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Consider the multivariate nonparametric regression model. It is
shown that estimators based on sparsely connected deep neural net-
works with ReLU activation function and properly chosen network
architecture achieve the minimax rates of convergence (up to logn-
factors) under a general composition assumption on the regression
function. The framework includes many well-studied structural con-
straints such as (generalized) additive models. While there is a lot
of flexibility in the network architecture, the tuning parameter is
the sparsity of the network. Specifically, we consider large networks
with number of potential network parameters exceeding the sample
size. The analysis gives some insights into why multilayer feedforward
neural networks perform well in practice. Interestingly, for ReLU ac-
tivation function the depth (number of layers) of the neural network
architectures plays an important role and our theory suggests that for
nonparametric regression, scaling the network depth with the sample
size is natural. It is also shown that under the composition assump-
tion wavelet estimators can only achieve suboptimal rates.

1. Introduction. In the nonparametric regression model with random
covariates in the unit hypercube, we observe n i.i.d. vectors Xi ∈ [0, 1]d and
n responses Yi ∈ R from the model

Yi = f0(Xi) + εi, i = 1, . . . , n.(1)

The noise variables εi are assumed to be i.i.d. standard normal and indepen-
dent of (Xi)i. The statistical problem is to recover the unknown function
f0 : [0, 1]d → R from the sample (Xi, Yi)i. Various methods exist that al-
low to estimate the regression function nonparametrically, including kernel
smoothing, series estimators/wavelets and splines, cf. [25, 75, 73]. In this
work, we consider fitting a multilayer feedforward artificial neural network
to the data. It is shown that the estimator achieves nearly optimal conver-
gence rates under various constraints on the regression function.
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2 J. SCHMIDT-HIEBER

Multilayer (or deep) neural networks have been successfully trained re-
cently to achieve impressive results for complicated tasks such as object de-
tection on images and speech recognition. Deep learning is now considered
to be the state-of-the art for these tasks. But there is a lack of mathematical
understanding. One problem is that fitting a neural network to data is highly
non-linear in the parameters. Moreover, the function class is non-convex and
different regularization methods are combined in practice.

This article is inspired by the idea to build a statistical theory that pro-
vides some understanding of these procedures. As the full method is too
complex to be theoretically tractable, we need to make some selection of
important characteristics that we believe are crucial for the success of the
procedure.

To fit a neural network, an activation function σ : R → R needs to
be chosen. Traditionally, sigmoidal activation functions (differentiable func-
tions that are bounded and monotonically increasing) were employed. For
deep neural networks, however, there is a computational advantage using
the non-sigmoidal rectified linear unit (ReLU) σ(x) = max(x, 0) = (x)+.
In terms of statistical performance, the ReLU outperforms sigmoidal acti-
vation functions for classification problems [20, 56] but for regression this
remains unclear, see [8], Supplement B. Whereas earlier statistical work fo-
cuses mainly on shallow networks with sigmoidal activation functions, we
provide statistical theory specifically for deep ReLU networks.

The statistical analysis for the ReLU activation function is quite different
from earlier approaches and we discuss this in more detail in the overview
on related literature in Section 6. Viewed as a nonparametric method, ReLU
networks have some surprising properties. To explain this, notice that deep
networks with ReLU activation produce functions that are piecewise linear
in the input. Nonparametric methods which are based on piecewise linear
approximations are typically not able to capture higher-order smoothness in
the signal and are rate-optimal only up to smoothness index two. Interest-
ingly, ReLU activation combined with a deep network architecture achieves
near minimax rates for arbitrary smoothness of the regression function.

The number of hidden layers of state-of-the-art network architectures has
been growing over the past years, cf. [71]. There are versions of the recently
developed deep network ResNet which are based on 152 layers, cf. [30]. Our
analysis indicates that for the ReLU activation function the network depth
should be scaled with the sample size. This suggests, that for larger samples,
additional hidden layers should be added.

Recent deep architectures include more network parameters than training
samples. The well-known AlexNet [42] for instance is based on 60 million
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NONPARAMETRIC REGRESSION USING RELU NETWORKS 3

network parameters using only 1.2 million samples. We account for high-
dimensional parameter spaces in our analysis by assuming that the number
of potential network parameters is much larger than the sample size. For
noisy data generated from the nonparametric regression model, overfitting
does not lead to good generalization errors and incorporating regulariza-
tion or sparsity in the estimator becomes essential. In the deep networks
literature, one option is to make the network thinner assuming that only
few parameters are non-zero (or active), cf. [21], Section 7.10. Our analysis
shows that the number of non-zero parameters plays the role of the effective
model dimension and - as is common in non-parametric regression - needs
to be chosen carefully.

Existing statistical theory often requires that the size of the network pa-
rameters tends to infinity as the sample size increases. In practice, estimated
network weights are, however, rather small. We can incorporate small param-
eters in our theory, proving that it is sufficient to consider neural networks
with all network parameters bounded in absolute value by one.

Multilayer neural networks are typically applied to high-dimensional in-
put. Without additional structure in the signal besides smoothness, non-
parametric estimation rates are then slow because of the well-known curse
of dimensionality. This means that no statistical procedure can do well re-
garding pointwise reconstruction of the signal. Multilayer neural networks
are believed to be able to adapt to many different structures in the signal,
therefore avoiding the curse of dimensionality and achieving faster rates in
many situations. In this work, we stick to the regression setup and show that
deep ReLU networks can indeed attain faster rates under a hierarchical com-
position assumption on the regression function, which includes (generalized)
additive models and the composition models considered in [34, 35, 4, 40, 8].

Parts of the success of multilayer neural networks can be explained by the
fast algorithms that are available to estimate the network weights from data.
These iterative algorithms are based on minimization of some empirical loss
function using stochastic gradient descent. Because of the non-convex func-
tion space, gradient descent methods might get stuck in a saddle point or
converge to one of the potentially many local minima. [12] derives a heuris-
tic argument showing that the risk of most of the local minima is not much
larger than the risk of the global minimum. Despite the huge number of
variations of the stochastic gradient descent, the common objective of all
approaches is to reduce the empirical loss. In our framework we associate to
any network reconstruction method a parameter quantifying the expected
discrepancy between the achieved empirical risk and the global minimum of
the energy landscape. The main theorem then states that a network esti-
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4 J. SCHMIDT-HIEBER

mator is minimax rate optimal (up to log factors) if and only if the method
almost minimizes the empirical risk.

We also show that wavelet series estimators are unable to adapt to the
underlying structure under the composition assumption on the regression
function. By deriving lower bounds, it is shown that the rates are suboptimal
by a polynomial factor in the sample size n. This provides an example of a
function class for which fitting a neural network outperforms wavelet series
estimators.

Our setting deviates in two aspects from the computer science literature
on deep learning. Firstly, we consider regression and not classification. Sec-
ondly, we restrict ourselves in this article to multilayer feedforward artificial
neural networks, while most of the many recent deep learning applications
have been obtained using specific types of networks such as convolutional or
recurrent neural networks.

The article is structured as follows. Section 2 introduces multilayer feed-
forward artificial neural networks and discusses mathematical modeling.
This section also contains the definition of the network classes. The con-
sidered function classes for the regression function and the main result can
be found in Section 3. Specific structural constraints such as additive models
are discussed in Section 4. In Section 5 it is shown that wavelet estimators
can only achieve suboptimal rates under the composition assumption. We
give an overview of relevant related literature in Section 6. The proof of the
main result together with additional discussion can be found in Section 7.

Notation: Vectors are denoted by bold letters, e.g. x := (x1, . . . , xd)
>. As

usual, we define |x|p := (
∑d

i=1 |xi|p)1/p, |x|∞ := maxi |xi|, |x|0 :=
∑

i 1(xi 6=
0), and write ‖f‖p := ‖f‖Lp(D) for the Lp-norm on D, whenever there is no
ambiguity of the domain D. For two sequences (an)n and (bn)n, we write
an . bn if there exists a constant C such that an ≤ Cbn for all n. Moreover,
an � bn means that an . bn and bn . an. We denote by log2 the logarithm
with respect to the basis two and write dxe for the smallest integer ≥ x.

2. Mathematical definition of multilayer neural networks.
Definitions: Fitting a multilayer neural network requires the choice of an
activation function σ : R → R and the network architecture. Motivated by
the importance in deep learning, we study the rectifier linear unit (ReLU)
activation function

σ(x) = max(x, 0).

For v = (v1, . . . , vr) ∈ Rr, define the shifted activation function σv : Rr →
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NONPARAMETRIC REGRESSION USING RELU NETWORKS 5

Fig 1. Representation as a direct graph of a network with two hidden layers L = 2 and
width vector p = (4, 3, 3, 2).

Rr as

σv

 y1
...
yr

 =

 σ(y1 − v1)
...

σ(yr − vr)

 .

The network architecture (L,p) consists of a positive integer L called the
number of hidden layers or depth and a width vector p = (p0, . . . , pL+1) ∈
NL+2.A neural network with network architecture (L,p) is then any function
of the form

f : Rp0 → RpL+1 , x 7→ f(x) = WLσvLWL−1σvL−1 · · ·W1σv1W0x,(2)

where Wi is a pi+1×pi weight matrix and vi ∈ Rpi is a shift vector. Network
functions are therefore build by alternating matrix-vector multiplications
with the action of the non-linear activation function σ. In (2), it is also pos-
sible to omit the shift vectors by considering the input (x, 1) and enlarging
the weight matrices by one row and one column with appropriate entries.
For our analysis it is, however, more convenient to work with representation
(2). To fit networks to data generated from the d-variate nonparametric
regression model we must have p0 = d and pL+1 = 1.

In computer science, neural networks are more commonly introduced via
their representation as directed acyclic graphs, cf. Figure 1. Using this equiv-
alent definition, the nodes in the graph (also called units) are arranged in
layers. The input layer is the first layer and the output layer the last layer.
The layers that lie in between are called hidden layers. The number of hid-
den layers corresponds to L and the number of units in each layer generates
the width vector p. Each node/unit in the graph representation stands for
a scalar product of the incoming signal with a weight vector which is then
shifted and applied to the activation function.
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6 J. SCHMIDT-HIEBER

Mathematical modeling of deep network characteristics: Given a
network function f(x) = WLσvLWL−1σvL−1 · · ·W1σv1W0x, the network pa-
rameters are the entries of the matrices (Wj)j=0,...,L and vectors (vj)j=1,...,L.
These parameters need to be estimated/learned from the data.

The aim of this article is to consider a framework that incorporates essen-
tial features of modern deep network architectures. In particular, we allow
for large depth L and large number of potential network parameters. For
the main result, no upper bound on the number of network parameters is
needed. Thus we consider high-dimensional settings with more parameters
than training data.

Another characteristic of trained networks is that the size of the learned
network parameters is typically not very large. Common network initial-
ization methods initialize the weight matrices Wj by a (nearly) orthogonal
random matrix if two successive layers have the same width, cf. [21], Section
8.4. In practice, the trained network weights are typically not far from the
initialized weights. Since in an orthogonal matrix all entries are bounded in
absolute value by one, also the trained network weights will not be large.

Existing theoretical results, however, often require that the size of the
network parameters tends to infinity. If large parameters are allowed, one
can for instance easily approximate step functions by ReLU networks. To be
more in line with what is observed in practice, we consider networks with
all parameters bounded by one. This constraint can be easily build into
the deep learning algorithm by projecting the network parameters in each
iteration onto the interval [−1, 1].

If ‖Wj‖∞ denotes the maximum-entry norm of Wj , the space of network
functions with given network architecture and network parameters bounded
by one is

F(L,p) :=
{
f of the form (2) : max

j=0,...,L
‖Wj‖∞ ∨ |vj |∞ ≤ 1

}
,(3)

with the convention that v0 is a vector with all components equal to zero.
In deep learning, sparsity of the neural network is enforced through regu-

larization or specific forms of networks. Dropout for instance sets randomly
units to zero and has the effect that each unit will be active only for a small
fraction of the data, cf. [66], Section 7.2. In our notation this means that
each entry of the vectors σvkWk−1 · · ·W1σv1W0x, k = 1, . . . , L is zero over
a large range of the input space x ∈ [0, 1]d. Convolutional neural networks
filter the input over local neighborhoods. Rewritten in the form (2) this
essentially means that the Wi are banded Toeplitz matrices. All network
parameters corresponding to higher off-diagonal entries are thus set to zero.
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NONPARAMETRIC REGRESSION USING RELU NETWORKS 7

In this work we model the network sparsity assuming that there are only
few non-zero/active network parameters. If ‖Wj‖0 denotes the number of
non-zero entries of Wj and ‖|f |∞‖∞ stands for the sup-norm of the function
x 7→ |f(x)|∞, then the s-sparse networks are given by

F(L,p, s) := F(L,p, s, F )

:=
{
f ∈ F(L,p) :

L∑
j=0

‖Wj‖0 + |vj |0 ≤ s,
∥∥|f |∞∥∥∞ ≤ F}.(4)

The upper bound on the uniform norm of f is most of the time dispensable
and therefore omitted in the notation. We consider cases where the number
of network parameters s is small compared to the total number of parameters
in the network.

In deep learning, it is common to apply variations of stochastic gradient
descent combined with other techniques such as dropout to the loss induced
by the log-likelihood (see Section 6.2.1.1 in [21]). For nonparametric regres-
sion with normal errors, this coincides with the least-squares loss (in machine
learning terms this is the cross-entropy for this model, cf. [21], p.129). The
common objective of all reconstruction methods is to find networks f with
small empirical risk 1

n

∑n
i=1(Yi− f(Xi))

2. For any estimator f̂n that returns
a network in the class F(L,p, s, F ) we define the corresponding quantity

∆n(f̂n, f0)

:= Ef0

[ 1

n

n∑
i=1

(Yi − f̂n(Xi))
2 − inf

f∈F(L,p,s,F )

1

n

n∑
i=1

(Yi − f(Xi))
2
]
.

(5)

The sequence ∆n(f̂n, f0) measures the difference between the expected em-
pirical risk of f̂n and the global minimum over all networks in the class. The
subscript f0 in Ef0 indicates that the expectation is taken with respect to
a sample generated from the nonparametric regression model with regres-
sion function f0. Notice that ∆n(f̂n, f0) ≥ 0 and ∆n(f̂n, f0) = 0 if f̂n is an
empirical risk minimizer.

To evaluate the statistical performance of an estimator f̂n, we derive
bounds for the prediction error

R(f̂n, f0) := Ef0
[(
f̂n(X)− f0(X)

)2]
,

with X
D
= X1 being independent of the sample (Xi, Yi)i.

