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 LOCAL LINEAR FITTING UNDER

 NEAR EPOCH DEPENDENCE

 ZUDI Lu
 London School of Economics

 Chinese Academy of Sciences
 Curtin University of Technology

 OLIVER LINTON
 London School of Economics

 Local linear fitting of nonlinear processes under strong (i.e., a-) mixing condi-
 tions has been investigated extensively. However, it is often a difficult step to
 establish the strong mixing of a nonlinear process composed of several parts such
 as the popular combination of autoregressive moving average (ARMA) and gen-
 eralized autoregressive conditionally heteroskedastic (GARCH) models. In this
 paper we develop an asymptotic theory of local linear fitting for near epoch depen-
 dent (NED) processes. We establish the pointwise asymptotic normality of the
 local linear kernel estimators under some restrictions on the amount of depen-
 dence. Simulations and application examples illustrate that the proposed approach
 can work quite well for the medium size of economic time series.

 1. INTRODUCTION

 We consider local linear modeling in a time series context under near epoch
 dependence. Andrews (1995) established uniform convergence with rates for
 nonparametric density and regression estimators based on the local constant
 paradigm also under near epoch dependence conditions. The purpose of this
 study is to provide a central limit theorem for the more desirable class of
 local linear estimators (Fan and Gijbels, 1996) under similar weak dependence
 conditions.

 Assume that {(Yt,Xt)} is an R l+d-valued stationary sequence (with Y, being
 R 1'-valued and X, being IRd-valued), defined on some probability space (ft,, P)
 (throughout the paper all the random variables are defined on this space). Among

 the widely used mixing conditions, such as 4-, p-, /3-, and a-mixing, a-mixing
 is no doubt the weakest and most popular in the econometric literature. Under
 some suitable conditions, the stationary solutions of many time series econo-
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 38 ZUDI LU AND OLIVER LINTON

 metric models (linear or nonlinear) are a-mixing; see, for example, Gor6detskii
 (1977), Pham (1986), Pham and Tran (1985), Tjostheim (1990), and Tong (1990)
 on nonlinear autoregressive (AR) models and see Masry and Tjostheim (1995),
 Lu (1998), Cline and Pu (1999), Lu and Jiang (2001), Carrasco and Chen (2002),
 and Saikkonen (2001) on nonlinear autoregressive conditionally heteroskedastic/
 generalized autoregressive conditionally heteroskedastic (ARCH/GARCH) mod-
 els. This mixing condition is used extensively in the time series literature (cf.
 Fan and Yao, 2003). Masry and Fan (1997) establish the asymptotic normality
 of local polynomial regression estimators under this condition. For reference,
 its definition is stated as follows.

 DEFINITION 0. A stationary sequence {X,, t = 0, ? 1,...} is said to be
 a-mixing if

 a(k) = sup P(AB) - P(A)P(B) --0 (1.1)

 AE._n, BE .= k

 as k -- oo, where .Fn and .FTk are two o-fields generated by {X,, t s n} and
 {X,, t ? n + k}, respectively. We call a (.) the mixing coefficient.

 However, from a practical point of view, the a-mixing concept suffers from
 many undesirable features. As Davidson (1994) points out, the following short-
 comings are often serious (see also Lu, 2001): (i) even simple autoregressive
 processes might not be a-mixing and (ii) a-mixing is hard to verify in practice,
 especially in the case of compound processes. For the former case, Andrews
 (1984) showed that the stationary solution to a simple linear AR(1) model of

 the form X, = X_-1 + et, with et's being independent symmetric Bernoulli
 random variables taking values -1 and 1, is not a-mixing (but it is near epoch
 dependent [NED] defined in Definition 1, which follows). For the latter case,
 the autoregressive moving average (ARMA) process with ARCH/GARCH
 errors, discussed in Engle (1982) and Weiss (1984) and also Ling and Li (1997),
 is well applied in financial econometrics, where the model is composed of two
 time series (ARMA and ARCH/GARCH) models:

 X, = a1X, _ + - ... + apXt_p + e, - biE,_1 - ... bqet,_q, (1.2)

 t = eh1/2, h, = ao + ar e,2_ + ... + apE + P1 ht- + f. + QhtQ,,
 (1.3)

 where ai and bi are the coefficients in the ARMA(p, q) model, and ai and /i
 are the coefficients in the GARCH(P, Q) model, with e, being independent and
 identically distributed (i.i.d.) innovation with mean 0 and variance 1. Although
 the ARCH model and its generalized version, GARCH (see Bollerslev, 1986),
 have been proved to be a-mixing under some mild conditions (cf. Lu, 1996a,
 1996b; Carrasco and Chen, 2002), no results exist to establish whether com-
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 LOCAL LINEAR FITTING UNDER NEAR EPOCH DEPENDENCE 39

 pound processes are a-mixing. For this reason we use a generalized version of
 mixing processes, called stable or NED processes, which can easily cover the
 compounded processes and many nonlinear/non-a-mixing processes. This con-
 cept was introduced in Ibragimov (1962) and was developed further by Bill-
 ingsley (1968) and McLeish (1975a, 1975b, 1977). It has been used extensively
 in econometrics following Bierens (1981); see, for example, Gallant (1987),
 Gallant and White (1988), and Andrews (1995). Lu (2001) established asymp-
 totic normality for kernel density estimators under this condition. Nze, Biihl-
 mann, and Doukhan (2002) and Nze and Doukhan (2004) have investigated an
 alternative class of dependent processes they call "weak dependent."' They estab-
 lish the asymptotic normality of local constant nonparametric regression esti-
 mators under their conditions.

 Let Y, and X, be both stationary processes, Rl- and Rd-valued, respectively,

 defined based on a stationary process {et} by

 Yt = /Y(e, et-, ,t-2, .1..), (1.4)
 Xt = (Xtl, ...,Xtd)7 - IX(Et, 8tl, It-2 ...), (1.5)
 where X' denotes the transpose of X (a vector or matrix), T:r: R'- > R>1 and
 x: IR" --> Rd are two Borel measurable functions, respectively, and {ej} may
 be vector-valued. Let v > 0 be a positive real number.

 DEFINITION 1. The stationary process {(Y, X,)} is said to be near epoch
 dependent in L, norm (NED in L, for simplicity) with respect to a stationary
 a-mixing process {eJt if

 v,(m) = El Y, - Y,(m) " + EDIX, - X(m) II (1.6)
 as m -- 0 oo, where I I and I are the absolute value and the Euclidean norm

 of Rd, respectively, Y,(m) = ym(et, . t, -m+l), X(m) (Xm), ... Xt)) = x,Pm(t, ... , t-m+l), and 'y,m and TX,m are R' 1- and Rd-valued Borel measur-
 able functions with m arguments, respectively. We will call v,(m) the stability

 coefficients of order v of the process {(Y, Xt)}.

 Clearly, {(Y,(m), m) )} is an a-mixing process with mixing coefficient

 a ) a(k- m) k m + 1, am(k) k m.(1.7) 1 k<-m.

 The type of setting where our results are useful is for models with compli-
 cated dynamics in both mean and variance for which the usual mixing condi-
 tions do not necessarily apply. These sorts of models are common in finance
 and economics, and near epoch dependence is sometimes easier to verify in the
 case of these models.

 Our limiting results will resemble conventional limiting results for local lin-
 ear estimators under more standard conditions. That is, under some restrictions
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 40 ZUDI LU AND OLIVER LINTON

 on a (k) and v,(m) we obtain the optimal pointwise rate of convergence for
 i.i.d. data (Stone, 1980) along with the same asymptotic distribution that would
 obtain were the data i.i.d. with the same marginal distribution. This type of
 result is to be contrasted with those obtained by Phillips and Park (1998) and
 Karlsen and Tjostheim (2001) for unit root or null recurrent processes (for near-
 integrated processes, see also Bandi, 2004) for which the rates of convergence
 are slower and limiting distributions are nonnormal. Moloche (2000) also dis-
 cusses local polynomial estimation for recurrent diffusions.

 In the next section we define the setting and estimator we shall examine.
 The main asymptotic results are given in Section 3. In Section 4 we provide
 some numerical results based on some common econometric models.

 2. METHODOLOGY

 2.1. Notation and Main Assumptions

 We summarize here the main assumptions we are making on the data generat-
 ing process (DGP) (1.6) and the kernel K to be used in the estimation method.
 Assumptions (A1)-(A4) are related to the nonlinear process itself.

 (Al) The DGP is a strictly stationary NED process (cf. (1.6)), with order

 , = 2 + 8/2, with respect to the a-mixing process {e,}, where the constant
 8 > 0 is specified in Assumption (A2), which follows. For all i and j in Z, the
 vectors Xi and X. admit a joint density fj; moreover, fj(x', x") x C for all
 i,j E Z, all x',x" E Rd, where C > 0 is some constant, and f denotes the
 marginal density of Xi.

 (A2) The random variable Yi has finite absolute moment of order (2 + 8),
 that is, E[|Yi12+8] < oo for some 6 > 0.

