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SIMULTANEOUS NONPARAMETRIC INFERENCE OF
TIME SERIES1
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We consider kernel estimation of marginal densities and regression func-
tions of stationary processes. It is shown that for a wide class of time series,
with proper centering and scaling, the maximum deviations of kernel density
and regression estimates are asymptotically Gumbel. Our results substantially
generalize earlier ones which were obtained under independence or beta mix-
ing assumptions. The asymptotic results can be applied to assess patterns of
marginal densities or regression functions via the construction of simultane-
ous confidence bands for which one can perform goodness-of-fit tests. As an
application, we construct simultaneous confidence bands for drift and volatil-
ity functions in a dynamic short-term rate model for the U.S. Treasury yield
curve rates data.

1. Introduction. Consider the nonparametric time series regression model

Yi = µ(Xi) dt + σ (Xi)ηi ,(1.1)

where µ(·) [resp., σ 2(·)] is an unknown regression (resp., conditional variance)
function to be estimated, (Xi, Yi) is a stationary process and ηi are unobserved
independent and identically distributed (i.i.d.) errors with Eηi = 0 and Eη2

i = 1.
Let the regressor Xi be a stationarity causal process

Xi = G(. . . , εi−1, εi),(1.2)

where εi are i.i.d. and the function G is such that Xi exists. Assume that ηi is
independent of (. . . , εi−1, εi). Hence, ηi and (µ(Xi),σ (Xi)) are independent. As
a special case of (1.1), a particularly interesting example is the nonlinear autore-
gressive model

Yi = µ(Yi−1) + σ (Yi−1)ηi ,(1.3)

where Xi = Yi−1 and εi = ηi−1. Many nonlinear time series models are of form
(1.3) with different choices of µ(·) and σ (·). If the form of µ(·) is not known, we
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can use the Nadaraya–Watson estimator

µn(x) = 1
nbfn(x)

n∑

k=1

K

(
Xk − x

b

)
Yk,(1.4)

where K is a kernel function with K(·) ≥ 0 and
∫

R K(u)du = 1, the bandwidths
b = bn → 0 and nbn → ∞, and

fn(x) = 1
nb

n∑

k=1

K

(
Xk − x

b

)

is the kernel density estimate of f , the marginal density of Xi . Asymptotic prop-
erties of nonparametric estimates for time series have been widely discussed un-
der various strong mixing conditions; see Robinson (1983), Györfi et al. (1989),
Tjøstheim (1994), Bosq (1996), Doukhan and Louhichi (1999) and Fan and Yao
(2003), among others.

Under appropriate dependence conditions [see, e.g., Robinson (1983), Wu and
Mielniczuk (2002), Fan and Yao (2003) and Wu (2005)], we have the central limit
theorem

√
nb[fn(x) − Efn(x)] ⇒ N(0,λKf (x)) where λK =

∫

R
K2(u) du.

The above result can be used to construct point-wise confidence intervals of
f (x) at a fixed x. To assess shapes of density functions so that one can perform
goodness-of-fit tests, however, one needs to construct uniform or simultaneous
confidence bands (SCB). To this end, we need to deal with the maximum absolute
deviation over some interval [l, u]:

%n := sup
l≤x≤u

√
nb√

λKf (x)
|fn(x) − Efn(x)|.(1.5)

In an influential paper, Bickel and Rosenblatt (1973) obtained an asymptotic dis-
tributional theory for %n under the assumption that Xi are i.i.d. It is a very chal-
lenging problem to generalize their result to stationary processes where depen-
dence is the rule rather than the exception. In their paper Bickel and Rosenblatt
applied the very deep embedding theorem of approximating empirical processes
of independent random variables by Brownian bridges with a reasonably sharp
rate [Brillinger (1969), Komlós, Major and Tusnády (1975, 1976)]. For stationary
processes, however, such an approximation with similar rates can be extremely
difficult to obtain. Doukhan and Portal (1987) obtained a weak invariance princi-
ple for empirical distribution functions. In 1998, Neumann (1998) made a break-
through and proved a very useful result for β-mixing processes whose mixing
rates decay exponentially quickly. Such processes are very weakly dependent. For
mildly weakly dependent processes, the asymptotic problem of %n remains open.
Fan and Yao [(2003), page 208] conjectured that similar results hold for stationary
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processes under certain mixing conditions. Here we shall solve this open prob-
lem and establish an asymptotic theory for both short- and long-range dependent
processes. It is shown that, for a wide class of short-range dependent processes,
we can have a similar asymptotic distributional theory as Bickel and Rosenblatt
(1973). However, for long-range dependent processes, the asymptotic behavior
can be sharply different. One observes the dichotomy phenomenon: the asymp-
totic properties depend on the interplay between the strength of dependence and
the size of bandwidths. For small bandwidths, the limiting distribution is the same
as the one under independence. If the bandwidths are large, then the limiting dis-
tribution is half-normal [cf. (2.9)].