The term ∆n(f̂n, f0) can be related via empirical process theory to con-
stant ×(R(f̂n, f0)−R(f̂ERM

n , f0))+ remainder, with f̂ERM
n an empirical risk
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8 J. SCHMIDT-HIEBER

minimizer. Therefore, ∆n(f̂n, f0) is the key quantity that together with the
minimax estimation rate sharply determines the convergence rate of f̂n (up
to log n-factors). Determining the decay of ∆n(f̂n, f0) in n for commonly
employed methods such as stochastic gradient descent is an interesting prob-
lem in its own. We only sketch a possible proof strategy here. Because of
the potentially many local minima and saddle points of the loss surface or
energy landscape, gradient descent based methods have only a small chance
to reach the global minimum without getting stuck in a local minimum first.
By making a link to spherical spin glasses, [12] provide a heuristic suggest-
ing that the loss of any local minima lies in a band that is lower bounded
by the loss of the global minimum. The width of the band depends on the
width of the network. If the heuristic argument can be made rigorous, then
the width of the band provides an upper bound for ∆n(f̂n, f0) for all meth-
ods that converge to a local minimum. This would allow us then to study
deep learning without an explicit analysis of the algorithm. For more on the
energy landscape, see [46].

3. Main results. The theoretical performance of neural networks de-
pends on the underlying function class. The classical approach in nonpara-
metric statistics is to assume that the regression function is β-smooth. The
minimax estimation rate for the prediction error is then n−2β/(2β+d). Since
the input dimension d in neural network applications is very large, these
rates are extremely slow. The huge sample sizes often encountered in deep
learning applications are by far not sufficient to compensate the slow rates.

We therefore consider a function class that is natural for neural networks
and exhibits some low-dimensional structure that leads to input dimension
free exponents in the estimation rates. We assume that the regression func-
tion f0 is a composition of several functions, that is,

f0 = gq ◦ gq−1 ◦ . . . ◦ g1 ◦ g0(6)

with gi : [ai, bi]
di → [ai+1, bi+1]di+1 . Denote by gi = (gij)

>
j=1,...,di+1

the com-
ponents of gi and let ti be the maximal number of variables on which each
of the gij depends on. Thus, each gij is a ti-variate function. As an example
consider the function f0(x1, x2, x3) = g11(g01(x1, x3), g02(x1, x2)) for which
d0 = 3, t0 = 2, d1 = t1 = 2, d2 = 1. We always must have ti ≤ di and
for specific constraints such as additive models, ti might be much smaller
than di. The single components g0, . . . , gq and the pairs (βi, ti) are obviously
not identifiable. As we are only interested in estimation of f0 this causes no
problems. Among all possible representations, one should always pick one
that leads to the fastest estimation rate in Theorem 1 below.
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NONPARAMETRIC REGRESSION USING RELU NETWORKS 9

In the d-variate regression model (1), f0 : [0, 1]d → R and thus d0 = d,
a0 = 0, b0 = 1 and dq+1 = 1. One should keep in mind that (6) is an
assumption on the regression function that can be made independently of
whether neural networks are used to fit the data or not. In particular, the
number of layers L in the network has not to be the same as q.

It is conceivable that for many of the problems for which neural networks
perform well a hidden hierarchical input-output relationship of the form (6)
is present with small values ti, cf. [58, 51]. Slightly more specific function
spaces, which alternate between summations and composition of functions,
have been considered in [34, 8]. We provide below an example of a function
class that can be decomposed in the form (6) but is not contained in these
spaces.

Recall that a function has Hölder smoothness index β if all partial deriva-
tives up to order bβc exist and are bounded and the partial derivatives of
order bβc are β − bβc Hölder, where bβc denotes the largest integer strictly
smaller than β. The ball of β-Hölder functions with radius K is then defined
as

Cβr (D,K) =
{
f : D ⊂ Rr → R :∑
α:|α|<β

‖∂αf‖∞ +
∑

α:|α|=bβc

sup
x,y∈D
x 6=y

|∂αf(x)− ∂αf(y)|
|x− y|β−bβc∞

≤ K
}
,

where we used multi-index notation, that is, ∂α = ∂α1 . . . ∂αr with α =
(α1, . . . , αr) ∈ Nr and |α| := |α|1.

We assume that each of the functions gij has Hölder smoothness βi. Since

gij is also ti-variate, gij ∈ Cβiti ([ai, bi]
ti ,Ki) and the underlying function space

becomes

G
(
q,d, t,β,K

)
:=
{
f = gq◦ . . . ◦ g0 : gi = (gij)j : [ai, bi]

di → [ai+1, bi+1]di+1 ,

gij ∈ Cβiti
(
[ai, bi]

ti ,K
)
, for some |ai|, |bi| ≤ K

}
,

with d := (d0, . . . , dq+1), t := (t0, . . . , tq), β := (β0, . . . , βq).
For estimation rates in the nonparametric regression model, the crucial

quantity is the smoothness of f. Imposing smoothness on the functions gi,
we must then find the induced smoothness on f. If, for instance, q = 1,
β0, β1 ≤ 1, d0 = d1 = t0 = t1 = 1, then f = g1 ◦ g0 and f has smoothness
β0β1, cf. [35, 60]. We should then be able to achieve at least the conver-
gence rate n−2β0β1/(2β0β1+1). For β1 > 1, the rate changes. Below we see
that the convergence of the network estimator is described by the effective
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10 J. SCHMIDT-HIEBER

smoothness indices

β∗i := βi

q∏
`=i+1

(β` ∧ 1)

via the rate

φn := max
i=0,...,q

n
− 2β∗i

2β∗
i
+ti .(7)

Recall the definition of ∆n(f̂n, f0) in (5). We can now state the main result.

Theorem 1. Consider the d-variate nonparametric regression model (1)
for composite regression function (6) in the class G(q,d, t,β,K). Let f̂n
be an estimator taking values in the network class F(L, (pi)i=0,...,L+1, s, F )
satisfying

(i) F ≥ max(K, 1),
(ii)

∑q
i=0 log2(4ti ∨ 4βi) log2 n ≤ L . nφn,

(iii) nφn . mini=1,...,L pi,
(iv) s � nφn log n.

There exist constants C,C ′ only depending on q,d, t,β, F, such that if
∆n(f̂n, f0) ≤ CφnL log2 n, then

R(f̂n, f0) ≤ C ′φnL log2 n,(8)

and if ∆n(f̂n, f0) ≥ CφnL log2 n, then

1

C ′
∆n(f̂n, f0) ≤ R(f̂n, f0) ≤ C ′∆n(f̂n, f0).(9)

In order to minimize the rate φnL log2 n, the best choice is to choose L of
the order of log2 n. The rate in the regime ∆n(f̂n, f0) ≤ Cφn log3 n becomes
then

R(f̂n, f0) ≤ C ′φn log3 n.

The convergence rate in Theorem 1 depends on φn and ∆n(f̂n, f0). Below
we show that φn is a lower bound for the minimax estimation risk over this
class. Recall that the term ∆n(f̂n, f0) is large if f̂n has a large empirical risk
compared to an empirical risk minimizer. Having this term in the conver-
gence rate is unavoidable as it also appears in the lower bound in (9). Since
for any empirical risk minimizer the ∆n-term is zero by definition, we have
the following direct consequence of the main theorem.
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NONPARAMETRIC REGRESSION USING RELU NETWORKS 11

Corollary 1. Let f̃n ∈ arg minf∈F(L,p,s,F )

∑n
i=1(Yi − f(Xi))

2 be an
empirical risk minimizer. Under the same conditions as for Theorem 1, there
exists a constant C ′, only depending on q,d, t,β, F, such that

R(f̃n, f0) ≤ C ′φnL log2 n.(10)

Condition (i) in Theorem 1 is very mild and only states that the network
functions should have at least the same supremum norm as the regression
function. From the other assumptions in Theorem 1 it becomes clear that
there is a lot of flexibility in picking a good network architecture as long as
the number of active parameters s is taken to be of the right order. Interest-
ingly, to choose a network depth L, it is sufficient to have an upper bound on
the ti ≤ di and the smoothness indices βi. The network width can be chosen
independent of the smoothness indices by taking for instance n . mini pi.
One might wonder whether for an empirical risk minimizer the sparsity s
can be made adaptive by minimizing a penalized least squares problem with
sparsity inducing penalty on the network weights. It is conceivable that a
complexity penalty of the form λs will lead to adaptation if the regular-
ization parameter λ is chosen of the correct order. From a practical point
of view, it is more interesting to study `1/`2-weight decay. As this requires
much more machinery, the question will be moved to future work.

The number of network parameters in a fully connected network is of
the order

∑L
i=0 pipi+1. This shows that Theorem 1 requires sparse networks.

More specifically, the network has at least
∑L

i=1 pi − s completely inactive
nodes, meaning that all incoming signal is zero. The choice s � nφn log n in
condition (iv) balances the squared bias and the variance. From the proof of
the theorem convergence rates can also be derived if s is chosen of a different
order.

For convenience, Theorem 1 is stated without explicit constants. The
proofs, however, are non-asymptotic although we did not make an attempt
to minimize the constants. It is well-known that deep learning outperforms
other methods only for large sample sizes. This indicates that the method
might be able to adapt to underlying structure in the signal and therefore
achieving fast convergence rates but with large constants or remainder terms
which spoil the results for small samples.

The proof of the risk bounds in Theorem 1 is based on the following
oracle-type inequality.

Theorem 2. Consider the d-variate nonparametric regression model (1)
with unknown regression function f0, satisfying ‖f0‖∞ ≤ F for some F ≥
1. Let f̂n be any estimator taking values in the class F(L,p, s, F ) and let
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12 J. SCHMIDT-HIEBER

∆n(f̂n, f0) be the quantity defined in (5). For any ε ∈ (0, 1], there exists a
constant Cε, only depending on ε, such that with

τε,n := CεF
2 (s+ 1) log(n(s+ 1)Lp0pL+1)

n
,

(1− ε)2∆n(f̂n, f0)− τε,n ≤ R(f̂n, f0)

≤ (1 + ε)2
(

inf
f∈F(L,p,s,F )

∥∥f − f0

∥∥2

∞ + ∆n(f̂n, f0)
)

+ τε,n.

One consequence of the oracle inequality is that the upper bounds on the
risk become worse if the number of layers increases. In practice it also has
been observed that too many layers lead to a degradation of the performance,
cf. [30], [29], Section 4.4 and [67], Section 4. Residual networks can overcome
this problem. But they are not of the form (2) and will need to be analyzed
separately.

One may wonder whether there is anything special about ReLU networks
compared to other activation functions. A close inspection of the proof shows
that two specific properties of the ReLU function are used.

One of the advantages of deep ReLU networks is the projection property

σ ◦ σ = σ(11)

that we can use to pass a signal without change through several layers in
the network. This is important since the approximation theory is based on
the construction of smaller networks for simpler tasks that might not all
have the same network depth. To combine these subnetworks we need to
synchronize the network depths by adding hidden layers that do not change
the output. This can be easily realized by choosing the weight matrices in
the network to be the identity (assuming equal network width in successive
layers) and using (11), see also (18). This property is not only a theoretical
tool. To pass an outcome without change to a deeper layer is also often help-
ful in practice and realized by so called skip connections in which case they
do not need to be learned from the data. A specific instance are residual
networks with ReLU activation function [30] that are successfully applied
in practice. The difference to standard feedforward networks is that if all
networks parameters are set to zero in a residual network, the network be-
comes essentially the identity map. For other activation functions it is much
harder to approximate the identity.

Another advantage of the ReLU activation is that all network parame-
ters can be taken to be bounded in absolute value by one. If all network
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parameters are initialized by a value in [−1, 1], this means that each net-
work parameter only need to be varied by at most two during training. It
is unclear whether other results in the literature for non-ReLU activation
functions hold for bounded network parameters. An important step is the
approximation of the square function x 7→ x2. For any twice differentiable
and non-linear activation function, the classical approach to approximate
the square function by a network is to use rescaled second order differences
(σ(t + 2xh) − 2σ(t + xh) + σ(xh))/(h2σ′′(t)) → x2 for h → 0 and a t with
σ′′(t) 6= 0. To achieve a sufficiently good approximation, we need to let h
tend to zero with the sample size, making some of the network parameters
necessarily very large.

The log2 n-factor in the convergence rate φnL log2 n is likely an arti-
fact of the proof. Next we show that φn is a lower bound for the mini-
max estimation risk over the class G(q,d, t,β,K) in the interesting regime
ti ≤ min(d0, . . . , di−1) for all i. This means that no dimensions are added on
deeper abstraction levels in the composition of functions. In particular, it
avoids that ti is larger than the input dimension d0. Outside of this regime,
it is hard to determine the minimax rate and in some cases it is even possi-
ble to find another representation of f as a composition of functions which
yields a faster convergence rate.

Theorem 3. Consider the nonparametric regression model (1) with Xi

drawn from a distribution with Lebesgue density on [0, 1]d which is lower
and upper bounded by positive constants. For any non-negative integer q,
any dimension vectors d and t satisfying ti ≤ min(d0, . . . , di−1) for all i,
any smoothness vector β and all sufficiently large constants K > 0, there
exists a positive constant c, such that

inf
f̂n

sup
f0∈G(q,d,t,β,K)

R
(
f̂n, f0

)
≥ cφn,

where the inf is taken over all estimators f̂n.

The proof is deferred to Section 7. To illustrate the main ideas, we provide
a sketch here. For simplicity assume that ti = di = 1 for all i. In this case, the
functions gi are univariate and real-valued. Define i∗ ∈ arg mini=0,...,q β

∗
i /(2β

∗
i +

1) as an index for which the estimation rate is obtained. For any α > 0, xα

has Hölder smoothness α and for α = 1, the function is infinitely often differ-
entiable and has finite Hölder norm for all smoothness indices. Set g`(x) = x
for ` < i∗ and g`(x) = xβ`∧1 for ` > i∗. Then,

f0(x) = gq ◦ gq−1 ◦ . . . ◦ g1 ◦ g0(x) =
(
gi∗(x)

)∏q
`=i∗+1

β`∧1
.
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14 J. SCHMIDT-HIEBER

Assuming for the moment uniform random design, the Kullback-Leibler di-
vergence is KL(Pf , Pg) = n

2 ‖f − g‖22. Take a kernel function K and con-
sider g̃(x) = hβi∗K(x/h). Under standard assumptions on K, g̃ has Hölder
smoothness index βi∗ . Now we can generate two hypotheses f00(x) = 0

and f01(x) = (hβi∗K(x/h))
∏q
`=i∗+1

β`∧1 by taking gi∗(x) = 0 and gi∗(x) =
g̃(x). Therefore, |f00(0) − f01(0)| & hβ

∗
i∗ assuming that K(0) > 0. For the

Kullback-Leibler divergence, we find KL(Pf00 , Pf01) . nh2β∗
i∗+1. Using The-

orem 2.2 (iii) in [73], this shows that the pointwise rate of convergence
is n−2β∗

i∗/(2β
∗
i∗+1) = maxi=0,...,q n

−2β∗i /(2β
∗
i +1). This matches with the upper

bound since ti = 1 for all i. For lower bounds on the prediction error, we
generalize the argument to a multiple testing problem.

The L2-minimax rate coincides in most regimes with the sup-norm rate
obtained in Section 4.1 of [35] for composition of two functions. But unlike
the classical nonparametric regression model, the minimax estimation rates
for L2-loss and sup-norm loss differ for some setups by a polynomial power
in the sample size n.