 (A3) (i) The regression function g(x) = E(Y IXt = x) is twice differentiable.
 Denoting by g'(x) and g"(x) its gradient and the matrix of its second deriva-
 tives (at x), respectively, x g g"(x) is continuous at x. (ii) The density function

 f(x) is continuous at x. (iii) The conditional variance function Var(YtX, = x) is continuous at x.

 Assumption (A4) is an assumption of the mixing coefficients.

 (A4) For the mixing coefficient of e,, the function a is such that

 lim ka {a (j)}8/(4+8) = 0 for some constant a > 8/(4 + 8).
 k---oo j = k

 Assumption (A5) deals with the kernel function K: Rd --- R, to be used in
 the estimation method. For any c := (c0, ,)C E =Rd+l, define

 Kc(u) := (co + c;u)K(u). (2.1)
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 LOCAL LINEAR FITTING UNDER NEAR EPOCH DEPENDENCE 41

 (A5)

 (i) For any c E IRd+l, I K(u) is uniformly bounded by some constant Kc
 and is integrable: fad I K(x) I dx < 00.

 (ii) For any c E Rd+1, K,I has an integrable second-order radial majorant;
 that is, Qf(x) := supIlyllxl[ly 2Kc(y)] is integrable.

 (iii) For any c E Rd+1, Kc is Lipschitz continuous of order 1; that is, for
 some constant C > 0,

 IKg(u) - K,(v)l Cllu - vii for any u, v E d

 This assumption allows an unbounded support for the kernel function; com-
 pare this with Condition 2(i) of Masry and Fan (1997, p. 170), who require the
 kernel function to have a bounded support.

 Throughout, we assume that the observations of the NED process {(Y,,X,)}

 are (Yt,Xt), t = 1,2,...,T. For convenient reference, we list here some condi-
 tions on the asymptotic behavior, as T - oo, of the bandwidth bT that will be
 used in the discussion that follows (cf. Lemma 3.4). Assumption (B 1), which
 follows, is standard, whereas Assumptions (B2)-(B4) look complex: some sim-
 ple and verifiable conditions on the stability and mixing coefficients to ensure
 that they hold will be given in the main theorem (Theorem 3.1) and its corol-
 lary (Corollary 3.1).

 (B 1) The bandwidth bT tends to zero in such a way that Tbd - oo as

 T -- oo.
 (B2) There is a positive integer m = mT - c such that the stability coeffi-

 cients, defined in (1.6) with v = 2 and v = 2 + 8/2, satisfy

 T2+4/8bT(2+d+2d/) V2(m) -> 0 and bT4(1+d+2d/8) v2(m) = 0(1)

 and

 bT(2+2d+3/2+4d/) U2+8/2(m) = 0(1).

 (B3) There exist two sequences of positive integer vectors, p = PT E Z and

 q = qT = 2mr E Z, with m = mT -> oo such that p = PT = o((Tb)/2),
 q/p -- 0 and Tp --> co, and Tp-'a (m) --> 0.

 (B4) bT tends to zero in such a manner that qbT = 0(1) such that

 bT d/(4+{) m Om(t)}8/(4+3) -- 0 as T-- o0. (2.2) t=q

 Remark. Assumption (B 1) is standard on the bandwidth, the same as in the
 i.i.d. case; Assumption (B2) is concerned with the conditions on the stability
 coefficients related to the bandwidth; and Assumptions (B3) and (B4) are on
 the mixing coefficients that are associated with the bandwidth, among which
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 42 ZUDI LU AND OLIVER LINTON

 (B3) together with (B 1) is similar to the conditions specified for the strongly
 mixing processes in Condition 3 of Masry and Fan (1997, p. 172). Assump-
 tions (B2)-(B4) are phrased as restrictions on the decay rates of the stability
 and mixing coefficients for a given bandwidth, although one could rewrite these
 conditions as restrictions on the bandwidth (and hence the implied rate of con-
 vergence of the estimator) for a given decay rate, thereby allowing greater depen-
 dence at the cost of slower convergence. Although Assumptions (B2)-(B4) look
 somewhat complex, some milder and more specific conditions can be derived
 from them with the bandwidth set as a power function of the number of obser-
 vations, as is generally the case in practice. For the details, see Theorem 3.1
 together with Corollary 3.1 and the remark there in Section 3.

 2.2. Least Squares Local Linear Fitting

 Although the Nadaraya-Watson method is central in most nonparametric regres-
 sion methods in the traditional i.i.d. series case, it has been well documented
 (see, e.g., Fan and Gijbels, 1996) that this approach suffers from several severe
 drawbacks, such as poor boundary performances, excessive bias, and low effi-
 ciency and that the local polynomial fitting methods developed by Stone (1977)
 and Cleveland (1979) are generally preferable. Local polynomial fitting, and
 particularly its special case-local linear fitting-have become increasingly pop-
 ular in the light of recent work by Cleveland and Loader (1996), Fan (1992),
 Fan and Gijbels (1992, 1995), Hastie and Loader (1993), Ruppert and Wand
 (1994), and several others. Masry and Fan (1997) have studied the asymptotics
 of local polynomial fitting for regression under general a-mixing conditions;
 see also Fan and Yao (2003). In this paper, we extend this approach to the con-
 text of our generalized mixing dependence NED processes by defining an esti-
 mator of g based on local linear fitting and establishing its asymptotic properties.

 The idea of local linear fitting consists of approximating, in a neighborhood
 of x, the unknown function g by a linear function. Under Assumption (A3), we
 have

 g(z) - g(x) + (g'(x))7(z - x) := ao + a;(z - x).

 Locally, this suggests estimating (ao, a{) = (g(x), g'(x)), hence constructing an
 estimator of g from

 /X= := a arg min 1 (Y - ao - aX(X - x))2K i - x \gT(X) 1 (ao,al)EEd+I j= bT
 (2.3)

 where bT is a sequence of bandwidths tending to zero at appropriate rate as T

 tends to infinity and K(.) is a (bounded) kernel with values in IR.
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 LOCAL LINEAR FITTING UNDER NEAR EPOCH DEPENDENCE 43

 In the classical i.i.d. and time series case, the solution of the minimization

 problem (2.3) is easily shown to be {X(x)'W(x)X(x)}-'{X(x)'W(x)y}, where

 X(x) is an n X (d + 1) matrix with ith row (1,bTl'(X/ - x)'), W(x) = bT' diag(K((X1 - x)/bT),...,K((XT - x)/bT)), and y = (Y,,..., Y )' (see,
 e.g., Fan and Gijbels, 1996). In the generalized NED series case, though such
 an expression still holds, we instead write the solution to (2.3) in the following
 form, which is very convenient for the purpose of characterizing its limiting
 distribution:

 o )= UT1Vr, where VT:=' and UT := UTo U
 a b\ VT1 )UTIO UTi1T

 with (letting ((Xj - x)/bT)o := 1)

 T X - x X,- x0) (V):= (Tb)-1 Yj , K , i= 0,...,d,
 t=l br i br

 and

 d /X.--x\KXj-x-_ x ( 0, o= d (UT)ie := (Tbd)-1 bT K , i, e = 0,.. , d. t=l b bi bT
 It follows that

 ao - ao T(x) - g(x)
 HT :a b - a b, (g(x) -g'(x))b

 = UT 'VT, - UT( a ":=b U1 := WT, (2.4)
 a1 bT

 where

 (xTxO (x(w) ? /x)\1C ( o T X, - x X ??: I d)- f Xi; WT := , (WT)i "= (Tbd )-1 1 Zj K , WT1r ".= b, br
 i = O, . . . , d, (2.5)

 and Zj := Yj - ao - al(Xj - x).
 The organization of the paper is as follows. If, under adequate conditions,

 we are able to show that conditions (C1)-(C3) (to be presented subsequently)
 apply, then (2.4) and Slutsky's classical argument imply that, for all x (all quan-
 tities involved indeed depend on x),
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 44 ZUDI LU AND OLIVER LINTON

 ([ K ()- g-x
 (T bd)'/2 (gH(x) - g'(x))bT) TU-1 U

 = (Tbd)1/2 [HT - U-4p] ?A .N(O, U-1Ur)

 This asymptotic normality result (with explicit values of AcT, 1, and U), under
 various forms (depending on the stability assumption, the mixing assumption,
 the choice of the bandwidth bT, etc.), is the main contribution of this paper; see
 Theorem 3.1 and its Corollary 3.1.

 Conditions (C1)-(C2) are now presented.

 (C1) (Tb)11/2(WT - EWT) is asymptotically normal,

 (C2) (Tb1)1/2(EWT - T)---> 0 and Var((Tbd)1/2WT) --4 for some posi-
 tive definite matrix 1, and

 (C3) UT _-> U for some nonsingular matrix U.

