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Abstract

Probabilistic forecasting, i.e. estimating the probability distribution of a time se-
ries’ future given its past, is a key enabler for optimizing business processes. In
retail businesses, for example, forecasting demand is crucial for having the right
inventory available at the right time at the right place. In this paper we propose
DeepAR, a methodology for producing accurate probabilistic forecasts, based on
training an auto-regressive recurrent network model on a large number of related
time series. We demonstrate how by applying deep learning techniques to fore-
casting, one can overcome many of the challenges faced by widely-used classical
approaches to the problem. We show through extensive empirical evaluation on
several real-world forecasting data sets accuracy improvements of around 15%
compared to state-of-the-art methods.

1 Introduction

Forecasting plays a key role in automating and optimizing operational processes in most businesses
and enables data driven decision making. In retail for example, probabilistic forecasts of product
supply and demand can be used for optimal inventory management, staff scheduling and topology
planning [[18]], and are more generally a crucial technology for most aspects of supply chain opti-
mization.

The prevalent forecasting methods in use today have been developed in the setting of forecasting
individual or small groups of time series. In this approach, model parameters for each given time
series are independently estimated from past observations. The model is typically manually selected
to account for different factors, such as autocorrelation structure, trend, seasonality, and other ex-
planatory variables. The fitted model is then used to forecast the time series into the future according
to the model dynamics, possibly admitting probabilistic forecasts through simulation or closed-form
expressions for the predictive distributions. Many methods in this class are based on the classical
Box-Jenkins methodology [3], exponential smoothing techniques, or state space models [11}19].

In recent years, a new type of forecasting problem has become increasingly important in many appli-
cations. Instead of needing to predict individual or a small number of time series, one is faced with
forecasting thousands or millions of related time series. Examples include forecasting the energy
consumption of individual households, forecasting the load for servers in a data center, or forecast-
ing the demand for all products that a large retailer offers. In all these scenarios, a substantial amount
of data on past behavior of similar, related time series can be leveraged for making a forecast for an
individual time series. Using data from related time series not only allows fitting more complex (and
hence potentially more accurate) models without overfitting, it can also alleviate the time and labor
intensive manual feature engineering and model selection steps required by classical techniques.

In this work we present DeepAR, a forecasting method based on autoregressive recurrent networks,
which learns such a global model from historical data of all time series in the data set. Our method



builds upon previous work on deep learning for time series data [9, 21} 22]], and tailors a similar
LSTM-based recurrent neural network architecture to the probabilistic forecasting problem.

One challenge often encountered when attempting to jointly learn from multiple time series in real-
world forecasting problems is that the magnitudes of the time series differ widely, and the distri-
bution of the magnitudes is strongly skewed. This issue is illustrated in Fig. which shows the
distribution of sales velocity (i.e. average weekly sales of an item) across millions of items sold by
Amazon. The distribution is over a few orders of magnitude an approximate power-law. This ob-
servation is to the best of our knowledge new (although maybe not surprising) and has fundamental
implications for forecasting methods that attempt to learn global models from such datasets. The
scale-free nature of the distribution makes it difficult to divide the data set into sub-groups of time se-
ries with a certain velocity band and learn separate models for them, as each such velocity sub-group
would have a similar skew. Further, group-based regularization schemes, such as the one proposed
by Chapados [4]], may fail, as the velocities will be vastly different within each group. Finally, such
skewed distributions make the use of certain commonly employed normalization techniques, such
input standardization or batch normalization [[14], less effective.

The main contributions of the paper are twofold: (1)
we propose an RNN architecture for probabilistic fore-
casting, incorporating a negative Binomial likelihood for
count data as well as special treatment for the case when
the magnitudes of the time series vary widely; (2) we
demonstrate empirically on several real-world data sets
that this model produces accurate probabilistic forecasts
across a range of input characteristics, thus showing that
modern deep learning-based approaches can effective ad-
dress the probabilistic forecasting problem, which is in log number of sales
contrast to common belief in the field and the mixed re-

sults reported in [24} [17]].

log number of items

Figure 1: Log-log histogram of the
number of items versus number of sales
for the 500K time series of ec, show-
ing the scale-free nature (approximately
straight line) present in the ec dataset
(axis labels omitted due to the non-
public nature of the data).