There are several recent results in approximation theory that provide
lower bounds on the number of required network weights s such that all
functions in a function class can be approximated by a s-sparse network
up to some prescribed error, cf. for instance [10]. Results of this flavor can
also be quite easily derived by combining the minimax lower bound with
the oracle inequality. The argument is that if the same approximation rates
would hold for networks with less parameters then we would obtain rates
that are faster than the minimax rates, which clearly is a contradiction.
This provides a new statistical route to establish approximation theoretic
properties.

Lemma 1. Given β,K > 0, d ∈ N, there exist constants c1, c2 only
depending on β,K, d, such that if

s ≤ c1
ε−d/β

L log(1/ε)

for some ε ≤ c2, then for any width vector p with p0 = d and pL+1 = 1,

sup
f0∈Cβd ([0,1]d,K)

inf
f∈F(L,p,s)

‖f − f0‖∞ ≥ ε.

A more refined argument using Lemma 4 instead of Theorem 2 yields also
lower bounds for L2.
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4. Examples of specific structural constraints. In this section we
discuss several well-studied special cases of compositional constraints on the
regression function.

Additive models: In an additive model the regression function has the form

f0(x1, . . . , xd) =

d∑
i=1

fi(xi).

This can be written as a composition of functions

f0 = g1 ◦ g0(12)

with g0(x) = (f1(x1), . . . , fd(xd))
> and g1(y) =

∑d
j=1 yj . Consequently, g0 :

[0, 1]d → Rd and g1 : Rd → R and thus d0 = d, t0 = 1, d1 = t1 = d, d2 = 1.
Equation (12) decomposes the original function into one function where
each component only depends on one variable only and another function
that depends on all variables but is infinitely smooth. For both types of
functions fast rates can be obtained that do not suffer from the curse of
dimensionality. This explains then the fast rate that can be obtained for
additive models.

Suppose that fi ∈ Cβ1 ([0, 1],K) for i = 1, . . . , d. Then, f : [0, 1]d
g0−→

[−K,K]d
g1−→ [−Kd,Kd]. Since for any γ > 1, g1 ∈ Cγd ([−K,K]d, (K + 1)d),

f0 ∈ G
(
1, (d, d, 1), (1, d), (β, (β ∨ 2)d), (K + 1)d

)
.

For network architectures F(L,p, s, F ) satisfying F ≥ (K+1)d, 2 log2(4(β∨
2)d) log n ≤ L . log n, n1/(2β+1) . mini pi and s � n1/(2β+1) log n, we thus
obtain by Theorem 1,

R(f̂n, f0) . n
− 2β

2β+1 log3 n+ ∆(f̂n, f0).

This coincides up to the log3 n-factor with the minimax estimation rate.
Generalized additive models: Suppose the regression function is of the form

f0(x1, . . . , xd) = h
( d∑
i=1

fi(xi)
)
,

for some unknown link function h : R→ R. This can be written as composi-
tion of three functions f0 = g2 ◦ g1 ◦ g0 with g0 and g1 as before and g2 = h.
If fi ∈ Cβ1 ([0, 1],K) and h ∈ Cγ1 (R,K), then f0 : [0, 1]d

g0−→ [−K,K]d
g1−→

[−Kd,Kd]
g2−→ [−K,K]. Arguing as for additive models,

f0 ∈ G
(

2, (d, d, 1, 1), (1, d, 1), (β, (β ∨ 2)d, γ), (K + 1)d
)
.
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16 J. SCHMIDT-HIEBER

For network architectures satisfying the assumptions of Theorem 1, the
bound on the estimation rate becomes

R(f̂n, f0) .
(
n
− 2β(γ∧1)

2β(γ∧1)+1 + n
− 2γ

2γ+1

)
log3 n+ ∆(f̂n, f0).(13)

Theorem 3 shows that n−2β(γ∧1)/(2β(γ∧1)+1) + n−2γ/(2γ+1) is also a lower
bound. Let us also remark that for the special case β = γ ≥ 2 and β, γ
integers, Theorem 2.1 of [34] establishes the estimation rate n−2β/(2β+1).

Sparse tensor decomposition: Assume that the regression function f0 has
the form

f0(x) =
N∑
`=1

a`

d∏
i=1

fi`(xi),(14)

for fixed N, real coefficients a` and univariate functions fi`. Especially, if
N = 1, this is the same as imposing a product structure on the regression
function f0(x) =

∏d
i=1 fi(xi). The function class spanned by such sparse

tensor decomposition can be best explained by making a link to series esti-
mators. Series estimators are based on the idea that the unknown function
is close to a linear combination of few basis functions, where the approx-
imation error depends on the smoothness of the signal. This means that
any L2-function can be approximated by f0(x) ≈

∑N
`=1 a`

∏d
i=1 φi`(xi) for

suitable coefficients a` and functions φi`.
Whereas series estimators require the choice of a basis, for neural networks

to achieve fast rates it is enough that (14) holds. The functions fi` can be
unknown and do not need to be orthogonal.

We can rewrite (14) as a composition of functions f0 = g2 ◦ g1 ◦ g0 with
g0(x) = (fi`(xi))i,`, g1 = (g1j)j=1,...,N performing the N multiplications∏d
i=1 and g2(y) =

∑N
`=1 a`y`. Observe that t0 = 1 and t1 = d. Assume

that fi` ∈ Cβ1 ([0, 1],K) for K ≥ 1 and max` |a`| ≤ 1. Because of g1,j ∈
Cγd ([−K,K]d, 2dKd) for all γ ≥ d+1 and g2 ∈ Cγ

′

N ([−2dKd, 2dKd]N , N(2dKd+

1)) for γ′ > 1, we have [0, 1]d
g0−→ [−K,K]Nd

g1−→ [−2dKd, 2dKd]N
g2−→

[−N(2dKd + 1), N(2dKd + 1)] and

f0 ∈ G
(

2, (d,Nd,N, 1), (1, d,Nd), (β, βd ∨ (d+ 1), Nβ + 1), N(2dKd + 1)
)
.

For networks with architectures satisfying 3 log2(4(β + 1)(d+ 1)N) log2 n ≤
L . log n, n1/(2β+1) . mini pi and s � n1/(2β+1) log n, Theorem 1 yields the
rate

R(f̂n, f0) . n
− 2β

2β+1 log3 n+ ∆(f̂n, f0),

and the exponent in the rate does not depend on the input dimension d.
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5. Suboptimality of wavelet series estimators. As argued before
the composition assumption in (6) is very natural and generalizes many
structural constraints such as additive models. In this section, we show that
wavelet series estimators are unable to take advantage from the underlying
composition structure in the regression function and achieve in some setups
much slower convergence rates.

More specifically, we consider general additive models of the form f0(x) =
h(x1 + . . .+ xd) with h ∈ Cα1 ([0, d],K). This can also be viewed as a special
instance of the single index model, where the aim is not to estimate h but f0.
Using (13), the prediction error of neural network reconstructions with small
empirical risk and depth L � log n is then bounded by n−2α/(2α+1) log3 n.
The lower bound below shows that wavelet series estimators cannot converge
faster than with the rate n−2α/(2α+d). This rate can be much slower if d is
large. Wavelet series estimators thus suffer in this case from the curse of
dimensionality while neural networks achieve fast rates.

Consider a compact wavelet basis of L2(R) restricted to L2[0, 1], say
(ψλ,λ ∈ Λ), cf. [13]. Here, Λ = {(j, k) : j = −1, 0, 1, . . . ; k ∈ Ij} with
k ranging over the index set Ij and ψ−1,k := φ(· − k) are the shifted scaling
functions. Then, for any function f ∈ L2[0, 1]d,

f(x) =
∑

(λ1,...,λd)∈Λ×...×Λ

dλ1...λd(f)
d∏
r=1

ψλr(xr),

with convergence in L2[0, 1] and

dλ1...λd(f) :=

∫
f(x)

d∏
r=1

ψλr(xr) dx

the wavelet coefficients.
To construct a counterexample, it is enough to consider the nonparametric

regression model Yi = f0(Xi) + εi, i = 1, . . . , n with uniform design Xi :=
(Ui,1, . . . , Ui,d) ∼ Unif[0, 1]d. The empirical wavelet coefficients are

d̂λ1...λd(f0) =
1

n

n∑
i=1

Yi

d∏
r=1

ψλr(Ui,r).

Because of E[d̂λ1...λd(f0)] = dλ1...λd(f0), this gives unbiased estimators for
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18 J. SCHMIDT-HIEBER

the wavelet coefficients. By the law of total variance,

Var
(
d̂λ1...λd(f0)

)
=

1

n
Var

(
Y1

d∏
r=1

ψλr(U1,r)
)

≥ 1

n
E
[

Var
(
Y1

d∏
r=1

ψλr(U1,r)
∣∣∣U1,1,, . . . , U1,d

)]
=

1

n
.

For the lower bounds we may assume that the smoothness indices are known.
For estimation, we can truncate the series expansion on a resolution level
that balances squared bias and variance of the total estimator. More gener-
ally, we study estimators of the form

f̂n(x) =
∑

(λ1,...,λd)∈I

d̂λ1...λd(f0)
d∏
r=1

ψλr(xr),(15)

for an arbitrary subset I ⊂ Λ× . . .× Λ. Using that the design is uniform,

R(f̂n, f0) =
∑

(λ1,...,λd)∈I

E
[(
d̂λ1...λd(f0)− dλ1...λd(f0)

)2]
+

∑
(λ1,...,λd)∈Ic

dλ1...λd(f0)2

≥
∑

(λ1,...,λd)∈Λ×...×Λ

1

n
∧ dλ1...λd(f0)2.

(16)

By construction, ψ ∈ L2(R) has compact support, We can therefore without
loss of generality assume that ψ is zero outside of [0, 2q] for some integer
q > 0.

Lemma 2. Let q be as above and set ν := dlog2 de+1. For any 0 < α ≤ 1
and any K > 0, there exists a non-zero constant c(ψ, d) only depending on
d and properties of the wavelet function ψ such that for any j, we can find
a function fj,α(x) = hj,α(x1 + . . .+ xd) with hj,α ∈ Cα1 ([0, d],K) satisfying

d(j,2q+νp1)...(j,2q+νpd)(fj,α) = c(ψ, d)K2−
j
2

(2α+d)

for all p1, . . . , pd ∈ {0, 1, . . . , 2j−q−ν − 1}.
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Theorem 4. If f̂n denotes the wavelet estimator (15) for a compactly
supported wavelet ψ and an arbitrary index set I, then, for any 0 < α ≤ 1
and any Hölder radius K > 0,

sup
f0(x)=h(

∑d
r=1 xr), h∈Cα1 ([0,d],K)

R(f̂n, f0) & n−
2α

2α+d .

A close inspection of the proof shows that the theorem even holds for
0 < α ≤ r with r the smallest positive integer for which

∫
xrψ(x)dx 6= 0.

6. A brief summary of related statistical theory for neural net-
works. This section is intended as a condensed overview on related litera-
ture summarizing main proving strategies for bounds on the statistical risk.
An extended summary of the work until the late 90’s is given in [57]. To con-
trol the stochastic error of neural networks, bounds on the covering entropy
and VC dimension can be found in the monograph [2]. A challenging part in
the analysis of neural networks is the approximation theory for multivariate
functions. We first recall results for shallow neural networks, that is, neural
networks with one hidden layer.

Shallow neural networks: A shallow network with one output unit and
width vector (d,m, 1) can be written as

fm(x) =
m∑
j=1

cjσ
(
w>j x + vj

)
, wj ∈ Rd, vj , cj ∈ R.(17)

The universal approximation theorem states that a neural network with one
hidden layer can approximate any continuous function f arbitrarily well
with respect to the uniform norm provided there are enough hidden units,
cf. [32, 33, 14, 44, 68]. If f has a derivative f ′, then the derivative of the
neural network also approximates f ′. The number of required hidden units
might be, however, extremely large, cf. [54] and [53]. There are several proofs
for the universal approximation theorem based on the Fourier transform, the
Radon transform and the Hahn-Banach theorem [63].

The proofs can be sharpened in order to obtain rates of convergence.
In [49] the convergence rate n−2β/(2β+d+5) is derived. Compared with the
minimax estimation rate this is suboptimal by a polynomial factor. The
reason for the loss of performance with this approach is that rewriting the
function as a network requires too many parameters.

In [5, 6, 37, 38] a similar strategy is used to derive the rate Cf (d logn
n )1/2

for the squared L2-risk, where Cf :=
∫
|ω|1|Ff(ω)|dω and Ff denotes the

Fourier transform of f. If Cf < ∞ and d is fixed the rate is always n−1/2
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up to logarithmic factors. Since
∑

i ‖∂if‖∞ ≤ Cf , this means that Cf <∞
can only hold if f has Hölder smoothness at least one. This rate is difficult
to compare with the standard nonparametric rates except for the special
case d = 1, where the rate is suboptimal compared with the minimax rate
n−2/(2+d) for d-variate functions with smoothness one. More interestingly,
the rate Cf (d logn

n )1/2 shows that neural networks can converge fast if the
underlying function satisfies some additional structural constraint. The same
rate can also be obtained by a Fourier series estimator, see [11], Section 1.7.
In a similar fashion, [3] studies abstract function spaces on which shallow
networks achieve fast convergence rates.

Results for multilayer neural networks: In [50] it is shown how to
approximate a polytope by a neural network with two hidden layers. Based
on this result, [39] uses two-layer neural networks with sigmoidal activation
function and achieves the nonparametric rate n−2β/(2β+d) up to log n-factors
for β ≤ 1. This is extended in [40] to a composition assumption and fur-
ther generalized to β > 1 in the recent article [8]. Unfortunately, the result
requires that the activation function is at least as smooth as the signal, cf.
Theorem 1 in [8] and therefore rules out the ReLU activation function.

The activation function σ(x) = x2 is not of practical relevance but has
some interesting theory. Indeed, with one hidden layer, we can generate
quadratic polynomials and with L hidden layers polynomials of degree 2L.
For this activation function, the role of the network depth is the polynomial
degree and we can use standard results to approximate functions in common
function classes. A natural generalization is the class of activation functions
satisfying limx→−∞ x

−kσ(x) = 0 and limx→+∞ x
−kσ(x) = 1.

If the growth is at least quadratic (k ≥ 2), the approximation theory
has been derived in [50] for deep networks with number of layers scaling
with log d. The same class has also been considered recently in [10]. For
the approximations to work, the assumption k ≥ 2 is crucial and the same
approach does not generalize to the ReLU activation function, which satisfies
the growth condition with k = 1, and always produces functions that are
piecewise linear in the input.

Approximation theory for the ReLU activation function has been only
recently developed in [72, 45, 76, 70]. The key observation is that there are
specific deep networks with few units which approximate the square function
well. In particular, the function approximation presented in [76] is essential
for our approach and we use a similar strategy to construct networks that
are close to a given function. We are, however, interested in a somehow dif-
ferent question. Instead of deriving existence of a network architecture with
good approximation properties, we show that for any network architecture
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satisfying the conditions of Theorem 1 good approximation rates are ob-
tainable. An additional difficulty in our approach is the boundedness of the
network parameters.

