− bk))− g(c̄Tx)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

K
∑

k=1

ak · σ(ρn · (c̄Tx− bk))−
K
∑

k=1

ak · 1[bk,∞)(c̄
Tx)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

a0 +

K
∑

k=1

ak · 1[bk ,∞)(c̄
Tx)− g(c̄Tx)

∣

∣

∣

∣

∣

.

For bj ≤ c̄Tx < bj+1, where j ∈ {1, . . . ,K − 1}, we can conclude from the definition of
ak, from the (p,C)-smoothness of g and from our choice of the bk

∣

∣

∣

∣

∣

a0 +
K
∑

k=1

ak · 1[bk,∞)(c̄
Tx)− g(c̄T x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

a0 +

j
∑

k=1

ak − g(c̄T x)

∣

∣

∣

∣

∣

= |g(bj)− g(c̄Tx)|

≤ C · |bj − c̄Tx|p ≤ C · |bj+1 − bj |p ≤
C · (4 ·A ·

√
d)p

(K − 1)p
.

It is easy to see that this inequality is also true for bK ≤ c̄Tx ≤
√
d · A. Hence, we have

shown

sup
x∈[−A,A]d

∣

∣

∣

∣

∣

a0 +
K
∑

k=1

ak · 1[bk ,∞)(c̄
Tx)− g(c̄Tx)

∣

∣

∣

∣

∣

≤ C · (4 ·A ·
√
d)p

(K − 1)p
.

We finish the proof by showing

sup
x∈[−A,A]d

∣

∣

∣

∣

∣

K
∑

k=1

ak · σ(ρn · (c̄Tx− bk))−
K
∑

k=1

ak · 1[bk,∞)(c̄
Tx)

∣

∣

∣

∣

∣

≤ 2 · (4 ·A ·
√
d)p · C

(K − 1)p
+ C · (4 ·A ·

√
d)p · (K − 1)1−p · e−

ρn·(A·
√

d)
(n+1)·(K−1) .

For bj ≤ c̄Tx ≤ bj+1, where j ∈ {1, . . . ,K − 1}, we have

∣

∣

∣

∣

∣

K
∑

k=1

ak · σ(ρn · (c̄Tx− bk))−
K
∑

k=1

ak · 1[bk,∞)(c̄
Tx)

∣

∣

∣

∣

∣

≤
j−1
∑

k=1

|ak| ·
∣

∣σ(ρn · (c̄Tx− bk))− 1[bk ,∞)(c̄
Tx)
∣

∣+ |aj |+ |aj+1|

+
K
∑

k=j+2

|ak| ·
∣

∣σ(ρn · (c̄Tx− bk))− 1[bk ,∞)(c̄
Tx)
∣

∣
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≤ max
k=1,...,K

|ak| ·
(

2 + (K − 2) · max
k∈{1,2,...,j−1,j+2,j+3,...,K}

∣

∣σ(ρn · (c̄Tx− bk))− 1[bk,∞)(c̄
Tx)
∣

∣

)

.

For bK ≤ c̄Tx ≤
√
d ·A we get

∣

∣

∣

∣

∣

K
∑

k=1

ak · σ(ρn · (c̄Tx− bk))−
K
∑

k=1

ak · 1[bk,∞)(c̄
Tx)

∣

∣

∣

∣

∣

≤ max
k=1,...,K

|ak| ·
(

1 + (K − 1) · max
k∈{1,2,...,K−1}

∣

∣σ(ρn · (c̄Tx− bk))− 1[bk ,∞)(c̄
Tx)
∣

∣

)

.

By definition of ak and by the (p,C)-smoothness of g, we have

|ak| ≤ C · |bk − bk−1|p ≤ C · (4 ·A ·
√
d)p

(K − 1)p
,

which, together with Lemma 4, implies for bj ≤ c̄Tx ≤ bj+1, where j ∈ {1, . . . ,K − 1},
∣

∣

∣

∣

∣

K
∑

k=1

ak · σ(ρn · (c̄Tx− bk))−
K
∑

k=1

ak · 1[bk,∞)(c̄
Tx)

∣

∣

∣

∣

∣

≤ C · (4 · A ·
√
d)p

(K − 1)p
· (2 + (K − 2) · max

k∈{1,2,...,j−1,j+2,j+3,...,K}
e−ρn·|c̄Tx−bk|)

≤ 2 · (4 · A ·
√
d)p · C

(K − 1)p
+ C · (4 · A ·

√
d)p · (K − 1)1−p · e−

ρn·(A·
√
d)

(n+1)·(K−1) .

It is easy to see that this bound is also true for bK ≤ c̄Tx ≤
√
d · A. This concludes the

proof. �

Lemma 6 Let σ be the logistic squasher. Define F by (15) and set

b̄ = b− λn · (∇bF )(a,b)

for some λn > 0, where

a = (a1, . . . , aK)T ∈ R
K and b = (b1,0, b1,1, . . . , b1,d, . . . , bK,0, bK,1 . . . , bK,d)

T ∈ R
K·(d+1).

Then we have for any k ∈ {1, . . . ,K} and any j ∈ {0, . . . , d}:

|b̄k,j − bk,j| ≤ λn · 2 ·
√

F (a,b) ·max{1,max
i,l

{|x(l)i |}} · |ak|

· exp



− min
i=1,...,n







∣

∣

∣

∣

∣

∣

d
∑

j=1

bk,j · x(j)i + bk,0

∣

∣

∣

∣

∣

∣









 .

Proof. Using

|σ′(x)| = |σ(x) · (1− σ(x))| ≤ min {|σ(x)|, |1 − σ(x)|} ≤ |σ(x)− 1[0,∞)(x)|
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(where the first inequality holds due to σ(x) ∈ [0, 1]) we can conclude from Lemma 4
that

max
i=1,...,n

∣

∣

∣

∣

∣

∣

σ′





d
∑

j=1

bk,j · x(j)i + bk,0





∣

∣

∣

∣

∣

∣

≤ max
i=1,...,n

exp



−

∣

∣

∣

∣

∣

∣

d
∑

j=1

bk,j · x(j)i + bk,0

∣

∣

∣

∣

∣

∣





= exp



− min
i=1,...,n







∣

∣

∣

∣

∣

∣

d
∑

j=1

bk,j · x(j)i + bk,0

∣

∣

∣

∣

∣

∣









 .