In addition to providing better forecast accuracy than pre-
vious methods, our approach has a number key advan-
tages compared to classical approaches and other global
methods: (i) As the model learns seasonal behavior and
dependencies on given covariates across time series, min-
imal manual feature engineering is needed to capture
complex, group-dependent behavior; (ii) DeepAR makes
probabilistic forecasts in the form of Monte Carlo sam-
ples that can be used to compute consistent quantile estimates for all sub-ranges in the prediction
horizon; (iii) By learning from similar items, our method is able to provide forecasts for items with
little or no history at all, a case where traditional single-item forecasting methods fail; (vi) Our ap-
proach does not assume Gaussian noise, but can incorporate a wide range of likelihood functions,
allowing the user to choose one that is appropriate for the statistical properties of the data.

Points (i) and (iii) are what set DeepAR apart from classical forecasting approaches, while (ii)
and (iv) pertain to producing accurate, calibrated forecast distributions learned from the historical
behavior of all of the time series jointly, which is not addressed by other global methods (see Sec.
[2). Such probabilistic forecasts are of crucial importance in many applications, as they—in contrast
to point forecasts—enable optimal decision making under uncertainty by minimizing risk functions,
i.e. expectations of some loss function under the forecast distribution.

2 Related Work

Due to the immense practical importance of forecasting, a vast variety of different forecasting meth-
ods have been developed. Prominent examples of methods for forecasting individual time series
include ARIMA models [3] and exponential smoothing methods; Hyndman et al. [11] provide a
unifying review of these and related techniques.

Especially in the demand forecasting domain, one is often faced with highly erratic, intermittent or
bursty data which violate core assumptions of many classical techniques, such as Gaussian errors,
stationarity, or homoscedasticity of the time series. Since data preprocessing methods (e.g. [2])
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Figure 2: Summary of the model. Training (left): At each time step ¢, the inputs to the network
are the covariates x; ;, the target value at the previous time step z; ;—1, as well as the previous
network output h; ;. The network output h; ; = h(h; ;_1, 2 1—1,X;+, ©) is then used to compute
the parameters 6,; = 6(h;;,©) of the likelihood ¢(z|6), which is used for training the model
parameters. For prediction, the history of the time series z;; is fed in for ¢ < to, then in the
prediction range (right) for ¢ > ¢¢ a sample 2, ; ~ £(:|0;) is drawn and fed back for the next
point until the end of the prediction range ¢ = to + T generating one sample trace. Repeating this
prediction process yields many traces representing the joint predicted distribution.

often do not alleviate these conditions, forecasting methods have also incorporated more suitable
likelihood functions, such as the zero-inflated Poisson distribution, the negative binomial distribution
[20], a combination of both [4], or a tailored multi-stage likelihood [[19].

Sharing information across time series can improve the forecast accuracy, but is difficult to accom-
plish in practice, because of the often heterogeneous nature of the data. Matrix factorization methods
(e.g. the recent work of Yu et al. [23]), as well as Bayesian methods that share information via hi-
erarchical priors [4]] have been proposed as mechanisms for learning across multiple related time
series and leveraging hierarchical structure [13]].

Neural networks have been investigated in the context of forecasting for a long time (see e.g. the
numerous references in the survey [24], or [[/] for more recent work considering LSTM cells).
More recently, Kourentzes [17] applied neural networks specifically to intermittent data but ob-
tained mixed results. Neural networks in forecasting have been typically applied to individual time
series, i.e. a different model is fitted to each time series independently [[15816]. On the other hand,
outside of the forecasting community, time series models based on recurrent neural networks have
been very successfully applied to other applications, such as natural language processing [9} 211,
audio modeling [22] or image generation [10]. Two main characteristics make the forecasting set-
ting that we consider here different: First, in probabilistic forecasting one is interested in the full
predictive distribution, not just a single best realization, to be used in downstream decision making
systems. Second, to obtain accurate distributions for (unbounded) count data, we use a negative Bi-
nomial likelihood, which improves accuracy but precludes us from directly applying standard data
normalization techniques.

