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Abstract. We construct data dependent upper bounds on the risk in func-

tion learning problems. The bounds are based on the local norms of the

Rademacher process indexed by the underlying function class and they do not

require prior knowledge about the distribution of training examples or any

speci�c properties of the function class. Using Talagrand's type concentration

inequalities for empirical and Rademacher processes, we show that the bounds

hold with high probability that decreases exponentially fast when the sample

size grows. In typical situations that are frequently encountered in the theory

of function learning, the bounds give nearly optimal rate of convergence of the

risk to zero.

1. Local Rademacher norms and bounds on the risk: main results

Let (S;A) be a measurable space and let F be a class of A-measurable functions
from S into [0; 1]: Denote P(S) the set of all probability measures on (S;A): Let
f0 2 F be an unknown target function. Given a probability measure P 2 P(S)
(also unknown), let (X1; : : : ; Xn) be an i.i.d. sample in (S;A) with common distri-
bution P (de�ned on a probability space (
;�;P)). In computer learning theory,
the problem of estimating f0; based on the labeled sample (X1; Y1); : : : ; (Xn; Yn);
where Yj := f0(Xj); j = 1; : : : ; n; is referred to as function learning problem.

The so called concept learning is a special case of function learning. In this case,
F := fIC : C 2 Cg; where C � A is called a class of concepts (see Vapnik
(1998), Vidyasagar (1996), Devroye, Gy�or� and Lugosi (1996) for the account on
statistical learning theory). The goal of function learning is to �nd an estimate

f̂n := f̂n((X1; Y1); : : : ; (Xn; Yn)) of the unknown target function such that the L1-

distance between f̂n and f0 becomes small with high probability as soon as the

sample size becomes large enough. The L1-distance P jf̂n � f0j is often called the

risk (also the generalization, or prediction error) of the estimate f̂n: A class F is
called probably approximately correctly (PAC) learnable i� for all " > 0

�n(F; ") := sup
P2P(S)

sup
f02F

P
�
P jf̂n � f0j � "

	! 0 as n!1:

The bounds on the probability �n(F; ") are of importance in the theory. Such
bounds allow one to determine the quantity

NF("; �) := inffn : �n(F; ") � �g;
which is called the sample complexity of learning. Unfortunately, a bound that is
uniform in the class of all distributions P(S) is not necessarily tight for a particular
distribution P and often such a bound does not provide a reasonable estimate of
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2 Rademacher processes and function learning

the minimal sample size needed to achieve certain accuracy of learning in the case
of a particular P:

A natural approach to the function learning problem (in the case when f0 2 F)
is to �nd f̂n 2 F such that f̂n(Xj) = Yj for all j = 1; : : : ; n: In learning theory,

such an estimate f̂n is called consistent (this notion should not be confused with
consistency in statistical sense).

We construct below a data dependent bound on the risk of a consistent estimate

f̂n: More precisely, given � > 0; we de�ne a quantity

�̂n(F; �) = �̂n(F; �; (X1; Y1); : : : ; (Xn; Yn))

such that for any consistent estimate f̂n

sup
P2P(S)

sup
f02F

P
�
P jf̂n � f0j � �̂n(F; �)

	 � �:(1.1)

We'll consider below a couple of important examples in which the bound we suggest
gives nearly optimal rate of convergence of the risk to 0 as the sample size tends to
in�nity.

To simplify the notations, we assume without loss of generality that f0 � 0
(otherwise, one can consider instead of F the class of functions fjf � f0j : f 2 Fg;
note that the values of the functions from this class are known on the sample
(X1; : : : ; Xn)). We also assume for simplicity that F is a countable class of functions.
This condition can be easily replaced by standard measurability assumptions known
in the theory of empirical processes (see, e.g., [4] or [13]; we do not make countability

assumption in some of the examples below). Estimates f̂n are supposed to be
� � A-measurable. We denote by Pn the empirical measure based on the sample
(X1; : : : ; Xn) :

Pn := n�1
nX

j=1

�Xj
;

where �x is the probability measure concentrated at the point x 2 S: We also use
the notation k � kF for the sup-norm of functions from the class F into R :

kY kF := sup
f2F

jY (f)j:

Our approach is based on the following simple idea. Denote B(r) := ff : P jf j �
rg and set rn0 = 1: It's clear that for any consistent estimate f̂n Pnf̂n = 0 and,
hence,

P f̂n � Pnf̂n + kPn � PkF = kPn � PkF = kPn � PkF\B(rn
0
) =: r

n
1 :

Therefore, f̂n 2 F
T
B(rn1 ): It means that actually

P f̂n � Pnf̂n + kPn � PkF\Brn
1

= kPn � PkF\Brn
1

:

We can repeat this recursive procedure in�nitely many times. Namely, if rnk+1 :=

kPn � PkF\B(rn
k
); then, by induction, P f̂n � rnk for any natural k: It is also clear

that the sequence frnkg is nonincreasing Indeed, by a simple induction argument,
we have that rnk � rnk�1 implies that

rnk+1 = kPn � PkF\B(rn
k
) � kPn � PkF\B(rn

k�1
) = rnk :

Thus, the following proposition holds.
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Proposition 1. The sequence frnkgk�1 is nonincreasing and for any consistent

estimate f̂n P f̂n � infk�0 r
n
k :

The sequence frnkgk�1 depends not only on the data; it also depends explicitly
on the unknown distribution P; so it can not be used for the purposes of bounding
the risk. However, there is a simple bootstrap type approach that allows one to get
around this di�culty.

The Rademacher process indexed by the function class F is de�ned as

Rn =
1

n

nX
i=1

"i�Xi
;

where f"ig is a Rademacher sequence (an i.i.d. sequence of random variables taking
the values +1 and �1 with probability 1=2 each) independent of fXig: It has been
used for a long time to obtain the bounds on the sup-norm of the empirical process
indexed by functions (in the so called symmetrization inequalities, see [13]). Re-
cently, Koltchinskii [6] (see also [7]) suggested to use kRnkF as data-based measure
of the accuracy of empirical approximation kPn�PkF in learning problems and de-
veloped a version of structural risk minimization in which the norms of Rademacher
process play the role of data-dependent penalties. Lozano [8] compared this method
of penalization with the method based on VC-dimensions and the cross-validation
method and found out that in the so called problem of the "intervals model se-
lection" the Rademacher penalization performs better than other methods. Hush
and Scovel (1999) used Rademacher norms to obtain posterior performance bounds
for machine learning. However, the "global" norm of Rademacher process does not
allow one to recover the rate of convergence of the risk to 0 in the case when f0 2 F
(the so called zero error case). To address this problem, we de�ne below a sequence
of localized norms of Rademacher process that majorizes the sequence frnkg de�ned
above.

Given " > 0; let �' be a (random) function de�ned by

�'(r) := �K1kRnkF\Be
2r
+ �K2

p
r"+ �K3";

where Be
r = ff 2 F : Pnf � rg and �K1; �K2; �K3 > 0 are numerical constants.

We introduce the following data-dependent sequence

f�rnk gk�0 = f�rnk (X1; : : : ; Xn; "1; : : : ; "n)gk�0;

�rn0 = 1; �rnk+1 = �'(�rnk ) ^ 1; k = 0; 1; 2; : : :(1.2)

Since the function �' is nondecreasing, a simple induction shows that the sequence
f�rnkg is nonincreasing.
Theorem 2. There is a choice of numerical constants �K1; �K2; �K3 > 0 such that

for all P 2 P(S); for all N � 1 and for any consistent estimate f̂n

P
�
P f̂n � �rnN

	 � 2Ne�
n"
2 :

Thus, if one chooses N � 1 and, for a given � > 0; " > (log 2N�)=n; then one

can de�ne �̂n(F; �) := �rnN to get the bound (1.1). The question to be answered
is how large should be the number of iterations N to achieve a reasonably good
upper bound on the risk in such a way (if it is possible at all). Surprisingly, under
rather general conditions the upper bound becomes sharp after very few iterations
(roughly, the number of iterations N is of the order log2 log2(