As a consequence, we get for k ∈ {1, . . . ,K} and j ∈ {1, . . . , d} by the Cauchy-Schwarz
inequality

∣

∣

∣

∣

∂F

∂bk,j
(a,b)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

2

n

n
∑

i=1

(fnet,(a,b)(xi)− yi) · ak · σ′





d
∑

j=1

bk,j · x(j)i + bk,0



 · x(j)i

∣

∣

∣

∣

∣

∣

≤ 2 · |ak| ·
1

n

n
∑

i=1

|fnet,(a,b)(xi)− yi| · |x(j)i | ·

∣

∣

∣

∣

∣

∣

σ′





d
∑

j=1

bk,j · x(j)i + bk,0





∣

∣

∣

∣

∣

∣

≤ 2 ·

√

√

√

√

1

n

n
∑

i=1

|fnet,(a,b)(xi)− yi|2 · (x(j)i )2 · |ak| ·

√

√

√

√

1

n

n
∑

i=1

|σ′(
d
∑

j=1

bk,j · x(j)i + bk,0)|2

≤ 2 ·
√

F (a,b) ·max
i,l

{|x(l)i |} · |ak| ·

√

√

√

√

1

n

n
∑

i=1

|σ′(
d
∑

l=1

bk,l · x(j)l + bk,0)|2

≤ 2 ·
√

F (a,b) ·max
i,l

{|x(l)i |} · |ak| · exp



− min
i=1,...,n







∣

∣

∣

∣

∣

∣

d
∑

j=1

bk,j · x(j)i + bk,0

∣

∣

∣

∣

∣

∣









 .

Hence, we have shown

|b̄k,j − bk,j|

= λn ·
∣

∣

∣

∣

∂F

∂bk,j
(a,b)

∣

∣

∣

∣

≤ λn · 2 ·
√

F (a,b) ·max
i,l

{|x(l)i |} · |ak| · exp



− min
i=1,...,n







∣

∣

∣

∣

∣

∣

d
∑

j=1

bk,j · x(j)i + bk,0

∣

∣

∣

∣

∣

∣











for any k ∈ {1, . . . ,K} and any j ∈ {1, . . . , d} .
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In case that k ∈ {1, . . . ,K} and j = 0 we get in a similar fashion

|b̄k,0 − bk,0| = λn ·
∣

∣

∣

∣

∂F

∂bk,0
(a,b)

∣

∣

∣

∣

≤ λn · 2 ·
√

F (a,b) · 1 · |ak| · exp



− min
i=1,...,n







∣

∣

∣

∣

∣

∣

d
∑

j=1

bk,j · x(j)i + bk,0

∣

∣

∣

∣

∣

∣









 ,

which implies the assertion. �

Lemma 7 Define F by (15) and define (a(t),b(t)) by (16). Assume that (a(t),b(t)) satisfy
for t ∈ {0, . . . , tn − 1}

F (a(t),b(t)) ≤ c5 < ∞, (17)

‖a(t)‖2 ≤ c6 · n < ∞, (18)

min
i=1,...,n,k=1,...,K

∣

∣

∣

∣

∣

∣

d
∑

j=1

b
(0)
k,j · x

(j)
i + b

(0)
k,0

∣

∣

∣

∣

∣

∣

≥ δn > 0 (19)

and

(d+ 1) · tn · λn · 2 · √c5 ·max{1,max
i,l

{|x(l)i |2}} · √c6 · n · exp (−δn/2) ≤
δn
2
. (20)

Then we have for every k ∈ {1, . . . ,K}, any j ∈ {0, . . . , d} and any t ∈ {1, . . . , tn}:

|b(t)k,j − b
(t−1)
k,j | ≤ λn · 2 · √c5 ·max{1,max

i,l
{|x(l)i |}} · √c6 · n · exp (−δn/2) . (21)

Proof. We show (21) by induction on t. For t = 1 the assertion follows from Lemma
6 and (17)-(19). Now, we assume that (21) holds for all t ∈ {1, . . . , s}, where s ∈
{1, . . . , tn − 1}. Then

|b(s)k,j − b
(0)
k,j| ≤ tn · λn · 2 · √c5 ·max{1,max

i,l
{|x(l)i |}} · √c6 · n · exp (−δn/2) ,

from which, together with assumption (19), we can conlcude that

min
i=1,...,n,k=1,...,K

∣

∣

∣

∣

∣

∣

d
∑

j=1

b
(s)
k,j · x

(j)
i + b

(s)
k,0

∣

∣

∣

∣

∣

∣

≥ min
i=1,...,n,k=1,...,K

∣

∣

∣

∣

∣

∣

d
∑

j=1

b
(0)
k,j · x

(j)
i + b

(0)
k,0

∣

∣

∣

∣

∣

∣

− max
i=1,...,n,k=1,...,K





d
∑

j=1

|b(s)k,j − b
(0)
k,j| · |x

(j)
i |+ |b(s)k,0 − b

(0)
k,0|




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≥ δn − max
i=1,...,n,k=1,...,K





d
∑

j=0

|b(s)k,j − b
(0)
k,j| ·max{1,max

i,l
{|x(l)i |}}





≥ δn − (d+ 1) · tn · λn · 2 · √c5 ·max{1,max
i,l

{|x(l)i |2}} · √c6 · n · exp (−δn/2)

≥ δn
2
, (22)

where the last inequality is implied by inequality (20). So, for the induction step, appli-
cation of Lemma 6 together with (17) and (22) yields

|b(s+1)
k,j − b

(s)
k,j| ≤ λn · 2 ·

√

F (a(s),b(s)) ·max{1,max
i,l

{|x(l)i |}} · |a(s)k |

· exp



− min
i=1,...,n







∣

∣

∣

∣

∣

∣

d
∑

j=1

b
(s)
k,j · x

(j)
i + b

(s)
k,0

∣

∣

∣

∣

∣

∣











≤ λn · 2 · √c5 ·max{1,max
i,l

{|x(l)i |}} · √c6 · n · exp (−δn/2) ,

from which we conclude the assertion. �

Lemma 8 Define F by (15), set

λn =
1

3 ·K
and define (a(t),b(t)) by (16). Assume that (a(0),b(0)) is chosen such that

F (a(0),b(0)) ≤ c5 < ∞ (23)

and

min
i=1,...,n,k=1,...,K

∣

∣

∣

∣

∣

∣

d
∑

j=1

b
(0)
k,j · x

(j)
i + b

(0)
k,0

∣

∣

∣

∣

∣

∣

≥ δn ≥ 1 (24)

hold. Let tn ∈ N and assume 2 · c1 ≤ (K − 2) · n,

4 ·max{1, c5
c1
} ·max{1, 1

c21
} · λn · (d+ 1)2 · n2 ·max{1,max

i,j
|x(j)i |4}

·
(

1 + c5 +
2

n

n
∑

i=1

y2i

)4

· t2n · exp (−δn/2) ≤ 1 (25)

and
3 · tn · exp(−δn/4) ≤ 1. (26)

Then for any t ∈ {0, 1, . . . , tn − 1} we have

F (a(t+1),b(t+1))−min
a

F (a,b(0))
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≤
(

1− 2 · c1
3 ·K · n

)t+1

·
(

F (a(0),b(0))−min
a

F (a,b(0))
)

+ (2
√
c5 + 1) · exp (−δn/4)

+
3 ·K · n
2 · c1

· 3 · exp (−δn/4) .