7. Proofs.

7.1. Embedding properties of network function classes. For the approx-
imation of a function by a network, we first construct smaller networks
computing simpler objects. Let p = (p0, . . . , pL+1) and p′ = (p′0, . . . , p

′
L+1).

To combine networks, we make frequently use of the following rules.
Enlarging: F(L,p, s) ⊆ F(L,q, s′) whenever p ≤ q componentwise and

s ≤ s′.
Composition: Suppose that f ∈ F(L,p) and g ∈ F(L′,p′) with pL+1 = p′0.

For a vector v ∈ RpL+1 we define the composed network g ◦ σv(f) which is
in the space F(L + L′ + 1, (p, p′1, . . . , p

′
L′+1)). In most of the cases that we

consider, the output of the first network is non-negative and the shift vector
v will be taken to be zero.

Additional layers/depth synchronization: To synchronize the number of
hidden layers for two networks, we can add additional layers with identity
weight matrix, such that

F(L,p, s) ⊂ F(L+ q, (p0, . . . , p0︸ ︷︷ ︸
q times

,p), s+ qp0).(18)

Parallelization: Suppose that f, g are two networks with the same number
of hidden layers and the same input dimension, that is, f ∈ F(L,p) and
g ∈ F(L,p′) with p0 = p′0. The parallelized network (f, g) computes f and
g simultaneously in a joint network in the class F(L, (p0, p1 +p′1, . . . , pL+1 +
p′L+1)).

Removal of inactive nodes: We have

F(L,p, s) = F
(
L, (p0, p1 ∧ s, p2 ∧ s, . . . , pL ∧ s, pL+1), s

)
.(19)

To see this, let f(x) = WLσvLWL−1 . . . σv1W0x ∈ F(L,p, s). If all entries of
the j-th column of Wi are zero, then we can remove this column together
with the j-th row in Wi−1 and the j-th entry of vi without changing the func-
tion. This shows then that f ∈ F(L, (p0, . . . , pi−1, pi − 1, pi+1, . . . , pL+1), s).
Because there are s active parameters, we can iterate this procedure at least
pi − s times for any i = 1, . . . , L. This proves f ∈ F

(
L, (p0, p1 ∧ s, p2 ∧

s, . . . , pL ∧ s, pL+1), s
)
.

We frequently make use of the fact that for a fully connected network
in F(L,p), there are

∑L
`=0 p`p`+1 weight matrix parameters and

∑L
`=1 p`
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network parameters coming from the shift vectors. The total number of
parameters is thus

L∑
`=0

(p` + 1)p`+1 − pL+1.(20)

Theorem 5. For any function f ∈ Cβr ([0, 1]r,K) and any integers m ≥ 1
and N ≥ (β + 1)r ∨ (K + 1)er, there exists a network

f̃ ∈ F
(
L,
(
r, 6(r + dβe)N, . . . , 6(r + dβe)N, 1

)
, s,∞

)
with depth

L = 8 + (m+ 5)(1 + dlog2(r ∨ β)e)
and number of parameters

s ≤ 141(r + β + 1)3+rN(m+ 6),

such that

‖f̃ − f‖L∞([0,1]r) ≤ (2K + 1)(1 + r2 + β2)6rN2−m +K3βN−
β
r .

The proof of the theorem is given in the supplement. The idea is to first
build networks that for given input (x, y) approximately compute the prod-
uct xy. We then split the input space into small hyper-cubes and construct a
network that approximates a local Taylor expansion on each of these hyper-
cubes.

Based on Theorem 5, we can now construct a network that approximates
f = gq ◦ . . .◦g0. In a first step, we show that f can always be written as com-
position of functions defined on hypercubes [0, 1]ti . As in the previous theo-

rem, let gij ∈ Cβiti ([ai, bi]
ti ,Ki) and assume that Ki ≥ 1. For i = 1, . . . , q− 1,

define

h0 :=
g0

2K0
+

1

2
, hi :=

gi(2Ki−1 · −Ki−1)

2Ki
+

1

2
, hq = gq(2Kq−1 · −Kq−1).

Here, 2Ki−1x−Ki−1 means that we transform the entries by 2Ki−1xj−Ki−1

for all j. Clearly,

f = gq ◦ . . . g0 = hq ◦ . . . ◦ h0.(21)

Using the definition of the Hölder balls Cβr (D,K), it follows that h0j takes

values in [0, 1], h0j ∈ Cβ0t0 ([0, 1]t0 , 1), hij ∈ Cβiti ([0, 1]ti , (2Ki−1)βi) for i =

1, . . . , q−1, and hqj ∈ C
βq
tq ([0, 1]tq ,Kq(2Kq−1)βq). Without loss of generality,

we can always assume that the radii of the Hölder balls are at least one,
that is, Ki ≥ 1.
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Lemma 3. Let hij be as above with Ki ≥ 1. Then, for any functions

h̃i = (h̃ij)
>
j with h̃ij : [0, 1]ti → [0, 1],∥∥hq ◦ . . . ◦ h0 − h̃q ◦ . . . ◦ h̃0

∥∥
L∞[0,1]d

≤ Kq

q−1∏
`=0

(2K`)
β`+1

q∑
i=0

∥∥|hi − h̃i|∞∥∥∏q
`=i+1 β`∧1

L∞[0,1]di
.

Proof. Define Hi = hi ◦ . . . ◦ h0 and H̃i = h̃i ◦ . . . ◦ h̃0. If Qi is an
upper bound for the Hölder semi-norm of hij , j = 1, . . . , di+1, we find using
triangle inequality,∣∣Hi(x)− H̃i(x)

∣∣
∞

≤ |hi ◦Hi−1(x)− hi ◦ H̃i−1(x)
∣∣
∞ + |hi ◦ H̃i−1(x)− h̃i ◦ H̃i−1(x)

∣∣
∞

≤ Qi
∣∣Hi−1(x)− H̃i−1(x)

∣∣βi∧1

∞ + ‖|hi − h̃i|∞‖L∞[0,1]di .

Together with the inequality (y+ z)α ≤ yα + zα which holds for all y, z ≥ 0
and all α ∈ [0, 1], the result follows.

Proof of Theorem 1. It is enough to prove the result for all suffi-
ciently large n. Throughout the proof C ′ is a constant only depending on
(q,d, t,β, F ) that may change from line to line. Combining Theorem 2 with
the assumed bounds on the depth L and the network sparsity s, it follows
for n ≥ 3,

1

4
∆n(f̂n, f0)− C ′φnL log2 n ≤ R(f̂ , f0)

≤ 4 inf
f∗∈F(L,p,s,F )

∥∥f∗ − f0

∥∥2

∞ + 4∆n(f̂n, f0) + C ′φnL log2 n,
(22)

where we used ε = 1/2 for the lower bound and ε = 1 for the upper bound.
Taking C = 8C ′, we find that 1

8∆n(f̂n, f0) ≤ R(f̂ , f0) whenever ∆n(f̂n, f0) ≥
CφnL log2 n. This proves the lower bound in (9).

To derive the upper bounds in (8) and (9) we need to bound the approx-
imation error. To do this, we rewrite the regression function f0 as in (21),
that is, f0 = hq ◦ . . . h0 with hi = (hij)

>
j , hij defined on [0, 1]ti , and for any

i < q, hij mapping to [0, 1].
We apply Theorem 5 to each function hij separately. Take m = dlog2 ne

and let L′i := 8 + (dlog2 ne+ 5)(1 + dlog2(ti ∨ βi)e). This means there exists

a network h̃ij ∈ F(L′i, (ti, 6(ti + dβie)N, . . . , 6(ti + dβie)N, 1), si) with si ≤
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141(ti + βi + 1)3+tiN(dlog2 ne+ 6), such that

‖h̃ij − hij‖L∞([0,1]ti ) ≤ (2Qi + 1)(1 + t2i + β2
i )6tiNn−1 +Qi3

βiN
−βi
ti ,(23)

where Qi is any upper bound of the Hölder norms of hij . If i < q, then we
apply to the output the two additional layers 1−(1−x)+. This requires four
additional parameters. Call the resulting network h∗ij ∈ F(L′i + 2, (ti, 6(ti +

dβie)N, . . . , 6(ti+dβie)N, 1), si+4) and observe that σ(h∗ij) = (h̃ij(x)∨0)∧1.
Since hij(x) ∈ [0, 1], we must have

‖σ(h∗ij)− hij‖L∞([0,1]r) ≤ ‖h̃ij − hij‖L∞([0,1]r).(24)

If the networks h∗ij are computed in parallel, h∗i = (h∗ij)j=1,...,di+1
lies in the

class

F
(
L′i + 2, (di, 6riN, . . . , 6riN, di+1), di+1(si + 4)

)
,

with ri := maxi di+1(ti + dβie). Finally, we construct the composite network
f∗ = h̃q1 ◦ σ(h∗q−1) ◦ . . . ◦ σ(h∗0) which by the composition rule in Section 7.1
can be realized in the class

F
(
E, (d, 6riN, . . . , 6riN, 1),

q∑
i=0

di+1(si + 4)
)
,(25)

with E := 3(q − 1) +
∑q

i=0 L
′
i. Observe that there is an An that is bounded

in n such that E = An + log2 n(
∑q

i=0dlog2(ti ∨ βi)e+ 1). Using that dxe <
x + 1, E ≤

∑q
i=0(log2(4) + log2(ti ∨ βi)) log2 n ≤ L for all sufficiently large

n. By (18) and for sufficiently large n, the space (25) can be embedded
into F(L,p, s) with L,p, s satisfying the assumptions of the theorem by

choosing N = dcmaxi=0,...,q n
ti

2β∗
i
+ti e for a sufficiently small constant c > 0

only depending on q,d, t,β. Combining Lemma 3 with (23) and (24)

inf
f∗∈F(L,p,s)

∥∥f∗ − f0

∥∥2

∞ ≤ C
′ max
i=0,...,q

N
− 2β∗i

ti ≤ C ′ max
i=0,...,q

c
− 2β∗i

ti n
− 2β∗i

2β∗
i
+ti .(26)

For the approximation error in (22) we need to find a network function
that is bounded in sup-norm by F. By the previous inequality there exists a
sequence (f̃n)n such that for all sufficiently large n, f̃n ∈ F(L,p, s) and ‖f̃n−
f0‖2∞ ≤ 2C maxi=0,...,q c

−2β∗i /tin−(2β∗i )/(2β∗i +ti).Define f∗n = f̃n(‖f0‖∞/‖f̃n‖∞
∧ 1). Then, ‖f∗n‖∞ ≤ ‖f0‖∞ = ‖gq‖∞ ≤ K ≤ F, where the last in-
equality follows from assumption (i). Moreover, f∗n ∈ F(L,p, s, F ). Writing
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f∗n − f0 = (f∗n − f̃n) + (f̃n − f0), we obtain ‖f∗n − f0‖∞ ≤ 2‖f̃n − f0‖∞.
This shows that (26) also holds (with constants multiplied by 8) if the in-
fimum is taken over the smaller space F(L,p, s, F ). Together with (22) the
upper bounds in (8) and (9) follow for any constant C. This completes the
proof.

7.2. Proof of Theorem 2. Several oracle inequalities for the least-squares
estimator are know, cf. [25, 41, 19, 26, 48]. The common assumption of
bounded response variables is, however, violated in the nonparametric re-
gression model with Gaussian measurement noise. Additionally we provide
also a lower bound of the risk and give a proof that can be easily generalized
to arbitrary noise distributions. Let N (δ,F , ‖ · ‖∞) be the covering number,
that is, the minimal number of ‖ · ‖∞-balls with radius δ that covers F (the
centers do not need to be in F).

Lemma 4. Consider the d-variate nonparametric regression model (1)
with unknown regression function f0. Let f̂ be any estimator taking values
in F . Define

∆n := ∆n(f̂ , f0,F) := Ef0

[ 1

n

n∑
i=1

(Yi − f̂(Xi))
2 − inf

f∈F

1

n

n∑
i=1

(Yi − f(Xi))
2
]

and assume {f0} ∪ F ⊂ {f : [0, 1]d → [−F, F ]} for some F ≥ 1. If Nn :=
N (δ,F , ‖ · ‖∞) ≥ 3, then,

(1− ε)2∆n − F 2 18 logNn + 76

nε
− 38δF

≤ R(f̂ , f0)

≤ (1 + ε)2
[

inf
f∈F

E
[(
f(X)− f0(X)

)2]
+ F 2 18 logNn + 72

nε
+ 32δF + ∆n

]
,

for all δ, ε ∈ (0, 1].

The proof of the lemma can be found in the supplement. Next, we prove
a covering entropy bound. Recall the definition of the network function class
F(L,p, s, F ) in (4).

Lemma 5. If V :=
∏L+1
`=0 (p` + 1), then, for any δ > 0,

logN
(
δ,F(L,p, s,∞), ‖ · ‖∞

)
≤ (s+ 1) log

(
2δ−1(L+ 1)V 2

)
.

For a proof see the supplement. A related result is Theorem 14.5 in [2].
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Remark 1. Identity (19) applied to Lemma 5 yields,

logN
(
δ,F(L,p, s,∞), ‖ · ‖∞

)
≤ (s+ 1) log

(
22L+5δ−1(L+ 1)p2

0p
2
L+1s

2L
)
.

Proof of Theorem 2. The assertion follows from Lemma 5 with δ =
1/n, Lemma 4 and Remark 1 since F ≥ 1.

7.3. Proof of Theorem 3. Throughout this proof, ‖ · ‖2 = ‖ · ‖L2[0,1]d .
By assumption there exist positive γ ≤ Γ such that the Lebesgue density
of X is lower bounded by γ and upper bounded by Γ on [0, 1]d. For such
design, R(f̂n, f0) ≥ γ‖f̂n − f0‖22. Denote by Pf the law of the data in the
nonparametric regression model (1). For the Kullback-Leibler divergence we
have KL(Pf , Pg) = nE[(f(X1)−g(X1))2] ≤ Γn‖f−g‖22. Theorem 2.7 in [73]
states that if for some M ≥ 1 and κ > 0, f(0), . . . , f(M) ∈ G(q,d, t,β,K) are
such that

(i) ‖f(j) − f(k)‖2 ≥ κ
√
φn for all 0 ≤ j < k ≤M

(ii) n
∑M

j=1 ‖f(j) − f(0)‖22 ≤M log(M)/(9Γ),
then there exists a positive constant c = c(κ, γ), such that

inf
f̂n

sup
f0∈G(q,d,t,β,K)

R
(
f̂n, f0

)
≥ cφn.