3 Model

Denoting the value of time series ¢ at time ¢ by z; ;, our goal is to model the conditional distribution
P(Zi,tozT|Zi,1:t071;Xi,l:T)

of the future of each time series [z ¢y, i to+1s-- -5 2i,T) = Zi,:T given its
past [2i1, - - Zito—2s Zirto—1) i= Zi1:to—1, Where to denotes the time point from which we
assume z;; to be unknown at prediction time, and x; 1.7 are covariates that are assumed to be
known for all time points. To prevent confusion we avoid the ambiguous terms “past” and “future”
and will refer to time ranges [1,%o — 1] and [to, 7] as the conditioning range and prediction range,
respectively. During training, both ranges have to lie in the past so that the z; ; are observed, but
during prediction z;; is only available in the conditioning range. Note that the time index ¢ is
relative, i.e. t = 1 can correspond to a different actual time period for each 4.

Our model, summarized in Fig. 2] is based on an autoregressive recurrent network architecture
[9 21]]. We assume that our model distribution Qe (2; +:7|2i,1:t,—1, Xi,1:7) consists of a product of



likelihood factors

T T
Qo (Zito:1|Zi1:40—1, Xi1T) = Ht:to Qo (zitl|zi1e—1,%i1.1) = Ht:to 0(2;4|0(h;¢,0©))

parametrized by the output h; ; of an autoregressive recurrent network
hiy=h(hit1,2i0-1,%i1,0) , )]

where £ is a function implemented by a multi-layer recurrent neural network with LSTM cellsE] The
model is autoregressive, in the sense that it consumes the observation at the last time step z; ;1 as
an input, as well as recurrent, i.e. the previous output of the network h; ;_; is fed back as an input at
the next time step. The likelihood ¢(z; ;|6(h;,)) is a fixed distribution whose parameters are given
by a function 6(h; ¢, ©) of the network output h; ; (see below).

Information about the observations in the conditioning range z; 1.4, —1 is transferred to the prediction
range through the initial state h; ; ;. In the sequence-to-sequence setup, this initial state is the out-
put of an encoder network. While in general this encoder network can have a different architecture,
in our experiments we opt for using the same architecture for the model in the conditioning range and
the prediction range (corresponding to the encoder and decoder in a sequence-to-sequence model).
Further, we share weights between them, so that the initial state for the decoder h; ;, 1 is obtained
by computing (I)) for ¢ = 1,...,to — 1, where all required quantities are observed. The initial state
of the encoder h; ( as well as z; o are initialized to zero.

Given the model parameters O, we can directly obtain joint samples Z; ;.7 ~
Qo(2i,1:7|2i,1:t9—1,Xi,1.7) through ancestral sampling: First, we obtain h; ;1 by comput-
ing (I) fort = 1,...,tp. Fort = to,t0 + 1,...,T we sample Z;; ~ £(:|6(h;,©)) where
hi,t =h (hi,tfla Zi,t,hxi,h @) initialized with hi,tofl = hi’tofl and 2@,50,1 = Zito—1- Samples
from the model obtained in this way can then be used to compute quantities of interest, e.g. quantiles
of the distribution of the sum of values for some time range in the future.

3.1 Likelihood model

The likelihood ¢(z|6) determines the “noise model”, and should be chosen to match the statistical
properties of the data. In our approach, the network directly predicts all parameters 6 (e.g. mean
and variance) of the probability distribution for the next time point.

For the experiments in this paper, we consider two choices, Gaussian likelihood for real-valued
data, and negative-binomial likelihood for positive count data. Other likelihood models can also
readily be used, e.g. beta likelihood for data in the unit interval, Bernoulli likelihood for binary
data, or mixtures in order to handle complex marginal distributions, as long as samples from the
distribution can cheaply be obtained, and the log-likelihood and its gradients wrt. the parameters
can be evaluated. We parametrize the Gaussian likelihood using its mean and standard deviation,
6 = (u, o), where the mean is given by an affine function of the network output, and the standard
deviation is obtained by applying an affine transformation followed by a softplus activation in order
to ensure o > 0:

la(#lp. 0) = (270°) % exp(~ (= — p)*/(20%))
wu(hy ) = Wghm +0b, and o(h;;) =log(l+ exp(w?;hm +b,)) .
For modeling time series of positive count data, the negative binomial distribution is a commonly

used choice [20, [4]. We parameterize the negative binomial distribution by its mean p € RT and a
shape parameter o € R,