 2.3. Approximations

 A fundamental technique that will be widely used to study (C1)-(C3) is the
 following approximation to the NED process {(Y, Xt)} by the a-mixing pro-
 cess {(Y(m), X(m))} defined in Definition 1, that is,

 Y = Y,(m) + (Y, - (m)) y Y,() + m), (2.6)

 X, =X(m) + (X, -X m)) X(m) + (m) (2.7) --- t- t - t -- t x, t,(2 7

 where

 E[St, ]2 = O(v2(m)) and E[8,t ] 2= O(v2(m)), as m--> 0c, (2.8)

 and the mixing coefficients of {(Y,(m), Xm))} satisfy

 am(k)- 1 fork=0,1,...,m, andam(k)=a(k-m) fork>- m + 1, (2.9)

 with a (.) defined in Definition 0.
 On the basis of (2.6) and (2.7), we can construct the approximations to UT

 and WT, respectively, by

 U, .- TOO UTOId1 (TO
 T ( ) (m)/ and W "m) W= M UT10 UTl11 T WT1
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 LOCAL LINEAR FITTING UNDER NEAR EPOCH DEPENDENCE 45

 with (letting ((X m) - x)/bT)o := 1)

 U- X(m)x Xm)K

 (U(Tm))i "-- (Tbd )-IE - - K ,- "i=(T = bT bT br
 i, e = ,..., d,

 and

 ST X m) "j -- X m- x (WTm)) :- (Tbdj)-' - , i 0 .. ,d,
 = b(2. b0)

 (2.10)

 and Zm) j(m) - ao - aT(X ) x). i -yjI

 We have the following lemma on the approximations.

 LEMMA 2.1. Let m = mT be a positive integer tending to 00 and L = LT a
 positive real number tending to oo as T -- oo. Then under Assumptions (A2)
 and (A5), as T -- oo,

 El(W(m)i - (WT)I = O(bTd-1L v2(m)) + o(bT dL-('+)), (2.11)

 E (U(m))ie - (UT)ie = O(bd-'L v2(m)) + o(b dL-('1+)), (2.12)
 for i, = 0,1, .. . ,d.

 Proof. See Section A.2 in the Appendix.

 3. ASYMPTOTIC RESULTS

 We begin with some preliminaries on the asymptotic bias and variance.

 3.1. Preliminaries

 Claim (C3) is easily established from the following lemma, the proof of which
 is similar to that of Lemma 3.2, which follows, and is therefore omitted.

 LEMMA 3.1. Assume that Assumptions (A]), (A4), and (A5) hold and that
 bT satisfies Assumptions (BI) and (B2). Then

 f(fx)f K(u) du f(x) fu'K(u) du U fuK(u) du f(x) f=K d
 f (x)uK(u) du f ()uuiK(u) du

 as T -+ oo.
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 46 ZUDI LU AND OLIVER LINTON

 The remainder of this Section 3.1 is devoted to claim (C2). The usual Cramer-
 Wold device will be adopted. For all c := (co,c{)' E IRl+d, let

 A, := (Tbd)1/2cCTW (Tbd)-112 Zi_ ZKc
 T T W T Ij=l by j 1 l T

 with K,(u) defined in (2.1). The following lemma provides the asymptotic vari-
 ance of AT for all c and hence that of (Tb)1/2 WT.

 LEMMA 3.2. Assume that Assumptions (A]), (A2), (A3)(ii) and (iii), (A4),
 and (A5) hold and that bT satisfies Assumptions (B]) and (B2). Then

 lim Var[AT] = Var(YIXj = x)f (x)f K2(u) du = c c, (3.1) T----oo Rd

 where

 SK2(u)du fu'K2(u) du
 S:= Var(Y IXj = x)f(x)

 fuK (u) du uu'K 2(u) du

 Hence, limr,,oo Var((Tbd)1/2W ) = 5.

 Proof. See Section A.2 in the Appendix.

 Next, we consider the asymptotic behavior of E[AT].

 LEMMA 3.3. Assume that Assumptions (A3)(i) and (ii) and (A5) hold. Then

 E[AT] = \ b2 -f(x) tr gg"(x) uu'K (u) du + o( Tbd)

 -= Tbdr2[coBo(x) + ciBl(x)] + o(ITbdb), (3.2)
 where

 1 dd

 Bo(x) := 2 f(x) ~ gij (x)f ujuiK(u) du,

 1 dd

 BI(x) := -f(x) ~EE go(x) ujuiuK(u) du, 2 i= lj=l 1

 gj(x) = a2g(x)/dXiaXj, i, j = 1,...,d, and u := (Ul,....,ud) e d.
 Proof. The proof is routine and is omitted.
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 LOCAL LINEAR FITTING UNDER NEAR EPOCH DEPENDENCE 47

 3.2. Asymptotic Normality

 The asymptotic normality of our estimators relies on the following lemma (see
 (2.5) for the definition of WT(x)).

 LEMMA 3.4. Suppose that Assumptions (A]), (A2), (A3)(ii) and (iii),
 (A4), and (A5) hold with f(x) > 0 and that the bandwidth bT satisfies con-
 ditions (B1)-(B4). Denote by 0o2 the asymptotic variance (3.1). Then
 (Tb) 1/2(cT [WT(x) - EWT(x)]/o-) is asymptotically standard normal as
 T -4 oc.

 Proof. See Section A.3 in the Appendix.

 We now turn to the main consistency and asymptotic normality result.

 THEOREM 3.1. Let Assumptions (A]), (A2), (A3), and (A5) hold, with

 f(x) > 0, v2+812(X) = O(x- '), and a(x) = O(x-A) for some gt ? max{4(K1 - 1),
 K3/(1 + 8/4)}K2 and some A > (a + 1)(1 + 4/8) with a > 8/(4 + 8), such that

 T2+4/SbA/-K2-K -+ 0, Tb[l+2/{a(1+4/8)}]d/log T -> cc, and Tb2A/{a(l+4/8)}-1]d
 log T - 0 as T - o, where K1 = 2 + d + 2d/8, K2 = a(1 + 4/8)(1 + 8/4)/d,
 and K3 = 2 + 2d + 8/2 + 4d/8. Then,

 (Tb/d)1/2 _ g(Xg(x) -U-1 b , U-1(U-1 T b(gT(x) - g'(x))/ BI(x) /
 (3.3)

 as T --> oo, where U, 1, and Bo(x) and BI(x) are defined in Lemmas 3.1, 3.2,
 and 3.3, respectively.

 Iffurthermore the kernel K(.) is a symmetric density function, then (3.3) can
 be strengthened to

 (Tb)'1/2[gr(x) - g(x) - Bg(x)b2] 0-(o2(o(x) 0
 (Tbd+2 21/2 [Ti(X)- g'(x)] T o,(x)

 (so that gT(x) and g'(x) are asymptotically independent), where

 S d Var(Yj IXj = x) fK2(u) du
 Bg(x) := i - gii(x) (u)2K(u)du, o-02(x): /(x) 2 f 1 Jf(x)
 and

 Lof(x) := uu'K(u) du xf(x) U u-K)d

 x [uuK2(u) du] [ uuK(u) du]l.
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 48 ZUDI LU AND OLIVER LINTON

 Proof. See Section A.3 in the Appendix.

 From this theorem, we can derive the following corollary, which gives
 the conditions under which the usually used optimal bandwidth, bT
 O(T-1/(4+d)), is achievable.

 COROLLARY 3.1. Let Assumptions (A1)-(A3) and (A5) hold with
 f(x) > 0, v2+5/2(X) = O(x-/'), and a(x) = O(x-A) for some /-t - max{4(K1 - 1),
 K3/(l + 8/4), (K4 + K1)}K2 and some A > max{(a + 1), a(l + 2/d)}(l + 4/6)
 with a > max{l,d/2}8/(4 + 8), and bT = O(T-1/(4+d)), where K1, K2, and K3
 are specified in Theorem 3.1 and K4 = (4 + d)(2 + 4/8). Then the conclusion of
 Theorem 3.1 holds.

 Proof. See Section A.3 in the Appendix.

 Remark.

 (i) In Theorem 3.1 and Corollary 3.1, the positive constants U and A spec-
 ify the decay rates for the stability and mixing coefficients tending to
 zero (the larger /t and A, the faster the decay rates), which are related to
 the positive constant 8 determining the moment order of Y,. For exam-
 ple, if we let a = 2d8/(4 + 8) and d = 1 in Corollary 3.1, then simple
 calculation leads to the requirement that 1 > 37 + 6.58 + 44/8 and A >
 max{3 + 4/8,6}. Therefore, when A and A are sufficiently large, 8 can
 be equal to a small number close to zero. This condition is automatically
 satisfied when both the stability and mixing coefficients decay at geo-
 metric rates (cf. the examples in Section 4).

