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Abstract

There are many kinds of exogeneity assumptions. How should researchers choose among
them? When exogeneity is imposed on an unobservable like a potential outcome, we argue
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studying the distributions of treatment given the unobservables that are consistent with that
assumption. We use this approach to study two common exogeneity assumptions: quantile
and mean independence. We show that both assumptions require a kind of non-monotonic
relationship between treatment and the potential outcomes. We discuss how to assess the
plausibility of this kind of treatment selection. We also show how to define a new and weaker
version of quantile independence that allows for monotonic treatment selection. We then show
the implications of the choice of exogeneity assumption for identification. We apply these results
in an empirical illustration of the effect of child soldiering on wages.
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1 Introduction

Exogeneity is a critical assumption in much structural or causal empirical work. In general, ex-

ogeneity refers to assumptions on the statistical dependence between an observable term and an

unobservable term.1 There are many such assumptions, however, including zero correlation, me-

dian independence, and full statistical independence. The choice of a formal definition of exogeneity

is not innocuous. Different definitions have different substantive interpretations and different im-

plications for identification, rates of convergence, asymptotic distributions, efficiency bounds, and

overidentification.

In the context of potential outcome models, there has been debate over the appropriate choice

of exogeneity assumption. Heckman, Ichimura, and Todd (1998) assume potential outcomes are

mean independent of treatment, conditional on covariates. They justify this focus on mean in-

dependence by arguing that “conditional independence assumptions...are far stronger than the

mean-independence conditions typically invoked by economists” (page 262). Imbens (2004, page

8) agrees that “this [mean independence] assumption is unquestionably weaker [than full inde-

pendence]”, but argues that “in practice it is rare that a convincing case is made for the weaker

[mean independence] assumption 2.3 without the case being equally strong for the stronger [full

independence assumption].” The justification he provides is that “the weaker assumption is intrin-

sically tied to functional-form assumptions, and as a result one cannot identify average effects on

transformations of the original outcome (such as logarithms) without the stronger assumption.”

In this paper, we contribute to this debate as follows: We recommend that researchers focus

directly on the substantive economic interpretation of the assumption, and the plausibility of its

restrictions, rather than assess assumptions based on what they can be used to identify (as in the

functional form dependency critique of mean independence) or on mathematical orderings of what

implies what (as in the observation that statistical independence implies mean independence, but

not vice versa). Specifically, we focus on two of the most common forms of exogeneity assumptions

used, quantile independence and mean independence. We provide several results to help researchers

assess the plausibility of these exogeneity assumptions. First, in section 2, we provide a brief

informal discussion of the motivations for making exogeneity assumptions. There we note that

exogeneity assumptions are typically made on structural unobservables, variables that satisfy some

kind of policy or treatment invariance property, like potential outcomes or unobserved ability.

In this case, the form of exogeneity depends on the form of treatment selection. Consequently,

the plausibility of any exogeneity assumption can be assessed by examining the distributions of

treatment given the unobservables that are consistent with that assumption.

Next, in section 3, we characterize these distributions of treatment given the unobservables

that are consistent with either quantile independence or mean independence. This characteri-

1Throughout this paper we use ‘exogeneity’ in the same sense as the treatment effects literature; for example, see
Imbens (2004). This is related to but distinct from the Cowles Commission definition of an exogenous variable as
a variable that is determined outside of the model under consideration. See the discussion in Hendry and Morgan
(1995, pages 74–75), Imbens (1997, page 93), and Heckman (2000, footnote 11).
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zation shows that both quantile independence and mean independence require specific kinds of

non-monotonic treatment selection. In section 4.1 we show how to modify the quantile indepen-

dence assumption to create a new, weaker exogeneity assumption which allows for more plausible

forms of treatment selection, including monotonic treatment selection. We call this assumption

U-independence. In section 4.2 we derive identified sets for the average effect of treatment for the

treated (ATT) and the quantile treatment effect for the treated (QTT) parameters under both

quantile independence and U-independence. These identified sets have a simple, closed form char-

acterization, which makes them easy to use in practice. By comparing these identified sets we

show that the identifying power of quantile independence comes from the fact that it only allows

for a restrictive kind of non-monotonic selection on unobservables. In section 5 we examine these

differences in an empirical illustration of the effects of child soldiering on wages based on uncon-

foundedness. We show that the baseline results are generally robust under quantile independence

relaxations of unconfoundedness, but not under U-independence relaxations. This difference high-

lights both the practical importance of choosing exogeneity assumptions and how our approach can

help researchers make this choice. Finally, in section 6 we use a Roy model to further illustrate

how researchers can assess the plausibility of non-monotonic selection on unobservables.

2 Choosing Exogeneity Assumptions

There are many different kinds of exogeneity assumptions available to researchers. Manski (1988)

and Powell (1994) catalog some of the most common forms, including zero correlation, mean in-

dependence, quantile independence, conditional symmetry, statistical independence, and a variety

of index conditions. Other kinds of exogeneity assumptions have since been defined, including

mean monotonicity (e.g., Manski and Pepper 2000, 2009, chapter 2 of Manski 2003), approximate

mean independence (Manski 2003, section 9.4), stochastic dominance assumptions (e.g., Blundell,

Gosling, Ichimura, and Meghir 2007), and quantile uncorrelation (Komarova, Severini, and Tamer

2012), among many others. How should researchers choose among these many options? In this

section we discuss one approach to answering this question.

The answer depends on whether the exogeneity assumption is made on a structural unobservable

or a reduced form unobservable. This distinction goes back to the earliest work on simultaneous

equation models in econometrics (see Hausman 1983 for a survey) but has been used in recent

work as well (e.g. Blundell and Matzkin 2014). Structural unobservables are variables that satisfy

some kind of policy or treatment invariance property, like potential outcomes, unobserved ability,

or preferences. Reduced form unobservables are functions of the structural unobservables, and

possibly other variables in the model, like realized treatment. Since quantile independence is often

imposed on the relationship between treatment variables and structural unobservables, we focus on

that case. We briefly discuss exogeneity assumptions for reduced form unobservables in appendix

A, along with some additional background and examples.

Let X denote the observed, realized treatment, and let Yx be a potential outcome where x is

3



a logically possible value of treatment. Since, by definition, potential outcomes have a meaning

and interpretation that does not depend on the realized treatment X, any stochastic dependence

between them must reflect some form of treatment selection on Yx. That is, it must reflect some form

of selection on unobservables, which is described by the distribution of X | Yx. Many exogeneity

assumptions, such as quantile independence and mean independence, are defined as constraints

on the distribution of Yx | X. Consequently, to assess the plausibility of these assumptions, we

recommend examining the set of distributions of X | Yx that are consistent with the given constraint

on the distribution of Yx | X. This allows researchers to use the large literature on treatment

selection to assess the plausibility of various exogeneity assumptions. Note that this discussion

and recommendation extend to more general structural or causal models where one is considering

exogeneity assumptions between a structural unobservable U and an observed variable X; U = Yx

is the specific case we focus on here.

Descriptive Analysis and Causal Models

Before proceeding, it is important to emphasize the scope of the process we just described: We are

interested in assumptions about the dependence structure between observable and unobservable

variables in causal models. This does not include research whose end goal is a description of the

joint distribution of observed random variables, and which does not aim to make causal statements.

Such descriptive research studies the relationship between observed variables. For example, suppose

Y is an observed outcome and X is an observed covariate. We might define E to be the residual from

a linear projection of Y onto (1, X). We can then ask about the statistical relationship between E

and X: It satisfies zero correlation by construction, but not necessarily other restrictions like mean

independence or statistical independence. In this case, however, the joint distribution of (E,X)

is always point identified. Hence, at the population level, the precise relationship between these

variables is always known. Consequently, there is no need to make or choose assumptions about the

stochastic relationship between E and X. In contrast, in causal models, exogeneity assumptions

typically have substantial identifying power for causal effects or structural parameters.

3 Characterizing Exogeneity Assumptions

In this section, we present our main characterization results. We provide results for two of the

most common exogeneity assumptions: quantile independence and mean independence. We focus

on binary treatments throughout the paper; we generalize our results to multi-valued discrete and

continuous treatments in appendix B. All of our results also hold if one conditions on an additional

vector of observed covariates, as is typically the case in empirical applications, but we omit these

for simplicity.
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3.1 The Potential Outcomes Model

Let X ∈ {0, 1} be a binary treatment variable. Let (Y1, Y0) denote unobserved potential outcomes.

We observe the scalar outcome variable

Y = XY1 + (1−X)Y0. (1)

Let px = P(X = x) for x ∈ {0, 1}. We impose the following assumption on the joint distribution of

(Y1, Y0, X).

Assumption A1. For each x, x′ ∈ {0, 1}:

1. Yx | X = x′ has a strictly increasing and continuous distribution function on its support,

supp(Yx | X = x′).

2. supp(Yx | X = x′) = supp(Yx) = [y
x
, yx] where −∞ ≤ y

x
< yx ≤ ∞.

3. px > 0.

Via A1.1, we restrict attention to continuously distributed potential outcomes. A1.2 states

that the unconditional and conditional supports of Yx are equal, and are a possibly infinite closed

interval. We maintain A1.2 for simplicity, but it can be relaxed using similar derivations as in

Masten and Poirier (2016). A1.3 is an overlap assumption.

In potential outcome models, statistical independence between potential outcomes and treat-

ment is sometimes assumed:

Yx ⊥⊥X. (2)

This assumption, equivalent to random assignment of treatment, can be made for x = 0, x = 1, or

both. When this assumption is made conditional on covariates, it is often called unconfoundedness.

As discussed in section 2, however, there are many other kinds of exogeneity assumptions available

in the literature, which are all weaker than full statistical independence. The purpose of this paper

is to help researchers choose between these different kinds of exogeneity assumptions. To that end,

in the next two subsections we provide characterization results that can help researchers assess the

plausibility of these exogeneity assumptions. We then study the identifying power of these different

assumptions in section 4.

3.2 A Class of Quantile Independence Assumptions

Quantile independence of the potential outcome Yx from X at quantile τ holds if

QYx|X(τ | 0) = QYx|X(τ | 1). (3)

This assumption is often imposed at a single quantile. For example, imposing (3) at τ = 0.5 yields

median independence. If this holds for all τ ∈ (0, 1), then Yx and X are statistically independent.

Therefore quantile independence is a relaxation of independence.
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It is often more natural to work with cdfs, an inverse of the quantile function.2 Say Yx is τ -cdf

independent of X if

FYx|X(τ | 0) = FYx|X(τ | 1). (4)

Note that Yx is quantile independent of X at quantile τ if and only if Yx is QYx(τ)-cdf independent

of X for continuously distributed Yx. This motivates the following definition.3

Definition 1. Let T be a subset of R. Say Yx is T -independent of X if the cdf independence

condition (4) holds for all τ ∈ T .

With binary treatments, the dependence structure between X and the potential outcome Yx is

fully characterized by the function

p(yx) = P(X = 1 | Yx = yx),

which we call the latent propensity score. Full statistical independence of Yx and X, or T -

independence with T = [y
x
, yx], is equivalent to this latent propensity score being constant:

p(yx) = P(X = 1)

for almost all yx ∈ supp(Yx). Analogously, T -independence for T ( [y
x
, yx] is weaker than full

independence, and thus partially restricts the shape of p(yx). The following theorem characterizes

the set of latent propensity scores consistent with T -independence.

Theorem 1 (Average value characterization). Suppose X is binary and A1.1 holds. Then Yx is

T -independent of X if and only if

E
(
p(Yx) | Yx ∈ (t1, t2)

)
= P(X = 1) (5)

for all t1, t2 ∈ T ∪ {yx, yx} with t1 < t2.

The proof, along with all others, is in appendix D. Theorem 1 says that T -independence holds

if and only if for every interval with endpoints in T ∪ {y
x
, yx} the average latent propensity score

over Yx ∈ (t1, t2) equals the overall average of the latent propensity score, which is P(X = 1). Also

note that E(p(Yx) | Yx ∈ (t1, t2)) = P(X = 1 | Yx ∈ (t1, t2)).

To illustrate theorem 1, suppose T = {0.5} and P(X = 1) = 0.5. Further suppose that Yx

is uniformly distributed on [0, 1] to simplify the figures. Here we have just a single nontrivial

cdf independence condition: median independence. Figure 1 plots three different latent propensity

scores which are consistent with T -independence under this choice of T ; that is, which are consistent

2For example, see assumption QI on page 731 of Manski (1988) or equation (1.7) on page 2452 of Powell (1994).
Definitions using cdfs and those using quantiles directly (e.g., via equation (3)) are often equivalent. Throughout this
paper we use “quantile independence” to mean the cdf-based definition, as is common in the literature.