I (2|, ) = F(l,;(j Ir)lé();) <1 +104u>(i (1 j—élzw)z

p(h; ) =log(1+ exp(wghm +b,)) and a(h;;) =log(l+ exp(wghm +ba))
where both parameters are obtained from the network output by a fully-connected layer with soft-
plus activation to ensure positivity. In this parameterization of the negative binomial distribution
the shape parameter o scales the variance relative to the mean, i.e. Var[z] = p + p?a. While

other parameterizations are possible, we found this particular one to be especially conducive to fast
convergence in preliminary experiments.

"Details of the architecture and hyper-parameters are given in the supplementary material.



3.2 Training

Given a data set of time series {z; 1.7 }i=1,... v and associated covariates x; 1.7, obtained by choos-
ing a time range such that z; ; in the prediction range is known, the parameters © of the model,
consisting of the parameters of the RNN £(-) as well as the parameters of 6(-), can be learned by
maximizing the log-likelihood

N T
L= logl(zi4|0(h;y)). 2)

i=1 t=to

As h; ; is a deterministic function of the input, all quantities required to compute (2) are observed,
so that—in contrast to state space models with latent variables—no inference is required, and ()
can be optimized directly via stochastic gradient descent by computing gradients with respect to ©.
In our experiments, where the encoder model is the same as the decoder, the distinction between
encoder and decoder is somewhat artificial during training, so that we also include the likelihood
terms fort = 0,...,to — 1 in () (or, equivalently, set o = 0).

For each time series in the dataset, we generate multiple training instances by selecting windows with
different starting points from the original time series. In practice, we keep the total length 7" as well
as the relative length of the conditioning and prediction ranges fixed for all training examples. For
example, if the total available range for a given time series ranges from 2013-01-01 to 2017-01-01,
we can create training examples with ¢ = 1 corresponding to 2013-01-01, 2013-01-02, 2013-01-03,
and so on. When choosing these windows we ensure that entire prediction range is always covered
by the available ground truth data, but we may chose ¢t = 1 to lie before the start of the time series,
e.g. 2012-12-01 in the example above, padding the unobserved target with zeros. This allows the
model to learn the behavior of “new” time series taking into account all other available features.
By augmenting the data using this windowing procedure, we ensure that information about absolute
time is only available to the model through covariates, but not through the relative position of z; ; in
the time series.

Bengio et al. [1]] noted that, due to the autoregressive nature of such models, optimizing (2) directly
causes a discrepancy between how the model is used during training and when obtaining predictions
from the model: during training, the values of z;; are known in the prediction range and can be
used to compute h; ;; during prediction however, z; ; is unknown for ¢ > ¢(, and a single sample
Zit ~ ¢(-|0(h;,)) from the model distribution is used in the computation of h; ; according to (I)
instead. While it has been shown that this disconnect poses a severe problem for e.g. NLP tasks, we
have not observed adverse effects from this in the forecasting setting. Preliminary experiments with
variants of scheduled sampling [[1] did not show any significant accuracy improvements (but slowed
convergence).

3.3 Scale handling

Applying the model to data that exhibits a power-law of scales as depicted in Fig. [T] presents two
challenges. Firstly, due to the autoregressive nature of the model, both the autoregressive input z; ;1
as well as the output of the network (e.g. 1) directly scale with the observations z; ¢, but the non-
linearities of the network in between have a limited operating range. Without further modifications,
the network thus has to learn to scale the input to an appropriate range in the input layer, and then
to invert this scaling at the output. We address this issue by dividing the autoregressive inputs
z;i ¢ (or z; ;) by an item-dependent scale factor v;, and conversely multiplying the scale-dependent
likelihood parameters by the same factor. For instance, for the negative binomial likelihood we use
pu = v;log(l + exp(o,)) and o = log(1 + exp(0n))/+/¥i Where oy, 0, are the outputs of the
network for these parameters. Note that while for real-valued data one could alternatively scale the
input in a preprocessing step, this is not possible for count distributions. Choosing an appropriate
scale factor might in itself be challenging (especially in the presence of missing data or large within-
item variances). However, scaling by the average value v; = 1 + % 2:0:1 i+, as we do in our
experiments, is a heuristic that works well in practice.