In a next step, we construct functions f(0), . . . , f(M) ∈ G(q,d, t,β,K) sat-
isfying (i) and (ii). Define i∗ ∈ arg mini=0,...,q β

∗
i /(2β

∗
i + ti). The index i∗

determines the estimation rate in the sense that φn = n−2β∗
i∗/(2β

∗
i∗+ti∗ ). For

convenience, we write β∗ := βi∗ , β
∗∗ := β∗i∗ , and t∗ := ti∗ . One should notice

the difference between β∗ and β∗∗. Let K ∈ L2(R)∩ Cβ
∗

1 (R, 1) be supported
on [0, 1]. It is easy to see that such a function K exists. Furthermore, de-
fine mn := bρn1/(2β∗∗+t∗)c and hn := 1/mn where the constant ρ is chosen

such that nh2β∗+t∗
n ≤ 1/(72Γ‖KB‖2t∗2 ) with B :=

∏q
`=i∗+1(β` ∧ 1). For any

u = (u1, . . . , ut∗) ∈ Un := {(u1, . . . , ut∗) : ui ∈ {0, hn, 2hn, . . . , (mn − 1)hn},
define

ψu(x1, . . . , xt∗) := hβ
∗
n

t∗∏
j=1

K
(xj − uj

hn

)
.

For α with |α| < β∗, we have ‖∂αψu‖∞ ≤ 1 using K ∈ Cβ
∗

1 (R, 1). For

α = (α1, . . . , αt∗) with |α| = bβ∗c, triangle inequality and K ∈ Cβ
∗

1 (R, 1)
gives

hβ
∗−bβ∗c
n

|
∏t∗

j=1K
(αj)(

xj−uj
hn

)−
∏t∗

j=1K
(αj)(

yj−uj
hn

)|
maxi |xi − yi|β∗−bβ∗c

≤ t∗.
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Hence ψu ∈ Cβ
∗

t∗ ([0, 1]t
∗
, (β∗)t

∗
t∗). For a vector w = (wu)u∈Un ∈ {0, 1}|Un|,

define

φw =
∑

u∈Un

wuψu.

By construction, ψu and ψu′ , u,u′ ∈ Un, u 6= u′ have disjoint support. As a
consequence φw ∈ Cβ

∗

t∗ ([0, 1]t
∗
, 2(β∗)t

∗
t∗).

For i < i∗, let gi(x) := (x1, . . . , xdi)
>. For i = i∗ define gi∗,w(x) =

(φw(x1, . . . , xti∗ ), 0, . . . , 0)>. For i > i∗, set gi(x) := (xβi∧1
1 , 0, . . . , 0)>. Re-

call that B =
∏q
`=i∗+1(β` ∧ 1). We will frequently use that β∗∗ = β∗B.

Because of ti ≤ min(d0, . . . , di−1) and the disjoint supports of the ψu,

fw(x) = gq ◦ . . . ◦ gi∗+1 ◦ gi∗,w ◦ gi∗−1 ◦ . . . ◦ g0(x)

= φw(x1, . . . , xti∗ )
B

=
∑

u∈Un

wuψu(x1, . . . , xti∗ )
B

and fw ∈ G(q,d, t,β,K) provided K is taken sufficiently large.

For all u, ‖ψu‖22 = h2β∗∗+t∗
n ‖KB‖2t∗2 . If Ham(w,w′) =

∑
u∈Un 1(wu 6=

wu′) denotes the Hamming distance, we find

‖fw − fw′‖22 = Ham(w,w′)h2β∗∗+t∗
n ‖KB‖2t∗2 .

By the Varshamov - Gilbert bound ([73], Lemma 2.9) and because of mt∗
n =

|Un|, we conclude that there exists a subset W ⊂ {0, 1}mt
∗
n of cardinality

|W| ≥ 2m
t∗
n /8, such that Ham(w,w′) ≥ mt∗

n /8 for all w,w′ ∈ W, w 6= w′.
This implies that for κ = ‖KB‖t∗2 /(

√
8ρβ

∗∗
),

‖fw − fw′‖22 ≥
1

8
h2β∗∗
n ‖KB‖2t∗2 ≥ κ2φn for all w,w′ ∈ W, w 6= w′.

Using the definition of hn and ρ,

n‖fw − fw′‖22 ≤ nmt∗
n h

2β∗∗+t∗
n ‖KB‖2t∗2 ≤ mt∗

n

72Γ
≤ log |W|

9Γ
.

This shows that the functions fw with w ∈ W satisfy (i) and (ii). The
assertion follows.
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7.4. Proof of Lemma 1. We will choose c2 ≤ 1. Since ‖f0‖∞ ≤ K, it is
therefore enough to consider the infimum over F(L,p, s, F ) with F = K+1.
Let f̃n be an empirical risk minimizer. Recall that ∆n(f̃n, f0) = 0. Because
of the minimax lower bound in Theorem 3, there exists a constant c3 such
that c3n

−2β/(2β+d) ≤ sup
f0∈Cβ1 ([0,1],K)

R(f̃n, f0) for all sufficiently large n.

Because of p0 = d and pL+1 = 1, Theorem 2 yields

c3n
−2β/(2β+d) ≤ sup

f0∈Cβd ([0,1],K)

R(f̃n, f0)

≤ 4 sup
f0∈Cβd ([0,1],K)

inf
f∈F(L,p,s,K+1)

∥∥f − f0

∥∥2

∞ + C(K + 1)2 (s+ 1) log(n(s+ 1)Ld)

n

for some constant C. Given ε, set nε := b(
√

8ε/
√
c3)−(2β+d)/βc. Observe that

for ε ≤
√
c3/8, n

−1
ε ≤ 2(

√
8ε/
√
c3)(2β+d)/β and 8ε2/c3 ≤ n

−2β/(2β+d)
ε . For

sufficiently small c2 > 0 and all ε ≤ c2, we can insert nε in the previous
inequality and find

8ε2 ≤ 4 sup
f0∈Cβd ([0,1],K)

inf
f∈F(L,p,s,K+1)

∥∥f − f0

∥∥2

∞ + C1ε
2β+d
β s

(
log(ε−1sL) + C2

)
for constants C1, C2 depending on K,β, and d. The result follows using the
condition s ≤ c1ε

−d/β/(L log(1/ε)) and choosing c1 small enough.

7.5. Proofs for Section 5.

Proof of Lemma 2. Denote by r the smallest positive integer such that
µr :=

∫
xrψ(x)dx 6= 0. Such an r exists because {xr : r = 0, 1, . . .} spans

L2[0, A] and ψ cannot be constant. If h ∈ L2(R), then we have for the
wavelet coefficients∫

h(x1 + . . .+ xd)
d∏
`=1

ψj,k`(x`) dx

= 2−
jd
2

∫
[0,2q ]d

h
(

2−j
( d∑
`=1

x` + k`

)) d∏
`=1

ψ(x`) dx.(27)

For a real number u, denote by {u} the fractional part of u.
We need to study the cases µ0 6= 0 and µ0 = 0 separately. If µ0 6=

0, define g(u) = r−1ur1[0,1/2](u) + r−1(1 − u)r1(1/2,1](u). Notice that g is
Lipschitz with Lipschitz constant one. Let hj,α(u) = K2−jα−1g({2j−q−νu})
with q and ν as defined in the statement of the lemma. For a T -periodic
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function u 7→ s(u) the α-Hölder semi-norm for α ≤ 1 can be shown to be
supu6=v,|u−v|≤T |s(u)− s(v)|/|u− v|α. Since g is 1-Lipschitz, we have for u, v

with |u− v| ≤ 2q+ν−j ,∣∣hj,α(u)− hj,α(v)
∣∣ ≤ K2−jα−12j−q−ν |u− v| ≤ K

2
|u− v|α.

Since ‖hj,α‖∞ ≤ K/2, hj,α ∈ Cα1 ([0, d],K). Let fj,α(x) = hj,α(x1 + . . .+ xd).
Recall that the support of ψ is contained in [0, 2q] and 2ν ≥ 2d. By definition
of the wavelet coefficients, Equation (27), the definitions of hj,α, and using
µr =

∫
xrψ(x)dx, we find for p1, . . . , pd ∈ {0, 1, . . . , 2j−q−2 − 1},

d(j,2q+νp1)...(j,2q+νpd)(fj,α)

= 2−
jd
2

∫
[0,2q ]d

hj,α

(
2−j
( d∑
`=1

x` + 2q+νp`

)) d∏
`=1

ψ(x`) dx

= K2−
jd
2
−jα−1

∫
[0,2q ]d

g
({∑d

`=1 x`
2q+ν

}) d∏
`=1

ψ(x`) dx

= r−12−qr−νr−1K2−
j
2

(2α+d)

∫
[0,2q ]d

(x1 + . . .+ xd)
r

d∏
`=1

ψ(x`) dx

= dr−12−qr−νr−1Kµd−1
0 µr2

− j
2

(2α+d),

where we used for the last identity that by definition of r, µ1 = . . . = µr−1 =
0.

In the case that µ0 = 0, we can take g(u) = (dr)−1udr1[0,1/2](u) +

(dr)−1(1−u)dr1(1/2,1](u). Following the same arguments as before and using
the multinomial theorem, we obtain

d(j,2q+νp1)...(j,2q+νpr)(fj,α) =

(
dr

r

)
1

dr
2−dqr−dνr−1Kµdr2

− j
2

(2α+d).

The claim of the lemma follows.

Proof of Theorem 4. Let c(ψ, d) be as in Lemma 2. Choose an integer
j∗ such that

1

n
≤ c(ψ, d)2K22−j

∗(2α+d) ≤ 22α+d

n
.

This means that 2j
∗ ≥ 1

2(c(ψ, d)2K2n)1/(2α+d). By Lemma 2, there exists a
function fj∗,α of the form h(x1 + . . .+ xd), h ∈ Cα1 ([0, d],K), such that with
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(16),

R(f̂n, fj∗,α) ≥
∑

p1,...,pd∈{0,1,...,2j∗−q−ν−1}

1

n
=

1

n
2j
∗d−qd−νd & n−

2α
2α+d .
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REJOINDER TO DISCUSSIONS OF ”NONPARAMETRIC
REGRESSION USING DEEP NEURAL NETWORKS WITH

RELU ACTIVATION FUNCTION”

By Johannes Schmidt-Hieber

University of Twente

The author is very grateful to the discussants for sharing their viewpoints
on the article. The discussant contributions highlight the gaps in the theoret-
ical understanding and outline many possible directions for future research
in this area. The rejoinder is structured according to topics. We refer to
[GMMM], [K], [KL], and [S] for the discussant contributions by Ghorbani
et al., Kutyniok, Kohler & Langer, and Shamir, respectively.

1. Overparametrization and implicit regularization. One of the
general claims about deep learning is that even for extreme overfitting the
method still generalizes well. There are numerous experiments showing that
running the training error to zero and therefore interpolating all data points
results in state of the art generalization performance. The rationale behind
this is that among all solutions interpolating the data points - of which most
result in bad generalization behavior - stochastic gradient descent (SGD)
picks a minimum norm interpolant. This is also known as implicit regular-
ization. While this is well known for stochastic gradient descent applied to
linear regression, for deep networks some progress has been made recently
in finding the norm minimized by (S)GD, see [24, 65].

It is now reasonable to wonder whether the notion of network sparsity
could be removed in the article if implicit regularization would have been
taken into account. [GMMM] write that ”model complexity is not controlled
by an explicit penalty or procedure, but by the dynamics of stochastic gradi-
ent descent (SGD) itself.” [S] mentions implicit regularization to show that
statistical guarantees should involve specific learning methods.

We conjecture that for additive error models, such as the nonparamet-
ric regression model considered in the article, implicit regularization in the
overfitted regime is insufficient to achieve even consistency. To support our
conjecture, we provide the following two step argument. In the first step,
we argue that for one-dimensional input and shallow networks with fixed
parameters in the first layer, SGD will converge to a variant of the natural
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cubic spline interpolant. In the second step we show that this reconstruction
leads to an inconsistent estimator if additive noise is present.

A shallow ReLU network with one input and one output node can be
written as x 7→

∑m
j=1 aj(bjx− cj)+. We now study an even more simplified

setup where bj is always one. For small δ > 0, (x−cj)+ ≈
∫ cj+δ
cj

(x−u)+du/δ.

This motivates to study smoothed shallow ReLU networks of the form

x 7→ fa(x) =
m∑
j=1

aj√
tj − tj−1

∫ tj

tj−1

(x− u)+du.

with parameter vector a = (a1, . . . , am) and fixed t0 < t1 < . . . < tm.
For convenience, we have rescaled the parameters aj so that the normaliza-
tion factor becomes 1/

√
tj − tj−1. We consider the overparametrized regime

m ≥ n assuming that for any i, there lies at least one tj in the interval
[X(i−1), X(i)) with X(i) the i-th order statistic of the sample X1, . . . , Xn and
X(0) = −∞. Under overparametrization, this is a rather weak assumption
and ensures existence of a shallow ReLU network f∗a perfectly interpolating
the data in the sense that f∗a(Xi) = Yi for all i.

For initialization at zero and properly chosen learning rate, SGD with
respect to the least squares loss converges to the minimum norm interpolant
with parameter vector

a∗ = arg min
a∈Rm

{
‖a‖2 : fa(Xi) = Yi, ∀i

}
(this result is due to [69] for overdetermined linear systems but can be
extended to the underdetermined case, see also the generalizations in [47, 22,
24]). Because of f ′′a (x) = aj/

√
tj − tj−1 for all x ∈ (tj−1, tj), we find ‖a‖2 =

‖f ′′a‖L2[t0,tm]. It is known that the natural cubic spline interpolant L is the
interpolant with the smallest L2-norm on the second derivative. Moreover,
we have that ‖f ′′‖2L2 = ‖L′′‖2L2 + ‖L′′ − f ′′‖2L2 for all twice differentiable
interpolating functions f , see Equation (2.9) in [23]. Since fa∗ and L are
both interpolants, this implies that the SGD limit fa∗ will be close to the
natural cubic spline interpolant.

In the nonparametric regression model with additive errors, the distance
between the true function values and the response variables Yi is of the
order of the noise level (which is assumed to be fixed). The natural cubic
spline interpolates the Yi’s. If in a neighborhood, the Yi’s lie all on one side
of the regression function, the average distance between the natural cubic
spline interpolant and the true regression function will be lower bounded by
a constant. Since this happens on a subset with Lebesgue measure bounded
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from below, the natural cubic spline interpolant is inconsistent for estimating
the regression function. As the SGD limit approximates the natural cubic
spline interpolant, this indicates that stochastic gradient descent should lead
to inconsistent estimators.

We believe that this also holds true for deep networks. In this case, it is
expected that SGD still converges to a spline interpolant but not necessarily
to the natural cubic spline interpolant, see also [62] for a related argument.

While it has been observed that there are nonparametric estimators that
can interpolate and also achieve fast convergence rates in the nonparametric
regression model ([9]), the argument above indicates that implicit regular-
ization in the overfitted regime will not do that. To obtain rate optimal
estimators, more regularization has to be imposed forcing the network to do
smoothing.

2. Network sparsity. The article identifies sparsity of the network
weights as a complexity measure to achieve optimal convergence rates un-
der a hierarchical composition assumption. As sparsity is a non-standard
assumption, there are several comments on it in the reports. [GMMM] show
that the empirical distribution of the weights in the first fully connected
layer of the VGG-19 network is nearly Gaussian. [KL] mention a recent
result proving optimal estimation rates for very deep networks with fully
connected layers.

After the original version of this article was drafted, a large body of
applied work emerged dealing either with compression through sparsifying
dense networks or proposing methods that directly train a sparse neural
network. Below we briefly summarize some of these approaches.