1
"
)).
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In what follows, given a (pseudo)metric space (M ; d); we denote Nd(M ; ") the
minimial number of balls of radius "; covering M; and Hd(M ; ") := logNd(M ; "):
Also, for a probability measure Q on (S;A); dQ;2 denotes the metric of the space
L2(S; dQ):

Given a class of functions F; assume that

E "kn�1=2
nX
i=1

"i�Xi
kBe(r)\F �  ̂n(

p
r)

for some concave nondecreasing (random) function  ̂n: Usually the role of  ̂n will
be played by the random entropy integral

 ̂n(r) = K

rZ
0

H
1=2
dPn;2

(F; u)du

or by some further upper bound on the random entropy integral. Let us denote by

�̂n := �̂n(X1; : : : ; Xn) the solution of the equation

�̂n = n�1=2 ̂n
�q

�̂n
�
:

The following theorem gives the upper bound on the quantity �rnN :

Theorem 3. If the number of iteration is equal to N = [log2 log2 "
�1]+1; then for

some numerical constant c > 0 and for all P 2 P(S)
P

�
�rnN � c(�̂n _ ")

�
� ([log2 log2 "

�1] + 1)e�
n"
2 :

Example 1. Learning a concept from a VC-class. Consider the case of
the concept learning, when F := fIC : C 2 Cg: Given a sample (X1; : : : ; Xn)
with unknown common distribution P 2 P(S); we observe the labels fYj :=

IC0(Xj) : 1 � j � ng for an unkown target concept C0 2 C: An estimate Ĉn =

Ĉn((X1; Y1); : : : ; (Xn; Yn)) of the target concept C0 is called consistent i� IĈn
(Xj) =

Yj for all j = 1; : : : ; n: Let

�C(X1; : : : ; Xn) := card
��
C \ fX1; : : : ; Xng : C 2 C	�:

Then

 ̂n(r) := K(log�C(X1; : : : ; Xn))
1=2r

is an upper bound on the random entropy integral, which yields the value of �̂n

�̂n = K2 log�
C(X1; : : : ; Xn)

n
:

Thus, with the same choice of N we get for some numerical constant c > 0 the
bound

P

�
�rnN � c

� log�C(X1; : : : ; Xn)

n
_ "�

�
� ([log2 log2 "

�1] + 1)e�
n"
2 :

Theorem 2 implies at the same time that for any consistent estimate Ĉn we have

P (Ĉn4C0) � �rnN with probability at least 1�2Ne�n"=2: This shows that for a VC-
class of concepts C with VC-dimension V (C) the local Rademacher norm �rnN (which,

according to Theorem 2, is an upper bound on the risk of consistent concepts Ĉn) is
bounded from above by the quantity O(V (C) logn=n): Up to a logarithmic factor,



V. Koltchinskii and D. Panchenko 5

this is the optimal (in a minimax sense) convergence rate of the generalization error
to 0 (see, e.g., [3]).

Next we consider the conditions in terms of entropy with bracketingH[ ](F; ") :=
logN[ ](F; "): Here N[ ](F; ") denotes the minimal number of "brackets" [f�; f+] :=

ff : f� � f � f+g with dP;2(f�; f+) � " (f�; f+ being two measurable functions
from S into [0; 1]; such that f� � f+). Let

 [ ](r) =

Z r

0

�
H[ ](F; u) + 1

�1=2
du:

and let �[n] = �[n](P ) be the solution of the equation

�[n] = n�1=2 [ ](
q
�[n]):

Again, we set for some " > 0 N := [log2 log2 "
�1] + 1: Then the following theorem

holds.