Proof. We have

F (a(t+1),b(t+1))−min
a

F (a,b(0))

=
(

F (a(t+1),b(t+1))− F (a(t+1),b(t))
)

+
(

F (a(t+1),b(t))−min
a

F (a,b(t))
)

+
(

min
a

F (a,b(t))−min
a

F (a,b(0))
)

.

We will continue proving the assertion in three steps.
First step. We take a look at the second term on the right-hand side of the above equality.
Lemma 2 and |σ(x)| ≤ 1 give us

∥

∥

∥(∇aF )(a1,b
(t))− (∇aF )(a2,b

(t))
∥

∥

∥ ≤
(

2 · (K + 1) +
2 · c1
n

)

· ‖a1 − a2‖

≤ 3 ·K · ‖a1 − a2‖.

Together with Lemma 3 this allows us to conclude from Lemma 1 that

F (a(t+1),b(t))−min
a

F (a,b(t))

≤
(

1− 4 · c1
6 ·K · n

)

·
(

F (a(t),b(t))−min
a

F (a,b(t))
)

. (27)

For simplicity, we introduce the following notation

γt =
(

F (a(t),b(t))−min
a

F (a,b(0))
)

,

α =
2 · c1

3 ·K · n.

As a consequence,

γt+1

≤ F (a(t+1),b(t+1))− F (a(t+1),b(t)) + (1− α) · (F (a(t),b(t))−min
a

F (a,b(t)))

+min
a

F (a,b(t))−min
a

F (a,b(0))

= F (a(t+1),b(t+1))− F (a(t+1),b(t)) + (1− α) · (F (a(t),b(t))−min
a

F (a,b(0)))

+α · (min
a

F (a,b(t))−min
a

F (a,b(0)))

= (1− α) · γt + α · (min
a

F (a,b(t))−min
a

F (a,b(0)))

+F (a(t+1),b(t+1))− F (a(t+1),b(t)). (28)
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Second step. We will derive upper bounds β1, β2 > 0 such that

β1 ≥ min
a

F (a,b(t))−min
a

F (a,b(0)),

β2 ≥ F (a(t+1),b(t+1))− F (a(t+1),b(t)).

We will start with finding β1. In the process we will also derive an upper bound β2.
Choose ā such that

F (ā,b(0)) = min
a

F (a,b(0)).

Then
c1
n

·
n
∑

k=0

ā2k ≤ F (ā,b(0)) ≤ F (a(0),b(0)) ≤ c5,

hence
K
∑

k=0

ā2k ≤ c5 · n
c1

.

We have

min
a

F (a,b(t))−min
a

F (a,b(0)) = min
a

F (a,b(t))− F (ā,b(0))

≤ F (ā,b(t))− F (ā,b(0))

=
1

n

n
∑

i=1

(fnet,(ā,b(t))(xi) + fnet,(ā,b(0))(xi)− 2yi) · (fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))

=
1

n

n
∑

i=1

(2fnet,(ā,b(0))(xi)− 2yi) · (fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))

+
1

n

n
∑

i=1

(fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))
2

≤ 2 ·
√

F (ā,b(0)) ·

√

√

√

√

1

n

n
∑

i=1

(fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))
2

+
1

n

n
∑

i=1

(fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))
2.

Applying the Cauchy-Schwarz inequality a second time and since σ is Lipschitz contin-
uous we get

1

n

n
∑

i=1

(fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))
2

=
1

n

n
∑

i=1





K
∑

k=1

āk ·



σ





d
∑

j=1

b
(t)
k,j · x

(j)
i + b

(t)
k,0



− σ





d
∑

j=1

b
(0)
k,j · x

(j)
i + b

(0)
k,0













2
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≤
K
∑

k=1

ā2k ·max{1,max
i,j

|x(j)i |2} · (d+ 1) ·
K
∑

k=1

d
∑

j=0

|b(t)k,j − b
(0)
k,j|2.

By Lemma 7 where, as we will show below, c5 and c6 are replaced by

1 + c5 +
2

n

n
∑

i=1

y2i and

(

1 + c5 +
2

n

n
∑

i=1

y2i

)

· 1

c1
, respectively,

we know that for any k ∈ {1, . . . ,K} and any j ∈ {0, . . . , d}

|b(t)k,j − b
(0)
k,j|

≤ |b(t)k,j − b
(t−1)
k,j |+ |b(t−1)

k,j − b
(t−2)
k,j |+ · · · + |b(1)k,j − b

(0)
k,j|

≤ t · λn · 2 ·
(

1 + c5 +
2

n

n
∑

i=1

y2i

)

·max{1, 1
c1
} ·max{1,max

i,l
{|x(l)i |}} · √n · exp (−δn/2) .

From this we conclude that

1

n

n
∑

i=1

(fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))
2

≤
K
∑

k=1

ā2k ·max{1,max
i,j

|x(j)i |2} · (d+ 1) ·K · (d+ 1)

·
(

t · λn ·
(

1 + c5 +
2

n

n
∑

i=1

y2i

)

·max{1, 1
c1
} ·max{1,max

i,l
{|x(l)i |}} · √n · exp (−δn/2)

)2

≤ t2 · c5
c1

·max{1, 1
c21
} ·
(

1 + c5 +
2

n

n
∑

i=1

y2i

)2

· n2 ·max{1,max
i,j

|x(j)i |4} · (d+ 1)2

·K · λ2
n · exp (−δn)

≤ exp (−δn/2) ,

where the last inequality follows from (25). Hence,

min
a

F (a,b(t))−min
a

F (a,b(0))

≤ 2 ·
√

F (ā,b(0)) ·

√

√

√

√

1

n

n
∑

i=1

(fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))
2

+
1

n

n
∑

i=1

(fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))
2

≤ (2 ·
√

F (ā,b(0)) + 1) ·

√

√

√

√

1

n

n
∑

i=1

(fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))
2
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≤ (2 · √c5 + 1) · exp (−δn/4) = β1.