One method to achieve sparsity in neural networks is by pruning a fully
connected network after training. A simple approach would be to replace
small network weights by zero, but more sophisticated approaches based
on the second derivative have been proposed as well, see [43, 28, 27]. [16]
proposes an iterative pruning procedure, see also [18]. These approaches
allow to reduce the number of parameters in fully connected layers by about
90% without loss of efficiency.

Although Theorem 1 is formulated in terms of network sparsity, the proof
explicitly constructs a network topology, that is, the graph structure defined
by the non-zero connections between successive layers, for which the mini-
max estimation rate is attained (up to log-factors). Instead of searching over
all s-sparse networks, it is therefore in principle possible to start with this
network topology and only learn the non-zero weights. By fixing one sparse
network topology, a lot of the flexibility of networks to adapt to the under-
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lying structure in the data might be lost. An intermediate constraint would
be to impose an individual sparsity parameter for each weight matrix or to
bound the indegree and outdegree for each individual unit in the network.
In the applied literature, choosing a sparse network topology beforehand has
been proposed recently in [59, 61]. The latter article makes an interesting
connection between sparsely connected neural networks and decision trees.
Related to an initial choice of a sparse network topology is the evolutionary
algorithm inspired by biological neural networks proposed in [52]. It starts
with sparse weight matrices. In every iteration, the smallest weights are re-
moved and new random connections are added so that the network topology
changes but the overall network sparsity is kept constant. The method pro-
posed in [1] is also inspired by the sparsity observed in biological networks.
It starts with a sparse network topology and increases the sparsity by only
keeping the units in each hidden layer that channel most of the signal to the
next layer.

The recent work [17] on weight agnostic neural networks takes this one
step further. No training is done and the weights are fixed to the initialized
values at all times. Only the network topology is learned by an iterative
procedure. In each step of the iteration, we have a set of candidate models.
For each of those models a score is computed. ”Around” the models with
the highest scores a new set of randomly generated candidate models is
generated.

Theorem 1 in [KL] considers neural networks with fixed width and depth
increasing polynomially in the sample size. It is shown that for such ex-
tremely deep networks, the empirical risk minimizer over fully-connected
layers achieves the optimal estimation rate and no sparsity is needed. Such
architectures are, however, in many aspects quite different compared to the
neural networks considered in practice. In [77], it has been observed that
for such extremely deep networks, one needs discontinuous weight assign-
ments to achieve the best possible approximation rate. This is a strange phe-
nomenon which could hint at some issues with the stability during learning
of the network weights.

3. Classification and nonparametric regression. While the article
deals with data from the nonparametric regression model, the overwhelm-
ing part of the literature on deep learning is on classification. Nonparametric
regression and estimation of the conditional class probabilities in classifica-
tion is similar, if a fraction of the data is mislabeled which prevents the
conditional class probabilities to be close to zero or one. For the commonly
considered classification tasks in deep learning, this is, however, not the case
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as most of the data are correctly labeled. As the randomness due to mis-
labeling is negligible in those cases, the only remaining randomness is in
the distribution of the design/inputs and reconstruction becomes rather an
interpolation than a denoising problem. If the different classes are also well
separated from each other, much faster convergence rates can be achieved.
This explains why the sample complexity in the nonparametric regression
model is much higher than what is observed in deep learning for object
recognition tasks, see also Report [S].

Concerning the statistical properties there are some differences. For image
classification problems, deep learning is for instance not robust to Gaussian
perturbations, see [31]. In the nonparametric regression model, Gaussian
perturbations just increase the noise level. Since the noise level appears
in the estimation risk bounds through the constants, the estimation rates
for the class of estimators considered in the article will not change under
additive noise perturbations.

We would like to stress again that the structure of the data is essential for
the behavior of deep learning and the properties of the reconstructions. One
of the challenges for future research will be to study estimation in models
beyond nonparametric regression.

4. Algorithms. [GMMM] and [S] question whether one can disentangle
the algorithm from the statistical analysis. We would like to stress that
Theorem 1 is not about one fixed estimator. It provides bounds for any
estimator which, given data, returns a sparsely connected neural network.
The method/estimator determines the term ∆n(f̂n, f0) defined in Equation
(5) and Theorem 1 shows that ∆n(f̂n, f0) tightly controls the estimation risk
from above and below. This is different than the case of data interpolation
and training error zero, where ∆n(f̂n, f0) is not sufficient anymore to fully
characterize the statistical properties, see also Report [S] and [78].

We agree that the difficulty is shifted to a precise estimate of the term
∆n(f̂n, f0) and we hope to study this term in more detail in future work.
This term might heavily depend on the learning rate, the initialization and
the energy landscape. Regarding a question in [K], the expectation in the
definition of ∆n(f̂n, f0) (Equation (5) in the article) can be taken over all
the randomness, including additional randomization in the algorithm.

While it would be desirable to have precise theoretical bounds for the
performance of the most popular deep learning methods such as Adam, we
believe that some amount of idealization and simplification is unavoidable.
In statistical theory, this seems to be widely accepted. For instance, most of
the theory on the LASSO deals with regularization parameters derived from
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large deviations bounds although the standard software implementations
choose the regularization parameter by ten-fold cross validation.

5. High-dimensional input. [GMMM] mentions that for the current
proof strategy and the case of additive models, the dependence of the di-
mension on the constants is dd. As mentioned in the article, the results
focus on the convergence rates and no attempt has been made to mini-
mize the constants appearing in the proofs. In fact by a variation of the
original argument, the dependence on the dimension for additive models
f(x) =

∑d
i=1 fi(xi) can be shown to be linear. To see this, we can build

for any given N ≥ 1, d separate networks with s � N logN parameters,
computing the functions f1(x1), . . . , fd(xd) up to an approximation error of
the order O(N−β). Using the parallelization rule mentioned on p.21 of the
article, one can then combine the individual networks into a large neural
network computing the sum

∑n
i=1 fi(xi) up to an approximation error of

order O(dN−β) using s � dN logN many network parameters. It then fol-
lows from Theorem 2 that the rate is upper bounded by dn−2β/(2β+1) log3 n
if ∆n(f̂n, f0) is sufficiently small and d is bounded by a power of the sample
size.

As another result on high-dimensional input, [S] mentions a theorem prov-
ing that basis expansions have difficulties to approximate functions gener-
ated by a single neuron. Either huge coefficients are needed or the number
of basis functions has to be exponential in the input dimension.

Since the input dimension d in deep learning applications is typically
extremely large, a possible future direction would be to analyze neural net-
works with high-dimensional d = dn ↑ ∞ and comparing the rates to other
nonparametric procedures.

6. Function classes. With respect to the considered function class, [K]
emphasizes that the function classes should be detached from the method.
On the contrary, [S] favors an alternative approach where the underlying
function class consists itself of neural network functions. We believe that
both approaches have advantages and disadvantages.

The imposed class of composition functions in the article appears of course
naturally given the composition structure of deep networks. Compositions
are fundamental operations and as mentioned in the article, many widely
studied function classes in nonparametric statistics such as (generalized)
additive models occur as special cases of the imposed composition constraint.

For a recent result in the statistical literature with function class consist-
ing of neural network functions, we refer to [7]. One possibility for future
research would be to determine the maxisets for neural networks, that is,
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the largest possible function class for which a prespecified estimation rate
can be obtained, see [36]. The main advantage of generic function spaces
such as Hölder classes is that we can compare the estimation rates achieved
by different methods and therefore learn something about the strength and
weaknesses of these methods. The article shows for instance that wavelet
methods have a slower rate of convergence for generalized additive models
than sparsely connected deep ReLU networks.

To obtain fast estimation rates, an alternative is to impose structure on
the design, see [55, 64].

7. Choice of the activation function. On p. 12 in the article we
highlight several specific properties of the ReLU activation function such
as the possibility to easily learn skip connections. [KL] mention that results
for ReLU networks automatically transfer to other activation functions. The
argument, however, requires that the network parameters will become large.
In the meantime, we better and better understand how SGD leads to norm
control on the parameters. To model this, we think that it is important to
control the magnitude of the weights in the network classes. In the article,
the network parameters are bounded in absolute value by one. This is a
convenient choice, but as our understanding of the norm control induced by
SGD improves, more realistic constraints are imaginable. It is well-known
that training does not move the parameters far from the initialized values. To
analyze the effect of different initialization strategies one possibility would
be to study network classes generated by all parameters in a neighborhood
of a (random) initializer.

8. Real data. [GMMM] report the results of a simulation study which
seemingly contradict the theory in the article. They study the noisefree case
and up to three hidden layers showing that a certain smooth function cannot
be learned. We would like to refer to the simulation study in [15], which
finds that for regression problems, the performance of deep neural networks
is not far off from the theoretical bounds. This article also examines the
finite sample performance of the multiplication network in Lemma A.2 which
forms an essential part in the proof of Theorem 1. To a certain extent, even
such specific constructions can be picked up by deep learning. This, however,
only works for a careful initialization. It might be necessary to reinitialize
the procedure if the algorithm gets stuck in a local minimum with large
training error.
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APPENDIX A: NETWORK APPROXIMATION OF POLYNOMIALS

In this section we describe the construction of deep networks that approx-
imate monomials of the input.

In a first step, we construct a network, with all network parameters
bounded by one, which approximately computes xy given input x and y.
Let T k : [0, 22−2k]→ [0, 2−2k],

T k(x) := (x/2) ∧ (21−2k − x/2) = (x/2)+ − (x− 21−2k)+

and Rk : [0, 1]→ [0, 2−2k],

Rk := T k ◦ T k−1 ◦ . . . T 1.

The next result shows that
∑m

k=1R
k(x) approximates x(1−x) exponentially

fast in m and that in particular x(1 − x) =
∑∞

k=1R
k(x) in L∞[0, 1]. This

lemma can be viewed as a slightly sharper variation of Lemma 2.4 in [72]
and Proposition 2 in [76]. In contrast to the existing results, we can use it to
build networks with parameters bounded by one. It also provides an explicit
bound on the approximation error.

Lemma A.1. For any positive integer m,

∣∣x(1− x)−
m∑
k=1

Rk(x)
∣∣ ≤ 2−m.

Proof. In a first step, we show by induction that Rk is a triangle wave.
More precisely, Rk is piecewise linear on the intervals [`/2k, (`+ 1)/2k] with
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endpoints Rk(`/2k) = 2−2k if ` is odd and Rk(`/2k) = 0 if ` is even. For
R1 = T 1 this is obviously true. For the inductive step, suppose this is true
for Rk. Write ` ≡ r mod 4 if ` − r is divisible by 4 and consider x ∈
[`/2k+1, (`+1)/2k+1]. If ` ≡ 0 mod 4 then, Rk(x) = 2−k(x−`/2k+1). Similar
for ` ≡ 2 mod 4, Rk(x) = 2−2k − 2−k(x − `/2k+1); for ` ≡ 1 mod 4, we
have `+ 1 ≡ 2 mod 4 and Rk(x) = 2−2k−1 + 2−k(x− `/2k+1); and for ` ≡ 3
mod 4, Rk(x) = 2−2k−1 − 2−k(x− `/2k+1). Together with

Rk+1(x) = T k+1 ◦Rk(x)

=
Rk(x)

2
1(Rk(x) ≤ 2−2k−1) +

(
2−2k−1 − Rk(x)

2

)
1(Rk(x) > 2−2k−1).

this shows the claim for Rk+1 and completes the induction.
For convenience, write g(x) = x(1 − x). In the next step, we show that

for any m ≥ 1 and any ` ∈ {0, 1, . . . , 2m},

g(`2−m) =
m∑
k=1

Rk(`2−m).

We prove this by induction over m. For m = 1 the result can be checked
directly. For the inductive step, suppose that the claim holds for m. If
` is even we use that Rm+1(`2−m−1) = 0 to obtain that g(`2−m−1) =∑m

k=1R
k(`2−m−1) =

∑m+1
k=1 R

k(`2−m−1). It thus remains to consider ` odd.
Recall that x 7→

∑m
k=1R

k(x) is linear on [(` − 1)2−m−1, (` + 1)2−m−1] and
observe that for any real t,

g(x)− g(x+ t) + g(x− t)
2

= t2.

Using this for x = `2−m−1 and t = 2−m−1 yields for odd ` due toRm+1(`2−m−1)
= 2−2m−2,

g(`2−m−1) = 2−2m−2 +

m∑
k=1

Rk(`2−m−1) =

m+1∑
k=1

Rk(`2−m−1).

This completes the inductive step.
So far we proved that

∑m
k=1R

k(x) interpolates g at the points `2−m and
is linear on the intervals [`2−m, (`+ 1)2−m]. Observe also that g is Lipschitz
with Lipschitz constant one. Thus, for any x, there exists an ` such that∣∣g(x)−

m∑
k=1

Rk(x)
∣∣ =

∣∣∣g(x)− (2mx− `)g
(
(`+ 1)2−m

)
− (`+ 1− 2mx)g(`2−m)

∣∣∣
≤ 2−m.
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Fig 2. The network (T+(u), T 1
−(u), h(u)) 7→

∑m+1
k=1 Rk(u) + h(u).

Let g(x) = x(1−x) as in the previous proof. To construct a network which
returns approximately xy given input x and y, we use the polarization type
identity

g
(x− y + 1

2

)
− g
(x+ y

2

)
+
x+ y

2
− 1

4
= xy,(28)

cf. also [76], Equation (3).

Lemma A.2. For any positive integer m, there exists a network Multm ∈
F(m+ 4, (2, 6, 6, . . . , 6, 1)), such that Multm(x, y) ∈ [0, 1],∣∣Multm(x, y)− xy

∣∣ ≤ 2−m, for all x, y ∈ [0, 1],

and Multm(0, y) = Multm(x, 0) = 0.

Proof. Write Tk(x) = (x/2)+ − (x − 21−2k)+ = T+(x) − T k−(x) with
T+(x) = (x/2)+ and T k−(x) = (x − 21−2k)+ and let h : [0, 1] → [0,∞) be a
non-negative function. In a first step we show that there is a network Nm

with m hidden layers and width vector (3, 3, . . . , 3, 1) that computes the
function (

T+(u), T 1
−(u), h(u)

)
7→

m+1∑
k=1

Rk(u) + h(u),
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for all u ∈ [0, 1]. The proof is given in Figure 2. Notice that all parameters
in this networks are bounded by one. In a next step, we show that there is
a network with m+ 3 hidden layers that computes the function

(x, y) 7→
(m+1∑
k=1

Rk
(x− y + 1

2

)
−
m+1∑
k=1

Rk
(x+ y

2

)
+
x+ y

2
− 1

4

)
+
∧ 1.

Given input (x, y), this network computes in the first layer(
T+

(x− y + 1

2

)
, T 1
−

(x− y + 1

2

)
,
(x+ y

2

)
+
, T+

(x+ y

2

)
, T 1
−

(x+ y

2

)
,
1

4

)
.