Theorem 4. There exists a constant c > 0 such that for all P 2 P(S)
P
�
�rnN � c(�[n](P ) _ ")

� � ([log2 log2 "
�1] + 1)e�

n"
2 :

In particular, if H[ ](F;u) = O(u�
); where 
 < 2; then  [ ](r) � r1�
=2 and

�[n] � n�
2

2+
 :
Example 2. Learning a concept from a d-dimensional cube. Let S =

[0; 1]d: We consider a problem of estimation of a set (a concept) C0 � [0; 1]d; based
on the observations (Xj ; Yj); j = 1; : : : ; n; where Xj ; j = 1; : : : ; n are i.i.d. points

in [0; 1]d with common distribution P and Yj := IC0(Xj); j = 1; : : : ; n: Such a
model frequently occurs in the problems of edge estimation in image analysis (see
Mammen and Tsybakov (1995)). Assume that the distribution P has a density p
such that for some B > 0

B�1 � p(x) � B; x 2 [0; 1]d:

Let C be a class of Borel subsets in [0; 1]d such that C 3 C0: Let � be the Lebesgue
measure on [0; 1]d: Denote NI(C; ") the minimal number of brackets [C�; C+] :=
fC : C� � C � C+g with �(C+ n C�) � " (C�; C+ being two measurable subsets
in [0; 1]d such that C� � C+). Let HI(C; ") := logNI(C; "): This version of entropy
with bracketing is often called "entropy with inclusion". We de�ne

 I(r) =

Z r

0

(HI(C; u) + 1)
1=2

du;

and let �In = �In(P ) be the solution of the equation

�In = n�1=2 I(
q
�In):

If we have

HI(C;u) = O(u�
);

then Theorems 4 easily implies that with some constant c > 0

P
�
�rnN � c(�In _ ")

� � ([log2 log2 "
�1] + 1)e�

n"
2 ;

where �In � n�
1

1+
 : By Theorem 2, for any consistent estimate Ĉn of the set C0 (i.e.
such that IĈn

(Xj) = Yj ; j = 1; : : : ; n), the quantity �rnN is an upper bound (up to

a constant) on �(Ĉn 4C0):
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In particular, if C is the class of sets with �-smooth boundary in [0; 1]d; then well
known bounds on the bracketing entropy due to Dudley (see e.g. Dudley (1999))

imply that 
 = d�1
�

and �In = n�
�

d�1+� : Similarly, if C is the class of closed convex

subsets of [0; 1]d; the rate becomes �In = n�
2

d+1 : It was shown by Mammen and
Tsybakov (1995) that both rates are optimal in a minimax sense.

The examples above show that the local Rademacher penalties (de�ned only
based on the data and using neither prior information about the underlying dis-
tribution, nor the speci�c properties of the function class) can recover the optimal
convergence rates of the estimates in function learning problems.

2. Proofs of the main results

The proofs of the results are based on a version of Talagrand's concentration
inequalities for empirical processes, see [11], [12]. The version of the inequalities we
are using, with explicit numerical values of the constants involved (that determine
the values of the constants in our procedures, such as �K1; �K2; �K3 above) are due
to Massart (1999). It should be also mentioned that the idea to use Talagrand's
concentration inequalities to bound the risk in nonparametric estimation and, es-
pecially, in model selection problems goes back to Birg�e and Massart (see [2], [1]
and references therein).

We formulate now Massart's inequality in a form convenient for our purposes.

Theorem 5. Let F be some countable family of real valued measurable functions,

such that kfk1 � b <1 for every f 2 F: Let Z denote either kPn�PkF or kRnkF:
Let �2 = n supVar(f(X1)): Then for any positive real number x and 0 < 
 < 1

P(Z � (1 + 
)EZ + [�
p
2kx+ k(
)bx]=n) � e�x;(2.1)

where k and k(
) can be taken equal to k = 4 and k(
) = 3:5 + 32
�1: Moreover,

one also has

P(Z � (1� 
)EZ � [�
p
2k0x� k0(
)bx]=n) � e�x;(2.2)

where k0 = 5:4 and k0(
) = 3:5 + 43:2
�1:

Proof of Theorem 2. Let for any �xed real positive number r

'1(r) = kPn � PkF\B(r)

'2(r) = (1 + 
)E kPn � PkF\B(r) + 2
p
r"+ (1:75 + 16
�1)":

'3(r) =
2(1 + 
)

1� 
0

�
kRnkF\B(r) +

p
5:4r"+ (1:75 + 21:6
0

�1
)"

�

+ 2
p
r"+ (1:75 + 16
�1)":

Then, for any r > 0

P

�
'1(r) � '2(r) � '3(r)

�
� 1� 2e�

n"
2 :(2.3)