It remains to be shown that Lemma 7 was, in fact, applicable, i.e. we will show that
the conditions of Lemma 7 are met. For that we show the following claim for all s ∈
{0, 1, . . . , tn − 1} by induction

max
{

F (a(s+1),b(s)), F (a(s+1),b(s+1))
}

−min
a

F (a,b(0))

≤ c5 +
1

n

n
∑

i=1

y2i + 3 · (s+ 1) · exp(−δn/4). (29)

While doing so, we will be deriving an upper bound β2 in the process. For s = 0 the
inequality trivially holds by (27), (28), (23) and by the bound

F (a(1),b(1))− F (a(1),b(0)) ≤ 3 · exp (−δn/4)

which will be proven below (cf., (32)).
So, for the induction hypothesis, assume that (29) holds for s = t − 1 for arbitrary

t ∈ {1, . . . , tn − 1}. Trivially we have

min
a

F (a,b(t))−min
a

F (a,b(0)) ≤ F (0,b(t)) =
1

n

n
∑

i=1

y2i ,

hence by (27) and by the induction assumption we get

F (a(t+1),b(t))−min
a

F (a,b(0))

≤
(

1− 2 · c1
3 ·K · n

)

·
(

F (a(t),b(t))−min
a

F (a,b(0))
)

+
2 · c1

3 ·K · n ·
(

min
a

F (a,b(t))−min
a

F (a,b(0))
)

≤
(

1− 2 · c1
3 ·K · n

)

·
(

c5 +
1

n

n
∑

i=1

y2i + 3 · t · exp(−δn/4)

)

+
2 · c1

3 ·K · n · 1
n

n
∑

i=1

y2i

≤ c5 +
1

n

n
∑

i=1

y2i + 3 · t · exp(−δn/4). (30)

Next, by (28) and by the induction hypothesis we get

F (a(t+1),b(t+1))−min
a

F (a,b(0))

≤ c5 +
1

n

n
∑

i=1

y2i + 3 · t · exp(−δn/4) + F (a(t+1),b(t+1))− F (a(t+1),b(t)). (31)
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Further, we have

F (a(t+1),b(t+1))− F (a(t+1),b(t))

=
1

n

n
∑

i=1

(fnet,(a(t+1),b(t+1))(xi) + fnet,a(t+1),b(t))(xi)− 2yi)

·(fnet,(a(t+1),b(t+1))(xi)− fnet,(a(t+1),b(t))(xi))

=
1

n

n
∑

i=1

(2fnet,(a(t+1),b(t))(xi)− 2yi) · (fnet,(a(t+1),b(t+1))(xi)− fnet,(a(t+1),b(t))(xi))

+
1

n

n
∑

i=1

(fnet,(a(t+1),b(t+1))(xi)− fnet,(a(t+1),b(t))(xi))
2

≤ 2 ·
√

F (a(t+1),b(t)) ·

√

√

√

√

1

n

n
∑

i=1

(fnet,(a(t+1),b(t+1))(xi)− fnet,(a(t+1),b(t))(xi))
2

+
1

n

n
∑

i=1

(fnet,(a(t+1),b(t+1))(xi)− fnet,(a(t+1),b(t))(xi))
2.

Since σ is Lipschitz continuous, applying the Cauchy-Schwarz inequality once more yields

1

n

n
∑

i=1

(fnet,(a(t+1),b(t+1))(xi)− fnet,(a(t+1),b(t))(xi))
2

=
1

n

n
∑

i=1





K
∑

k=1

(a(t+1))k ·



σ





d
∑

j=1

b
(t+1)
k,j · x(j)i + b

(t+1)
k,0



− σ





d
∑

j=1

b
(t)
k,j · x

(j)
i + b

(t)
k,0













2

≤
K
∑

k=1

(a(t+1))2k ·max{1,max
i,j

|x(j)i |2} · (d+ 1) ·
K
∑

k=1

d
∑

j=0

|b(t+1)
k,j − b

(t)
k,j|2

≤ n

c1
· F (a(t+1),b(t)) ·max{1,max

i,j
|x(j)i |2} · (d+ 1) ·

K
∑

k=1

d
∑

j=0

|b(t+1)
k,j − b

(t)
k,j|2.

By Lemma 7 (where (17) and (18) are true because of the fact that the induction hy-
pothesis implies that we have

F (a(t),b(t)) ≤ c5 +
1

n

n
∑

i=1

y2i + 1 + F (0,b(0)) ≤ 1 + c5 +
2

n

n
∑

i=1

y2i ,

from which (together with the defnition of F ) we can conclude that (17) and (18) hold
if we replace there c5 and c6 by

1 + c5 +
2

n

n
∑

i=1

y2i and

(

1 + c5 +
2

n

n
∑

i=1

y2i

)

· 1

c1
, respectively,
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and where (20) holds because of (25)) and because of (24) we know that for any k ∈
{1, . . . ,K} and any j ∈ {0, . . . , d} we have

|b(t+1)
k,j − b

(t)
k,j|

≤ λn · 2 ·
(

1 + c5 +
2

n

n
∑

i=1

y2i

)

·max{1,max
i,l

{|x(l)i |}} · √n · exp (−δn/2) /
√
c1.

Together with

F (a(t+1),b(t)) ≤ min
a

F (a,b(0)) + c5 +
1

n

n
∑

i=1

y2i + 3 · t · exp(−δn/4)

≤ 1 + c5 +
2

n

n
∑

i=1

y2i ,

where the first inequality follows trivially from (30), this implies

1

n

n
∑

i=1

(fnet,(a(t+1),b(t+1))(xi)− fnet,(a(t+1),b(t))(xi))
2

≤ 4 · n
2

c21
· λ2

n ·
(

1 + c5 +
2

n

n
∑

i=1

y2i

)3

·max{1,max
i,j

|x(j)i |4} · (d+ 1)2 ·K · exp (−δn)

≤ 4 · (d+ 1)2 · n2

c21
·max{1,max

i,j
|x(j)i |4} ·

(

1 + c5 +
2

n

n
∑

i=1

y2i

)4

· exp (−δn/2)

·min
{

1, (F (a(t+1),b(t)))−1
}

· exp (−δn/2)

≤ min
{

1, (F (a(t+1),b(t)))−1
}

· exp (−δn/2) .

(Here, the last inequality follows from (25).) Summarizing the above results we get

F (a(t+1),b(t+1))− F (a(t+1),b(t)) ≤ 3 · exp (−δn/4) = β2. (32)

By combining this inequality with the results above we get (29) for s = t. This concludes
the proof of (29). Thus, all the conditions of Lemma 7 are met, since we can conclude
from

min
a

F (a,b(0)) ≤ F (0,b(0)) =
1

n

n
∑

i=1

y2i

and from inequalities (29) and (26) that also (17) and (because of the defintion of F )
(18) hold where c5 and c6 are replaced by

1 + c5 +
2

n

n
∑

i=1

y2i and

(

1 + c5 +
2

n

n
∑

i=1

y2i

)

· 1

c1
, respectively.
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As above we also see that (20) holds.
Third Step. The results we derived in the first step imply that

γt+1 ≤ (1− α) · γt + α · β1 + β2.

Applying this relation recursively using standard techniques from the literature we get

γt+1 ≤ (1− α) · ((1 − α) · γt−1 + α · β1 + β2) + α · β1 + β2

= (1− α)2 · γt−1 + (1− α) · α · β1 + α · β1 + (1− α) · β2 + β2

≤ . . .