3See Belloni, Chen, and Chernozhukov (2017) and Zhu, Zhang, and Xu (2018) for similar generalizations of quantile
independence.
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Figure 1: Various latent propensity scores consistent with T = {0.5}-independence, when P(X =
1) = 0.5.

with median independence. This figure illustrates several features of such latent propensity scores:

The value of p(yx) may vary over the entire range [0, 1]. p does not need to be symmetric about

yx = 0.5, nor does it need to be continuous. It does need to satisfy equation (5) over the intervals

(t1, t2) = (0, 0.5) and (t1, t2) = (0.5, 1). Finally, as suggested by the pictures, p must actually be

nonmonotonic; we show this in corollary 1 next.

Corollary 1. Suppose X is binary and A1.1 holds. Suppose the latent propensity score p is weakly

monotonic and not constant on (y
x
, yx). Then, for all τ ∈ (y

x
, yx), Yx is not τ -cdf independent of

X.

Corollary 1 shows that any quantile independence assumption rules out all types of monotonic

selection, except for the trivially monotonic constant p(yx) = P(X = 1) implied by full statistical

independence.

Next we show that imposing multiple quantile independence conditions imposes further non-

monotonicity. Say that a function f changes direction at least K times if there exists a partition

of its domain into K intervals such that f is not monotonic on each interval.

Corollary 2. Suppose X is binary and A1.1 holds. Suppose Yx is T -independent of X. Suppose

there exists a version of p without removable discontinuities. Partition (y
x
, yx) by the sets Y1 =

(t0, t1), Yk = [tk−1, tk) for k = 2, . . . ,K with t0 = y
x
, tK = yx, and such that for each k there is a

τk ∈ T ∩ Yk. Suppose p is not constant over each set Yk, k = 1, . . . ,K. Then p changes direction

at least K times.

This result says that such latent propensity scores must oscillate up and down at least K times

(we assume p does not have removable discontinuities to rule out trivial direction changes). For

example, as in figure 1, suppose we continue to have P(X = 1) = 0.5 and Yx ∼ Unif[0, 1] but

we add a few more isolated τ ’s to T . Figure 2 shows several latent propensity scores consistent

with T -independence when T has several isolated elements. Consider the figure on the left, with

T = {0.25, 0.5, 0.75}. Partition (0, 1) = (0, 0.4) ∪ [0.4, 0.6) ∪ [0.6, 1). Then p is not monotonic over

each partition set, and each partition set contains one element of T : 0.25 ∈ (0, 0.4), 0.5 ∈ [0.4, 0.6),

7



Figure 2: Some latent propensity scores consistent with T -independence when P(X = 1) = 0.5.
Left: T = {0.25, 0.5, 0.75}. Right: T = {0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875}.

and 0.75 ∈ [0.6, 1). There are K = 3 partition sets, and hence the corollary says p must change

direction at least 3 times. We see this in the figure since there are 3 interior local extrema. A

similar analysis holds for the figure on the right. Overall, these triangular and sawtooth latent

propensity scores illustrate the oscillation required by corollary 2.

We document one more feature: As long as there is some interval that is not in T then there is

a latent propensity score that takes the most extreme values possible, 0 and 1.

Corollary 3. Suppose X is binary and A1.1 and A1.3 hold. Suppose [y
x
, yx] \ T contains a

non-degenerate interval. Then there exists a latent propensity score which is consistent with T -

independence of Yx from X and for which the sets

{yx ∈ [y
x
, yx] : p(yx) = 0} and {yx ∈ [y

x
, yx] : p(yx) = 1}

have positive Lebesgue measure.

Consequently, T -independence allows for a kind of extreme imbalance, where there is a positive

mass of potential outcome values that only appear in the treatment group and another positive

mass of potential outcome values that only appear in the control group.

3.3 Characterizing Mean Independence

Mean independence is another commonly used exogeneity assumption. For example, Heckman et al.

(1998) assume potential outcomes are mean independent of treatments, conditional on covariates.

As in the previous section, we characterize the constraints this assumption places on the conditional

distribution of X given Yx.

Definition 2. Say Yx is mean independent of X if E(Yx | X = 0) = E(Yx | X = 1).

From definition 2 and Bayes’ rule, it immediately follows that

E
(

Yx
E(Yx)

p(Yx)

)
= P(X = 1), (6)
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assuming E(Yx) 6= 0. Theorem 1 showed that quantile independence constrains the unweighted

average value of the latent propensity score over certain subintervals of its domain. In contrast,

equation (6) shows that mean independence constrains a weighted average value of the latent

propensity score over its entire domain. Equation (6) can be extended to multi-valued and con-

tinuous X as in our analysis of quantile independence in section B; we omit this extension for

brevity.

Although mean independence imposes a different constraint on the latent propensity score than

quantile independence, it also requires non-constant latent propensity scores to be non-monotonic.

Proposition 1. Suppose X is binary and A1.1 holds. Suppose E(|Yx|) < ∞. Suppose the latent

propensity score p is weakly monotonic and not constant on the interior of its domain. Then Yx is

not mean independent of X.

Therefore, assuming mean independence rules out all types of monotonic selection, except for

the trivially monotonic constant p(yx) = P(X = 1) implied by full statistical independence.

3.4 Discussion

To place these results in context, consider the case where X is an indicator for completing college

and Y0 denotes a person’s earnings if they do not complete college. X is often thought to be

endogenous due to its relationship with ability, which is captured by Y0. In this example, p(y0)

is the proportion of people who complete college, among those with a fixed level of non-graduate

earnings. Corollary 1 states that any quantile independence condition rules out nonconstant, weakly

monotonic treatment selection. Similarly, proposition 1 implies that mean-independence rules out

this monotonic treatment selection. They would thus rule out that the proportion who attend

college is weakly increasing in the level of non-graduate earnings, unless we assume that college

attendance and non-graduate earnings are statistically independent, in which case p(y0) is constant.

Corollary 2 would require the probability of attending college to oscillate (or be constant) to

accommodate multiple quantile independence conditions. For example, if K quantile independence

conditions hold, there must exist K non-graduate earnings thresholds where the effect of non-

graduate earnings on college attendance changes sign. Alternatively, college attendance can again be

statistically independent of non-graduate earnings. We discuss the plausibility of these oscillations

in the context of a Roy Model in section 6.

Corollary 3 characterizes another feature of the latent propensity scores allowed by quantile

independence. In our returns to schooling example, a finite number of quantile independence

restrictions allow for a strictly positive proportion of people with non-graduate earnings levels for

which nobody attends college (p(y0) = 0), and for which everyone attends college (p(y0) = 1).

Depending on the context, the existence of these two groups may or may not appear plausible. If it

appears implausible, using an assumption that allows for their existence is inefficient compared to an

assumption that rules out their existence. Since ruling out their existence is a stronger assumption,

it would result in weakly narrower identified sets compared to the overly conservative set obtained
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under quantile independence alone. To rule out their existence, one could add a constraint such

as p(y0) ∈ [c1, c2] for prespecified 0 < c1 ≤ c2 < 1 and derive the identified set for the relevant

parameter under quantile independence and this added constraint. Throughout this paper, we

emphasize this approach of tailoring exogeneity conditions to the likely and unlikely features of the

treatment selection function p(y0) in the given application. Precisely finding the assumption that

best captures the nonexistence of those groups is beyond the scope of this paper, however, since it

is application dependent.

4 The Identifying Power of Different Exogeneity Assumptions

In this section we study the implications of the choice of exogeneity assumption for identification.

Our first result in section 3 shows that quantile independence imposes a constraint on the average

value of a latent propensity score. We use this characterization to motivate an assumption weaker

than quantile independence, which we call U-independence. The difference between these two

assumptions is that quantile independence imposes some additional average value constraints on

p(yx) that U-independence does not. In particular, U-independence allows for monotonic treatment

selection. Hence the difference between identified sets obtained under these two assumptions is

a measure of the identifying power of these additional average value constraints, which are the

features of quantile independence that require the latent propensity score to be non-monotonic.

Unlike quantile independence, it is not clear to us how to naturally weaken mean independence

to allow for monotonic latent propensity scores while still retaining an interpretable assumption

with identifying power. For that reason, in this section we only study identification under quantile

independence and its weaker version, U-independence.

We focus on two parameters: The average treatment effect for the treated,

ATT = E(Y1 − Y0 | X = 1)

= E(Y | X = 1)− E(Y0 | X = 1),

and the quantile treatment effect for the treated,

QTT(q) = QY1|X(q | 1)−QY0|X(q | 1)

= QY |X(q | 1)−QY0|X(q | 1),

for q ∈ (0, 1). To analyze treatment on the treated parameters, we only need to make assumptions

on the relationship between Y0 and X. Our analysis can easily be extended to parameters like ATE

by imposing T - or U-independence between Y1 and X as well as between Y0 and X.

Under statistical independence Y0 ⊥⊥ X, both the ATT and QTT are point identified. Under

T - or U-independence, however, they are generally partially identified. We derive identified sets

for ATT and QTT under both classes of exogeneity assumptions in this section. These sets have

simple explicit expressions which make them easy to use in practice. In section 5 we compare these
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identified sets in an empirical application. In this application, the estimated identified sets are

significantly larger under U-independence, implying that the additional average value constraints

inherent in T -independence have substantial identifying power.

4.1 Weakening Quantile Independence

Throughout this section, we focus on the case where T is an interval. In this case, we show that

latent propensity scores consistent with T -independence have two features: (a) they are flat on T
and (b) they are non-monotonic outside the flat regions, such that the average value constraint

(5) is satisfied. We use this finding to motivate a weaker assumption which retains feature (a) but

drops feature (b). We call this assumption U-independence. This new weaker assumption has two

uses: First, we can use it as a tool for understanding quantile independence itself. Specifically,

by comparing identified sets under quantile independence and under the weaker U-independence

we will learn the identifying power of the average value constraints on the latent propensity score.

Second, U-independence can be used by itself as a method for relaxing statistical independence and

performing sensitivity analysis. We illustrate both of these uses below and in our empirical analysis

of section 5.

We begin with the following corollary to theorem 1.

Corollary 4. Suppose X is binary and that A1 holds for Y0. Let T = [a, b] ⊆ [y
0
, y0]. Then

T -independence of Y0 from X implies

P(X = 1 | Y0 = y0) = P(X = 1) (7)

for almost all y0 ∈ T .

Corollary 4 shows that T -independence requires the latent propensity score to be constant on

T and equal to the overall unconditional probability of being treated. The first property—that the

latent propensity score is flat on T—means that random assignment holds within the subpopulation

of units whose untreated outcomes are in the set T ; that is, X ⊥⊥ Y0 | {Y0 ∈ T }. Corollary 4 can

be generalized to allow T to be a finite union of intervals, but we omit this for brevity.

This corollary motivates the following definition.

Definition 3. Let U ⊆ [y
x
, yx] be an interval. Say that Yx is U-independent of X if P(X = 1 |

Yx = yx) = P(X = 1) for almost all yx ∈ U .

Importantly, unlike T -independence, U-independence allows for monotonic treatment selection.

Corollary 4 shows that T -independence implies U-independence with U = T . The converse does

not hold since T -independence requires additional average value constraints to hold, by theorem 1.

In particular, U-independence implies the average value constraint

E(p(Yx) | Yx ∈ (t1, t2)) = P(X = 1) (5)

11



Figure 3: Let T = U = [0.25, 0.75] and P(X = 1) = 0.5. Also normalize Y0 to be uniform on
(0, 1) for simplicity. This figure shows a latent propensity score consistent with both T - and U-
independence on the left and a latent propensity score consistent with U-, but not T -independence
on the right.

for all t1, t2 ∈ U , because it requires that p(u) is constant on U . But T -independence also requires

that (5) holds for choices of t1 and t2 in U ∪ {y
x
, yx}. That is, t1 and t2 can equal the end

points y
x

or yx. Hence it imposes an average value constraint outside of the set U . For example,

figure 3 shows two latent propensity scores. One satisfies T -independence, but the other only

satisfies U-independence. Finally, note that U-independence is a nontrivial assumption only when

P(Yx ∈ U) > 0. Conversely, T -independence is nontrivial even when T is a singleton.

4.2 The Identified Sets For ATT and QTT(q)

In this subsection we derive sharp bounds on the ATT and QTT(q) under both T - and U-

independence. To do so, it suffices to derive bounds on QY0|X(q | 1).