Secondly, due to the imbalance in the data, a stochastic optimization procedure that picks training
instances uniformly at random will visit the small number time series with a large scale very infre-
quently, which result in underfitting those time series. This could be especially problematic in the
demand forecasting setting, where high-velocity items can exhibit qualitatively different behavior



Figure 3: Example time series of ec. The vertical line separates the conditioning period from the
prediction period. The black line shows the true target. In the prediction range we plot the p50 as
a blue line (mostly zero for the three slow items) and the 80% confidence interval (shaded). The
model learns accurate seasonality patterns and uncertainty estimates for items of different velocity
and age.

than low-velocity items, and having an accurate forecast for high-velocity items might be more im-
portant for meeting certain business objectives. To counteract this effect, we sample the examples
non-uniformly during training. In particular, in our weighted sampling scheme, the probability of
selecting a window from an example with scale v; is proportional to v;. This sampling scheme is
simple, yet effectively compensates for the skew in Fig.

3.4 Features

The covariates x; ; can be item-dependent, time-dependent, or both They can be used to provide
additional information about the item or the time point (e.g. week of year) to the model. They can
also be used to include covariates that one expects to influence the outcome (e.g. price or promotion
status in the demand forecasting setting), as long as the features’ values are available also in the
prediction range. In all experiments we use an “age” feature, i.e., the distance to the first observation
in that time series. We also add day-of-the-week and hour-of-the-day for hourly data, week-of-year
for weekly data and month-of-year for monthly dataE] Further, we include a single categorical item
feature, for which an embedding is learned by the model. In the retail demand forecasting data sets,
the item feature corresponds to a (coarse) product category (e.g. “clothing”), while in the smaller
data sets it corresponds to the item’s identity, allowing the model to learn item-specific behavior. We
standardize all covariates to have zero mean and unit variance.

4 Applications and Experiments

We implement our model using MXNet, and use a single p2.xlarge AWS instance containing 4 CPUs
and 1 GPU to run all experiments. On this hardware, a full training & prediction run on the large
ec dataset containing 500K time series can be completed in less than 10 hours. While prediction is
already fast, is can easily parallelized if necessary. A description of the (simple) hyper-parameter
tuning procedure, the obtained hyper-parameter values, as well as statistics of datasets and running
time are given in supplementary material.

Datasets — We use five datasets for our evaluations. The first three—parts, electricity, and
traffic—are public datasets; parts consists of 1046 aligned time series of 50 time steps each,
representing monthly sales for different items of a US automobile company [[19]; electricity
contains hourly time series of the electricity consumption of 370 customers [23]; traffic, also
used in [23]], contains the hourly occupancy rate, between 0 and 1, of 963 car lanes of San Francisco
bay area freeways. For the parts dataset, we use the 42 first months as training data and report
error on the remaining 8. For electricity we train with data between 2014-01-01 and 2014-09-
01, for traffic we train all the data available before 2008-06-15. The results for electricity and
traffic are computed using rolling window predictions done after the last point seen in training as
described in [23]. We do not retrain our model for each window, but use a single model trained on
the data before the first prediction window. The remaining two datasets ec and ec-sub are weekly
item sales from Amazon used in [19]. We predict 52 weeks and evaluation is done on the year
following 2014-09-07. The time series in these two datasets are very diverse and erratic, ranging

?Covariates X; ; that do not depend on time are handled by repeating them along the time dimension.
3Instead of using dummy variables to encode these, we simply encode them as increasing numeric values.
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Figure 4: Uncertainty growth over time for ISSM
and DeepAR models. Unlike the ISSM, which
postulates a linear growth of uncertainty, the be-
havior of uncertainty is learned from the data, re-
sulting in a non-linear growth with a (plausibly)
higher uncertainty around Q4. The aggregate is
calculated over the entire ec dataset.
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Figure 5: Coverage for two spans on the ec-sub
dataset. The left panel shows the coverage for
a single time-step interval, while the right panel
shows these metrics for a larger time interval with
9 time-steps. When correlation in the prediction
sample paths is destroyed by shuffling the samples
for each time step, correlation is destroyed and
the forecast becomes less calibrated. This shuf-
fled prediction also has a 10% higher 0.9-risk.