On the first three and the last three components, we apply the network Nm.
This gives a network with m+1 hidden layers and width vector (2, 6, . . . , 6, 2)
that computes

(x, y) 7→
(m+1∑
k=1

Rk
(x− y + 1

2

)
+
x+ y

2
,
m+1∑
k=1

Rk
(x+ y

2

)
+

1

4

)
.

Apply to the output the two hidden layer network (u, v) 7→ (1 − (1 − (u −
v))+)+ = (u− v)+ ∧ 1. The combined network Multm(x, y) has thus m+ 4
hidden layers and computes

(x, y) 7→
(m+1∑
k=1

Rk
(x− y + 1

2

)
−
m+1∑
k=1

Rk
(x+ y

2

)
+
x+ y

2
− 1

4

)
+
∧ 1.(29)

This shows that the output is always in [0, 1]. By (28) and Lemma A.1,
|Multm(x, y)− xy| ≤ 2−m.

By elementary computations, one can check that R1((1−u)/2) = R1((1+
u)/2) and R2((1 + u)/2) = R2(u/2) for all 0 ≤ u ≤ 1. Therefore, Rk((1 −
u)/2) = Rk((1 + u)/2) for all k ≥ 1 and Rk((1 + u)/2) = Rk(u/2) for all
k ≥ 2. This shows that the output (29) is zero for all inputs (0, y) and
(x, 0).

Lemma A.3. For any positive integer m, there exists a network

Multrm ∈ F((m+ 5)dlog2 re, (r, 6r, 6r, . . . , 6r, 1))

such that Multrm ∈ [0, 1] and∣∣∣Multrm(x)−
r∏
i=1

xi

∣∣∣ ≤ r22−m, for all x = (x1, . . . , xr) ∈ [0, 1]r.

Moreover, Multrm(x) = 0 if one of the components of x is zero.
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Proof. Let q := dlog2(r)e. Let us now describe the construction of the
Multrm network. In the first hidden layer the network computes

(x1, . . . , xr) 7→ (x1, . . . , xr, 1, . . . , 1︸ ︷︷ ︸
2q−r

).(30)

Next, apply the network Multm in Lemma A.2 to the pairs (x1, x2), (x3, x4),. . . ,
(1, 1) in order to compute (Multm(x1, x2),Multm(x3, x4), . . . ,Multm(1, 1)) ∈
R2q−1

. Now, we pair neighboring entries and apply Multm again. This pro-
cedure is continued until there is only one entry left. The resulting network
is called Multrm and has q(m+ 5) hidden layers and all parameters bounded
by one.

If a, b, c, d ∈ [0, 1], then by Lemma A.2 and triangle inequality, |Multm(a, b)−
cd| ≤ 2−m+ |a−c|+ |b−d|. By induction on the number of iterated multipli-
cations q, we therefore find that |Multrm(x)−

∏r
i=1 xi| ≤ 3q−12−m ≤ r22−m

since log2(3) ≈ 1.58 < 2.
From Lemma A.2 and the construction above, it follows that Multrm(x) =

0 if one of the components of x is zero.

In the next step, we construct a sufficiently large network that approxi-
mates all monomials xα1

1 · . . . ·xαrr for non-negative integers αi up to a certain
degree. As common, we use multi-index notation xα := xα1

1 · . . . ·xαrr , where
α = (α1, . . . , αr) and |α| :=

∑
` |α`| is the degree of the monomial.

The number of monomials with degree |α| < γ is denoted by Cr,γ . Obvi-
ously, Cr,γ ≤ (γ + 1)r since each αi has to take values in {0, 1, . . . , bγc}.

Lemma A.4. For γ > 0 and any positive integer m, there exists a net-
work

Monrm,γ ∈ F
(
1 + (m+ 5)dlog2(γ ∨ 1)e, (r, 6dγeCr,γ , . . . , 6dγeCr,γ , Cr,γ)

)
,

such that Monrm,γ ∈ [0, 1]Cr,γ and∣∣∣Monrm,γ(x)− (xα)|α|<γ

∣∣∣
∞
≤ γ22−m, for all x ∈ [0, 1]r.

Proof. For |α| ≤ 1, the monomials are linear or constant functions and
there exists a shallow network in the class F(1, (1, 1, 1)) with output exactly
xα.

By taking the multiplicity into account in (30), Lemma A.3 can be ex-
tended in a straightforward way to monomials. For |α| ≥ 2, this shows the
existence of a network in the class F((m+ 5)dlog2 |α|e, (r, 6|α|, . . . , 6|α|, 1))
taking values in [0, 1] and approximating xα up to sup-norm error |α|22−m.
Using the parallelization and depth synchronization properties in Section
7.1 yields then the claim of the lemma.
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APPENDIX B: PROOF OF THEOREM 5

We follow the classical idea of function approximation by local Taylor
approximations that has previously been used for network approximations
in [76]. For a vector a ∈ [0, 1]r define

P βa f(x) =
∑

0≤|α|<β

(∂αf)(a)
(x− a)α

α!
.(31)

By Taylor’s theorem for multivariate functions, we have for a suitable ξ ∈
[0, 1],

f(x) =
∑

α:|α|<β−1

(∂αf)(a)
(x− a)α

α!
+

∑
β−1≤|α|<β

(∂αf)(a + ξ(x− a))
(x− a)α

α!
.

We have |(x − a)α| =
∏
i |xi − ai|αi ≤ |x − a||α|∞ . Consequently, for f ∈

Cβr ([0, 1]r,K),∣∣f(x)− P βa f(x)
∣∣

≤
∑

β−1≤|α|<β

|(x− a)α|
α!

∣∣(∂αf)(a + ξ(x− a))− (∂αf)(a)
∣∣(32)

≤ K|x− a|β∞.

We may also write (31) as a linear combination of monomials

P βa f(x) =
∑

0≤|γ|<β

xγcγ ,(33)

for suitable coefficients cγ . For convenience, we omit the dependency on a

in cγ . Since ∂γP βa f(x) |x=0 = γ!cγ , we must have

cγ =
∑

γ≤α&|α|<β

(∂αf)(a)
(−a)α−γ

γ!(α− γ)!
.

Notice that since a ∈ [0, 1]r and f ∈ Cβr ([0, 1]r,K),

|cγ | ≤ K/γ! and
∑
γ≥0

|cγ | ≤ K
r∏
j=1

∑
γj≥0

1

γj !
= Ker.(34)

Consider the set of grid points D(M) := {x` = (`j/M)j=1,...,r : ` =
(`1, . . . , `r) ∈ {0, 1, . . . ,M}r}. The cardinality of this set is (M + 1)r. We
write x` = (x`j)j to denote the components of x`. Define

P βf(x) :=
∑

x`∈D(M)

P βx`
f(x)

r∏
j=1

(1−M |xj − x`j |)+.
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Lemma B.1. If f ∈ Cβr ([0, 1]r,K), then ‖P βf − f‖L∞[0,1]r ≤ KM−β.

Proof. Since for all x = (x1, . . . , xr) ∈ [0, 1]r,

∑
x`∈D(M)

r∏
j=1

(1−M |xj − x`j |)+ =
r∏
j=1

M∑
`=0

(1−M |xj − `/M |)+ = 1,(35)

we have f(x) =
∑

x`∈D(M):‖x−x`‖∞≤1/M f(x)
∏r
j=1(1 −M |xj − x`j |)+ and

with (32),∣∣P βf(x)− f(x)
∣∣ ≤ max

x`∈D(M):‖x−x`‖∞≤1/M

∣∣P βx`
f(x)− f(x)

∣∣ ≤ KM−β.

In a next step, we describe how to build a network that approximates
P βf.

Lemma B.2. For any positive integers M,m, there exists a network

Hatr ∈ F
(

2+(m+5)dlog2 re,
(
r, 6r(M+1)r, . . . , 6r(M+1)r, (M+1)r

)
, s, 1

)
with s ≤ 49r2(M + 1)r(1 + (m + 5)dlog2 re), such that Hatr ∈ [0, 1](M+1)r

and for any x = (x1, . . . , xr) ∈ [0, 1]r,∣∣∣Hatr(x)−
( r∏
j=1

(1/M − |xj − x`j |)+

)
x`∈D(M)

∣∣∣
∞
≤ r22−m.

For any x` ∈ D(M), the support of the function x 7→ (Hatr(x))x` is more-
over contained in the support of the function x 7→

∏r
j=1(1/M − |xj − x`j |)+.

Proof. The first hidden layer computes the functions (xj − `/M)+ and
(`/M−xj)+ using 2r(M+1) units and 4r(M+1) non-zero parameters. The
second hidden layer computes the functions (1/M −|xj− `/M |)+ = (1/M −
(xj − `/M)+− (`/M −xj)+)+ using r(M + 1) units and 3r(M + 1) non-zero
parameters. These functions take values in the interval [0, 1]. This proves the
result for r = 1. For r > 1, we compose the obtained network with networks
that approximately compute the products

∏r
j=1(1/M − |xj − `/M |)+.

By Lemma A.3 there exist Multrm networks in the class

F((m+ 5)dlog2 re, (r, 6r, 6r, . . . , 6r, 1))
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computing
∏r
j=1(1/M − |xj − x`j |)+ up to an error that is bounded by

r22−m. By (20), the number of non-zero parameters of one Multrm network
is bounded by 42r2(1 + (m + 5)dlog2 re). As there are (M + 1)r of these
networks in parallel, this requires 6r(M + 1)r units in each hidden layer
and 42r2(M + 1)r(1 + (m + 5)dlog2 re) non-zero parameters for the multi-
plications. Together with the 7r(M + 1) non-zero parameters from the first
two layers, the total number of non-zero parameters is thus bounded by
49r2(M + 1)r(1 + (m+ 5)dlog2 re).

By Lemma A.3, Multrm(x) = 0 if one of the components of x is zero. This
shows that for any x` ∈ D(M), the support of the function x 7→ (Hatr(x))x`

is contained in the support of the function x 7→
∏r
j=1(1/M−|xj−x`j |)+.

Proof of Theorem 5. All the constructed networks in this proof are
of the form F(L,p, s) = F(L,p, s,∞) with F = ∞. Let M be the largest
integer such that (M + 1)r ≤ N and define L∗ := (m + 5)dlog2(β ∨ r)e.
Thanks to (34), (33) and Lemma A.4, we can add one hidden layer to the
network Monrm,β to obtain a network

Q1 ∈ F
(
2 + L∗, (r, 6dβeCr,β , . . . , 6dβeCr,β , Cr,β , (M + 1)r)

)
,

such that Q1(x) ∈ [0, 1](M+1)r and for any x ∈ [0, 1]r,∣∣∣Q1(x)−
(P βx`f(x)

B
+

1

2

)
x`∈D(M)

∣∣∣
∞
≤ β22−m(36)

with B := d2Kere. By (20), the number of non-zero parameters in the Q1

network is bounded by 6r(β+1)Cr,β+42(β+1)2C2
r,β(L∗+1)+Cr,β(M+1)r.

Recall that the network Hatr computes the products of hat functions∏r
j=1(1/M−|xj−x`j |)+ up to an error that is bounded by r22−m. It requires

at most 49r2N(1+L∗) active parameters. Consider now the parallel network
(Q1,Hatr). Observe that Cr,β ≤ (β + 1)r ≤ N by the definition of Cr,β
and the assumptions on N. By Lemma B.2, the networks Q1 and Hatr

can be embedded into a joint network (Q1,Hatr) with 2 +L∗ hidden layers,
weight vector (r, 6(r+dβe)N, . . . , 6(r+dβe)N, 2(M+1)r) and all parameters
bounded by one. Using Cr,β ∨ (M + 1)r ≤ N again, the number of non-zero
parameters in the combined network (Q1,Hatr) is bounded by

6r(β + 1)Cr,β + 42(β + 1)2C2
r,β(L∗ + 1)

+ Cr,β(M + 1)r + 49r2N(1 + L∗)

≤ 49(r + β + 1)2Cr,βN(1 + L∗)

≤ 98(r + β + 1)3+rN(m+ 5),

(37)
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where for the last inequality, we used Cr,β ≤ (β + 1)r, the definition of L∗

and that for any x ≥ 1, 1 + dlog2(x)e ≤ 2 + log2(x) ≤ 2(1 + log(x)) ≤ 2x.
Next, we pair the x`-th entry of the output of Q1 and Hatr and apply

to each of the (M + 1)r pairs the Multm network described in Lemma A.2.
In the last layer, we add all entries. By Lemma A.2 this requires at most
42(m + 5)(M + 1)r + (M + 1)r ≤ 43(m + 5)N active parameters for the
(M + 1)r multiplications and the sum. Using Lemma A.2, Lemma B.2, (36)
and triangle inequality, there exists a network Q2 ∈ F(3 + (m + 5)(1 +
dlog2(β ∨ r)e), (r, 6(r + dβe)N, . . . , 6(r + dβe)N, 1)) such that for any x ∈
[0, 1]r,

∣∣∣Q2(x)−
∑

x`∈D(M)

(P βx`f(x)

B
+

1

2

) r∏
j=1

( 1

M
− |xj − x`j |

)
+

∣∣∣
≤

∑
x`∈D(M):‖x−x`‖∞≤1/M

(1 + r2 + β2)2−m

≤ (1 + r2 + β2)2r−m.

(38)

Here, the first inequality follows from the fact that the support of (Hatr(x))x`

is contained in the support of
∏r
j=1(1/M − |xj − x`j |)+, see Lemma B.2.

Because of (37), the network Q2 has at most

141(r + β + 1)3+rN(m+ 5)(39)

active parameters.
To obtain a network reconstruction of the function f , it remains to scale

and shift the output entries. This is not entirely trivial because of the
bounded parameter weights in the network. Recall that B = d2Kere. The
network x 7→ BM rx is in the class F(3, (1,M r, 1, d2Kere, 1)) with shift vec-
tors vj are all equal to zero and weight matrices Wj having all entries equal
to one. Because of N ≥ (K+1)er, the number of parameters of this network
is bounded by 2M r + 2d2Kere ≤ 6N. This shows existence of a network in
the class F(4, (1, 2, 2M r, 2, 2d2Kere, 1)) computing a 7→ BM r(a − c) with
c := 1/(2M r). This network computes in the first hidden layer (a− c)+ and
(c − a)+ and then applies the network x 7→ BM rx to both units. In the
output layer the second value is subtracted from the first one. This requires
at most 6 + 12N active parameters.

Because of (38) and (35), there exists a network Q3 in

F
(
8 + (m+ 5)(1 + dlog2(r ∨ β)e), (r, 6(r + dβe)N, . . . , 6(r + dβe)N, 1)

)
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such that∣∣∣Q3(x)−
∑

x`∈D(M)

P βx`
f(x)

r∏
j=1

(
1−M |xj − x`j |

)
+

∣∣∣
≤ (2K + 1)M r(1 + r2 + β2)(2e)r2−m, for all x ∈ [0, 1]r.

With (39), the number of non-zero parameters of Q3 is bounded by

141(r + β + 1)3+rN(m+ 6).

Observe that by construction (M +1)r ≤ N ≤ (M +2)r ≤ (3M)r and hence
M−β ≤ N−β/r3β. Together with Lemma B.1, the result follows.