Indeed, in order to apply inequalities (2.1) and (2.2), we notice that for every
f 2 FTB(r) the sup-norm kfk1 � b = 1 and

�2 = sup
F\Br

nVar(f(X)) � sup
F\B(r)

nPf2 � sup
F\B(r)

nPf � nr:
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Moreover, if we set x = n"=2, then (2.1) implies

P

�
kPn � PkF\B(r) � (1 + 
)E kPn � PkF\B(r) + 2

p
r"

+(1:75 + 16
�1)"
�
� e�

n"
2 ;

and (2.2) implies

P

�
E kRnkF\B(r) � (1� 
0)�1[kRnkF\B(r) +

p
5:4r"

+(1:75+ 21:6
0�1)"]
�
� e�

n"
2 :

Taking into account the symmetrization inequality

E kPn � PkF\B(r) � 2E kRnkF\B(r);

we get (2.3).
We set

�K1 :=
2(1 + 
)

1� 
0
; �K2 :=

2
p
5:4(1 + 
)

1� 
0
+ 2;

�K3 :=
2(1 + 
)

1� 
0
(1:75 + 21:6
0

�1
) + (1:75 + 16
�1):

Let us introduce the following sequence: r̂n0 := 1 and r̂nk+1 = '2(r̂
n
k ) ^ 1 for

k = 0; 1; 2; : : : : Since '2 is nondecreasing, it's easy to prove by induction that the
sequence fr̂nkg is nonincreasing.

We will also prove by induction that for all k � 0

P

n
rni � r̂ni � �rni ; i � k

o
� 1� 2ke�

n"
2 :(2.4)

For k = 0 (2.4) is trivial since rn0 = r̂n0 = �rn0 = 1: We proceed by the induction
argument. Let us introduce the events

Ak = frni � r̂ni � �rni ; i � kg and Bk = f'1(r̂nk ) � '2(r̂
n
k ) � '3(r̂

n
k )g:

To make the induction step, let us assume that we have already proven that

P (Ak) � 1� 2ke�
n"
2 :

Then (2.3) implies

P (Bk) � 1� 2e�
n"
2 :

On the event Ak

TBk;
F \ B(r̂nk ) � F \ Be(2r̂nk );

since for f 2 FTB(r̂nk )

Pnf � Pf + kPn � PkF\B(r̂n
k
) � r̂nk + kPn � PkF\B(r̂n

k
)

= r̂nk + '1(r̂
n
k ) � r̂nk + '2(r̂

n
k ) = r̂nk + r̂nk+1 � 2r̂nk ;

which implies that the inequalities '3(r̂
n
k ) � �'(r̂nk ) � �'(�rnk ) = �rnk+1 hold. Therefore,

on the event Ak

TBk;
rnk+1 = '1(r

n
k ) � '1(r̂

n
k ) � '2(r̂

n
k ) = r̂nk+1 � '3(r̂

n
k ) � �rnk+1:

So, Ak

TBk � Ak+1; that completes the proof of the induction step

P (Ak+1) � 1� 2(k + 1)e�
n"
2 :

It follows that

P(rnN > �rnN ) � 2Ne�
n"
2 ;
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and since, by Proposition 1, P f̂n � rnN ; we conclude that

PfP f̂n > �rnNg � 2Ne�
n"
2 :

Proof of Theorem 3. Let (
";�";P") denote the probability space on which
the Rademacher sequence "1; : : : ; "n; : : : is de�ned, E " being the expectation with
respect to P": We introduce the function

'4(r) =
2(1 + 
)

1� 
0

�
(1 + 
00

�1
)E "kRnkF\Be(2r) + 2

p
r"

+(1:75 + 16
00
�1
)"+

p
5:4r"+ (1:75 + 21:6
0

�1
)"

�

+2
p
r"+ (1:75 + 16
�1)";(2.5)

where 
00 > 0: The inequalities (2.1) and (2.2) also hold for the conditional proba-
bility P" and the process Z = Rn with �xed X1; : : : ; Xn: Therefore, for any r > 0

P"( �'(r) � '4(r)) � 1� e�
n"
2 :