≤ (1− α)t+1 · γ0 +
t
∑

k=0

(1− α)k · α · β1 +
t
∑

k=0

(1− α)k · β2

≤ (1− α)t+1 · γ0 +
∞
∑

k=0

(1− α)k · α · β1 +
∞
∑

k=0

(1− α)k · β2

= (1− α)t+1 · γ0 +
α · β1

1− (1− α)
+

β2
1− (1 − α)

= (1− α)t+1 · γ0 + β1 +
β2
α
.

Plugging in the above results yields

F (a(t+1),b(t+1))−min
a

F (a,b(0))

≤ (1− α)t+1 · γ0 + β1 +
β2
α
.

≤
(

1− 2 · c1
3 ·K · n

)t+1

·
(

F (a(0),b(0))−min
a

F (a,b(0))
)

+ (2 · √c5 + 1) · exp (−δn/4)

+
3 ·K · n
2 · c1

· 3 · exp (−δn/4) ,

which concludes the proof.
�

5.3. Two auxiliary results from empirical process theory

Lemma 9 Let βn = c3 · log(n) for some suitably large constant c3 > 0. Assume that
the distribution of (X,Y ) satisfies (7) for some constant c2 > 0 and that the regression
function m is bounded in absolute value. Let Fn be a set of functions f : Rd → R and
assume that the estimate mn satisfies

mn = Tβnm̃n,

m̃n(·) = m̃n(·, (X1, Y1), . . . , (Xn, Yn)) ∈ Fn
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and

1

n

n
∑

i=1

|Yi − m̃n(Xi)|2 · I{|Yi|≤βn for all i∈{1,...,n}}

≤ min
l∈Θn

(

1

n

n
∑

i=1

|Yi − gn,l(Xi)|2 + penn(gn,l) + ǫn,l

)

for some random functions gn,l : R
d → R, some nonempty parameter set Θn and some

deterministic penalty terms penn(gn,l) ≥ 0, and some additional deterministic term ǫn,l,
where the functions gn,l only depend on the set

Dn,r = {X1, . . . ,Xn, c̄
(1)
1 , . . . , c̄(1)r , . . . , c̄

(In)
1 , . . . , c̄(In)r }

and where c̄
(1)
1 , . . . , c̄

(1)
r , . . . , c̄

(In)
1 are random variables independent of (X1, Y1), . . . , (Xn, Yn).

Then mn satisfies

E

∫

|mn(x)−m(x)|2PX(dx) ≤
c7 · (log n)2 ·

(

log
(

supxn
1
N1

(

1
n·βn

,Fn, x
n
1

))

+ 1
)

n

+ 2 ·E
(

min
l∈Θn

1

n

n
∑

i=1

|gn,l(Xi)−m(Xi)|2 + penn(gn,l) + ǫn,l

)

for n > 1 and some constant c7 > 0, which does not depend on n, βn or the parameters
of the estimate.

Proof. This lemma follows in a straightforward way from the proof of Theorem 1 in
Bagirov, Clausen and Kohler (2009). A complete version of the proof is given in the
Supplement. �

In order to bound the covering number N1

(

1
n·βn

,Fn, x
n
1

)

we will use the following lemma.

Lemma 10 Let max{K,βn, γn} ≤ nc8 and define F by

F =

{

f : Rd → R : f(x) =

K
∑

k=0

ak · σ





d
∑

j=1

bk,j · x(j) + bk,0



 (x ∈ R
d)

for some ak, bk,j ∈ R satisfying

K
∑

k=0

a2k ≤ γn.

}

Then we have for any xn1 ∈ (Rd)n:

log

(

N1

(

1

n · βn
,F , xn1

))

≤ c9 · log n ·K.
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Proof. Using that
K
∑

k=0

|ak|2 ≤ γn

implies
K
∑

k=0

|ak| ≤
√
K + 1 ·

√

√

√

√

K
∑

k=0

|ak|2 ≤
√

(K + 1) · γn,

we can conclude from Lemma 16.6 in Györfi et al. (2002) that we have

N1

(

1

n · βn
,F , xn1

)

≤
(

e(
√

(K + 1)γn + 1/(n · βn))
1/(2 · n · βn)

)K+1

·
(

N1

(

1/(2 · n · βn)
√

(K + 1)γn + 1/(n · βn)
,G, xn1

))K+1

,

where

G =

{

g : Rd → R : g(x) = σ





d
∑

j=1

bj · x(j) + b0



 (x ∈ R
d)

for some b0, . . . , bd ∈ R

}

.

By Lemma 16.3, Theorem 9.5 and Theorem 9.4 in Györfi et al. (2002) we get

N1

(

1/(2 · n · βn)
√

(K + 1)γn + 1/(n · βn)
,G, xn1

)

≤ 3 ·
(

2e · (2 · n ·
√
K + 1 · βn · √γn + 2)

· log
(

3e · (2 · n ·
√
K + 1 · βn · √γn + 2)

)

)d+2

,

which implies the assertion. �

5.4. Proof of Theorem 1

On the event
Bn = {|Yi| ≤

√
n : i = 1, . . . , n}

we know by (4) that we have m̃n ∈ F , where F is the function set defined in Lemma 10
and where we set γn =

√
n. Define the estimate m̄n by

m̄n =

{

mn if Bn

0 if Bc
n.
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Then,

∫

|mn(x)−m(x)|2PX(dx) ≤
∫

|m̄n(x)−m(x)|2PX(dx) + 2β2
n · 1Bc

n
.

By Markov inequality we know

P{Bc
n} ≤ n ·P{|Y | > √

n} ≤ n ·E{ec3·Y 2}
exp(c3 · n)

,

therefore (7) implies that it suffices to show the assertion under the additional assumption

m̃n(·, (X1, Y1), . . . , (Xn, Yn)) ∈ F .

From the definition of the estimate and from Lemma 8 we get

1

n

n
∑

i=1

|Yi − m̃n(Xi)|2 · I{|Yi|≤βn for all i∈{1,...,n}}

≤ min
a∈RK+1,l=1,...,In

(

1

n

n
∑

i=1

|Yi − fnet,(a,(b(l))(0))(Xi)|2 +
c1
n

K·r
∑

k=0

a2k + ǫn

)

where

ǫn =

(

1− 2 · c1
3 ·K · n

)tn

· β2
n + (2 · βn + 1) · exp

(

−
√
d ·A · ρn

4 · (n+ 1) · (K − 1)

)

+
3 ·K · n
2 · c1

· 3 · exp
(

−
√
d · A · ρn

4(n+ 1) · (K − 1)

)

≤ exp

(

−2 · c1
3

· (log n)2
)

· β2
n + (2 · βn + 1) · exp

(

−
√
d · A · n
8

)

+
3 ·K · n
2 · c1

· 3 · exp
(

−
√
d · A
8

· n
)

.