| 0.5-risk 0.9-risk average
parts
(L, S) (0,1) (2,1) (0,8) all®)  (0,1) (2,1) (0,8) all(8)  average
Snyder (baseline) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Croston 1.47 1.70 2.86 1.83 - - - - 1.97
ISSM 1.04 1.07 1.24 1.06 1.01 1.03 1.14 1.06 1.08
ETS 1.28 1.33 1.42 1.38 1.01 1.03 1.35 1.04 1.23
rnn-gaussian 1.17 1.49 1.15 1.56 1.02 0.98 1.12 1.04 1.19
rnn-negbin 0.95 0.91 0.95 1.00 1.10 0.95 1.06 0.99 0.99
DeepAR 0.98 0.91 0.91 1.01 0.90 0.95 0.96 0.94 0.94
ec-sub
(L, S) (0,2) (0,8 (3,12) all(33) (0,2) (0,8) (3,12) all(33) average
Snyder 1.04 1.18 1.18 1.07 1.0 1.25 1.37 1.17 1.16
Croston 1.29 1.36 1.26 0.88 - - - - 1.20
ISSM (baseline) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ETS 0.83 1.06 1.15 0.84 1.09 1.38 1.45 0.74 1.07
rnn-gaussian 1.03 1.19 1.24 0.85 0.91 1.74 2.09 0.67 1.21
ron-negbin 0.90 0.98 1.11 0.85 1.23 1.67 1.83 0.78 1.17
DeepAR 0.64 0.74 0.93 0.73 0.71 0.81 1.03 0.57 0.77
ec

(L, S) (0,2) (0,8 (3,12) all(33) (0,2) (0,8) (3,12) all(33)  average
Snyder 0.87 1.06 1.16 1.12 0.94 1.09 1.13 1.01 1.05
Croston 1.30 1.38 1.28 1.39 - - - - 1.34
ISSM (baseline) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ETS 0.77 0.97 1.07 1.23 1.05 1.33 1.37 1.11 1.11
rnn-gaussian 0.89 0.91 0.94 1.14 0.90 1.15 1.23 0.90 1.01
ron-negbin 0.66 0.71 0.86 0.92 0.85 1.12 1.33 0.98 0.93
DeepAR 0.59 0.68 0.99 0.98 0.76 0.88 1.00 0.91 0.85

Table 1: Accuracy metrics relative to the strongest previously published method (baseline). Best

results are marked in bold (lower is better).

from very fast to very slow moving items, and contains “new” products introduced in the weeks

before the forecast time 2014-09-07, see Fig. EL
power-law distribution, as shown in Fig. [T}

4.1 Accuracy comparison

Further, item velocities in this data set have a

For the parts and ec/ec-sub datasets we compare with the following baselines which represent
the state-of-the-art on demand integer datasets to the best of our knowledge:



e Croston: the Croston method developed for intermittent demand forecasting from R pack-
age [12]

e ETS: the ETS model [11] from R package with automatic model selection. Only additive
models are used as multiplicative models shows numerical issues on some time series.

e Snyder the negative-binomial autoregressive method of [20]]

e ISSM the method of [19] using an innovative state space model with covariates features
In addition, we compare to two baseline RNN models to see the effect of our contributions:

e rnn-gaussian uses the same architecture as DeepAR with a Gaussian likelihood; however,
it uses uniform sampling, and a simpler scaling mechanism, where time series z; are divided
by v; and outputs are multiplied by v;

e rnn-negbin uses a negative binomial distribution, but does not scale inputs and outputs of
the RNN and training instances are drawn uniformly rather than using weighted sampling.