De�ne a sequence

�rn0 = '4(1); �rnk+1 = '4(�r
n
k ) ^ 1; k = 0; 1; 2; : : :

By the induction argument, similar to the one we used in the proof of theorem 2,
we get

P"

� N\
i=1

f�rni � �rni g
�
� 1�Ne

n"
2 :

If we prove that �rnk � ak for a sequence ak; independent of "1; : : : ; "n; then the
unconditional probability

P

� N\
i=1

f�rni � aig
�
� 1�Ne

n"
2 :

By the assumption we have

E "kn�1
nX
i=1

"i�Xi
kBe(r)\F �  ̂n(

p
r):(2.6)

Hence, we can choose c � 1, depending on the parameters 
; 
0; 
00 in the de�ni-
tion (2.5) of the function '4; in such a way that

�rnk+1 = '4(�r
n
k ) � c

�
"+ (�rnk ")

1=2 + n�1=2 ̂n
�p

�rnk
��
:

The above inequality implies by induction that the sequence

r0 = 1; rk+1 = c
�
"+ (rk")

1=2 + n�1=2 ̂n (
p
rk)
�
^ 1;

majorizes the sequence �rnk :
It's clear that in the case when r1 < 1 the sequence rk is decreasing and it

converges to the solution � of the equation

� = c
�
"+ (�")1=2 + n�1=2 

�p
�
��

:

Let us study the behaviour of the di�erence dk := rk � �: Since the function  ̂n is
concave, we have

 ̂0n(
p
�) �  ̂n(

p
�)=
p
�:
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The de�nition of � implies that

c
�
n�1=2 ̂n(

p
�) +

p
�"
�
� �:

Therefore

dk+1 = rk+1 � � = c
�
n�1=2 ̂n(

p
rk)� n�1=2 ̂n(

p
�) +

p
rk"�

p
�"
�

� c
�
n�1=2 ̂0n(�) +

p
"
�p

rk � � � c
�
n�1=2 ̂n(

p
�) +

p
�"
�
=
p
�
p
dk

�
p
�dk :

We have proven that the sequence dk satis�es the following inequality

dk+1 �
p
�dk; k � 0:

Now it's easy to show by induction that

dN � �2
�1+:::+2�N = �1�2

�N

:

Going back to the sequence rk; we get that

rN = � + dN � �
�
1 + ��2

�N
�
:

Since the de�nition of � implies that ��1 < "�1; then the choice of

N =
�
log2 log2 "

�1
�
+ 1

guarantees that ��2
�N � 2 and, hence, rN � (1+ 2)� = 3�: What remains to do in

order to �nish the proof of the theorem, is to bound � by the maximum of " and

the solution �̂n of the equation �̂n = n�1=2 ̂n(
p
�̂n): Actually, we will prove that

� is bounded dy �00 := (3c)2�0; where �0 =
�
�̂n _ ":

�
First of all let us notice that

the fact that  ̂n is concave and  ̂n(0) = 0 implies that for c � 1  ̂n(cx) � c ̂n(x):

Also note that, since �0 � �̂n; the concavity of  ̂n and the de�nition of �̂n imply

n�1=2 ̂n

�p
�0
�
� n�1=2 ̂n(

p
�̂n)p

�̂n

p
�0 =

q
�̂n
p
�0 � �0:

Combining these properties, we get

c
�
"+ (9c2�0")1=2 + n�1=2 ̂n

�
3c
p
�0
��

� c
�
2
p
(3c)2�0 + �0

�
� 9c2�0 = �00:

With necessity it means that � � �00 = 9c2(�̂n _ "): And, hence, �rnN � �00 �
27c2(�̂n _ "):

The theorem is proven.
Proof of Theorem 4. In order to bound �rk; we �rst construct the bound

on kRnkF\Be(2�rk) in terms of E kPn � PkF\B(�rk) for properly de�ned sequence �rk:
Afterwards, the expectation can be majorized by the bracketing entropy integral.
We will show that the sequence �rk can be chosen as follows