 (ii) When the model (1.2) with (1.3) being an integrated GARCH model is
 considered, then the second-order moments of Yt are unavailable, for
 which the asymptotic normality for the estimates stated in Theorem 3.1
 and Corollary 3.1 cannot be ensured but the consistency of the estimates

 is still obtainable if EI Y,t < c holds.
 The asymptotic distribution is as if the sequence (Yj, Xj) were i.i.d. with the

 same marginal distributions. That these results are expected for such weakly
 dependent stationary processes as ours has already been shown by Masry and
 Fan (1997) for a-mixing processes. By contrast, for nonstationary or strongly
 dependent time series slower convergence rates and even nonnormal limiting
 distributions can hold; see Phillips and Park (1998), Karlsen and Tjestheim
 (2001), and Bandi (2004). Consistent standard errors can be computed by
 estimating the conditional variance and marginal covariate density. For the
 conditional variance we can use that Var(Y1lXj - x) = E(j2 Xj = x) -
 E2(Yj9Xj = x) and then compute the additional regression estimator of
 E(Y2 2Xj = x). We can estimate the marginal density by the kernel estimator
 (UT)oo defined earlier. Consistency of the standard errors follows under our
 conditions.
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 The optimal bandwidth can be found using the same formula given in Masry
 and Fan (1997, Sect. 3.1). The practical choice of the bandwidth can be made
 by the conventional cross-validation (CV) rule, which is often computationally
 intensive, especially for large sample size, or the generalized cross-validation
 (GCV) rule of Wahba (1977) and Craven and Wahba (1979) for less intensive
 computation. In Section 4, we use the bandwidth selected by GCV in the sim-
 ulations and by CV in the empirical application.

 One of the important advantages of local polynomial (and linear) fitting over
 the more traditional Nadaraya-Watson approach is that it has much better bound-
 ary behavior. This advantage often has been emphasized in the usual regression
 and time series settings when the regressors take values on a compact subset of
 Rd. For example, as Fan and Gijbels (1996) and Fan and Yao (2003) illustrate,
 for a univariate regressor X with bounded support ([0,1], say; here, d = 1), it
 can be proved, using an argument similar to the one we are developing in the
 proof of Theorem 3.1, that asymptotic normality still holds at the boundary
 point x = cbT (here c is a positive constant) but with asymptotic bias and variance

 B u2K(u) du, B" 2 8X 2 +f- c

 Var(Yj X = 0+) fK(u) du

 f - :=0, (3.4)
 f(0+)

 and

 2 Var(Y2 j 0+) [uK(u) dul[o u2K2(u) du . (3.5)
 ?f(0+) fc -c
 4. NUMERICAL RESULTS

 4.1. Simulation

 In this section we report the results of a small Monte Carlo study of the method
 described in this paper, the purpose of which is to illustrate that local linear
 estimates with a conventional choice of bandwidth as pointed out by Masry
 and Fan (1997) for a-mixing processes can work reasonably well for the pro-
 cesses for which a-mixing is not guaranteed but near epoch dependence is
 satisfied.

 Model 1 (AR(1)-GARCH(1) model). In financial econometrics, a com-
 monly used model is the following compound model:

 r, = ao + art-1 + et, (4.1)

 e, = eth1/2, h, = ao + a, e,21 + Pl h, , (4.2)
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 50 ZUDI LU AND OLIVER LINTON

 where r, is the daily return of some equity on day t, modeled by an AR(1)
 model, (4.1), and ht is the conditional variance of r,, given the past information

 up to day t - 1, modeled by a GARCH(1,1) model, (4.2), with ao > 0, cal - 0,

 ,I8 - 0, and {et} being an i.i.d. random sequence with Eet = 0 and Ee2 = 1 (taken to be standard normally distributed in this example). This is a special
 case of the general ARMA(p,q)-GARCH(P, Q) model given in (1.2) and (1.3).

 If laJ < 1, it is well known that model (4.1) can be expressed as

 rt - ao/(1 - a) + et + aJst-j,
 j=l1

 and under al + pi < 1 with some suitably regular conditions (cf. Carrasco and
 Chen, 2002), the E, in the GARCH(1,1) model (4.2) is strongly (a-) mixing
 with a geometrically decaying mixing coefficient. Here it is difficult to show

 under such natural and mild conditions l a < 1 and aI + /P1 < 1 (to the best of
 our knowledge) that r, is strongly (a-) mixing, but it can be shown that r,
 is NED of order 2 + 6 with respect to a strongly (a-) mixing process, if
 El e, 2+? < oo, with stable coefficients (because of the convex property of t. 12+8)

 00 j 2+8

 v2+8(k) = Er, - r,(k) 2+28 8 ~w E e a 2t-j+ j=k+1 Wk

 Sw+E 0 - e,_|2+8 = O(|a(2+8)k?
 j=k W 26j=k+ 1 Wka -

 decaying at a geometric rate, where r(k) ao/(1 - a) + +t-
 and Wk = j=k+1 a' = O(ak). Here the conditions to ensure Ele t2+8 < Oc can
 be found in Carrasco and Chen (2002), and therefore El rt 2+8 < co can be
 guaranteed.

 We are concerned with estimation of the autoregression function m(x) =

 E(rt rt-1 = x) = ao + ax and the conditional variance function v(x) = E((rt -
 m(x))2 rt_- = x), where our theory developed in this paper applies obviously
 whereas the theory based on the strong (a-) mixing in the literature would not

 do if rt is non-strongly mixing. The box plots of the local linear estimators of
 m and v, based on 100 replications with each sample size equal to 100 and 500,

 are depicted in Figures la-d, respectively, where et is with standard normal
 distribution, and as suggested by a referee, we took the parameters ao =
 0.001682, a = 0.020602, ao = 0.137526, al = 0.094518, and 01 = 0.726777,
 which are the parameter estimates of the model (4.1) with (4.2) obtained from
 the real data of the FT100 Index given in Section 4.2 by the maximum likeli-
 hood method procedure in the GARCH module of S-plus. In the simulations,
 the bandwidth bT was chosen by the conventional generalized cross-validation
 rule of Wahba (1977) and Craven and Wahba (1979).
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 LOCAL LINEAR FITTING UNDER NEAR EPOCH DEPENDENCE 51

 Overall, the simulation results in the example of Model 1 adapt very well to
 our asymptotic theory: with the sample size increasing, the local linearly esti-
 mated curves with a conventional choice of bandwidth become more stable and

 fit better to the actual curve lines both for the conditional mean and conditional

 variance functions; see Figures la and c for the estimates of the conditional
 mean, which are compatible with the actual line in Model 1, and Figures lb
 and d for the estimates of the conditional variance. The sample size equal to
 500 seems to work very well in all cases.

 4.2. An Empirical Application

 We investigate the UK FT100 Index, with sample size 602, from January 1,
 1990, to April 21, 1992, for an illustration. In Figure 2, the index series P, and

 the return series rt, defined by

 r, = log(P,/P1_,) x 100,

 are plotted in Figures 2a and b, respectively. The local linear estimates of the

 conditional mean m (x) = E (r, rI- = x) and the conditional variance function
 v(x) = E((rt - m(x))2rtl = x) together with the 95% confidence intervals
 based on the asymptotic normality in Section 3 are plotted in Figures 2c and d,
 where the bandwidths used for the conditional mean and conditional variance

 are 0.34 and 0.5, respectively, chosen by the cross-validation rule. In addition
 the estimates of the following parametric linear model:

 r, = do + dr,_ + e, 1 (4.3)

 with e, the same as before, leading to E(r,tl r,_ = x) = do + d-x and Var(r,l r,_1 =
 x) = do + &1Ix2, are also plotted in Figures 2c and d, respectively, where the
 estimated parameters are do = 0.01069, d = 0.01906, do = 0.69223, and 1 =
 0.07707.

 From Figures 2c and d, we can observe that both the conditional mean and
 conditional variance functions appear to be nonlinear. Roughly, the conditional
 mean first increases before x around -0.4, then decreases between -0.4 and
 around 0.7, and increases again when x > 0.7. Correspondingly, the condi-
 tional variance mostly follows a similar pattern to that of the conditional mean,
 increasing with x when x < -0.75 and x > 0.8 and decreasing with x when
 0.25 < x < 0.9, which appears to be consistent with the "high return, high
 risk" rule, but the pattern is completely different from that of the conditional
 mean when -0.75 < x < 0.25, which looks to be of "U" shape as observed in
 Figure id in the simulation example. However, the pointwise standard errors
 reveal that the mean effect is never significantly different from the linear, whereas

 the variance effect is only rarely different from a quadratic function.
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 FIGURE 1. Simulation for Model 1-Box plots of the local linear fitting for the conditional mean and conditional variance of 100 replications

 of the linear AR(l)-GARCH(1,1) model (Model 1) with ao = 0.001682, a = 0.020602, ao = 0.137526, ac = 0.094518, and f3l = 0.726777,
 and e, - N(0,1), for different sample sizes: (a) conditional mean m(x) = E(r, rt-1 = x) = ao + ax, sample size = 100, (b) conditional variance v(x), sample size = 100, (c) conditional mean m(x) = E(rtlr,_I = x) = ao + ax, sample size = 500, and (d) conditional variance
 v(x), sample size = 500. In (a) and (c), the solid line stands for the true conditional mean m(x) = ao + ax.
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 FIGURE 2. Real example-The local linear fitting for the conditional mean and condi-
 tional variance of the return series of the UK FT100 Index from January 1, 1990, to
 April 21, 1992, with 602 observations: (a) FT100 Index series, (b) return series of FT100
 Index, (c) conditional mean, and (d) conditional variance. The dashed lines in (c) and
 (d) are the estimated linear mean and quadratic variance functions, respectively, from
 the parametric linear model (4.3).