As in [19]], we use p-risk metrics (quantile loss) that quantify the accuracy of a quantile p of the
predictive distribution; the exact definition of these metric is given in supplementary material. The
metrics are evaluated for a certain spans [L, L + S) in the prediction range, where L is a lead
time after the forecast start point. Table [I] shows the 0.5-risk and 0.9-risk and for different lead
times and spans. Here all(K) denotes the average risk of the marginals [L, L + 1) for L < K. We
normalize all reported metrics with respect to the strongest previously published method (baseline).
DeepAR performs significantly better than all other methods on these datasets. The results also show
the importance of modeling these data sets with a count distribution, as rnn-gaussian performs
significantly worse. The ec and ec-sub data sets exhibit the power law behavior discussed above,
and without scaling and weighted sampling accuracy is decreased (rnn-negbin). On the parts
data set, which does not exhibit the power-law behavior, rnn-negbin performs similar to DeepAR.

In Table 2] we compare point forecast accuracy on the

— - electricity and traffic datasets against the matrix
electricity traffic . . R !

ND RMSE ND RMSE factorization technique (MatFact) proposed in [23]]. We

MatFact ‘ 016 15 020 o043 consider the same metrics namely Normalized Deviation

DeepAR | 0.07 1.00  0.17 0.42 (ND) and Normalized RMSE (NRMSE) whose definition
) ] are given in the supplementary material. The results show
Table 2: Comparison with MatFact  that DeepAR outperforms MatFact on both datasets.

4.2 Qualitative analysis

Figure [3] shows example predictions from the ec data set. In Fig. @] we show aggregate sums of
different quantiles of the marginal predictive distribution for DeepAR and ISSM on the ec dataset.
In contrast to ISSM models such as [[19], where a linear growth of uncertainty is part of the mod-
eling assumptions, the uncertainty growth pattern is learned from the data. In this case, the model
does learn an overall growth of uncertainty over time. However, this is not simply linear growth:
uncertainty (correctly) increases during Q4, and decreases again shortly afterwards.

The calibration of the forecast distribution is depicted in Fig. [5] Here we show, for each percentile
p the Coverage(p), which is defined as the fraction of time series in the dataset for which the p-
percentile of the predictive distribution is larger than the the true target. For a perfectly calibrated
prediction it holds that Coverage(p) = p, which corresponds to the diagonal. Compared to the ISSM
model, calibration is improved overall.

To assess the effect of modeling correlations in the output, i.e., how much they differ from indepen-
dent distributions for each time-point, we plot the calibration curves for a shuffled forecast, where
for each time point the realizations of the original forecast have been shuffled, destroying any corre-
lation between time steps. For the short lead-time span (left) which consists of just one time-point,
this has no impact, because it is just the marginal distribution. For the longer lead-time span (right),
however, destroying the correlation leads to a worse calibration, showing that important temporal
correlations are captured between the time steps.



5 Conclusion

We have shown that forecasting approaches based on modern deep learning techniques can dras-
tically improve forecast accuracy over state of the art forecasting methods on a wide variety of
data sets. Our proposed DeepAR model effectively learns a global model from related time series,
handles widely-varying scales through rescaling and velocity-based sampling, generates calibrated
probabilistic forecasts with high accuracy, and is able to learn complex patterns such as seasonality
and uncertainty growth over time from the data.

Interestingly, the method works with little or no hyperparameter tuning on a wide variety of datasets,
and in is applicable to medium-size datasets containing only a few hundred time series.

6 Supplementary materials

Error metrics

p-risk metric

to+L+S
_t=to+L
given quantile p € (0,1) we denote the predicted p-quantile for Z;(L, S) by Z?(L, S). To obtain
such a quantile prediction from a set of sample paths, each realization is first summed in the given
span. The samples of these sums then represent the estimated distribution for Z;(L, S) and we can
take the p-quantile from the empirical distribution.

The aggregated target value of an item 4 in a span is denoted as Z;(L,S) = ;4. For a

The p-quantile loss is then defined as

L,(2,2°) =2(Z - Z) (pIZp>Z (- p)IZﬂSZ) .
In order to summarize the quantile losses for a given span across all items, we consider a normalized
sum of quantile losses (Zl L,(Z;, Zf) / (3=, Z;), which we call the p-risk.