APPENDIX C: PROOFS FOR SECTION 7.2

Proof of Lemma 4. Throughout the proof we write E = Ef0 . Define

‖g‖2n := 1
n

∑n
i=1 g(Xi)

2. For any estimator f̃ , we introduce R̂n(f̃ , f0) :=

E
[
‖f̃ − f0‖2n

]
for the empirical risk. In a first step, we show that we may

restrict ourselves to the case logNn ≤ n. Since R(f̂ , f0) ≤ 4F 2, the upper
bound trivially holds if logNn ≥ n. To see that also the lower bound is trivial
in this case, let f̃ ∈ arg minf∈F

∑n
i=1(Yi − f(Xi))

2 be a (global) empirical
risk minimizer. Observe that

R̂n(f̂ , f0)− R̂n(f̃ , f0) = ∆n + E
[ 2

n

n∑
i=1

εif̂(Xi)
]
− E

[ 2

n

n∑
i=1

εif̃(Xi)
]
.(40)

From this equation, it follows that ∆n ≤ 8F 2 and this implies the lower
bound in the statement of the lemma for logNn ≥ n. We may therefore
assume logNn ≤ n. The proof is divided into four parts which are denoted
by (I)− (IV ).

(I): We relate the risk R(f̂ , f0) = E[(f̂(X) − f0(X))2] to its empirical
counterpart R̂n(f̂ , f0) via the inequalities

(1− ε)R̂n(f̂ , f0)− F 2

nε

(
15 logNn + 75

)
− 26δF

≤ R(f̂ , f0) ≤ (1 + ε)
(
R̂n(f̂ , f0) + (1 + ε)

F 2

nε

(
12 logNn + 70

)
+ 26δF

)
.

(II): For any estimator f̃ taking values in F ,

∣∣∣E[ 2

n

n∑
i=1

εif̃(Xi)
]∣∣∣ ≤ 2

√
R̂n(f̃ , f0)(3 logNn + 1)

n
+ 6δ.
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(III): We have

R̂n(f̂ , f0) ≤ (1 + ε)
[

inf
f∈F

E
[(
f(X)− f0(X)

)2]
+ 6δ + F 2 6 logNn + 2

nε
+ ∆n

]
.

(IV): We have

R̂n(f̂ , f0) ≥ (1− ε)
(

∆n −
3 logNn + 1

nε
− 12δ

)
.

Combining (I) and (IV ) gives the lower bound of the assertion since F ≥ 1.
The upper bound follows from (I) and (III).

(I): Given a minimal δ-covering of F , denote the centers of the balls by
fj . By construction there exists a (random) j∗ such that ‖f̂ − fj∗‖∞ ≤ δ.
Without loss of generality, we can assume that ‖fj‖∞ ≤ F. Generate i.i.d.
random variables X′i, i = 1, . . . , n with the same distribution as X and
independent of (Xi)i=1,...,n. Using that ‖fj‖∞, ‖f0‖∞, δ ≤ F,∣∣R(f̂ , f0)− R̂n(f̂ , f0)

∣∣
=
∣∣∣E[ 1

n

n∑
i=1

(
f̂(X′i)− f0(X′i)

)2 − 1

n

n∑
i=1

(
f̂(Xi)− f0(Xi)

)2]∣∣∣
≤ E

[∣∣∣ 1
n

n∑
i=1

gj∗(Xi,X
′
i)
∣∣∣]+ 9δF,

with gj∗(Xi,X
′
i) := (fj∗(X

′
i)− f0(X′i)

)2 − (fj∗(Xi)− f0(Xi))
2. Define gj in

the same way with fj∗ replaced by fj . Similarly, set rj :=
√
n−1 logNn ∨

E1/2[(fj(X)− f0(X))2] and define r∗ as rj for j = j∗, which is the same as

r∗ =
√
n−1 logNn ∨ E1/2[(fj∗(X)− f0(X))2|(Xi, Yi)i]

≤
√
n−1 logNn + E1/2[(f̂(X)− f0(X))2|(Xi, Yi)i] + δ,

where the last part follows from triangle inequality and ‖fj∗ − f̂‖∞ ≤ δ.
For random variables U, T, Cauchy-Schwarz gives E[UT ] ≤ E1/2[U2]E1/2[T 2].

Choose U = E1/2[(f̂(X)−f0(X))2|(Xi, Yi)i] and T := maxj |
∑n

i=1 gj(Xi,X
′
i)/(rjF )|.

Using that E[U2] = R(f̂ , f0)∣∣R(f̂ , f0)− R̂n(f̂ , f0)
∣∣

≤ F

n
R(f̂ , f0)1/2E1/2[T 2] +

F

n

(√ logNn
n

+ δ
)
E[T ] + 9δF.

(41)
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Observe that E[gj(Xi,X
′
i)] = 0, |gj(Xi,X

′
i)| ≤ 4F 2 and

Var
(
gj(Xi,X

′
i)
)

= 2 Var
(
(fj(Xi)− f0(Xi))

2
)

≤ 2E
[(
fj(Xi)− f0(Xi)

)4]
≤ 8F 2r2

j .

Bernstein’s inequality states that for independent and centered random vari-
ables U1, . . . , Un, satisfying |Ui| ≤M, P (|

∑n
i=1 Ui| ≥ t) ≤ 2 exp(−t2/[2Mt/3+

2
∑n

i=1 Var(Ui)]), cf. [74]. Combining Bernstein’s inequality with a union
bound argument yields

P (T ≥ t) ≤ 1 ∧ 2Nn max
j

exp
(
− t2

8t/(3rj) + 16n

)
.

The first term in the denominator of the exponent dominates for large t.
Since rj ≥

√
n−1 logNn, we have P (T ≥ t) ≤ 2Nn exp(−3t

√
logNn/(16

√
n))

for all t ≥ 6
√
n logNn. We therefore find

E[T ] =

∫ ∞
0

P (T ≥ t) dt

≤ 6
√
n logNn +

∫ ∞
6
√
n logNn

2Nn exp
(
− 3t
√

logNn
16
√
n

)
dt

≤ 6
√
n logNn +

32

3

√
n

logNn
.

By assumption Nn ≥ 3 and hence logNn ≥ 1. We can argue in a similar
way as for the upper bound of E[T ] in order to find for the second moment

E[T 2] =

∫ ∞
0

P (T 2 ≥ u) du =

∫ ∞
0

P (T ≥
√
u) du

≤ 36n logNn +

∫ ∞
36n logNn

2Nn exp
(
− 3
√
u
√

logNn
16
√
n

)
du

≤ 36n logNn + 28n,

where the second inequality uses
∫∞
b2 e

−
√
uadu = 2

∫∞
b se−sads = 2(ba +

1)e−ba/a2 which can be obtained from substitution and integration by parts.
With (41) and 1 ≤ logNn ≤ n,∣∣R(f̂ , f0)− R̂n(f̂ , f0)

∣∣
≤ F

n
R(f̂ , f0)1/2

(
36n logNn + 28n

)1/2
+ F

6 logNn + 11

n
+ 26δF

(42)
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Let a, b, c, d be positive real numbers, such that |a − b| ≤ 2
√
ac + d. Then,

for any ε ∈ (0, 1],

(1− ε)b− d− c2

ε
≤ a ≤ (1 + ε)(b+ d) +

(1 + ε)2

ε
c2.(43)

To see this observe that |a − b| ≤ 2
√
ac + d implies a ≤ εa/(1 + ε) +

(1 + ε)c2/ε + (b + d). Rearranging the terms yields the upper bound. For
the lower bound, we use the same argument and find a ≥ −εa/(1 − ε) −
(1 − ε)c2/ε + (b − d) which gives (43). With a = R(f̂ , f0), b = R̂n(f̂ , f0),

c = F
(
9n logNn + 64n

)1/2
/n, d = F (6 logNn + 11)/n + 26δF the asserted

inequality of (I) follows from (42). Notice that we have used 2 ≤ (1 + ε)/ε
for the upper bound.

(II): Given an estimator f̃ taking values in F , let j′ be such that ‖f̃ −
fj′‖∞ ≤ δ. We have |E[

∑n
i=1 εi(f̃(Xi) − fj′(Xi))]| ≤ δE[

∑n
i=1 |εi|] ≤ nδ.

Since E[εif0(Xi)] = E[E[εif0(Xi) |Xi]] = 0, we also find∣∣∣E[ 2

n

n∑
i=1

εif̃(Xi)
]∣∣∣ =

∣∣∣E[ 2

n

n∑
i=1

εi
(
f̃(Xi)− f0(Xi)

)]∣∣∣
≤ 2δ +

2√
n
E
[
(‖f̃ − f0‖n + δ)|ξj′ |

](44)

with

ξj :=

∑n
i=1 εi(fj(Xi)− f0(Xi))√

n‖fj − f0‖n
.

Conditionally on (Xi)i, ξj ∼ N (0, 1). With Lemma C.1, we obtain E[ξ2
j′ ] ≤

E[maxj ξ
2
j ] ≤ 3 logNn + 1. Using Cauchy-Schwarz,

E
[
(‖f̃ − f0‖n + δ)|ξj′ |

]
≤
(
R̂n(f̃ , f0)1/2 + δ

)√
3 logNn + 1.(45)

Because of logNn ≤ n, we have 2n−1/2δ
√

3 logNn + 1 ≤ 4δ. Together with
(44) and (45) the result follows.

(III): For any fixed f ∈ F , E[ 1
n

∑n
i=1(Yi − f̂(Xi))

2] ≤ E[ 1
n

∑n
i=1(Yi −

f(Xi))
2]+∆n. Because of Xi

D
= X and f being deterministic, we have E[‖f−

f0‖2n] = E[(f(X)−f0(X))2]. Since also E[εif(Xi)] = E[E[εif(Xi) |Xi]] = 0,

R̂n(f̂ , f0) ≤ E[‖f − f0‖2n] + E
[ 2

n

n∑
i=1

εif̂(Xi)
)]

+ ∆n

≤ E[(f(X)− f0(X))2] + 2

√
R̂n(f̂ , f0)(3 logNn + 1)

n
+ 6δ + ∆n
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using for the second inequality (II). Applying (43) to a := R̂n(f̂ , f0), b := 0,
c :=

√
(3 logNn + 1)/n, d := E[(f(X)− f0(X))2] + 6δ + ∆n, yields (III).

(IV): Let f̃ ∈ arg minf∈F
∑n

i=1(Yi − f(Xi))
2 be an empirical risk mini-

mizer. Using (40), (II) and (1− ε)/ε+ 1 = 1/ε, we find

R̂n(f̂ , f0)− R̂n(f̃ , f0)

≥ ∆n − 2

√
R̂n(f̂ , f0)(3 logNn + 1)

n
− 2

√
R̂n(f̃ , f0)(3 logNn + 1)

n
− 12δ

≥ ∆n −
ε

1− ε
R̂n(f̂ , f0)− R̂n(f̃ , f0)− 3 logNn + 1

nε
− 12δ.

Rearranging of the terms leads then to the conclusion of (IV ).

Lemma C.1. Let ηj ∼ N (0, 1), then E[maxj=1,...,M η2
j ] ≤ 3 logM + 1.

Proof. Let Z = maxj=1,...,M η2
j . Since Z ≤

∑
j η

2
j , we have E[Z] ≤ M.

For M ∈ {1, 2, 3} it can be checked that M ≤ 3 log(M) + 1. It is therefore
enough to consider M ≥ 4. Mill’s ratio gives P (|η1| ≥

√
t) = 2P (η1 ≥

√
t) ≤

2e−t/2/(
√

2πt). For any T, we have using the union bound,

E[Z] =

∫ ∞
0

P (Z ≥ t)dt ≤ T +

∫ ∞
T

P (Z ≥ t)dt ≤ T +M

∫ ∞
T

P (η2
1 ≥ t)dt

≤ T +M

∫ ∞
T

2√
2πt

e−t/2dt ≤ T +
2M√
2πT

∫ ∞
T

e−t/2dt

= T +
4M√
2πT

e−T/2.

For T = 2 logM and M ≥ 4, we find E[Z] ≤ 2 logM + 2/
√
π logM ≤

2 logM + 1.

Proof of Lemma 5. Given a neural network

f(x) = WLσvLWL−1σvL−1 · · ·W1σv1W0x,

define for k ∈ {1, . . . , L}, A+
k f : [0, 1]d → Rpk ,

A+
k f(x) = σvkWk−1σvk−1

· · ·W1σv1W0x

and A−k f : Rpk−1 → RpL+1 ,

A−k f(y) = WLσvLWL−1σvL−1 · · ·WkσvkWk−1y.
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Set A+
0 f(x) = A−L+2f(x) = x and notice that for f ∈ F(L,p), |A+

k f(x)|∞ ≤∏k−1
`=0 (p` + 1). For a multivariate function h, we say that h is Lipschitz if
|h(x)−h(y)|∞ ≤ L|x−y|∞ for all x,y in the domain. The smallest L is the
Lipschitz constant. Composition of two Lipschitz functions with Lipschitz
constants L1 and L2 gives again a Lipschitz function with Lipschitz constant
L1L2. Therefore, the Lipschitz constant of A−k f is bounded by

∏L
`=k−1 p`.

Fix ε > 0. Let f, f∗ ∈ F(L,p, s) be two network functions, such that all
parameters are at most ε away from each other. Denote the parameters of
f by (vk,Wk)k and the parameters of f∗ by (v∗k,W

∗
k )k. Then, we can bound

the absolute value of the difference by (σvL+1 is defined as the identity)

∣∣f(x)− f∗(x)
∣∣ ≤ L+1∑

k=1

∣∣∣A−k+1fσvkWk−1A
+
k−1f

∗(x)−A−k+1fσv∗k
W ∗k−1A

+
k−1f

∗(x)
∣∣∣

≤
L+1∑
k=1

( L∏
`=k

p`

)∣∣σvkWk−1A
+
k−1f

∗(x)− σv∗k
W ∗k−1A

+
k−1f

∗(x)
∣∣
∞

≤
L+1∑
k=1

( L∏
`=k

p`

)(∣∣(Wk−1 −W ∗k−1)A+
k−1f

∗(x)
∣∣
∞ + |vk − v∗k|∞

)
≤ ε

L+1∑
k=1

( L∏
`=k

p`

)(
pk−1

∣∣A+
k−1f

∗(x)
∣∣
∞ + 1

)
≤ εV (L+ 1),

using V :=
∏L+1
`=0 (p`+1) for the last step. By (20) the total number of param-

eters is therefore bounded by T :=
∑L

`=0(p`+1)p`+1 ≤ (L+1)2−L
∏L+1
`=0 (p`+

1) ≤ V and there are
(
T
s

)
≤ V s combinations to pick s non-zero parameters.

Since all the parameters are bounded in absolute value by one, we can dis-
cretize the non-zero parameters with grid size δ/(2(L+ 1)V ) and obtain for
the covering number

N
(
δ,F(L,p, s,∞), ‖ · ‖∞

)
≤
∑
s∗≤s

(
2δ−1(L+ 1)V 2

)s∗ ≤ (2δ−1(L+ 1)V 2
)s+1

.

Taking logarithms yields the result.
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