 NOTE

 1. Let E be some normed measurable space with norm |I I|, for example, the Euclidean space
 E = RD with the Euclidean norm and D = 1 + d in the setting of this paper. An E-valued stochastic

 sequence {Z,}rez is called (0, ?, 0/)-weak dependent (cf. Nze et al., 2002, p. 399) if for some mono-
 tone sequence 0 = (0r)reN decreasing to zero at infinity and some real-valued function 4i with

 arguments (h, k,u,v) E  2 X N2,
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 ICov(h(Zi,,,... Zi),k(Zj, ...,Zj ))l I EF(h,k,u,v)Or

 for any u-tuple (il ..., iu), any v-tuple (jI,.... j,) with il < - " ' < iu < i, + r < jl <-- - <-- j, and all u,v E N, where N = {1,2,3,...}, Z = {0,?1,?2,...}, and C = U,=j{h E L"(Eu):Lip(h) <
 00, 9lhll|o - 1}. Here L'(Eu) (u E N) is the set of measurable bounded functions on Eu and set

 L U = UuI L"(Eu), Ilh |1 = supxGE Ih(x)I for h E L'(E"), and Lip(h) = supxyjfh(x) - h(y)I/ I x - yll is the Lipschitz modulus of a function h: E" -u I with respect to the e1-norm in E",

 defined by Ilxll = .l(x, ..., xu)ll = I|xill + ... + IIx.uI for x E E".
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 APPENDIX: Proofs

 A.1. Some Basic Lemmas. The proof of the main results relies on some intermedi-
 ate results. The first one is a lemma borrowed from Ibragimov and Linnik (1971) or
 Deo (1973), where we refer for a proof.

 LEMMA A. 1.

 (i) Let Lr(Y) denote the class of F-measurable random variables ? satisfying

 lIIllr := (E I|r)1/r < oo. Let X E -fr(Jl) and Y E CLs(F2). Then, for any 1 I r, s, h < oo such that r-' + s-' + h-' = 1,

 IE[XY] - E[X]E[Y]I ? C IXlr, IYIjs [a(F,IF2)]1/h, (A.1)
 where a(FT,JU2) = SUPAECF,BE 2 P(AB) - P(A)P(B)j.

 (ii) If moreover IXj and I YJ are P-a.s. bounded, the right-hand side of (A.1) can be
 replaced with Ca (FI, T2).

 The following lemma establishes the relationship between the related quantities
 based on the original samples (Xi,Yi) and on the approximated a-mixing samples
 (Xjm), yi(m)), which will play important roles throughout the proofs that follow.

 LEMMA A.2. Let m = mT be a positive integer tending to oo as T ---> oo. Then under
 Assumptions (A2) and (A5), it holds that for any positive real number L = LT tending
 to oo, as T -> oo,

 EY,(m)K((x - X- m))/b,) = EYiK((x - Xi)/b,) + O(b Lvu:/2(m)) + o(L-('+)),
 (A.2)

 EYi(m)2K2((X - X m))/bT) = EY2K2((X - Xi)/bT) ? O(b22L2v2(m))

 + O(b' L2v /2(m)) + o (L-), (A.3)
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 for i / j,

 EYi(m) y(m) K((x - X m))/b,)K((x - Xjm))/b,)

 = EYi Yj K((x - Xi)/bT)K((x - Xj)/bT) + O(b ' L2v1/2(m)) + o(L-'), (A.4)

 and for any 0 < 8' < 8,

 EIYi(m) 2+8'K2+' (( - X}m))/bT)

 SCEIYy2+8'K2+8'((x - Xi)/bT) + O(b2-8'L2+8'v2+8' (m)) + o(L-"+"'), (A.5)

 where 0(-) and o(.) hold uniformly with respect to x.

 Proof. We prove (A.2)-(A.5) one by one. To prove (A.2), note first that

 EYi(m) K((x - X m))/b,) = EYi K((x - Xlm))/b,) + E(Yi(m) - Yi)K((x - X m))/b,)

 =: EY, K((x - X m))/b,) + IT. (A.6)
 Here, using the bounded property of the kernel function K(.),

 1,1Tl EI Yi(m) - Y I K((x - X(m))/b,) CE Yi(m) I

 I C[EYi'(m)- yi 2]1/2 = O(qv2(j)). (A.7)
 Next, let Yi,L = YillY, IL} and Yi, u = YiI{I l>L}, where IA is an indicator function of set A. Then

 EY, K((x - X(m))/b,) = EYi,LK((x - Xlm))/b,) + EYi,U K((x - Xlm))/b,)

 = EYi,LK((x - Xi)/bT) + EY,,LK((x - Xim))/b,)

 - K((x - Xi)/bT) + EYi,uK((x - X!m))/b,)

 =: 82T + 53T + 84T, (A.8)

 where, as a result of IEYi,uK((x - Xi)/bT)I = o(L-(1+8)) as T -- o00 (in an argument
 similar to (A. 11), which follows),

 82T = EYi K((x - Xi)/bT) - EYi,uK((x - Xi)/bT)

 = EYi K((x - Xi)/bT) + o(L-('+")); (A.9)

 because of the Lipschitz continuity of the kernel function K(.),

 183TI ? EYiYLI K((x- X(m)/b) - K((x - X)/b)

 X(m) - xiXi)b ] ? CLE --Cb'L[EIIX m)- Xill21/ O(bI'LIv2(m)); (A.10) bT
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 58 ZUDI LU AND OLIVER LINTON

 using the boundedness of K(.),

 84T I EIYilEy,j>L}K((x - XIm)i)/bT) ? L-(1+)E IYl2+~/8+Yi>L}K((x - X1m))/bT)
 ? CL-(I+)ElYi 12+8jYi j>L} ). (A.11)

 Then it follows from (A.8) together with (A.9)-(A.11) that

 EYiK((x - Xlm))/b,) = EYiK((x - Xi)/b,) + O(b'LN[v2( m)) + o(L-('+')). (A.12)

 Finally, (A.2) follows from (A.6) together with (A.7) and (A.12).
 The proof of (A.3) can be proved in an argument similar to that in the preceding

 discussion. First,

 E[Yi(m)]2K2((X - Xm))/b,) = EYi2K2((X - X'm))/b,)

 + 2EYi(Y(m) - Yi)K2((x - Xlm))/bT)

 + E(Yi(m) - Yi)2K2((x - Xlm))/bT)

 =-: -5r + 46T + 7TT. (A.13)
 Here, similarly to (A.7) by the boundedness of K(.),

 I8t, ElY,(m) - Yi12K2((X - Xjm))/bT) ? CEIYi(m)- Yi2 - O(v2(m)); (A.14)

 again by the boundedness of K(.) together with Cauchy inequality,

 I 8,6 ? 2[EYi2'1/2[EYi(m) - Y i2]1/2 = O(v2(m)).

 Next,

 65T = EYYiK2 ((x - X m))/b,) + EYi2K2((x - X m))/b,)
 = EYi2LK2((x - Xi)/bT) + 2EYi2LK((x - Xi)/b,)

 x (K((x - X m))/bT) - K((x - Xi)/b,))

 + EYi2L(K((x - X m))/b,) - K((x - Xi)/b,))2 + EYi2UK2((x - X(m))/B,)

 8T: S+ 89T + 0T + 11T, (A.15)

 where, similarly to (A.11),

 811,,T I EIYj12i{I >L}K2((x - Xim))/BT) - CL-"EIYi 2+8I yi>L} = o(L- ); (A.16)

 as a result of IEYi2VK2((x - Xi)/bT)I = o(L-3) (the same argument as (A.16)),

 B8T = EYi2K2((X - Xi)/bT) - EYiUK2((x - Xi)/bT)

 = EY,2K2((X - Xi)/bT) + o(L- ); (A.17)
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 LOCAL LINEAR FITTING UNDER NEAR EPOCH DEPENDENCE 59

 the same argument as (A.10) leads to

 1Torl El Yi, 121 K((x - Xlm))/bT) - K((x - Xi)/bT)12

 X (m) - Xi 2

 SCL2E --i Cb2-2EllX2m) - Xi|- 2 = O(b-2L2v2(m)) (A.18) bT

 and

 9T -CL2E -i Cb' L2[EIIXm) - Xi112]1/2 = O(b' L2 (.
 (A.19)

 Finally, (A.3) follows from (A.13)-(A.19).
 For (A.4), first note that

 E[Yi(m) y(m)K((x - X m))/b,)K((x - Xjm))/b,)]

 = EYi YjK((x - Xlm))/b,)K((x - X(m))/bT)

 + E[Y(Yj(m)-Y) + (Y - Y) + ( - Yi)Yj]K((x - Xm))/bT)K((x - Xjm))/bT)

 + E(Y(m) - Y,)(Yjm) - Yj)K((x - XIm))T)K((x - X())/b,)