We show the validity of the following bounds in proposition 2 below. Let T = U = [QY0(a), QY0(b)]

for 0 < a ≤ b < 1. The T -independence bounds are then defined by

Q
T
Y0|X(τ | 1) =


QY |X(a | 0) for τ ∈ (0, a]

QY |X(τ | 0) for τ ∈ (a, b]

QY |X(1 | 0) for τ ∈ (b, 1),

QT
Y0|X

(τ | 1) =


QY |X(0 | 0) for τ ∈ (0, a]

QY |X(τ | 0) for τ ∈ (a, b]

QY |X(b | 0) for τ ∈ (b, 1).

We let QY |X(0 | x) = y
x

and QY |X(1 | x) = yx. For U-independence, there are two cases. First

consider the lower bound. If (1− (b− a))p1 ≤ a,

QU
Y0|X

(τ | 1) =


QY |X(0 | 0) for τ ∈ (0, 1− (b− a)]

QY |X

(
τ +

b− 1

p0
| 0
)

for τ ∈ (1− (b− a), 1).
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If (1− (b− a))p1 ≥ a,

QU
Y0|X

(τ | 1) =



QY |X(0 | 0) for τ ∈
(

0,
a

p1

]
QY |X

(
τ − a

p1
| 0
)

for τ ∈
(
a

p1
,
a

p1
+ b− a

]
QY |X(b− a | 0) for τ ∈

(
a

p1
+ b− a, 1

)
.

Next consider the upper bound. If (1− (b− a))p0 ≤ a,

Q
U
Y0|X(τ | 1) =



QY |X(1− (b− a) | 0) for τ ∈
(

0, 1− (b− a)− 1− b
p1

]
QY |X

(
τ +

1− b
p1
| 0
)

for τ ∈
(

1− (b− a)− 1− b
p1

, 1− 1− b
p1

]
QY |X(1 | 0) for τ ∈

(
1− 1− b

p1
, 1

)
.

If (1− (b− a))p0 ≥ a,

Q
U
Y0|X(τ | 1) =

QY |X

(
τ +

a

p0
| 0
)

for τ ∈ (0, b− a]

QY |X(1 | 0) for τ ∈ (b− a, 1).

Proposition 2. Let A1 hold. Suppose Y0 is T -independent of X with T = [QY0(a), QY0(b)],

0 < a ≤ b < 1. Suppose the joint distribution of (Y,X) is known. Let q ∈ (0, 1). Then

QY0|X(q | 1) ∈
[
QT

Y0|X
(q | 1), Q

T
Y0|X(q | 1)

]
. (8)

Moreover, the interior of the set in equation (8) equals the interior of the identified set. Finally,

the proposition also holds if we replace T with U .

T -independence of Y0 from X with T = [QY0(a), QY0(b)] is equivalent to the quantile indepen-

dence assumptions QY0|X(τ | x) = QY0(τ) for all τ ∈ [a, b], by A1. The bounds (8) are also sharp

for the function QY0|X(· | 1) in a sense similar to that used in proposition 4 in the appendix; we

omit the formal statement for brevity. This functional sharpness delivers the following result.

Corollary 5. Suppose the assumptions of proposition 2 hold. Let E(|Y0|) <∞. Then E(Y0 | X =

1) lies in the set

[
ET (Y0 | X = 1), ET (Y0 | X = 1)

]
≡
[∫ 1

0
QT

Y0|X
(q | 1) dq,

∫ 1

0
Q
T
Y0|X(q | 1) dq

]
.

Moreover, the interior of this set equals the interior of the identified set for E(Y0 | X = 1). Finally,

the corollary also holds if we replace T with U .
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By proposition 2 we have that T -independence implies that QTT(q) lies in the set[
QY |X(q | 1)−QTY0|X(q | 1), QY |X(q | 1)−QT

Y0|X
(q | 1)

]
and that the interior of this set equals the interior of the identified set for QTT(q). Likewise for

U-independence. If q ∈ T , then QTT(q) is point identified under T -independence; this follows

immediately from our bound expressions above. This result—that a single quantile independence

condition can be sufficient for point identifying a treatment effect—was shown by Chesher (2003).

A similar result holds in the instrumental variables model of Chernozhukov and Hansen (2005) and

the LATE model of Imbens and Angrist (1994). See the discussion around assumption 4 in section

1.4.3 of Melly and Wüthrich (2017).

By corollary 5 we have that T -independence implies that the ATT lies in the set[
E(Y | X = 1)− ET (Y0 | X = 1), E(Y | X = 1)− ET (Y0 | X = 1)

]
and that the interior of this set equals the interior of the identified set for the ATT. Likewise for U-

independence. Furthermore, in appendix C we show that these ATT bounds have simple analytical

expressions, obtained from integrating our closed form expressions for the bounds on QY0|X(q | 1).

5 Empirical Illustration: The Effect of Child Soldiering on Wages

In this section we use our results to study the impact of relaxing the unconfoundedness assumption

in an empirical study of the effects of child soldiering on wages. We do this using both the T - and

U-independence relaxations of statistical independence. We find that the identified sets are signif-

icantly larger under U-independence. This implies that the average value constraints imposed by

T -independence have substantial identifying power; recall that these constraints are the features of

quantile independence that require the latent propensity score to be non-monotonic. In particular,

the baseline empirical results are generally quite robust under the T -independence relaxation of

unconfoundedness, but not the under U-independence relaxation. This difference highlights the

importance of the choice of exogeneity assumptions in practice, and how researchers can use their

beliefs about the form of latent selection to assist in this choice.

Background

By collecting extensive survey data, Blattman and Annan (2010) study the impact of child abduc-

tions during a twenty year war in Uganda, where “an unpopular rebel group has forcibly recruited

tens of thousands of youth” (page 882). Although they consider a variety of outcome variables, we

focus on the impact of abduction on later life wages.

The main identification problem is that selection into military service is typically non-random.

They argue, however, that forced recruitment in Uganda led to conditional random assignment

of military service. They condition on two variables: (1) Prewar household size, because larger
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households were less likely to be raided by small bands of rebels, and (2) Year of birth, because

abduction levels varied over time, so that some youth ages were more likely to be abducted than

others. Hence their identification strategy is based on unconfoundedness, conditioning on these

two variables. Although their qualitative evidence supporting unconfoundedness is compelling, this

assumption is still nonrefutable. We therefore use our results to assess the sensitivity of relaxing

unconfoundedness on their empirical conclusions.

Sample Definition

The data comes from phase 1 of SWAY, the Survey of War Affected Youth in northern Uganda

(see Annan, Blattman, and Horton 2006). This phase has 1216 males born between 1975 and 1991.

We look at the subsample of units who (1) have wage data available and (2) earned positive wages.

This leaves us with 448 observations. Let Y denote log wage. We define treatment X to be an

indicator that the person was not abducted. We include the two covariates discussed above, age

when surveyed and household size in 1996. We omit other covariates for simplicity.

Age has 17 support points, household size has 21 support points, and treatment has 2 support

points. Hence there are 714 total conditioning variable cells, relative to our sample size of 448

observations. To ensure that our conditional quantile estimators are reasonably smooth in the

quantile index, we collapse these conditioning variables into 8 cells. Specifically, we replace age with

a binary indicator of whether one is above or below the median age. Likewise, we replace household

size with a binary indicator of whether one lived in a household with above or below median

household size. This gives 8 total conditioning variable cells, with approximately 55 observations

each.

Baseline Analysis

First we present estimates of conditional average treatment effects for the treated (CATT) and

conditional quantile treatment effects for the treated (CQTTs), under the unconfoundedness as-

sumption. For brevity we focus on the covariate cell w = (age, household size) = (above median,

above median). This group has the largest baseline effects of treatment, meaning that being ab-

ducted lowered their later life wages by the largest. Specifically, our estimate of the CATT for this

group is 0.57. Our CQTT estimates are 0.67 for τ = 0.25, 0.54 for τ = 0.5, and 0.56 for τ = 0.75.

Note that our sample size is small, with 121 observations in this cell. We omit standard errors here

because the purpose of this section is to illustrate the methods developed in our paper.

Sensitivity Analysis

To check the robustness of these baseline point estimates to failure of unconfoundedness, we esti-

mate identified sets for the CATT and CQTT using our results from section 4. To highlight the

importance of the choice of relaxation, we consider sets T = U . In this case, corollary 4 shows

that T -independence implies U-independence. Hence identified sets using T -independence must

15



−5

−4

−3

−2

−1

0

1

2

3

4

5

CQTT(0.5)

QTT.bounds.50[[5]]

0 0.1 0.2 0.3 0.4 0.5
−5

−4

−3

−2

−1

0

1

2

3

4

5

CATT

ATT.bounds.res[[5]]

0 0.1 0.2 0.3 0.4 0.5

−5

−4

−3

−2

−1

0

1

2

3

4

5

CQTT(0.25)

QTT.bounds.25[[5]]

0 0.1 0.2 0.3 0.4 0.5
−5

−4

−3

−2

−1

0

1

2

3

4

5

CQTT(0.75)

QTT.bounds.75[[5]]

0 0.1 0.2 0.3 0.4 0.5

Figure 4: Estimated identified sets for various parameters of interest, for U = T = [δ, 1 − δ] with
δ ∈ [0, 0.5]. Solid: U-independence. Dashed: T -independence. The horizontal axis shows values of
δ.

necessarily be weakly contained within identified sets using only U-independence. We explore the

magnitude of this difference in the data. Since T -independence is simply U-independence combined

with some additional average value constraints, the difference between these identified sets tells us

the identifying power of these additional average value constraints.

Specifically, we use the choice T = U = [δ, 1−δ] for δ ∈ [0, 0.5]. For δ = 0, this choice corresponds

to full conditional independence Y0 ⊥⊥X | W = w under both classes of assumptions. For δ = 0.5,

this choice corresponds to median independence for T -independence, and no assumptions for U-

independence. Values of δ between 0 and 0.5 yield conditional partial independence between Y0

and X for both classes of assumptions.

Figure 4 shows estimated identified sets for both CATT and CQTT(τ) as δ varies from 0 to

0.5, and for τ ∈ {0.25, 0.5, 0.75}. These are sample analog estimates, where Q̂Y |X,W (· | x,w) is

estimated by inverting a kernel based estimate of FY |X,W (· | x,w). First consider the plot on the

top left, which shows the estimated CQTT(0.5) bounds. The dashed lines are the identified sets

under T -independence. Since median independence of Y0 from X conditional on W = w is sufficient
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to point identify the conditional median QY0|X,W (0.5 | 1, w), median independence is also sufficient

to point identify the CQTT at 0.5. Hence the identified set is a singleton for all δ ∈ [0, 0.5].

This singleton equals 0.54, the baseline estimate. Next consider the solid lines. These are the

estimated identified sets under U-independence. When δ = 0.5, U-independence does not impose

any constraints on the model, and hence we obtain the no assumption bounds, which are quite

wide: [−3.42, 3.42]. If we decrease δ a small amount, thus making the U-independence constraint

nontrivial, the estimated identified set does not change. In fact, we can impose random assignment

for about the middle 50% of units (i.e., U = [0.25, 0.75], or δ = 0.25) and still we only obtain the

no assumption bounds. Consequently, for intervals T ⊆ [0.25, 0.75], the point identifying power

of T -independence is due solely to the constraint it imposes on the average value of the latent

propensity score outside the interval T , rather than the constraint that random assignment holds

for units in the middle of the distribution of Y0.

Next define

δUbp(τ) = sup{δ ∈ [0, 0.5] : LBU (τ, δ) ≥ 0}

where LBU (τ, δ) is the lower bound of the identified set for CQTT(τ) under U-independence with

U = [δ, 1 − δ]. Define δTbp(τ) analogously. This value δUbp(τ) is a breakdown point: It is the

largest amount we can relax full independence while still being able to conclude that the treatment

effect is nonnegative. For τ = 0.5, the estimated breakdown point for CQTT(0.5) is 0.103. Thus

we can allow randomization to fail for about 20.6% of units while still being able to conclude

that CQTT(0.5) is nonnegative. In contrast, as mentioned above, the breakdown point for T -

independence is always 0.5.

Next consider the lower two plots of figure 4. These plots show estimated identified sets for

CQTT(0.25) on the left and CQTT(0.75) on the right. There are two main differences between

these plots and that of CQTT(0.5): First, the U-independence upper and lower bounds are not

symmetric. Nonetheless, the qualitative robustness conclusions are similar. For example, δ̂Ubp(0.25)

is 0.122 and δ̂Ubp(0.75) is 0.071. So conclusions about smaller quantiles are slightly more robust than

conclusions about larger quantiles. Second, the T -independence identified sets are no longer always

singletons. In particular, we obtain non-singleton bounds when δ > 0.25. However, conclusions

under the T -independence relaxation are substantially more robust than conclusions under the

U-independence relaxation. Specifically, δ̂Tbp(0.25) is 0.437. This is about 3.5 times as large as

δ̂Ubp(0.25). Similarly, δ̂Tbp(0.75) is 0.25. This is also about 3.5 times as large as δ̂Ubp(0.75).