ND and RMSE metrics
ND and RMSE metrics are defined as follow:
DiilZit — Zigl

Zi,t

where 2; ; is the predicted median value for item ¢ at time ¢ and the sums are over all items and all
time points in the prediction period.

\/m Din(zit — Zit)?
RMSE =

ND =
Zi ] ﬁ it lzi

Experiment details

We use MxNet as our neural network framework [5]. Experiments are run on a laptop for parts
and with a single AWS p2.xlarge instance (four core machine with a single GPU) for other datasets.
Note that predictions can be done in all datasets end to end in a matter of hours even with a single
machine. We use ADAM optimizer [16] with early stopping and standard LSTM cells with a forget
bias set to 1.0 in all experiment and 200 samples are drawn from our decoder to generate predictions.

For parts dataset, we use the 42 first months as training data and report error on the remaining 8.
For the other datasets electricity, traffic, ec-sub and ec the set of possible training instances
is sub-sampled to the number indicated in table 3] The scores of electricity and traffic are
reported using the rolling window operation described in [23]], note that we do not retrain our model
but reuse the same one for predicting across the different time windows instead. Running times
measures an end to end evaluation, e.g. processing features, training the neural network, drawing
samples and evaluating produced distributions.

For each dataset, a grid-search is used to find the best value for the hyper-parameters item output
embedding dimension and # LSTM nodes (e.g. hidden number of units). To do so, the data before
the forecast start time is used as training set and split into two partitions. For each hyper-parameter



parts electricity traffic ec-sub ec

# time series 1046 370 963 39700 534884
time granularity month hourly hourly week week
domain N R [0,1] N N
encoder length 8 168 168 52 52
decoder length 8 24 24 52 52
# training examples 35K 500K 500K 2M 2M
item input embedding dimension 1046 370 963 5 5
item output embedding dimension 1 20 20 20 20
batch size 64 64 64 512 512
learning rate le-3 le-3 le-3 5e-3 Se-3
# LSTM layers 3 3 3 3 3
# LSTM nodes 40 40 40 120 120
running time Smin 7h 3h 3h 10h

Table 3: Datasets statistics and RNN parameters

candidate, we fit our model on the first partition of the training set containing 90% of the data and
we pick the one that has the minimal negative log-likelihood on the remaining 10%. Once the
best set of hyper-parameters is found, the evaluation metrics (0.5-risk, 0.9-risk, ND and RMSE)
are then evaluated on the test set, e.g. the data coming after the forecast start time. Note that this
procedure could lead to over-fitting the hyper-parameters to the training set but this would then also
degrades the metric we report. A better procedure would be to fit parameters and evaluate negative
log-likelihood not only on different windows but also on non-overlapping time intervals. As for
the learning rate, it is tuned manually for every dataset and is kept fixed in hyper-parameter tuning.
Other parameters such as encoder length, decoder length and item input embedding are considered
domain dependent and are not fitted. Batch size is increased on larger datasets to benefit more from
GPU’s parallelization. Finally, running times measures an end to end evaluation, e.g. processing
features, training the neural network, drawing samples and evaluating produced distributions.

Missing Observations

In some forecasting settings, the target values z; ; might be missing (or unobserved) for a subset of
the time points. For instance, in the context of demand forecasting, an item may be out-of-stock at a
certain time, in which case the demand for the item cannot be observed. Not explicitly modeling such
missing observations (e.g. by assuming that the observed sales correspond to the demand even when
an item is out of stock), can, in the best case, lead to systematic forecast underbias, and, in a worst
case in the larger supply chain context, can lead to a disastrous downward spiral where an out-of-
stock situation leads to a lower demand forecast, lower re-ordering and more out-of-stock-situations.
In our model, missing observations can easily be handled in a principled way by replacing each
unobserved value z; ; by a sample Z; ; ~ ¢(-|6(h;;)) from the conditional predictive distribution
when computing (1), and excluding the likelihood term corresponding to the missing observation
from (2).We omitted experimental results in this setting from the paper, as doing a proper evaluation
in the light of missing data in the prediction range requires non-standard adjusted metrics that are
hard to compare across studies (see e.g. [19]).
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