 =: 812T + r 13T + 14T. (A.20)
 Here, similarly to (A.7), by the boundedness of K(.), and then by Cauchy inequality,

 1614TI ?- CEI Yi(m) - Yi IYj() - YjI = O(v2(m)); (A.21)
 again,

 I13TI f { [EYi2]1/2[EIY(m) - yj12]/2 + [El Yi(m) Yi12]1/21[EYj2]1/2

 = O('Vz(m)). (A.22)
 Next,

 812T = EYi Y K((x - Xi)/bT)K((x - Xj)/b,)

 + EYi Yj[K((x - Xim))/bT) - K((x - Xi)/bT)]K((x - Xj)/b,)

 + EYYj K((x - Xlm))/bT)[K((x - X(m))/bT) - K((x - Xj)/b,)]

 =: EYi Yj K((x - Xi)/bT)K((x - Xj)/bT) + 15T + 816T, (A.23)
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 60 ZUDI LU AND OLIVER LINTON

 where, by Assumption (A2) and the assumed properties of K(-) in Assumption (A5),

 516T = EY(IIYiYL)+ I{IYi>L}) j(I{ItIY L} - + IIyjI>L})K((x - X(m))/bT)

 X [K((x - X(m))/b,) - K((x - Xj)/bT)]

 X (m)-x

 SCL2 YbT + 2CLL(1)EIYj2+8I{+Yi >L} + L8-E|Yj12+ IYi[>L}

 = O(b-- L2v/2(m)) + o(L-5), (A.24)

 and similarly,

 515T = O(b,1L2v1/2(m)) + o(L-'). (A.25)
 Finally, (A.4) follows from (A.20)-(A.25).

 For the proof of (A.5), by noting that

 Y(m)K((x - X(m))/b,) = YKI + YK2 + YK3,

 with YK1 = (Y,(m) - Yt)K((x - X(m))/b,), YK2 = Yt{K((x - X(m))/b,) - K((x - X,)/
 bT)}, and YK3 = YK((x - X,)/bT), it follows that

 Y,(m)K((x - X(m))/b,) 2+8 31'8 '{ YK12+8' + IYK2 2+3' + I YK3 2+'},

 where E YK 2+' CY() - t Yt2+' Cv2+8'(m) and

 El YK22+8' CEI Yt IIyL,L}{K((x - X m))/bT) - K((x - Xt)/bT)}2+8'
 + CEIY,tIly jIL}I2+8'

 SC{Lb'1}2+' IXt, - X(m) 2+3'(m) + CL '-E Y,2++8I{rIL}

 ? C{Lb~}12+8'v2+8,(m) + o(L'-a), (A.26)

 and hence (A.5) holds. 0

 To cope with the approximation terms of U- ) and Wm) defined in Section 2.3, we
 will need the following lemma, termed the cross term lemma, which is of independent
 interest and will play important roles in the proofs of the theorems that follow.

 LEMMA A.3. (Cross term lemma). Let {(Z(m),X m)); 1 S j - q} be a stationary sequence with mixing coefficient

 Oam(j) := sup{IP(AB) - P(A)P(B) :A E GB({Z(m),X(m)}), BE CB({Z(+, Xi+})},

 and set 7(m)(x) = Zm)((x - X(m))/bT), where K is a kernel function satisfying
 Assumption (A5). Denote by Am.)(x) = lm(x) Ejm)(x), V12(X) = Wli<jq Am)(x)
 A(m)(X). Then, for any positive integer cT,

 I 12(x)I ! Cqbd[J1(x) + J2(x)], (A.27)
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 LOCAL LINEAR FITTING UNDER NEAR EPOCH DEPENDENCE 61

 where .1(x) := c, b max {1, bT2(1+d+2d/8) v1/2(m)} and

 J2(x) := bTSd/(4+8) ( m {O/a(j)}/(4+8) max {1, bT2(4+4d+8+8d/8)/(4+8) 4/(4+8) .
 j=CT2+5/2

 Proof. First, we note that

 EAjm) (x) A m) (x) = {E(7-)m(x) (x,-m) (x)) - E(rl(m) (x))E(qm) (x))}. (A.28)

 Then applying Lemma A.2,

 E(lj(m)(x)7(m)(x)) = E(Z(m)K((x - Xlm))/b,))(Z m)K((x - X5m))/bT))

 = E(Zi K((x - Xi)/bT))(Z K((x - Xj)/bT))

 + O(b1' L2 \v2(m)) + o(L-"), (A.29)

 Erl-m)(x) = E(Z)m)K((x - Xjm))/bT))

 = E(Zj K((x - Xj)/bT)) + O(br'LfLfv2(m)) + o(L-(l+')). (A.30)
 Therefore it follows from (A.28)-(A.30) that (taking L = bT2d/8)

 E[ A(m) (x) A(.m) (x)]

 = [EZi K((x - Xi)/bT)(Zj K((x - Xj)/bT)

 - EZi K((x - Xi)/bT))EZj K((x - Xj)/bT)]

 + [O(br2L2v2(m)) + O(b1L2v2(m)) + o(L-S)

 + b{O(b' Lv2(m)) + o(L-('+8))}]

 = b2d + O(b -2L2v2(m)) + O(b 1L2 2()) + o(L-8)

 + bd{O(bT L\Iv2(m)) + o(L-('+a))}

 < Cb2d[1 + O(br2-2dL2v2(m) 1)]; (A.31) SVT T V2(M +01

 therefore,

 q CT

 SE[Am)IX(x m)(x)] ? Cbd (qCT)max{l, bT-2(l+d+2d/8) 1/2(m)} i= 1j-i=1

 = qbdJl(X). (A.32)
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 62 ZUDI LU AND OLIVER LINTON

 On the other hand, for i < j, by Lemma A.1(i) with r = s = 1/(2 + 8') and (A.5) of
 Lemma 5.2 and then taking L = b'2d/8 and 8' = 8/2,

 E[mm) (x) A(m) (x)]

 SC7m)(x)112+ m) 2+1-2/2++8')(1 _- i) SC{b d + (b-1L)2+8'V2+8,(m) + L-8'}2/(2+8') 8'/(2+8')(j - i)

 < Cb2d/(2+8'){1 + bd(b 1 L)2+8'v2+8' (m) + L-+'b -d2/(2+8') 8'/(2+8')(j- i)

 < Cb4d/(4+8){1 + bT-2d-2-8/2-4d/2+8/2(m) + 14/(4+8)/(4+8)(j i); (A.33)
 therefore,

 E E E[ jm) (x) A m) (x)] i= 1 j-i=CT

 ? Cb4d/(4+8) q (j)/(4+) max{1,b 2(4+4d+8+8d/8)/(4+8) 4/(4+8) = Cqb T 2+/2. (A.34)

 = Cqb 2 (X). (A.34)
 The result of this lemma therefore follows from (A.32) and (A.34).

 A.2. Proof for Sections 2 and 3.1.

 Proof of Lemma 2.1. Denote by Ki(x) = (x)iK(x). Then it can be noted that

 E (WTm))i - (WT)i I

 = E (Tbd)-1 m)Ki(X - ZjK
 j= l by Jj by
 T) j=l bT bT

 = bTdEIZ(m)Ki((X(m) - x)/bT) - ZjKi((Xj - x)/bT)I

 <bdZEIZm) - ZjI Ki((Xm) - x)/b,)

 + bTIdEI ZjI(I (IfIL) + IfIzjI>L)I Ki((Xj x)- x)/b,) - Ki((Xi - x)/bT)I

 = O(bAd v2(m)) + O(b d-LL v2(m)) + o(bTdL-(1+5))

 = O(bd-lL v2(m)) + o(bTdL-(l+8)), (A.35)
 which is the desired result. M

 Proof of Lemma 3.1. This lemma easily follows from Lu (2001); see also the proof
 of Lemma 3.2. The detail is omitted. M
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 LOCAL LINEAR FITTING UNDER NEAR EPOCH DEPENDENCE 63

 Proof of Lemma 3.2. Set r = ZjKc((Xj - x)/bT) and Aj = rlj - Ej. Then we note
 that AT defined in Section 3.1 can be expressed as AT = (Tbj)-1/2 T=1 rqj and therefore

 Var[AT] = (Tb)-'1 EA + 2 EAi Aj T Tj= 1 1 --i<j<--T

 b EA + 2(Tbd)-1 , EA, A:= ArT + 2AT2. (A.36)
 lSi<j-T

 It easily follows from the Lebesgue density theorem (see Devroye and Gytirfi, 1985,
 Ch. 5) that the first term of (A.36) is convergent to the right-hand side of (3.1). There-
 fore, to complete the proof of this lemma, it suffices to show that AT2 -- 0 as T -> 00.