Finally consider the plot on the top right of figure 4, which shows estimated identified sets

for CATT. First consider the T -independence relaxation, the dashed lines. The CATT is no

longer point identified under median independence, or any set T ( (0, 1) of quantile independence

conditions; that is, the CATT is partially identified for all δ > 0. Nonetheless, even median

independence alone has substantial identifying power: For δ = 0.5, the estimated identified set

under median independence is [−1.36, 2.06], whereas the no assumption bounds are [−3.42, 3.42].

Thus the width of the bounds has been cut in half. For δ > 0, U-independence has non-trivial

identifying power, as shown in the solid lines. However, comparing the length of these bounds to the
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length to the T -independence bounds, we see that imposing the average value constraint outside the

interval [δ, 1−δ] again has substantial identifying power: the T -independence bounds are anywhere

from 50% (δ = 0.5) to almost 100% (arbitrarily small δ) smaller than the U-independence bounds.

That is, the difference in lengths increases as we get closer to independence (as δ gets smaller). Thus

conclusions about CATT are substantially more sensitive to small deviations from independence

which do not impose the average value constraint outside the interval [δ, 1−δ], compared with small

deviations which do impose that constraint. A second way to see this is to compare the breakdown

points under the two relaxations. Define

δUbp = sup{δ ∈ [0, 0.5] : LBU (δ) ≥ 0}

where LBU (δ) is the lower bound of the identified set for CATT under U-independence with U =

[δ, 1−δ]. Define δTbp analogously. As shown in the plots above, δ̂Ubp = 0.063 while δ̂Tbp = 0.222. Thus

the breakdown point under T -independence is again about 3.5 times as large as the breakdown

point under U-independence.

Empirical Conclusions

In this section we used our identification results to study the robustness of conclusions about

CATT and CQTTs to failures of unconfoundedness. Our baseline point estimates suggest that

child abduction and forced military service has a negative effect on later life wages, for those

children who were older when they were abducted and who came from larger households. This

holds both on average (from the CATT) and across the distribution of treatment effects (as seen in

the CQTTs). We then asked: How sensitive are these conclusions to failures of unconfoundedness?

We saw that using the T -independence relaxation, these conclusions are generally robust to large

relaxations of unconfoundedness. However, using the U-independence relaxation, these conclusions

appear much more sensitive. As we earlier discussed, the difference arises from the additional

average value constraints that T -independence imposes. Those constraints are the features of

quantile independence that require the latent propensity score to be non-monotonic. Thus it is

critical to assess the plausibility of those additional constraints when deciding between these two

forms of exogeneity assumptions to use for assessing sensitivity.

In this empirical context, a monotonic latent propensity score arises when youths who have

larger potential earnings when they’re abducted (larger Y0) are more likely to be abducted. If youths

are targeted for abduction because of their innate or pre-existing skills, which would generally lead

to large Y0, then this would be a form of monotonic selection that would not be allowed for by

the T -independence relaxation, but would be allowed for by the U-independence relaxation. So

if we are concerned that unconfoundedness fails due to this kind of non-random selection, then

U-independence is a more appropriate choice for assessing sensitivity than T -independence. Given

this choice, the baseline results still hold under mild relaxations of unconfoundedness, since we saw

that U-independence breakdown points were generally around δ = 0.1. But the baseline results no
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longer hold for larger relaxations; in this case, the data are inconclusive.

6 The Treatment Selection Implications of a Roy Model

As we emphasized, there is a direct mapping between exogeneity assumptions and the allowed forms

of treatment selection. At one extreme, full independence assumes no selection at all of X on Yx,

and therefore p(yx) is constant. On the other hand, weaker exogeneity assumptions allow for a class

of deviations that one wishes to be robust against. Since this class is often not explicitly specified,

we refer to such deviations as latent selection models. Our main results in section 3 characterize

the set of latent selection models allowed by quantile and mean independence restrictions.

In this section, we consider a class of Roy Models and examine the relationship between their

implied treatment selection functions and the exogeneity assumptions of section 3. We discuss

different assumptions on the economic primitives which lead these models to be either consistent

or inconsistent with quantile or mean independence restrictions. We only consider single-agent

models, but similar analyses can likely be done for multi-agent models.

Suppose we are again interested in identifying the average treatment effect for the treated

parameter

ATT = E(Y1 − Y0 | X = 1)

= E(Y | X = 1)− E(Y0 | X = 1).

As in section 4, its identification depends on our assumptions about the stochastic relationship

between X and Y0. Suppose agents choose treatment to maximize their outcome:

X = 1(Y1 > Y0). (9)

This is the classical Roy model (see Heckman and Vytlacil 2007). This assumption specifies how

treatment X relates to Y0. Specifically, consider the latent propensity score

p(y0) ≡ P(X = 1 | Y0 = y0)

= P(Y1 > y0 | Y0 = y0).

The second line follows by our Roy model treatment choice assumption. Thus the shape of p

depends on the joint distribution of (Y1, Y0). We classify these distributions into two possible

cases, based on a concept called regression dependence (which is formally defined in definition 4 in

appendix B.1).

1. First suppose (Y1, Y0) is such that Y1 is regression dependent on Y0. This implies that p is

monotonic. Corollary 1 and proposition 1 therefore imply that no mean or quantile indepen-

dence conditions of Y0 on X can hold unless X ⊥⊥ Y0. This occurs when X is degenerate, as

when treatment effects Y1 − Y0 are constant, or more generally when (Y1 − Y0)⊥⊥ Y0. In par-
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ticular, any mean or quantile independence condition of Y0 on X rules out bivariate normally

distributed (Y1, Y0), again unless X ⊥⊥ Y0.

2. Next suppose (Y1, Y0) is such that Y1 is not regression dependent on Y0. For example, let

Y1 = Y0 + µ(Y0)− ε where µ is a deterministic function and ε ∼ N (0, 1), ε⊥⊥ Y0. Then

p(y0) = P(X = 1 | Y0 = y0) = Φ[µ(y0)],

where Φ is the standard normal cdf. If µ is non-monotonic then p will also be non-monotonic.

For this joint distribution of potential outcomes, the unit level treatment effects Y1−Y0 condi-

tional on the baseline outcome Y0 = y0 are distributed N (µ(y0), 1). Hence non-monotonicity

of µ implies that the mean of this distribution of treatment effects is not monotonic. For

instance, suppose the outcome is earnings and treatment is completing college. Let

µ(y0) > 0 if y0 ∈ (α, β)

µ(y0) ≤ 0 if y0 ∈ (−∞, α] ∪ [β,∞)

for −∞ < α < β <∞. Then people with sufficiently small or sufficiently large earnings when

they do not complete college do not benefit from completing college, on average. People with

moderate earnings when they do not complete college, on the other hand, do typically benefit

from completing college. This kind of joint distribution of potential outcomes combined

with the Roy model assumption (9) on treatment selection produces non-monotonic latent

propensity scores.

We just gave one example joint distribution of (Y1, Y0) where regression dependence fails.

More generally, theorem 5.2.10 on page 196 of Nelsen (2006) characterizes the set of copulas

for which Y1 is regression dependent on Y0, when both are continuously distributed. This

result therefore also tells us the set of copulas where Y1 is not regression dependent on Y0.

Among these copulas, T -independence (or, analogously, mean independence) of Y0 from X

will specify a further subset of allowed dependence structures. The precise set is given by all

copulas which lead to latent propensity scores that satisfy the average value constraint.

Whether one of these cases is plausible depends on the specific application at hand. For example,

Heckman, Smith, and Clements’ (1997) study the Job Training Partnership Act (JTPA). They find

that “plausible impact distributions require high measures of positive dependence [of Y1 on Y0]”

(page 506). This suggests that case 1 is more relevant for their data, and hence it may be unlikely

that any quantile or mean independence holds in their setting.

7 Conclusion

In this paper we gave several results to help researchers assess the plausibility of quantile and mean

independence assumptions on structural unobservables like potential outcomes. Keep in mind,
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however, that when doing identification analysis it is not necessary to choose a single exogeneity

assumption. For example, researchers may want to consider a variety of exogeneity assumptions in

this step, as part of a sensitivity analysis. We illustrated this in sections 4 and 5. The choice of

which exogeneity assumptions to consider is still determined by considering the kinds of treatment

selection we want to allow for, as discussed in section 2. Conversely, there may be situations where

researchers do not find it plausible to impose any kind of exogeneity assumption. In this case we

often can still learn something about the parameters of interest, as in the classical no assumption

bounds of Manski (1990). In this paper we focused on the case where the researcher does want to

impose some kind of exogeneity assumption, however. In this case, we hope that our results can

help researchers better select the most appropriate exogeneity assumptions for their settings.
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A Structural and Reduced Form Unobservables

The approach we recommend in section 2 begins by distinguishing between two kinds of unob-
servables: (1) Structural unobservables and (2) Reduced form unobservables. In this appendix we
discuss a specific example to clarify the distinction between these two variables. We also use this
example to discuss the difference between exogeneity assumptions involving reduced form unob-
servables and those involving structural unobservables.

Example: The Binary Response Random Coefficients Model

Let X be a scalar observed random variable. Let Y ∗(x) denote a latent potential outcome for
x ∈ R. Let Y ∗ = Y ∗(X) denote realized latent potential outcomes. Let

Y (x) = 1[Y ∗(x) ≥ 0]

denote the usual potential outcomes. Let Y = Y (X) denote our observed outcome. Suppose latent
potential outcomes satisfy the linear random coefficient model

Y ∗(x) = A+Bx, (10)

where A and B are structural unobserved random variables. Suppose we impose the following
constraint on the tails of A, B, and X.

Assumption B1. E(A), E(B), and E(X) exist and are finite.
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In this model, (A,B) are structural unobservables. An exogeneity assumption about the re-
lationship between (A,B) and X is therefore a statement about treatment selection: How does
assigned treatment depend on these structural unobservables? This is the kind of exogeneity as-
sumption we focus on in this paper. In this appendix however, we will discuss a second kind
of exogeneity condition, which constrains the relationship between treatment and a reduced form
unobservable. This is a derived exogeneity condition: It is not directly imposed but rather is a
consequence of a choice of (1) an exogeneity assumption involving the structural unobservables and
(2) the functional form of the reduced form unobservables.

To illustrate this kind of derived exogeneity condition, we’ll assume treatment is randomly
assigned.

Assumption B2. (A,B)⊥⊥X.

Next write the equation for realized latent potential outcomes as

Y ∗(X) = E(A) + E(B)X +
(
[A− E(A)] + [B − E(B)]X

)
≡ E(A) + E(B)X + V. (11)

V is a reduced form unobservable. It is a function of the structural unobservables (A,B) as well
as the realized treatment X. Consequently, it is not invariant to changes in the distribution of X.
The coefficients E(A) and E(B) in equation (11) do have structural interpretations, however.

By definition, V depends on X, and so typically V is not independent of X. Nonetheless, we
can derive some restrictions on the distribution of V | X. Specifically, suppose we also make the
following assumption.

Assumption B3. Y ∗(x) is symmetrically distributed about E[Y ∗(x)] for all x ∈ supp(X).

Under this additional assumption, Manski (1975, page 220) showed the following result; also
see Manski (1977, pages 247–249) and Fox (2007, pages 1007–1008).

Proposition 3. Suppose B1, B2, and B3 hold. Then P(V ≤ 0 | X = x) = P(V ≤ 0) = 0.5 for all
x ∈ supp(X). That is, V is median independent of X.

Thus we have derived a median independence restriction on the reduced form unobservable V as
a consequence of (1) the definition of V and (2) the exogeneity assumption about the relationship
between X and the structural unobservables.

Discussion

In this example there are two kinds of unobservables: The structural unobservables (A,B) and
the reduced form unobservable V . We made an exogeneity assumption about the relationship
between (A,B) and X based on our beliefs about treatment assignment. We then derived an
exogeneity condition on the relationship between the reduced form unobservable V and X. More
generally, for researchers interested in choosing an exogeneity assumption that relates treatment
to reduced form unobservables, our recommendation is that this assumption be derived from a
more primitive exogeneity assumption about the structural unobservables, as in the example. The
analysis in sections 2–6 of our paper can then be used to assess the plausibility of these more
primitive exogeneity assumptions.

Researchers may sometimes prefer to make an exogeneity assumption on the reduced form
unobservable directly, without directly deriving it from a more primitive model like we did above.
There are a few concerns with this approach, however:
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1. As Angrist (2001) argues, we often care about parameters like average structural functions
(ASFs) and average treatment effects (ATEs). In nonseparable models like the example above,
however, the ASF depends on the distribution of the structural unobservables. In particular,
for that example,

ASF(x) = E[Y (x)]

= PA,B(A+Bx ≥ 0)

6= PV (E(A) + E(B)x+ V ≥ 0).