�r0 = 1; �rk+1 =
�
~c1E kPn � PkF\B(3�rk) + ~c2

p
"�rk + ~c3

� ^ 1;

for some large enough constants ~c1; ~c2; ~c3 > 0: One can argue similarly to the proof
of Theorem 3 to show that the following bound holds:

P

�\
k�i

f�rk � �rkg
�
� 1� 2ie�

n"
2 :(2.7)
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We will prove even a stronger assertion that for the event

Ai =
\
k�i

�
f�rk � �rkg \ fF \ Be(2�rk) � F \ B(3�rk)g

�

we have

P(Ai) � 1� 2ie�
n"
2 :(2.8)

Let us choose the constants c01; c
0
2; c

0
3 > 0 and ~c1; ~c2; ~c3 > 0 in such a way that

for the functions

'5(r) =
�
c01kPn � PkF\B(r) + c02

p
"r + c03"

�
and

'6(r) =
�
~c1E kPn � PkF\B(r) + ~c2

p
"r + ~c3"

�
;

the inequalities of Massart (see Theorem 5) would imply that for any �xed r > 0

'3(r) � '5(r) � '6(r)

with probability at least 1 � 2e�
n"
2 (the function '3 was de�ned in the proof of

Theorem 2). Clearly, we have �rk+1 = '6(�rk) ^ 1:
First observe that (2.8) holds for i = 0 (since �r0 = �r0 = 1). De�ne

Bi := f'3(3�ri) � '5(3�ri) � '6(�ri)g:
Then

P(Bi) � 1� 2e�
n"
2 :

To make an induction step, we �rst of all notice that on the event Ai \Bi; we have
�ri+1 = �'(�ri) ^ 1 � '3(3�ri) ^ 1 � '5(3�ri) ^ 1 � '6(3�ri) ^ 1 = �ri+1:

Also, on the event Ai \ Bi; we have F \ Be(2�ri+1) � F \ B(3�ri+1): Indeed, if
f 2 F \ Be(2�ri+1); then

Pf � 2�ri+1 + kPn � PkF\Be(2�ri+1) � 2�ri+1 + kPn � PkF\Be(2�ri)

� 2�ri+1 + kPn � PkF\B(3�ri) � 2�ri+1 + '5(3�ri) ^ 1

� 2�ri+1 + '6(3�ri) ^ 1 = 2�ri+1 + �ri+1 � 3�ri+1

(to show that kPn � PkF\B(3�ri) � '5(3�ri) ^ 1 we used the fact that the costant c01
in the de�nition of '5 is larger than 1). Thus, Ai \ Bi � Ai+1 and

P(Ai+1) � 1� 2(i+ 1)e�
n"
2 :

The proof of the induction step and of the bounds (2.8) and (2.7) is complete.
To �nish the proof of the theorem one has to bound E kPn�PkF\B(r): Since for

all g 2 FTB(r) we have kgkP;2 � (Pg)1=2 � p
r and jgj � 1 then by Theorem

2.14.2 in [13]

E kPn � PkF\B(r) � c
�
n�1=2 [ ]

�p
r
�
+ If1 > p

na(
p
r)g
�
;

where

a(
p
r) =

p
r=
q
1 +H[ ](F;

p
r):
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We can assume that �rN � �[n]; otherwise, bound (2.7) immediately implies the
assertion of the theorem. Therefore, �rk � �[n] for all k � N; which implies that

1 � p
na(

p
3�rk): Indeed, using concavity of  [ ] and the de�nition of �[n]; we have

 [ ](
p
3�rk)p

3�rk
�  [ ](

p
�[n])p

�[n]
=
p
n
q
�[n] �

p
n
p
3�rk;

which implies

3�rk � n�1=2 [ ]
�p

3�rk
� � n�1=2 (3�rk)

1=2 �
1 +H[ ]

�F;p3�rk��1=2 :
Hence, 1 � p

na(
p
3�rk) and

E kPn � PkF\B(3�rk) � cn�1=2 [ ]
�p

3�rk
�
:

Finally, with some constant c > 0

�rk+1 � c
�
n�1=2 [ ](

p
3�rk) + "+

p
"�rk

�
:

The proof can be completed by the argument we used in Theorem 3.
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