 By noting that EAi ,j = EAim) Am) + EA(im)(A j- Am)) + E(Ai - A(m))A we can further separate AT2 into three parts: AT2 = AT21 + AT22 + AT23, where, by Lemma A.3 (taking

 q = T and ca = bTd/(4+8)) together with Assumption (B2),

 AT21 := (Tbd)-1 EAm)A(m) = (Tb)- (Tb) [J1(x)+2X 15i<j?T

 = 0(1) LbdbT6d/{a(4+8)} +J C {a(j)}(4+ - 0 j=CT

 by Assumption (A4);

 AT22 := (Tbd)-1 EA(m)(Ai- A-m) 1S i<j< T

 = (Tb)-i {(E(Am))21/2{E(Aj - Am) )21/2
 1 <i<j?T

 T(T - 1)
 = (Tb1 {E(m) 21/2{E(A - A(m)2 1/2 T 2 i / I

 and as a result of E(Am))2 E((m))2 = O(b) O(b) + (b2-d/2(m)) +
 O(b- - 2d/ Sv/2(m)) + o(bd) = O(b ), following from (A.3) of Lemma A.2 with L =
 bTd/8 and the condition (B2), and, by using the Lipschitz continuity and boundedness
 of the kernel K(-) and taking P = T2/bT,

 E((A - A -qm))2

 ?E(i - m)2

 = E[(Zj - Z(m))Ke((Xjm) - x)/bT) + Z1j{K,((Xj - x)/bT) - K,((X(m) - x)/b,)}]2

 ? 2[E(Zj - Zm))2K2 ((X m) - x)/bT)

 + Ej2 (I{Zj_:5 + I lzi>Ll){K((Xj - x)/bT) - Ke((Xj m)- x)/b,)}2]
 ? C[E(Zj - Z(m))2 + L2b2ElX - Xjm) 112 + EZ2fIIz }]

 ? C[v2(m) + L2bT2v2(m) + o(L-8)],
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 64 ZUDI LU AND OLIVER LINTON

 we have

 AT22 - CTb-d/2[Lb- V1/2(m) + o(L-/2)]
 ? C[Tl+2/Sb1Il-d/2-d/8v1/2(m) + O(1)] - 0;

 and similarly to AT22, it can be proved that

 A23 :- (Tbd)-1 EA i j- Am) . T23 i<iT

 The proof of the lemma is completed. U

 A.3. Proofs for Section 3.2.

 Proof of Lemma 3.4. The fundamental idea to prove the asymptotic normality of
 WT(x) is to divide WT(x) into two parts: with m = mT -- oo (to be specified later),

 W,(x) = W(m)(x) + [WT(x) - W(m)(x)], (A.37)

 where W(m)(x) is defined in Section 2.3. Then applying the approximation lemma

 (Lemma 2.1) with L = LT = (TbTd)1/[2(1+65)]

 (Tbd)1/2 [WT(X) - WT(m)(x)]

 = Op((Tb)1/2b d-1L L 2() + o,((Tb1d)1/2b-dL-(1+5))

 = Op({T+1l/(l+8)bT(l+l/(1+8))d-2v2(m)}1/2) + Op(1)

 SOp({T 2+4/8bT(2+d+2d/8) 2(m)}1/2) + op(l) ->p 0, (A.38)

 following from Assumption (B2); and similarly

 (Tbd)1/2E[WT(x) - W m)(x)] -> 0. (A.39)

 Therefore, to have the conclusion of this lemma, it suffices to prove that

 (Tbd)11/2(c [Wm)(x) - EW(m)(x)]/o-)

 is asymptotically standard normal as T --- oo, which is the main effort we will make in
 this paper.

 Recalling

 (m) (X) := Z(m)Kc(X - Xm)) and A(.m) (x):= (m)(x) - E&m) (x), (A.40)

 define () := b-d/2A(m) and let S(m) := =T (M) . Then,
 T-1/2S(m) = (Tbd)1/2(Wm)(x) - EWm)(x)) = A(m) EA(m)
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 where

 A(m = (Tb )1/2C m)= (Tbd-112 Z
 T T T T j= c ( bT

 Now, let us decompose T-1/2S(m) into smaller pieces involving "large" and "small"
 blocks. More specifically, consider

 j(p+q)+p

 u(m)(1, T, x,j) := ?(im) (x),
 i=j(p+q)+l

 (j+ 1)(p+q)

 u (m)(2, T, x,j) := (m)(x),
 i=j(p+q)+p+l

 where p = PT and q = q- are specified in Assumption (B3). Without loss of generality,
 assume that, for some integer r = rT, T is such that T = r(p + q), with r --> oo. For each
 integer 1 ? i < 2, define

 r-1

 Y(m) (T,x,i) := u(m)(i, T,x,j)
 j=O

 Clearly S(m) = y(m)(T,x,l) + y(m)(T,x,2). Note that Y(m)(T,x,l) is the sum of the

 random variables ?im) over "large" blocks, whereas Y(m)(T,x,2) are sums over "small" blocks. If it is not the case that T = r(p + q) for some integer r, then an additional term

 Y(m)(T,x,3), say, containing all the ?() 's that are not included in the large or small
 blocks, can be considered. This term will not change the proof much. The general
 approach consists of showing that, as T -> oo,

 r-1

 Qm) := Eexp[iuY(m)(T,x, 1)] - fEexp[iuU(m)(1, T,x,j)] - 0, (A.41)
 j=0

 Q(m) := T-1E((m)(T,x,2))2 - 0, (A.42)
 r-1

 Qem) T-1 I E[Um)(IT,, Xj)]O2 --->2, (A.43) j=0

 r-1

 Q4m).= T-1 I E[(U(m)(1, T,x,Ij))2 IU(m)(1, T,x,j) > soTl/2}] -> 0 (A.44) j=0

 for every e > 0. Note that

 [Am) - EAm)]/= (Tbd))1/2 CT[ W(m)(X) - EWTm) (x)]/o- = S(Tm)/(oT1/2)

 = y(m)(T,x,1)/(o-T~/2) + Y(m)(T,x,2)/(oT1/2).

 The term Y(m)(T, x,2)/(oT 1/2) is asymptotically negligible by (A.42). The random vari-
 ables U(m)(1, T, x,j) are asymptotically mutually independent by (A.41). The asymp-
 totic normality of Y(m)(T,x, l)/(oT 1/2) follows from (A.43) and the Lindeberg-Feller
 condition (A.44). The lemma thus follows if we can prove (A.41)-(A.44). This proof is
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 66 ZUDI LU AND OLIVER LINTON

 given subsequently. The arguments are reminiscent of those used by Robinson (1983),
 Masry (1986), and Nakhapetyan (1987), but, differently from those references, because
 of m = mT depending on T in the a-mixing process {(Y,(m), X(m))}, the details become
 much more complex and involved (cf. Lu, 2001) and heavily depend on Lemmas 2.1
 and A.3 established previously.

 Proof of (A.41). Let

 zI = Z(1,T,x,j) := {i:j(p + q) + 1 ? i ?j(p + q) +p}.

 The distance, d(IZ,Zj,), between two distinct sets Z(1,T,x,j) and Z(1, T,x,j') is at least
 q if j 0 j'. Clearly, I(1, T, x, j) is the set of indices involved in U(m)(1, T, x, j), which
 contains p indices.

 Let aj := exp{iuU(m)(1,T,x,j)}, where i2 = -1. Note that

 E[a,...ar] - E[al]...E[ar]

 = E[a,...ar] - E[a]E[a2... ar]

 + E[al]{E[a2... ar] - E[a2]E[a3... ar]}
 + ... + E[al]E[a2]...E[ar_2]{E[ar_ ar] - E[ar_i]E[ar]}.

 Because IE[aj]I 1,

 Qm) = IE[al...ar] - E[al]...E[ar]l < IE[a,...ar] - E[al]E[a2...ar]I
 + IE[a2... ar]-E[a2]E[a3... ar]

 + ... + IE[ar_ ar] - E[ar-l]E[ar]I.

 Note that d(le, l) 2 q for any f 0 j, and set q = 2m. It follows by applying Lemma
 A.1 (ii) to each term on the right-hand side that

 r-1

 CQm) C am(q) ? Cra (q - m) = Cra(m),
 k=l

 which tends to zero by condition (B3).

 Proof of (A.42). For notational simplicity, refer to the random variables U (m)(2, T, x,j),

 j = 0,1,..., r - 1, as Ul,..., Ur. We have

 E[Y(m)(T,x,2)]2 = Var(Ui)+ 2 Cov(Ui,Uj)= V + V2, say. (A.45) i=1 1Si<j-r

 Because X, is stationary (recall that r(")(x) := b-d/2A(m)(X)),
 q

 Var(Ui) = I E[((m7)(x))2] + E[ m)(x) i (x)] -- Vi -+ 12. i= 1 1?-i<j<q
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 From (A.3) and the Lebesgue density theorem (see Devroye and Gy6rfi, 1985, Ch. 2),

 and then taking L = bTd/8

 11 = qVar~{7 (x)}= q2{bdE(Adm)(x))2}

 Sq{bdE(rl"m)(x))2} = q{bdE(Zim)K((x - X m))/b,))2}

 = q{bTdE(Zi K((x - Xi)/bT))2 + O(bT2-dL2v2(m))

 + O(b'1-dL2 v2(m)) + o(bd L- )}

 = Cq{1l + bT2-d-2d/8v2(m) + (bT2-2d-4d/82(m)) 1/2 + 0(1)}

 = O (q), (A.46)

 where the final equality follows from bT2-d-2d/8v2(m) ? bT2-2d-4d/8v2(m) M
 bT4(1+d+2d/8)v2(m) = 0(1) by Assumption (B2).
 We need the cross term lemma, Lemma A.3, for V12. Thus, applying Lemma A.3
 together with (B2) and then taking cT = q yields

 V12 = b E[Am)(X(x) A m)(x)]
 1 si<jsq

 ? Cb-dqb [ bcT + byAd/(4+6) m 8/(4+)
 T T[-T TT

 = Cq b d qT + b -d/(4+) t am(t)/(4+8)

 Cq t= q
 :=Cq7T.