The true ASF does not generally equal the parameter that you would compute if you worked
with equation (11), but incorrectly treated V as a structural unobservable in an ASF cal-
culation. Thus, in nonseparable models, it is generally not possible to avoid working with
structural unobservables if we are interested in ASFs and ATEs.

For example, among many other derivations, Torgovitsky (2019) computes identified sets for
ASFs and ATEs in a binary response model with constant coefficients and median indepen-
dence. For these identified sets to have the correct interpretation, the unobservable V in his
model must be structural, rather than a reduced form. Consequently, the fact that we are
only imposing median independence of these unobservables from treatment implies that we
are concerned with a particular kind of non-random treatment assignment. Our results in
section 3 characterize the kind of non-random treatment assignment consistent with median
independence assumptions.

2. If we only work with the reduced form unobservables, then we might be ignoring a lot of
useful information. Consider the example again: Relative to the assumption that V is median
independent of X, the stronger assumptions B2 and B3 have potentially different implications
for falsification, identification, rates of convergence, and efficiency. For example, in the model
we know that the ASF is point identified:

E[Y (x)] = P(Y = 1 | X = x).

But if we only impose median independence of V from X then the ASF is generally only
partially identified.

For these reasons, we recommend working directly with the structural unobservables. This does not
require that researchers make strong assumptions like statistical independence on these structural
unobservables, however. Instead, they can use the methods discussed in this paper to think about
the form of exogeneity you want to impose on the relationship between the structural unobservables
and the treatment variables.

B Characterizing Quantile Independence with Non-Binary Treat-
ments

In this section we generalize our characterization results to allow treatment X to be non-binary.
For any logically possible value of treatment x, let Y (x) denote the potential outcomes. Although
our results extend to general potential outcomes, they are arguably more natural for the simpler
nonseparable model

Y (x) = m(x, U)
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where U is continuously distributed scalar heterogeneity and m is an unknown, potentially non-
separable function that is strictly increasing in U . This model allows for the impact of changes in
treatment values to arbitrarily depend on U . It was studied in Matzkin (2003), Imbens (2007), and
Torgovitsky (2015), among others. Note that it includes the classical linear model for potential
outcomes as a special case.

B.1 Extension to Continuous Treatments

First we extend our main characterization result (theorem 1) to continuous treatments X. In this
setting, it is useful to work with this equivalent representation of τ -cdf independence condition (4):

FU |X(τ | x) = FU (τ)

for all x ∈ supp(X). This equivalence exists since there is an invertible mapping between Yx and
U , and by quantile invariance. Since the structural function m and the distribution of U are not
separately identified, it is common to normalize U ∼ Unif[0, 1]. We also use this normalization to
simplify the statements and proofs of the results, but all of our results can be extended to the case
where U is not normalized.

As in the binary X case, our results show that the deviations from independence allowed by
quantile independence require a kind of non-monotonic selection on unobservables. We start by
giving the analog to theorem 1 in the continuous X case.

Theorem 2 (Average value characterization). Suppose X and U are continuously distributed;
normalize U ∼ Unif[0, 1]. Then U is T -independent of X if and only if

E
(
P(X > x | U) | U ∈ (t1, t2)

)
= P(X > x) for all x ∈ supp(X) (12)

for all t1, t2 ∈ T ∪ {0, 1} with t1 < t2.

The interpretation of equation (12) is similar to the binary X case: T -independence holds if
and only if, for each possible level of treatment x, and for each interval with endpoints in T ∪{0, 1}
the average value of the conditional probability of receiving treatment larger than x given the
unobservable equals the overall unconditional probability of receiving treatment larger than x.
Notice that, by adding −1 to each side of equation (12), this constraint can equivalently be seen as
a constraint on the conditional cdf FX|U .

As in the binary X case, the constraint (12) imposes a non-monotonicity condition.

Corollary 6. Suppose X and U are continuously distributed. Suppose there is some x ∈ supp(X)
such that P(X > x | U = u) is weakly monotonic and not constant over u ∈ int[supp(U)]. Then,
for all τ ∈ supp(U), U is not τ -cdf independent of X.

For example, suppose X is level of education, x is completing college, and U is ability. Then
any nontrivial T -independence condition implies that at some point increasing ability lowers the
probability of getting more than a college education (or that it is constant in ability).

The monotonicity condition of corollary 6 dates back to Tukey (1958) and Lehmann (1966),
who give the following definition.

Definition 4. Say X is positively [negatively] regression dependent on U if P(X > x | U = u) is
weakly increasing [decreasing] in u, for all x ∈ R. Say X is regression dependent on U if it is either
positively or negatively regression dependent on U .
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Regression dependence is also known as stochastic monotonicity, since it is equivalent to the
set of cdfs {FX|U (· | u) : u ∈ supp(U)} being either increasing or decreasing in the first order
stochastic dominance ordering. Thus corollary 6 states that we cannot simultaneously have quantile
independence of U on X and regression dependence of X on U , except when X ⊥⊥ U .

Lehmann and Romano (2005) call positive regression dependence an “intuitive meaning of
positive dependence”. To support this claim, Lehmann (1966) gave the following simple sufficient
conditions for regression dependence: If one can write X = π0 + π1U + V where π0 and π1 are
constants and V is a random variable independent of U , then X is regression dependent on U
if π1 6= 0. In particular, if X and U are jointly normally distributed then they are regression
dependent so long as they have nonzero correlation. While these are special cases, theorem 5.2.10
on page 196 of Nelsen (2006) provides a general characterization of regression dependence in terms
of the copula between X and U , when both variables are continuous. In particular, if CX,U (x, u) is
the copula for (X,U), X is regression dependent on U if and only if CX,U (x, ·) is concave for any
x ∈ [0, 1].

Several papers in econometrics have previously used stochastic monotonicity assumptions for
identification. Blundell et al. (2007) study the classic problem of identifying the distribution of
potential wages, given that wages are only observed for workers. Following Manski and Pepper
(2000), they argue that stochastic monotonicity assumptions are often plausible. They specifically
consider stochastic monotonicity of wages on labor force participation status, as well as stochastic
monotonicity of wages on an instrument. They furthermore provide a detailed analysis of when
stochastic monotonicity assumptions may not be plausible.

Corollary 6 shows that any assumption of T -independence of U on X rules out stochastic
monotonicity of X on U . Thus, if one wants to allow for a class of deviations from independence
which includes stochastically monotonic selection, assumptions of quantile independence of U on
X should not be used. Conversely, if one makes a quantile independence assumption of U on X,
one should argue why stochastically non-monotonic selection models are the deviations of interest.
We discuss these issues further in section 6.

B.2 Extension to Discrete Treatments

Next we consider discrete multi-valued X.

Theorem 3 (Average value characterization). Suppose X is discrete. Suppose U is continuously
distributed; normalize U ∼ Unif[0, 1]. Then U is T -independent of X if and only if

E
(
P(X = x | U) | U ∈ (t1, t2)

)
= P(X = x) for all x ∈ supp(X) (13)

for all t1, t2 ∈ T ∪ {0, 1} with t1 < t2.

This result has a similar interpretation as our previous results for binary X and continuous X.
First, we have the following corollary.

Corollary 7. Suppose X is discrete. Suppose U is continuously distributed. Suppose there is
some x ∈ supp(X) such that P(X ≥ x | U = u) is weakly monotonic and not constant over
u ∈ int[supp(U)]. Then, for all τ ∈ supp(U), U is not τ -cdf independent of X.

The interpretation is analogous to corollary 6. Second, all of the interpretations given in section
3 apply to the probabilities P(X = x | U = u) for x ∈ supp(X). In particular, these conditional
probabilities must be non-monotonic. For example, suppose supp(X) = {x1, . . . , xK} is finite. This
non-monotonicity result is primarily relevant for the lowest treatment level (x = x1) and the highest
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treatment level (x = xK), since non-monotonicity of the middle probabilities would be implied, for
example, by a simple ordered threshold crossing model, like X = xk if αk ≤ U ≤ αk+1 for constants
αk ≤ αk+1, k ∈ {1, . . . ,K}.

B.3 Generalizing U-independence

Finally, the following result extends corollary 4 to allow X to be discrete multi-valued or continuous.

Corollary 8. Suppose U is continuously distributed; normalize U ∼ Unif[0, 1]. Let T = [a, b] ⊆
[0, 1]. Then T -independence of U from X implies FX|U (x | u) = FX(x) for all x ∈ R and almost
all u ∈ T .

Although we focused on binary X in section 4.2, this corollary suggests that we can generalize
our definition of U-independence to allow multi-valued or continuous treatments by specifying
FX|U (x | u) = FX(x) for all x ∈ R and almost all u ∈ U .

C Definitions of the Bound Functions

In this appendix we provide the precise functional forms for the cdf bounds of proposition 4 and
the conditional mean bounds of corollary 5.

The cdf bounds

The T -independence bounds are as follows:

F
T
U |X(u | x) =



FU (u)

px
if u ≤ QU (pxFU (a))

FU (a) if QU (pxFU (a)) ≤ u ≤ a
FU (u) if a ≤ u ≤ b
FU (u)− FU (b)

px
+ FU (b) if b ≤ u ≤ QU (px + FU (b)(1− px))

1 if QU (px + FU (b)(1− px)) ≤ u

and

F TU |X(u | x) =



0 if u ≤ QU ((1− px)FU (a))
FU (u)− FU (a)

px
+ FU (a) if QU ((1− px)FU (a)) ≤ u ≤ a

FU (u) if a ≤ u ≤ b
FU (b) if b ≤ u ≤ QU (pxFU (b) + (1− px))
FU (u)− 1

px
+ 1 if QU (pxFU (b) + (1− px)) ≤ u.

For U-independence, first consider the lower bound. There are two separate cases. First, if (1 −
(FU (b)− FU (a)))(1− px) ≤ FU (a),

FUU |X(u | x) =
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

0 for u ≤ QU ((1− (FU (b)− FU (a)))(1− px))
FU (u)− (1− (FU (b)− FU (a)))(1− px)

px
for u ∈ [QU ((1− (FU (b)− FU (a)))(1− px)), a]

(FU (b)− 1)(1− px)

px
+ FU (u) for u ∈ [a, b]

FU (u)− 1

px
+ 1 for u ≥ b.

Second, if (1− (FU (b)− FU (a)))(1− px) ≥ FU (a),

FUU |X(u | x) =



0 for u ≤ a
FU (u)− FU (a) for u ∈ [a, b]

FU (b)− FU (a) for u ∈ [b,QU (px(FU (b)− FU (a)) + 1− px)]
FU (u)− 1

px
+ 1 for u ≥ QU (px(FU (b)− FU (a)) + 1− px).

Next consider the upper bound. Again, there are two separate cases. First, if (1 − (FU (b) −
FU (a)))px ≤ FU (a),

F
U
U |X(u | x) =



FU (u)

px
for u ≤ QU ((1− (FU (b)− FU (a)))px)

1− (FU (b)− FU (a)) for u ∈ [QU ((1− (FU (b)− FU (a)))px), a]

1− (FU (b)− FU (u)) for u ∈ [a, b]

1 for u ≥ b.

Second, if (1− (FU (b)− FU (a)))px ≥ FU (a),

F
U
U |X(u | x) =

FU (u)

px
for u ≤ a

FU (a)

px
+ FU (u)− FU (a) for u ∈ [a, b]

(FU (b)− FU (a))(px − 1) + FU (u)

px
for u ∈ [b,QU ((FU (b)− FU (a))(1− px) + px)]

1 for u ≥ QU ((FU (b)− FU (a))(1− px) + px).

The conditional mean bounds

By integrating the quantile bounds as in the statement of corollary 5, we obtain the bounds on
E(Y0 | X = 1). We provide the explicit form of these bounds but omit the derivations for brevity.
For T -independence,

ET (Y0 | X = 1) = aQY |X(a | 0) +

∫ b

a
QY |X(τ | 0) dτ + (1− b)QY |X(1 | 0)

and

ET (Y0 | X = 1) = aQY |X(0 | 0) +

∫ b

a
QY |X(τ | 0) dτ + (1− b)QY |X(b | 0).
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For U-independence, first consider the lower bound. There are two cases. If (1− (b− a))p1 ≤ a,

EU (Y0 | X = 1) = (1− (b− a))QY |X(0 | 0) +

∫ 1+ b−1
p0

1−(b−a)+ b−1
p0

QY |X(τ | 0) dτ.