Application of Lemma 9 and of Lemma 10 yields

E

∫

|mn(x)−m(x)|2PX(dx)

≤ c10 ·
(log n)3 ·K · r

n

+2 ·E
(

min
a∈RK+1,l=1,...,In

1

n

n
∑

i=1

|fnet,(a,(b(l))(0))(Xi)−m(Xi)|2 +
c1
n

K·r
∑

k=0

a2k

)

+2 · exp
(

−2 · c1
3

· (log n)2
)

· β2
n + 2 · (2 · βn + 1) · exp

(

−
√
d · A · n
8

)
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+2 · 3 ·K · n
2 · c1

· 3 · exp
(

−
√
d ·A
8

· n
)

.

We have for all x ∈ [−A,A]d

|fnet,(a,(b(l))(0))(x)−m(x)|

≤ |m(x)−
r
∑

s=1

gs((c̄
(l))Ts x)|+ |

r
∑

s=1

gs((c̄
(l))Ts x)− fnet,(a,(b(l))(0))(x)|

The (p,C)-smoothness of the gs implies for all x ∈ [−A,A]d

|m(x)−
r
∑

s=1

gs((c̄
(l))Ts x)| = |

r
∑

s=1

gs(c
T
s x)−

r
∑

s=1

gs((c̄
(l))Ts x)|

≤
r
∑

s=1

C · |cTs x− (c̄(l))Ts x|p

≤ r · C · sup
x∈[−A,A]d

‖x‖p · max
s=1,...,r

‖cs − c̄(l)s ‖p∞.

By Lemma 5 we get for all x ∈ [−A,A]d

|
r
∑

s=1

gs((c̄
(l))Ts x)− fnet,(a,(b(l))(0))(x)|

= |
r
∑

s=1

gs((c̄
(l))Ts x)−

r
∑

s=1

K
∑

k=1

ak · σ





d
∑

j=1

(b(l))
(0)
(s−1)·K+k,j · xj + (b(l))

(0)
(s−1)·K+k,0)



− a0|

≤
r
∑

s=1

|gs((c̄(l))Ts x)−
K
∑

k=1

ak · σ
(

ρn · ((c̄(l))Ts x− (b(l))k

)

− a0|

≤ r · 3 · C · (4 ·A ·
√
d)p

(K − 1)p
+ C · (4 · A ·

√
d)p · (K − 1)1−p · e−

ρn·A·
√
d

(n+1)·(K−1)

≤ const · r · C · 1

Kp

Together this implies

E

∫

|mn(x)−m(x)|2PX(dx)

≤ c11 ·
(log n)3 ·K · r

n
+ c12 · r2 · C2 · 1

K2p
+ c13 · E

{

min
l=1,...,In

max
s=1,...,r

‖cs − c̄(l)s ‖2p∞
}

.

The definition of K implies

c11 ·
(log n)3 ·K · r

n
+ c12 · r2 · C2 · 1

K2p
≤ c14 ·

(

(log n)3

n

)

2p
2p+1

,
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hence it remains to show that we also have

E

{

min
l=1,...,In

max
s=1,...,r

‖cs − c̄(l)s ‖2p∞
}

≤ c15 ·
(

(log n)3

n

)

2p
2p+1

.

By the random choice of the c̄
(l)
s we know for any t ∈ (0, 1]

P

{

min
l=1,...,In

max
s=1,...,r

‖cs − c̄(l)s ‖∞ > t

}

=

In
∏

i=1

(

1−P

{

max
s=1,...,r

‖cs − c̄(i)s ‖∞ ≤ t

})

)

≤
(

1− tr·d
)In

from which we conclude

E

{

min
l=1,...,In

max
s=1,...,r

‖cs − c̄(l)s ‖2p∞
}

=

∫ 1

0
P

(

min
l=1,...,In

max
s=1,...,r

‖cs − c̄(l)s ‖2p∞ > t

)

dt

=

∫ 1

0
P

(

min
l=1,...,In

max
s=1,...,r

‖cs − c̄(l)s ‖∞ > t
1
2p

)

dt

≤
∫ 1

0
exp

(

−In · t
r·d
2p

)

dt

≤ 2p

r · d · I−
2p
r·d

n ·
∫ ∞

0
e−s · s 2p

r·d−1ds

=
2p

r · d · I−
2p
r·d

n · Γ
(

2p

r · d

)

≤ c15 ·
(

(log n)3

n

)

2p
2p+1

,

where the last inequatlity holds by assumption, since p, r, d > 0 are fixed. Summarizing
the above results we get the assertion. �
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A. Supplementary material

A.1. Proof of Lemma 1.

a) For s ∈ [0, 1] set
H(s) = F (a(t) + s · (a(t+1) − a(t))).

Then the fundamental theorem of calculus, the chain rule, the Cauchy-Schwarz inequality
and assumption (12) imply

F (a(t+1))− F (a(t)) = H(1) −H(0) =

∫ 1

0
H ′(s) ds

=

∫ 1

0
(∇aF )(a(t) + s · (a(t+1) − a(t))) · (a(t+1) − a(t)) ds

=

∫ 1

0

(

(∇aF )(a(t) + s · (a(t+1) − a(t)))− (∇aF )(a(t))
)

· (a(t+1) − a(t)) ds

+

∫ 1

0
(∇aF )(a(t)) · (a(t+1) − a(t)) ds

≤
∫ 1

0
Ln · ‖s · (a(t+1) − a(t))‖ · ‖a(t+1) − a(t)‖ ds

+(∇aF )(a(t)) · (a(t+1) − a(t))

=
Ln

2
· ‖a(t+1) − a(t)‖2 + (∇aF )(a(t)) · (a(t+1) − a(t)).

Using (10) and (11) we get

F (a(t+1))− F (a(t)) ≤ Ln

2
· λ2

n · ‖(∇aF )(a(t))‖2 − λn‖(∇aF )(a(t))‖2

= − 1

2 · Ln
· ‖(∇aF )(a(t))‖2.

b) From a) and (13) we get

F (a(t+1))− F (aopt)

≤ F (a(t))− F (aopt)−
1

2 · Ln
· ‖(∇aF )(a(t))‖2

≤ F (a(t))− F (aopt)−
1

2 · Ln
· ρn · (F (a(t))− F (aopt))

=

(

1− ρn
2 · Ln

)

· (F (a(t))− F (aopt)).