 It follows from Assumption (B4) that 7WT = O0(1) and

 T-1, = T-'r(11 + 12)-1 T-'rCq[1 + TrT] ? C(ql/p)[1 + rT]. (A.47)
 Set

 Z(2, T,x,j) := {i:j(p + q) + p + 1 -i : (j + 1)(p + q)}.

 Then U(m)(2, T,x,j) = EiE(Z2,T,x,j) i(m). Because p > q, if i and i' belong to two dis- tinct sets I(2, T,x,j) and I(2, T,x,j'), then Ii - i'j > q. In view of (A.45) and (A.33)
 and then Assumption (B2), we obtain

 I"2 2 C , IE [ 'i (x) ?m) (x)]l {i,j:li-j--q, 1S-i,j--ST}

 SCbd IE[A(m)Ti (x)A(m)(x)]

 SCbId d b"d/(4+8){am(- i) /(4+)
 {i,j: i-j|I-q, 1<-i,jS--T}

 SCbrd/(4+8)T {am(t)}81/(4+8) . (A.48) (0t=q
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 68 ZUDI LU AND OLIVER LINTON

 Condition (B4) implies that qbd = 0(1) and rT = O0(1). Thus, from (A.45), (A.47),
 and (A.48),

 T-IE[Y(m)(T,x,2)]2 < C(q/p)[1 + 'TT] + Cb 8d/(4+8) {(t/(4+)
 t=q

 which tends to zero by q/p -* 0 and condition (B4); (A.42) follows. U

 Proof of (A.43). Let S (m) := y(m) (T,x,1) and Sm) := Y(m) (T,x, 2). Then S(m)'

 is a sum of ('m)'s over the "large" blocks, STm)' over the "small" ones. Lemma 3.2 and its argument together with Lemma A.2 imply T-'E[IS m) ] ~ 2. This, combined
 with (A.42), entails T-'E[IS m) 12] a 2. Now,

 r-1

 T-'E[ISm)~'2] T-' C E[U(m)(1, T,x,j)]2
 j=O

 + T-1 Cov(U(m)(1, T,x,j),U(m)(1, T,x,i)), (A.49)
 iw*j E=-7*

 where f* = J*(p, q) := {i, j: 1 < i,j ? r - 1}. Observe that (A.43) follows from (A.49)
 if the last sum in the right-hand side of (A.49) tends to zero as T -> co. Using the same
 argument as in the derivation of the bound (A.45) for V2, this sum can be bounded by

 T-1Cb Td/(4+8) m ?m(i)}/(4+) Cb - 8d/(4 + 8) m {m(t)}8/(4+8) i>p j=1 t=p

 which tends to zero by condition (B4). U

 Proof of (A.44). We need a truncation argument because Z m) is not necessarily

 bounded. Set Zm)  m) mziM5mMm 7}, := Zm)K((Xim -- x)/bT), A(m)M m)M - Em)M , ) := bd/2 Am)M, where M is a fixed positive constant, and define
 Um)1,Tj):= (m)M Put U(m)M(IT,xj) := ieC(1,T,x,j) Ti . Put

 r-1

 Q4m)M := T-1' E[(U(m)M(1, T,x,j))2I{U(m)M(1, T,x,j) > eT'/21].
 j=O

 Clearly, 1)Mi I CMb d/2. Therefore I U(m)(1, T,x,j)I < CMpb d/2. Hence
 r-1

 Q(m)M Cp2b-dT-1 I P[U(m)M(1, T,x,j) > e.T'1/2]
 j=o

 Now, U(m)M(1, T,x,j)/(oT1/2) < Cp(Tbd)-1/2 -> 0, because of Assumption (B3). Thus
 P[U(m)M(1 T,x,j) > e-T1/2] = 0 at all j for sufficiently large T. Thus Q4m)M = 0 for
 large T, and (A.44) holds for the truncated variables. Hence,

 T

 T-1/2S(m)M := T-1/2 (m)M N(, ), (A.50) j=1

 where am2 := Var(ZlXiX = x)f(x)fKc,(u) du and ZM = Zi IIziM} .
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 Defining S()M* - ()M), e have S(m) (m)M (m)M* DefiningT :-4 j =I jw Se T = S T + T .Note that
 IE[exp(iuS(') /T1/2)] - exp(-u2o2/2)l

 SI E[exp(iuS(m)M/T1/2) - exp(- u2o- /2)]exp(iuS(')M*I/T1/2

 + IE[exp(iuS (m)M*/T1/2) - l]exp(-u2o 2 /2)

 + "exp(-u2o2/2) - exp(-u2o-2/2)l

 = El + E2 + E3, say.

 Letting T - oo, El tends to zero by (A.50) and the dominated convergence theorem.
 Letting M go to infinity, the dominated convergence theorem also implies that - :=

 Var(Z"IXi = x)f(x) f K2(u) du converges to

 Var(Zi Xi = x)f(x)f K(u) du = Var(YilXi = x)f(x) fK(u) du:= 02

 and hence that E3 tends to zero. Finally, to prove that E2 also tends to zero, it suffices to

 show that S Im)M*/T1/2 --> 0 in probability as first T --> oo and then M - oo, which in
 turn would follow if we could show that

 E[(S(m)M*/T1/2)2] -' Var(lZi Ilz,il>MlXi = x)f(x) fK(u) du as T -- oo.
 This follows along the routine argument of Lemma 3.3 together with Lemma A.2. The
 proof of Lemma 3.4 is thus complete. 0

 Proof of Theorem 3.1. We establish that the bandwidth conditions (B 1)-(B4) hold.
 First, Assumption (B1) holds clearly by the condition Tb 1+2/{a(1 +4/)}]d/log T - oo.

 Next, take m = mT = [bTd/{a(4+?)}J] and q = 2m, where La] stands for the integer
 part of a. Then it easily follows from Assumption (A4) that (B4) holds.

 On the other hand, note that v2+5/2(m) = O(m-?) implies v2(m) = O(m-tL/(l+8/4)

 T2+4/86b(2+d+2d/8) U2(m) CT2+4/6bT(2+d+2d/6) m-/(1+86/4)

 CT2+4/Sb-(2+d+2d/8) b p6d/{a(4+8)(1 +8/4)} T T

 = T2+4/gb, d/{a(4+()(1 +/4)}-(2+d+2d/6) T

 = T2+4/8b /K2-KI, (A.51)
 which tends to zero by the condition of this theorem;

 bT4(l+d+2d/)U2(m) < CbT4(l+d+2d/)) m-t(/(l+8/4)
 SCb-4(l1+d+2d/6) b t8d/{a(4+8)( +6/4)}

 ? b86d/{a(4+6)(l +8/4)}-4(l +d+2d/l) = bA/K2-4(KI-1) = O(1), (A.52)
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 which is deduced by the condition 4/, - 4(K1 - 1)K2; and

 by(2+2d+6/2+4d/8)v 2+8/2(m) CbT(2+2d+8/2+4d/8) M-

 < Cb-(2+2d+8/2+4d/6) b Sd/{a(4+8)}

 SS8d/{a(4+8)}-(2+2d+ /2+4d/) ST

 =- bL(1+8/4)/K2-K3-- O(1), (A.53)
 which is deduced by the condition _ K2K3/(1 + 8/4). Therefore Assumption (B2) holds.

 Set p = (Tb1/logT)1/2. Then p = o((Tb)11/2) and Tp = {TlogT/b}1/2 00
 clearly; and

 ( log T 1/2

 q/p Tb(l+2/{a(1+4/8)})d -- 0
 and

 T

 - a(m) = {T log T/bd}1/2m-A = [Tlog Tb(2A/{a(1+4/8)}-1)d]1/2 -- 0 p

 by the conditions of this theorem. Therefore Assumption (B3) holds.
 Finally, as a (x) = O(x-A) for some A > (a + 1)(1 + 4/8) with a > 8/(4 + 8),

 ka 1 {J)}8/(4+8) = ka E j-A/(4+8) = O(l)ka-AS/(4+8)+l- 0
 j=k j=k

 as k -- c. . Therefore Assumption (A4) holds. The theorem thus follows from
 Lemmas 3.1-3.4. 0

 Proof of Corollary 3.1. This corollary easily follows by checking the conditions on
 the bandwidth in Theorem 3.1. The detail is omitted. 0
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