If (1− (b− a))p1 ≥ a,

EU (Y0 | X = 1) =
a

p1
QY |X(0 | 0) +

∫ b−a

0
QY |X(τ | 0) dτ +

(
1− (b− a)− a

p1

)
QY |X(b− a | 0).

Next consider the upper bound. If (1− (b− a))p0 ≤ a,

EU (Y0 | X = 1) =

QY |X(1− (b− a) | 0)

(
1− (b− a)− 1− b

p1

)
+

∫ 1

1−(b−a)
QY |X(τ | 0) dτ +QY |X(1 | 0)

1− b
p1

.

If (1− (b− a))p0 ≥ a,

EU (Y0 | X = 1) =

∫ b−a+ a
p0

a
p0

QY |X(τ | 0) dτ + (1− (b− a))QY |X(1 | 0).

D Proofs

We use this simple lemma in some of our proofs.

Lemma 1. Suppose U is continuously distributed. Suppose X is discrete. Then FU |X(· | x) is a
continuous function for all x ∈ supp(X).

Proof of lemma 1. Suppose by way of contradiction that there is some x∗ ∈ supp(X) such that
FU |X(· | x∗) is not continuous at some point u∗. Since cdfs are right-continuous, we must have
limu↗u∗ FU |X(u | x∗) < FU |X(u∗ | x∗). This implies P(U = u∗ | X = x∗) > 0. Therefore

0 = P(U = u∗) by U continuously distributed

=
∑

x∈supp(X)

P(U = u∗ | X = x)P(X = x) by the law of total probability

≥ P(U = u∗ | X = x∗)P(X = x∗)

> 0.

This is a contradiction.

D.1 Proofs for section 3

Proof of theorem 1. By the law of iterated expectations, this is equivalent to showing that P(X =
1 | Yx ∈ (t1, t2)) = P(X = 1) for all t1, t2 ∈ T ∪ {yx, yx} with t1 < t2.

(⇒) Suppose Yx is T -independent of X. Let t1, t2 ∈ T ∪ {yx, yx} with t1 < t2. Then,

P(X = 1 | Yx ∈ (t1, t2)) =
P(Yx ∈ (t1, t2) | X = 1)P(X = 1)

P(Yx ∈ (t1, t2))
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=
(P(Yx < t2 | X = 1)− P(Yx ≤ t1 | X = 1))P(X = x)

P(Yx < t2)− P(Yx ≤ t1)

=
(P(Yx ≤ t2 | X = 1)− P(Yx ≤ t1 | X = 1))P(X = x)

P(Yx ≤ t2)− P(Yx ≤ t1)
= P(X = 1).

The third equality follows since Yx | X is continuously distributed, which itself follows by X
being discretely distributed and lemma 1. The fifth line follows from T -independence, which
is equivalent to P(Yx ≤ t | X = 1) = P(Yx ≤ t) for t ∈ T .

(⇐) Suppose that,
P(X = 1 | Yx ∈ (t1, t2)) = P(X = 1)

for all t1, t2 ∈ T ∪ {yx, yx} with t1 < t2. Then,

P(Yx ∈ (t1, t2) | X = 1) =
P(X = 1 | Yx ∈ (t1, t2))P(Yx ∈ (t1, t2))

P(X = 1)

=
P(X = 1)P(Yx ∈ (t1, t2))

P(X = 1)

= P(Yx ∈ (t1, t2)).

The second line follows by assumption. Let t1 = y
x
. Then, using lemma 1, FYx|X(t2 | 1) =

P(Yx ∈ (y
x
, t2) | X = 1) = P(Yx ∈ (y

x
, t2)) = FYx(t2). Thus T -cdf independence holds.

Proof of corollary 1. Without loss of generality, suppose p is weakly increasing. Fix y ∈ (y
x
, yx).

Then

E(p(Yx) | Yx ∈ (y
x
, y)) ≤ p(y)

by monotonicity of p. Similarly,

E(p(Yx) | Yx ∈ (y, yx)) ≥ p(y).

Therefore
E(p(Yx) | Yx ∈ (y

x
, y)) ≤ p(y) ≤ E(p(Yx) | Yx ∈ (y, yx)).

Suppose these hold with equality. Then

E(p(Yx)− p(y) | Yx ∈ (y
x
, y)) = 0,

which implies that p(yx) = p(y) for all yx < y by p(yx)− p(y) ≤ 0 for yx < y. Likewise, we would
also have that

E(p(Yx)− p(y) | Yx ∈ (y, yx)) = 0,

which implies that p(yx) = p(y) for all yx > y by p(yx)− p(y) ≥ 0 for yx > y.
Therefore p(yx) = p(y) for all yx, which contradicts our assumption that p(yx) is not constant.

Hence
E(p(Yx) | Yx ∈ (y

x
, y)) < E(p(Yx) | Yx ∈ (y, yx)).
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Because y was arbitrary, we see that y-cdf independence cannot hold for any y ∈ (y
x
, yx), by

theorem 1.

Proof of corollary 2. For each interval Yk, we repeat the argument of corollary 1, conditional on
Yx ∈ Yk, noting that a nontrivial τ -cdf independence condition will still hold conditional on Yx ∈
Yk.

Proof of corollary 3. Let [a, b] ⊆ [y
x
, yx] \ T with a < b. Consider the propensity score

p(yx) =


1 if yx ∈ [a,QYx(FYx(a) + P(X = 1)P(Yx ∈ (a, b))))

0 if yx ∈ [QYx(FYx(a) + P(X = 1)P(Yx ∈ (a, b))), b]

P(X = 1) if yx /∈ [a, b].

By assumption A1.3, P(X = 1) ∈ (0, 1). This implies that QYx(FYx(a) +P(X = 1)P(Yx ∈ (a, b))) ∈
(a, b). Therefore, p attains the values 0 and 1 over intervals which have positive Lebesgue measure.
Also, by construction we have

E(p(Yx) | Yx ∈ (a, b)) =

∫ b
a p(yx) dFYx(yx)

P(Yx ∈ (a, b))

=
P(Yx ∈ [a,QYx(FYx(a) + P(X = 1)P(Yx ∈ (a, b)))))

P(Yx ∈ (a, b))

=
FYx(a) + P(X = 1)P(Yx ∈ (a, b))− FYx(a)

P(Yx ∈ (a, b))

= P(X = 1).

Next we show that T -independence holds. Let t1 and t2 be any two values in T ∪ {y
x
, yx} such

that t1 < t2. Then

E(p(Yx) | Yx ∈ (t1, t2)) = E(P(X = 1) | Yx ∈ (t1, t2)) = P(X = 1)

if t1 < t2 < a or b < t1 < t2, by the definition of p(yx): It equals P(X = 1) for values yx /∈ [a, b].
Now suppose t1 < a < b < t2. Then

E(p(Yx) | Yx ∈ (t1, t2))

= E(p(Yx) | Yx ∈ (t1, a))P(Yx ∈ (t1, a) | Yx ∈ (t1, t2))

+ E(p(Yx) | Yx ∈ (a, b))P(Yx ∈ (a, b) | Yx ∈ (t1, t2))

+ E(p(Yx) | Yx ∈ (b, t2))P(Yx ∈ (b, t2) | Yx ∈ (t1, t2))

= P(X = 1)
(
P(Yx ∈ (t1, a) | Yx ∈ (t1, t2))

+ P(Yx ∈ (a, b) | Yx ∈ (t1, t2)) + P(Yx ∈ (b, t2) | Yx ∈ (t1, t2))
)

= P(X = 1).

The first equality follows by iterated expectations. The second equality follows again by the defi-
nition of p(yx) for values yx /∈ [a, b], and also by our derivation above that E(p(Yx) | Yx ∈ (a, b)) =
P(X = 1).

This covers all cases for t1 and t2, thus T -independence holds by theorem 1.
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Proof of proposition 1. We have

cov(Yx, p(Yx)) = E[(Yx − E(Yx))p(Yx)]

= E[(Yx − E(Yx))(p(Yx)− p(E(Yx)))].

Without loss of generality, suppose p(yx) is non-decreasing on supp(Yx). Therefore yx R E(Yx)

implies p(yx) R p(E(Yx)) and so

(Yx − E(Yx))(p(Yx)− p(E(Yx))) ≥ 0

with probability one. Moreover, equality holds with probability equal to P[p(Yx) = p(E(Yx))]. Since
p is non-constant and non-decreasing, the probability that p(Yx) is equal to a constant is strictly
less than one. Hence cov(Yx, p(Yx)) > 0.

Next,

E(Yx | X = 1) =
E(YxX)

P(X = 1)

=
E[Yxp(Yx)]

P(X = 1)

>
E(Yx)P(X = 1)

P(X = 1)

= E(Yx).

The first line follows by iterated expectations on X. The second line follows by iterated expectations
on Yx. The third by cov(Yx, p(Yx)) > 0. Thus we have shown that mean independence does not
hold.

D.2 Proofs for section 4

Proof of corollary 4. If a = b the result holds trivially since T has measure zero. So suppose a < b
and fix x ∈ {0, 1}. By the properties of conditional probabilities,

P(Y0 ≤ y0 | X = x, Y0 ∈ [a, b]) =
P(Y0 ∈ (y

0
, y0] ∩ [a, b] | X = x)

P(Y0 ∈ [a, b] | X = x)
.

If y0 > b this fraction equals 1. If y0 < a the numerator is zero. In either case, P(Y0 ≤ y0 | X =
x, Y0 ∈ [a, b]) does not depend on x and hence Y0 ⊥⊥X | {Y0 ∈ T }.

If y0 ∈ [a, b], (y
0
, y0] ∩ [a, b] = [a, y0]. Hence

P(Y0 ≤ y0 | X = x, Y0 ∈ [a, b]) =
FY0|X(y0 | x)− FY0|X(a | x)

FY0|X(b | x)− FY0|X(a | x)

=
FY0(y0)− FY0(a)

FY0(b)− FY0(a)

= P(Y0 ≤ y0 | Y0 ∈ [a, b]).

The first line follows since Y0 | X = x is continuously distributed, by lemma 1. The second line
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follows from a, y0, b ∈ T . Hence Y0 ⊥⊥X | {Y0 ∈ T }. This implies that, for almost all y0 ∈ T ,

P(X = 1 | Y0 = y0) = P(X = 1 | Y0 = y0, Y0 ∈ T )

= P(X = 1 | Y0 ∈ T ).

The second equality follows from conditional independence. Thus we have shown that p(y0) equals
a constant on T . To finish the proof, we show that this constant is P(X = 1). Let t1, t2 ∈ [a, b]
with t1 < t2. Then

P(X = 1) = E(p(Y0) | Y0 ∈ (t1, t2))

= E(P(X = 1 | Y0 ∈ T ) | Y0 ∈ (t1, t2))

= P(X = 1 | Y0 ∈ T ).

The first line follows by theorem 1 while the second line follows by our derivations above showing
that p(y0) = P(X = 1 | Y0 ∈ T ) on T . Hence

P(X = 1 | Y0 = y0) = P(X = 1)

for almost all y0 ∈ T .

Preliminaries for the Proof of Proposition 2

To obtain the identified sets in section 4.2, we first derive sharp bounds on cdfs under generic
T - and U-independence. We then apply these results to obtain sharp bounds on the treatment
effect parameters. To this end, in this subsection we consider the relationship between a generic
continuous random variable U and a binary variable X ∈ {0, 1}. We derive sharp bounds on the
conditional cdf of U given X when (1) the marginal distributions of U and X are known and either
(2) U is T -independent of X or (2′) U is U-independent of X. We obtain the identified sets in
section 4.2 by applying this general result to U = FYx(Yx).

Let FU |X(u | x) = P(U ≤ u | X = x) denote the unknown conditional cdf of U given X = x.
Let FU (u) = P(U ≤ u) denote the known marginal cdf of U . Let px = P(X = x) denote the known

marginal probability mass function of X. Let a, b ∈ R, a ≤ b. We define the functions F
T
U |X(u | x),

F TU |X(u | x), F
U
U |X(u | x), and FUU |X(u | x) in appendix C. These are piecewise linear functions of

FU (u) which depend on a, b, and px. Figure 5 plots several examples.

Proposition 4. Suppose the following hold:

1. The marginal distributions of U and X are known.

2. U is continuously distributed.

3. p1 ∈ (0, 1).