�

A.2. Proof of Lemma 9

In the proof we use the following error decomposition:
∫

|mn(x)−m(x)|2PX(dx)
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=
[

E
{

|mn(X)− Y |2|Dn

}

− E
{

|m(X)− Y |2
}

−
(

E
{

|mn(X)− TβnY |2|Dn

}

− E
{

|mβn(X) − TβnY |2
})]

+

[

E
{

|mn(X)− TβnY |2|Dn

}

− E
{

|mβn(X)− TβnY |2
}

−2 · 1
n

n
∑

i=1

(

|mn(Xi)− TβnYi|2 − |mβn(Xi)− TβnYi|2
)

]

+

[

2 · 1
n

n
∑

i=1

|mn(Xi)− TβnYi|2 − 2 · 1
n

n
∑

i=1

|mβn(Xi)− TβnYi|2

−
(

2 · 1
n

n
∑

i=1

|mn(Xi)− Yi|2 − 2 · 1
n

n
∑

i=1

|m(Xi)− Yi|2
)]

+

[

2

(

1

n

n
∑

i=1

|mn(Xi)− Yi|2 −
1

n

n
∑

i=1

|m(Xi)− Yi|2
)]

=

4
∑

i=1

Ti,n,

where TβnY is the truncated version of Y and mβn is the regression function of TβnY ,
i.e.,

mβn(x) = E
{

TβnY |X = x
}

.

We start with bounding T1,n. By using a2 − b2 = (a− b)(a+ b) we get

T1,n = E
{

|mn(X)− Y |2 − |mn(X)− TβnY |2
∣

∣

∣
Dn

}

−E
{

|m(X) − Y |2 − |mβn(X)− TβnY |2
}

= E
{

(TβnY − Y )(2mn(X)− Y − TβnY )
∣

∣

∣
Dn

}

−E
{(

(m(X)−mβn(X)) + (TβnY − Y )
)(

m(X) +mβn(X)− Y − TβnY
)}

= T5,n + T6,n.

With the Cauchy-Schwarz inequality and

I{|Y |>βn} ≤
exp(c2/2 · |Y |2)
exp(c2/2 · β2

n)
(33)

we conclude

|T5,n| ≤
√

E
{

|TβnY − Y |2
}

·
√

E
{

|2mn(X)− Y − TβnY |2
∣

∣Dn

}

≤
√

E
{

|Y |2 · I{|Y |>βn}
}

·
√

E
{

2 · |2mn(X)− TβnY |2 + 2 · |Y |2
∣

∣Dn

}
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≤

√

√

√

√E

{

|Y |2 · exp(c2/2 · |Y |2)
exp(c2/2 · β2

n)

}

·
√

E
{

2 · |2mn(X)− TβnY |2
∣

∣Dn

}

+ 2E
{

|Y |2
}

≤
√

E
{

|Y |2 · exp(c2/2 · |Y |2)
}

· exp
(

−c2 · β2
n

4

)

·
√

2(3βn)2 + 2E
{

|Y |2
}

.

With x ≤ exp(x) for x ∈ R we get

|Y |2 ≤ 2

c2
· exp

(c2
2

· |Y |2
)

and hence E
{

|Y |2 · exp(c2/2 · |Y |2)
}

is bounded by

E

(

2

c2
· exp

(

c2/2 · |Y |2
)

· exp(c2/2 · |Y |2)
)

≤ E

(

2

c2
· exp

(

c2 · |Y |2
)

)

≤ c16

which is less than infinity by the assumptions of the lemma. Furthermore the third term
is bounded by

√

18β2
n + c17 because

E(|Y |2) ≤ E(1/c2 · exp(c2 · |Y |2) ≤ c18 < ∞, (34)

which follows again as above. With the setting βn = c3 · log(n) it follows for some
constants c19, c20 > 0 that

|T5,n| ≤ √
c16 · exp

(

−c19 · log(n)2
)

·
√

(18 · c23 · (log n)2 + c17) ≤ c20 ·
log(n)

n
.

From the Cauchy-Schwarz inequality we get

T6,n ≤

√

√

√

√2 ·E
{

|(m(X) −mβn(X))|2
}

+ 2 ·E
{

|(TβnY − Y )|2
}

·

√

√

√

√E

{

∣

∣

∣m(X) +mβn(X) − Y − TβnY
∣

∣

∣

2
}

,

where we can bound the second factor on the right-hand side in the above inequality
in the same way we have bounded the second factor from T5,n, because by assumption
||m||∞ is bounded and furthermore mβn is bounded by βn. Thus we get for some constant
c21 > 0

√

√

√

√E

{

∣

∣

∣m(X) +mβn(X)− Y − TβnY
∣

∣

∣

2
}

≤ c21 · log(n).

Next we consider the first term. With Jensen’s inequality it follows that

E
{

|m(X) −mβn(X)|2
}

≤ E
{

E
(

|Y − TβnY |2
∣

∣

∣X
)}

= E
{

|Y − TβnY |2
}

.
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Hence we get

T6,n ≤
√

4 · E {|Y − TβnY |2} · c21 · log(n)

and therefore with the calculations from T5,n it follows that T6,n ≤ c23 · log(n)/n for some
constant c23 > 0. Altogether we get

T1,n ≤ c24 ·
log(n)

n

for some constant c24 > 0.
Next we consider T2,n and conclude for t > 0

P{T2,n > t} ≤ P

{

∃f ∈ TβnFn : E

(

∣

∣

∣

∣

f(X)

βn
− TβnY

βn

∣

∣

∣

∣

2
)

− E

(

∣

∣

∣

∣

mβn(X)

βn
− TβnY

βn

∣

∣

∣

∣

2
)

− 1

n

n
∑

i=1

(

∣

∣

∣

∣

f(Xi)

βn
− TβnYi

βn

∣

∣

∣

∣

2

−
∣

∣

∣

∣

mβn(Xi)

βn
− TβnYi

βn

∣

∣

∣

∣

2
)

>
1

2

(

t

β2
n

+ E

(

∣

∣

∣

∣

f(X)

βn
− TβnY

βn

∣

∣

∣

∣

2
)

−E

(

∣

∣

∣

∣

mβn(X)

βn
− TβnY

βn

∣

∣

∣

∣

2
))}

,

where TβnFn is defined as {Tβnf : f ∈ Fn}. Theorem 11.4 in Györfi et al. (2002) and
the relation

N1

(

δ,

{

1

βn
g : g ∈ G

}

, xn1

)

≤ N1 (δ · βn,G, xn1 )

for an arbitrary function space G and δ > 0 lead to

P{T2,n > t} ≤ 14 · sup
xn
1

N1

(

t

80 · βn
,Fn, x

n
1

)

· exp
(

− n

5136 · β2
n

· t
)

.

Since the covering number is decreasing in t, we can conclude for εn ≥ 80
n

E(T2,n) ≤ εn +

∫ ∞

εn

P{T2,n > t}dt

≤ εn + 14 · sup
xn
1

N1

(

1

n · βn
,Fn, x

n
1

)

· exp
(

− n

5136 · β2
n

· εn
)

· 5136 · β
2
n

n
.