4. U is T -independent of X with T = [a, b].

Let Fsupp(U) denote the set of all cdfs on supp(U). Then, for each x ∈ {0, 1}, FU |X(· | x) ∈ FTU |x,
where

FTU |x =
{
F ∈ Fsupp(U) : F TU |X(u | x) ≤ FU |X(u | x) ≤ F TU |X(u | x) for all u ∈ supp(U)

}
.
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Figure 5: Example upper and lower bounds on FU |X(u | 0), when p1 = 0.75 and U ∼ Unif[0, 1].
Solid: U-independence. Dashed: T -independence. All three plots have U = T , for three different
choices: {0.5} on the left, [0.25, 0.75] in the middle, and [0.1, 0.9] on the right. The diagonal,
representing the choice [0, 1]—the case of full independence—is plotted as a dotted line.

Furthermore, for each ε ∈ [0, 1], there exists a joint distribution of (U,X) consistent with assump-
tions 1–4 above and such that(

P(U ≤ u | X = 1), P(U ≤ u | X = 0)
)

=
(
εF TU |X(u | 1) + (1− ε)F TU |X(u | 1), (1− ε)F TU |X(u | 0) + εF

T
U |X(u | 0)

)
(14)

for all u ∈ supp(U). Finally, the entire proposition continues to hold if we replace T with U . �

Consider the T -independence case. Then proposition 4 has two conclusions. First, we show

that the functions F
T
U |X(· | x) and F TU |X(· | x) bound the unknown conditional cdf FU |X(· | x)

uniformly in its arguments. Second, we show that these bounds are functionally sharp in the sense
that the joint identified set for the two conditional cdfs (FU |X(· | 1), FU |X(· | 0)) contains linear

combinations of the bound functions F
T
U |X(· | x) and F TU |X(· | x). We use this second conclusion

to prove sharpness of our treatment effect parameters of section 4.2. Identical conclusions hold in
the U-independence case.

For simplicity we have only stated this result when T and U are closed intervals [a, b]. It can be
generalized, however. For example, for T -independence, theorem 2 of Masten and Poirier (2016)
provides cdf bounds when T is a finite union of closed intervals.

We now begin by proving proposition 4. To do so, we frequently use the following result.

Lemma 2. Let U be a continuous random variable. Let X be a random variable with px = P(X =
x) > 0. Then

FU |X(u | x) =

∫ u

−∞

P(X = x | U = v)

px
dFU (v).

Proof of lemma 2. See lemma 1 in Masten and Poirier (2018).

Proof of proposition 4 (T -independence). We prove this statement for T -independence first, then
for U-independence. Both proofs proceed by first deriving the upper cdf bound, then deriving the
lower cdf bound, and finishing by showing the joint attainability of the cdfs of equation (14).
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For both the T - and U-independence proofs, we use the following two inequalities: First, for all
u ∈ supp(U),

FU |X(u | x) =

∫ u

−∞

P(X = x | U = v)

px
dFU (v)

≤
∫ u

−∞

1

px
dFU (v)

=
FU (u)

px
. (15)

The first line follows by lemma 2. The second line follows by P(X = x | U = v) ≤ 1. Second, for
all u ∈ supp(U),

FU |X(u | x) =

∫ u

−∞

P(X = x | U = v)

px
dFU (v)

= 1−
∫ ∞
u

P(X = x | U = v)

px
dFU (v)

≥ 1−
∫ ∞
u

1

px
dFU (v)

= 1 +
FU (u)− 1

px
. (16)

While equations (15) and (16) both hold for all u ∈ supp(U), they are not sharp for all u.

Part 1. We show that FU |X(u | x) ≤ F TU |X(u | x) for all u ∈ supp(U). If u ≤ QU (pxFU (a)), the
upper bound holds by equation (15). Second, if u ∈ [QU (pxFU (a)), a], then FU |X(u | x) ≤ FU |X(a |
x) = FU (a) since FU |X(· | x) is nondecreasing and by T -independence. Third, if u ∈ [a, b], then
FU |X(u | x) = FU (u) by T -independence. Fourth, if u ∈ [b,QU (px + FU (b)(1− px))], then

FU |X(u | x) =

∫ u

−∞

P(X = x | U = v)

px
dFU (v)

=

∫ b

−∞

P(X = x | U = v)

px
dFU (v) +

∫ u

b

P(X = x | U = v)

px
dFU (v)

≤ FU |X(b | x) +

∫ u

b

1

px
dFU (v)

= FU (b) +
FU (u)− FU (b)

px
.

Finally, for all u ∈ supp(U), FU |X(u | x) ≤ 1. In particular, this holds for u ≥ QU (px +
FU (b)(1− px)).

Part 2. We show that FU |X(u | x) ≥ F TU |X(u | x) for all u ∈ supp(U). First, FU |X(u |
x) ≥ 0 for all u ∈ supp(U). In particular, this holds for u ≤ QU ((1 − px)FU (a)). Second, if
u ∈ [QU ((1− px)FU (a)), a], then

FU |X(u | x) =

∫ u

−∞

P(X = x | U = v)

px
dFU (v)
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=

∫ a

−∞

P(X = x | U = v)

px
dFU (v)−

∫ a

u

P(X = x | U = v)

px
dFU (v)

≥ FU |X(a | x)−
∫ a

u

1

px
dFU (v)

= FU (a) +
FU (u)− FU (a)

px
.

Third, if u ∈ [a, b] then FU |X(u | x) = FU (u) by T -independence. Fourth, if u ∈ [b,QU (pxFU (b) +
(1 − px))], then FU |X(u | x) ≥ FU |X(b | x) = FU (b). Finally, if u ≥ QU (pxFU (b) + (1 − px)), the
lower bound holds by equation (16).

Part 3. To prove sharpness, we must construct a joint distribution of (U,X) consistent with

assumptions 1–4 and which yields the upper bound F
T
U |X(· | x). And likewise for the lower bound

F TU |X(· | x). This yields equation (14) for ε = 0 and ε = 1. By taking convex combinations of these

two joint distributions we obtain the case for ε ∈ (0, 1).
The marginal distributions of U andX are prespecified. Hence to construct the joint distribution

of (U,X) it suffices to define conditional distributions of U | X. We define these conditional

distributions by the bound functions themselves, F TU |X(u | x) and F
T
U |X(u | x). These functions

are non-decreasing, right-continuous, and have range [0, 1]. Hence they are valid cdfs. They also
satisfy T -independence. These properties are preserved by taking convex combinations, and hence

εF TU |X(u | x) + (1− ε)F TU |X(u | x) is also a valid cdf that satisfies T -independence for any ε ∈ [0, 1]

and x ∈ {0, 1}. Finally, we show that these cdfs are consistent with the marginal distribution of
U , and can satisfy both components of equation (14) simultaneously. To see this, we compute

pxF
T
U |X(u | x) + (1− px)F TU |X(u | 1− x)

=



px
FU (u)

px
if u ≤ QU (pxFU (a))

pxFU (a) + FU (u)− FU (a) + FU (a)(1− px) if QU (pxFU (a)) ≤ u ≤ a
pxFU (u) + (1− px)FU (u) if a ≤ u ≤ b
FU (u)− FU (b) + pxFU (b) + (1− px)FU (b) if b ≤ u ≤ QU (px + FU (b)(1− px))

px + FU (u)− 1 + (1− px) if QU (px + FU (b)(1− px)) ≤ u

= FU (u).

Thus

p1

[
εF TU |X(u | 1) + (1− ε)F TU |X(u | 1)

]
+ p0

[
(1− ε)F TU |X(u | 0) + εF

T
U |X(u | 0)

]
= ε

[
p1F

T
U |X(u | 1) + p0F

T
U |X(u | 0)

]
+ (1− ε)

[
p1F

T
U |X(u | 1) + p0F

T
U |X(u | 0)

]
= εFU (u) + (1− ε)FU (u)

= FU (u).

Proof of proposition 4 (U-independence). Now we consider the cdf bounds under U-independence,
under various cases:

Part 1. We show FU |X(u | x) ≤ FUU |X(u | x) for all u ∈ supp(U). We do this in two cases.
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Part 1a. Suppose (1−(FU (b)−FU (a)))px ≤ FU (a). First, FU |X(u | x) ≤ 1 for all u ∈ supp(U).
In particular, this holds if u ≥ b.

Second, if u ∈ [a, b], then

FU |X(u | x) =

∫ u

−∞

P(X = x | U = v)

px
dFU (v)

= 1−
∫ ∞
b

P(X = x | U = v)

px
dFU (v)−

∫ b

u

P(X = x | U = v)

px
dFU (v)

≤ 1−
∫ ∞
b

0

px
dFU (v)−

∫ b

u

px
px

dFU (v)

= 1− (FU (b)− FU (u)).

Third, if u ∈ [QU ((1−(FU (b)−FU (a)))px), a], then FU |X(u | x) ≤ FU |X(a | x) ≤ 1−(FU (b)−FU (a))
where the last inequality follows by our derivation immediately above. Finally, if u ≤ QU ((1 −
(FU (b)− FU (a)))px), the upper bound holds by equation (15).

Part 1b. Now suppose (1 − (FU (b) − FU (a)))px ≥ FU (a). First, if u ≤ a, the upper bound
holds by equation (15). Second, if u ∈ [a, b] then

FU |X(u | x) =

∫ u

−∞

P(X = x | U = v)

px
dFU (v)

=

∫ a

−∞

P(X = x | U = v)

px
dFU (v) +

∫ u

a

P(X = x | U = v)

px
dFU (v)

≤
∫ a

−∞

1

px
dFU (v) +

∫ u

a

px
px

dFU (v)

=
FU (a)

px
+ FU (u)− FU (a).

Third, if u ∈ [b,QU ((FU (b)− FU (a))(1− px) + px)], then

FU |X(u | x)

=

∫ u

−∞

P(X = x | U = v)

px
dFU (v)

=

∫ a

−∞

P(X = x | U = v)

px
dFU (v) +

∫ b

a

P(X = x | U = v)

px
dFU (v) +

∫ u

b

P(X = x | U = v)

px
dFU (v)

≤
∫ a

−∞

1

px
dFU (v) +

∫ b

a

px
px

dFU (v) +

∫ u

b

1

px
dFU (v)

=
FU (a) + px(FU (b)− FU (a)) + FU (u)− FU (b)

px
.

Finally, if u ≥ QU ((FU (b)− FU (a))(1− px) + px), then FU |X(u | x) ≤ 1.

Part 2. We show that FU |X(u | x) ≥ FUU |X(u | x) for all u ∈ supp(U). We do this in two cases.

Part 2a. Suppose (1 − (FU (b) − FU (a)))(1 − px) ≤ FU (a). First, if u ≤ QU ((1 − (FU (b) −
FU (a)))(1− px)), then FU |X(u | x) ≥ 0. Second, if u ∈ [QU ((1− (FU (b)−FU (a)))(1− px)), a], then

FU |X(u | x)
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=

∫ u

−∞

P(X = x | U = v)

px
dFU (v)

= 1−
∫ ∞
b

P(X = x | U = v)

px
dFU (v)−

∫ b

a

P(X = x | U = v)

px
dFU (v)−

∫ a

u

P(X = x | U = v)

px
dFU (v)

≥ 1−
∫ ∞
b

1

px
dFU (v)−

∫ b

a

px
px

dFU (v)−
∫ a

u

1

px
dFU (v)

=
FU (u)− (1− (FU (b)− FU (a)))(1− px)

px
.

Third, if u ∈ [a, b], then

FU |X(u | x) =

∫ u

−∞

P(X = x | U = v)

px
dFU (v)

= 1−
∫ ∞
b

P(X = x | U = v)

px
dFU (v)−

∫ b

u

P(X = x | U = v)

px
dFU (v)

≥ 1−
∫ ∞
b

1

px
dFU (v)−

∫ b

u

px
px

dFU (v)

= FU (u) +
(FU (b)− 1)(1− px)

px
.

Finally, if u ≥ b, the lower bound holds by equation (16).

Part 2b. Now suppose (1 − (FU (b) − FU (a)))(1 − px) ≥ FU (a). First, if u ≤ a then FU |X(u |
x) ≥ 0. Second, if u ∈ [a, b] then

FU |X(u | x) =

∫ u

−∞

P(X = x | U = v)

px
dFU (v)

=

∫ a

−∞

P(X = x | U = v)

px
dFU (v) +

∫ u

a

P(X = x | U = v)

px
dFU (v)

≥
∫ a

−∞

0

px
dFU (v) +

∫ u

a

px
px

dFU (v)

= FU (u)− FU (a).

Third, if u ∈ [b,QU (px(FU (b)−FU (a)) + 1− px)], then FU |X(u | x) ≥ FU |X(b | x) ≥ FU (b)−FU (a),
where the last inequality follows by our derivation immediately above. Finally, if u ≥ QU (px(FU (b)−
FU (a)) + 1− px) the lower bound holds by equation (16).