Choosing

εn =
5136 · β2

n

n
· log

(

14 · sup
xn
1

N1

(

1

n · βn
,Fn, x

n
1

)

)

(which satisfies the necessary condition εn ≥ 80
n if the constant c3 in the definition of βn

is not too small) minimizes the right-hand side and implies

E(T2,n) ≤
c25 · log(n)2 · log

(

supxn
1
N1

(

1
n·βn

,Fn, x
n
1

))

n
.
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By bounding T3,n similarly to T1,n we get

E(T3,n) ≤ c26 ·
log(n)

n

for some large enough constant c26 > 0 and hence we get in total

E

(

3
∑

i=1

Ti,n

)

≤
c27 · (log n)2 ·

(

log
(

supxn
1
N1

(

1
n·βn

,Fn, x
n
1

))

+ 1
)

n

for some sufficient large constant c27 > 0.
We finish the proof by bounding T4,n. Let An be the event, that there exists i ∈

{1, ..., n} such that |Yi| > βn and let IAn be the indicator function of An. Then we get

E(T4,n) ≤ 2 · E
(

1

n

n
∑

i=1

|mn(Xi)− Yi|2 · IAn

)

+2 ·E
(

1

n

n
∑

i=1

|mn(Xi)− Yi|2 · IAc
n
− 1

n

n
∑

i=1

|m(Xi)− Yi|2
)

= 2 · E
(

|mn(X1)− Y1|2 · IAn

)

+2 ·E
(

1

n

n
∑

i=1

|mn(Xi)− Yi|2 · IAc
n
− 1

n

n
∑

i=1

|m(Xi)− Yi|2
)

= T7,n + T8,n.

With the Cauchy-Schwarz inequality we get for T7,n

1

2
· T7,n ≤

√

E
(

(|mn(X1)− Y1|2)2
)

·
√

P(An)

≤
√

E
(

(2|mn(X1)|2 + 2|Y1|2)2
)

·
√

n ·P{|Y1| > βn}

≤
√

E (8|mn(X1)|4 + 8|Y1|4) ·
√

n · E (exp(c2 · |Y1|2))
exp(c2 · β2

n)
,

where the last inequality follows as in the proof of inequality (33). With x ≤ exp(x) for
x ∈ R we get

E
(

|Y |4
)

= E
(

|Y |2 · |Y |2
)

≤ E

(

2

c2
· exp

(c2
2

· |Y |2
)

· 2

c2
· exp

(c2
2

· |Y |2
)

)

=
4

c22
· E
(

exp
(

c2 · |Y |2
))

,

which is less than infinity by assumption (7) of the lemma. Furthermore ||mn||∞ is
bounded by βn and therefore the first factor is bounded by

c28 · β2
n = c29 · (log n)2
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for some constant c29 > 0. The second factor is bounded by 1/n, because by the assump-
tions of the lemma E

(

exp
(

c2 · |Y1|2
))

is bounded by some constant c30 < ∞ and hence
we get

√

n · E (exp(c2 · |Y1|2))
exp(c2 · β2

n)
≤ √

n ·
√
c30

√

exp(c2 · β2
n)

≤
√
n · √c30

exp((c2 · c23 · (log n)2)/2)
.

Since exp(−c · log(n)2) = O(n−2) for any c > 0, we get altogether

T7,n ≤ c31 ·
(log n)2

√
n

n2
≤ c32 ·

(log n)2

n
.

With the definition of Ac
n and m̃n defined as in the assumptions of this lemma we conclude

T8,n ≤ 2 · E
(

1

n

n
∑

i=1

|m̃n(Xi)− Yi|2 · IAc
n
− 1

n

n
∑

i=1

|m(Xi)− Yi|2
)

≤ 2 · E
(

min
l∈Θn

1

n

n
∑

i=1

|gn,l(Xi)− Yi|2 + penn(gn,l) + ǫn,l −
1

n

n
∑

i=1

|m(Xi)− Yi|2
)

because |Tβz − y| ≤ |z − y| holds for |y| ≤ β. Since penn(gn,l) and ǫn,l are deterministic
terms and and since gn,l are independent of Y1, . . . , Yn given Dn,r we get that

E

(

min
l∈Θn

1

n

n
∑

i=1

|gn,l(Xi)− Yi|2 + penn(gn,l) + ǫn,l −
1

n

n
∑

i=1

|m(Xi)− Yi|2
)

= E

(

E

(

min
l∈Θn

1

n

n
∑

i=1

|gn,l(Xi)− Yi|2 −
1

n

n
∑

i=1

|m(Xi)− Yi|2 + penn(gn,l) + ǫn,l | Dn,r

))

≤ E

(

min
l∈Θn

E

(

1

n

n
∑

i=1

|gn,l(Xi)− Yi|2 −
1

n

n
∑

i=1

|m(Xi)− Yi|2 | Dn,r

)

+ penn(gn,l) + ǫn,l

)

= E

(

min
l∈Θn

E

(

1

n

n
∑

i=1

|gn,l(Xi)− Yi|2 | Dn,r

)

−E

(

1

n

n
∑

i=1

|m(Xi)− Yi|2 | Dn,r

)

+penn(gn,l) + ǫn,l

)

= E

(

min
l∈Θn

E

(

1

n

n
∑

i=1

|(gn,l(Xi)−m(Xi)) + (m(Xi)− Yi)|2 | Dn,r

)

−E

(

1

n

n
∑

i=1

|m(Xi)− Yi|2 | Dn,r

)

+ penn(gn,l) + ǫn,l

)

= E

(

min
l∈Θn

E

(

1

n

n
∑

i=1

|gn,l(Xi)−m(Xi)|2 | Dn,r

)

+E

(

1

n

n
∑

i=1

|m(Xi)− Yi|2 | Dn,r

)
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−E

(

1

n

n
∑

i=1

|m(Xi)− Yi|2 | Dn,r

)

+ penn(gn,l) + ǫn,l

)

= E

(

min
l∈Θn

1

n

n
∑

i=1

|gn,l(Xi)−m(Xi)|2 + penn(gn,l) + ǫn,l

)

where the fourth equality holds since the mixed term is

E

(

1

n

n
∑

i=1

(gn,l(Xi)−m(Xi)) · (m(Xi)− Yi) | Dn,r

)

= E

(

1

n

n
∑

i=1

(gn,l(Xi)−m(Xi)) ·E ((m(Xi)− Yi) | Dn,r)

)

= E

(

1

n

n
∑

i=1

(gn,l(Xi)−m(Xi)) ·E ((m(Xi)− Yi) | Xi)

)

= 0

Hence,

E(T4,n)

≤ c32 ·
(log n)2

n

+2 · E
(

min
l∈Θn

1

n

n
∑

i=1

|gn,l(Xi)− Yi|2 + penn(gn,l) + ǫn,l −
1

n

n
∑

i=1

|m(Xi)− Yi|2
)

≤ c32 ·
(log n)2

n
+ 2 · E

(

min
l∈Θn

1

n

n
∑

i=1

|gn,l(Xi)−m(Xi)|2 + penn(gn,l) + ǫn,l

)

holds. In combination with the other considerations in the proof this implies the asser-
tion of Lemma 9. �
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