Part 3. In this part, we prove sharpness in two steps. First we construct a joint distribution

of (U,X) consistent with assumptions 1–4 and which yields the upper bound F
U
U |X(· | x). And

likewise for the lower bound FUU |X(· | x). This yields equation (14) for ε = 0 and ε = 1. Second we

use convex combinations of these two joint distributions to obtain the case for ε ∈ (0, 1).
The marginal distributions of U andX are prespecified. Hence to construct the joint distribution

of (U,X) it suffices to define conditional distributions of X | U . Specifically, when (1 − (FU (b) −
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FU (a)))px ≤ FU (a), define the conditional probability

px(u) =


1 for u < QU ((1− (FU (b)− FU (a)))px)

0 for u ∈ [(QU ((1− (FU (b)− FU (a)))px), a)

px for u ∈ [a, b)

0 for u ≥ b.

for u ∈ supp(U). This conditional probability is consistent with U-independence. Moreover, by

applying lemma 2 one can verify that it yields the upper bound F
U
U |X(· | x).

When (1− (FU (b)− FU (a)))px ≥ FU (a), define

px(u) =


1 for u < a

px for u ∈ [a, b)

1 for u ∈ [b,QU ((FU (b)− FU (a))(1− px) + px))

0 for u ≥ QU ((FU (b)− FU (a))(1− px) + px).

Again, by applying lemma 2 one can verify that this conditional probability yields the upper bound

F
U
U |X(· | x).

Next consider the lower bounds. When (1− (FU (b)− FU (a)))(1− px) ≤ FU (a), define

p
x
(u) =


0 for u < QU ((1− (FU (b)− FU (a)))(1− px))

1 for u ∈ [QU ((1− (FU (b)− FU (a)))(1− px)), a)

px for u ∈ [a, b)

1 for u ≥ b.

When (1− (FU (b)− FU (a)))(1− px) ≥ FU (a), define

p
x
(u) =


0 for u < a

px for u ∈ [a, b)

0 for u ∈ [b,QU (px(FU (b)− FU (a)) + 1− px))

1 for u ≥ QU (px(FU (b)− FU (a)) + 1− px).

As with the upper bounds, one can verify that these yield the lower bound FUU |X(· | x). For all of

these conditional distributions of X | U , one can verify that they are consistent with the marginal
distribution of X:∫

supp(U)
px(u) dFU (u) = px and

∫
supp(U)

p
x
(u) dFU (u) = px.

Thus we have shown that the bound functions are attainable. That is, equation (14) holds with
ε = 0 or 1. Next consider ε ∈ (0, 1). For this ε, we specify the distribution of X | U by the
conditional probability εp

x
(u) + (1 − ε)px(u). This is a valid conditional probability since it is a

convex combination of two terms which are between 0 and 1. This conditional probability satisfies
U-independence. By linearity of integrals and our results above,∫

supp(U)

[
εp

x
(u) + (1− ε)px(u)

]
dFU (u) = px
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and hence this distribution of X | U is consistent with the marginal distribution of X. Finally, by
lemma 2 and linearity of the integral, this conditional probability yields the cdf

P(U ≤ u | X = x) = εFUU |X(u | x) + (1− ε)FUU |X(u | x),

as needed for each component of equation (14). To see that each component of equation (14) holds
simultaneously, we show that a law of total probability constraint holds. There are two cases to
check. First suppose (1− (FU (b)− FU (a)))(1− p1) = (1− (FU (b)− FU (a)))p0 ≤ FU (a). Then

p1F
U
U |X(u | 1) + p0F

U
U |X(u | 0)

=



0 + FU (u)

for u < QU ((1− (FU (b)− FU (a)))p0)

(FU (u)− (1− (FU (b)− FU (a))))p0 + (1− (FU (b)− FU (a)))p0

for u ∈ [QU ((1− (FU (b)− FU (a)))p0), a)

(FU (b)− 1)p0 + FU (u)p1 + (1− (FU (b)− FU (u))p0 for u ∈ [a, b)

FU (u)− 1 + p1 + p0 for u ≥ b

= FU (u).

Likewise, p1F
U
U |X(u | 1)+p0F

U
U |X(u | 0) = FU (u). Similar derivations hold for the other case. Thus

p1

[
εFUU |X(u | 1) + (1− ε)FUU |X(u | 1)

]
+ p0

[
(1− ε)FUU |X(u | 0) + εF

U
U |X(u | 0)

]
= ε

[
p1F

U
U |X(u | 1) + p0F

U
U |X(u | 0)

]
+ (1− ε)

[
p1F

U
U |X(u | 1) + p0F

U
U |X(u | 0)

]
= εFU (u) + (1− ε)FU (u)

= FU (u).

Using proposition 4, we can now prove proposition 2.

Proof of proposition 2. By the law of total probability and equation (1),

FY0(y) = FY0|X(y | 1)p1 + FY0|X(y | 0)p0

= FY0|X(y | 1)p1 + FY |X(y | 0)p0.

Rearranging yields

FY0|X(y | 1) =
FY0(y)− p0FY |X(y | 0)

p1
. (17)

Finally, the desired quantile is simply the left-inverse of this conditional cdf:

QY0|X(τ | 1) = F−1Y0|X(τ | 1).

Thus it suffices to obtain bounds on the unconditional cdf FY0(y). By equation (12) on page 337
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of Masten and Poirier (2018),

FY |X(y | 0) = FR0|X(FY0(y) | 0) (18)

where R0 ≡ FY0(Y0) is the rank of Y0. By A1, Y0 is continuously distributed and hence R0 ∼
Unif[0, 1]. The main idea of the proof is that proposition 4 yields bounds on FR0|X , which we then
invert to obtain bounds on FY0 . We then substitute these bounds into equation (17) to obtain
bounds on FY0|X(· | 1). Inverting those bounds yields the quantile bounds given in section 4.2.
Since the bounds of proposition 4 are not always uniquely invertible, we approximate them by
invertible bound functions. Here we explain the main argument, but we omit the full details since
these are similar to the proof of proposition 2 in Masten and Poirier (2018).

Under T -independence of Y0 from X with T = [QY0(a), QY0(b)], we have T -independence of
R0 from X with T = [a, b]. To see this, let τ ∈ [a, b]. Then

FR0|X(τ | x) = P(R0 ≤ τ | X = x)

= P(FY0(Y0) ≤ τ | X = x)

= P(Y0 ≤ QY0(τ) | X = x)

= FY0|X(QY0(τ) | x)

= FY0(QY0(τ))

= τ.

The second line follows by definition of the rank R0. The fifth line follows by T -independence of
Y0 from X and since τ ∈ [a, b]. The third and sixth lines follow by A1.1. Thus proposition 4 yields
sharp bounds on FR0|X . Substituting these bounds into our argument above yields the bounds on
QY0|X(τ | 1) in section 4.2.

Sharpness of these bounds holds in the same sense as sharpness of the CQTE bounds in propo-
sition 3 of Masten and Poirier (2018). That is, the conditional quantile of Y0 | X = 1 should

be a continuous and strictly increasing function, while QT
Y0|X

(τ | 1) and Q
T
Y0|X(τ | 1) may have

discontinuities and flat regions. Nevertheless we show there exists a function that is arbitrarily
close (pointwise in τ) to these bounds that is continuous and strictly increasing. To see this, for
η ∈ [0, 1] define

F TR0|X(u | 0; η) = (1− η) · F TR0|X(u | 0) + η · u

F
T
R0|X(u | 0; η) = (1− η) · F TR0|X(u | 0) + η · u.

These cdfs satisfy T -independence. For each η > 0, they are continuous and strictly increasing. Fi-

nally, they converge uniformly to F TR0|X(u | 0) and F
T
R0|X(u | 0), respectively, as η ↘ 0. Therefore,

we can substitute the cdf bounds F TR0|X(u | 0; η) and F
T
R0|X(u | 0; η) into equation (18), invert and

then substitute that into equation (17) to obtain

F
T
Y0|X(y | 1; η) ≡

F
T −1
R0|X(FY |X(y | 0) | 0; η)− p0FY |X(y | 0)

p1

and

F TY0|X(y | 1; η) ≡
F
T −1
R0|X(FY |X(y | 0) | 0; η)− p0FY |X(y | 0)

p1
.

42



Taking the inverses of these two cdfs and letting η ↘ 0 allows us to attain points arbitrarily close to

the endpoints of the set [QT
Y0|X

(τ | 1), Q
T
Y0|X(τ | 1)]. The rest of the interior is attained by selecting

sufficiently small η > 0 and taking convex combinations of the bound functions, as in equation
(14), and letting ε vary from 0 to 1.

For U-independence we also obtain sharpness of the interior because the functions QU
Y0|X

(τ |

1) and Q
U
Y0|X(τ | 1) are not necessarily continuous or strictly increasing. Nevertheless, as for T -

independence, we can obtain continuous and strictly increasing functions that are arbitrarily close
(pointwise in τ) to these bounds. To see this, for η = (η1, η2) ∈ (0,min{p1, p0})2 define

p
x
(u; η) = min{max{p

x
(u), η1}, 1− η2}

px(u; η) = min{max{px(u), η1}, 1− η2}

where p
x

and px are defined as in the proof of proposition 4 and we let U ≡ R0. These conditional
probabilities lie in (0, 1) and satisfy U-independence. Moreover, there exists an η̃1 ∈ (0,min{p1, p0})
such that for any η1 ∈ (0, η̃1), there is an η2(η1) ∈ (0,min{p1, p0}) such that∫ 1

0
p
x
(u; η) du = px

for η = (η1, η2(η1)). This follows by the intermediate value theorem. An analogous result holds for
the conditional probability px(u; η). For such values of η, define

FUR0|X(u | 0; η) =

∫ u

0

p
x
(v; η)

px
dv and F

U
R0|X(u | 0; η) =

∫ u

0

p
x
(v; η)

px
dv.

These cdf bounds are strictly increasing and continuous since the integrand is strictly positive.
Therefore, we can substitute these cdf bounds into equation (18), invert and then substitute that
into equation (17) to obtain

F
U
Y0|X(y | 1; η) ≡

F
U −1
R0|X(FY |X(y | 0) | 0; η)− p0FY |X(y | 0)

p1

and

FUY0|X(y | 1; η) ≡
F
U −1
R0|X(FY |X(y | 0) | 0; η)− p0FY |X(y | 0)

p1
.

Taking the inverses of these two cdfs and letting η1 ↘ 0 allows us to attain points arbitrarily close

to the endpoints of the set [QU
Y0|X

(τ | 1), Q
U
Y0|X(τ | 1)]. The rest of the interior is attained by

selecting sufficiently small η1 > 0 and taking convex combinations of the bound functions, as in
equation (14), and letting ε vary from 0 to 1.

Proof of corollary 5. This result follows by derivations similar to the proof of corollary 1 in Masten
and Poirier (2018).

D.3 Proofs for Appendix B

Proof of theorem 2. Define X̃ = 1(X > x). Now apply theorem 3 to X̃.

Proof of corollary 6. Follows by defining X̃ = 1(X > x) and applying corollary 1.
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Proof of theorem 3. By the law of iterated expectations, this is equivalent to showing that P(X =
x | U ∈ [t1, t2]) = P(X = x) for all x ∈ supp(X) and t1, t2 ∈ T ∪ {0, 1} with t1 < t2.

(⇒) Suppose U is T -independent of X. Let t1, t2 ∈ T ∪ {0, 1} with t1 < t2. Then, for any
x ∈ supp(X),

P(X = x | U ∈ [t1, t2]) =
P(U ∈ [t1, t2] | X = x)P(X = x)

t2 − t1

=
(P(U ≤ t2 | X = x)− P(U < t1 | X = x))P(X = x)

t2 − t1

=
(P(U ≤ t2 | X = x)− P(U ≤ t1 | X = x))P(X = x)

t2 − t1
= P(X = x).

The first equality follows from U ∼ Unif[0, 1]. The third equality follows since U | X is
continuously distributed, which itself follows by X being discretely distributed and lemma 1.
The fourth line follows from T -independence.

(⇐) Suppose that for any x ∈ supp(X),

P(X = x | U ∈ [t1, t2]) = P(X = x)

for all t1, t2 ∈ T ∪ {0, 1} with t1 < t2. Then,

P(U ∈ [t1, t2] | X = x) =
P(X = x | U ∈ [t1, t2])P(U ∈ [t1, t2])

P(X = x)

=
P(X = x)P(U ∈ [t1, t2])

P(X = x)

= P(U ∈ [t1, t2]).

The second line follows by assumption. Setting t1 = 0 and using U ∼ Unif[0, 1] gives the
result.

Proof of corollary 7. Follows by defining X̃ = 1(X ≥ x) and applying corollary 1.

Proof of corollary 8. Follows by defining X̃ = 1(X ≤ x) and applying corollary 4.
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