A closely related problem is to study the asymptotic uniform distributional the-
ory for the Nadaraya–Watson estimator µn(x). Namely, one needs to find the as-
ymptotic distribution for supx∈T |µn(x) − µ(x)|, where T = [l, u]. With the latter
result, one can construct an asymptotic (1 − α) SCB, 0 < α < 1, by finding two
functions µlower

n (x) and µ
upper
n (x), such that

lim
n→∞ P

(
µlower

n (x) ≤ µ(x) ≤ µupper
n (x) for all x ∈ T

) = 1 − α.(1.6)

The SCB can be used for model validation: one can test whether µ(·) is of cer-
tain parametric functional form by checking whether the fitted parametric form
lies in the SCB. Following the work of Bickel and Rosenblatt (1973), Johnston
(1982) derived the asymptotic distribution of sup0≤x≤1|µn(x) − E[µn(x)]|, as-
suming that (Xi, Yi) are independent random samples from a bivariate population.
Johnston’s derivation is no longer valid if dependence is present. For other work on
regression confidence bands under independence see Knafl, Sacks and Ylvisaker
(1985), Hall and Titterington (1988), Härdle and Marron (1991), Sun and Loader
(1994), Xia (1998), Cummins, Filloon and Nychka (2001) and Dümbgen (2003),
among others. Recently Zhao and Wu (2008) proposed a method for constructing
SCB for stochastic regression models which have asymptotically correct coverage
probabilities. However, their confidence band is over an increasingly dense grid
of points instead of over an interval [see also Bühlmann (1998) and Knafl, Sacks
and Ylvisaker (1985)]. Here we shall also solve the latter problem and establish a
uniform asymptotic theory for the regression estimate µn(x), so that one can con-
struct a genuine SCB for regression functions. A similar result will be derived for
σ (·) as well.

The rest of the paper is organized as follows. Main results are presented in
Section 2. Proofs are given in Sections 4 and 5. Our results are applied in Section 3
to the U.S. Treasury yield rates data.

2. Main results. Before stating our theorems, we first introduce dependence
measures. Assume Xk ∈ Lp , p > 0. Here for a random variable W , we write W ∈
Lp (p > 0), if ‖W‖p := (E|W |p)1/p < ∞. Let {ε′

j }j∈Z be an i.i.d. copy of {εj }j∈Z;
let ξn = (. . . , εn−1, εn) and

X′
n = G(ξ ′

n) where ξ ′
n = (ξ−1, ε

′
0, ε1, . . . , εn).
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Here X′
n is a coupled process of Xn with ε0 in the latter replaced by an i.i.d.

copy ε′
0. Following Wu (2005), define the physical dependence measure

θn,p = ‖Xn − X′
n‖p.

Let θn,p = 0 if n < 0. A similar quantity can be defined if we couple the whole past:
let ξ*

k,n = (. . . , ε′
k−n−2, ε

′
k−n−1, ξk−n,k), k ≥ n, where ξi,j = (εi , εi+1, . . . , εj ), and

define

+n,p = ‖G(ξn) − G(ξ*
n,n)‖p.(2.1)

Our conditions on dependence will be expressed in terms of θn,p and +n,p .

2.1. Kernel density estimates. We first consider a special case of (1.2) in
which Xn has the form

Xn = a0εn + g(. . . , εn−2, εn−1) = a0εn + g(ξn−1),(2.2)

where g is a measurable function and a0 += 0. Then the coupled process X′
n =

a0εn + g(ξ−1, ε
′
0, ε1, . . . , εn−1). We need the following conditions:

(C1). There exists 0 < δ2 ≤ δ1 < 1 such that n−δ1 = O(bn) and bn = O(n−δ2).
(C2). Suppose that X1 ∈ Lp for some p > 0. Let p′ = min(p,2) and -n =

∑n
i=0 θ

p′/2
i,p′ . Assume +n,p′ = O(n−γ ) for some γ > δ1/(1 − δ1) and

Znbn−1 = o(logn) where Zn =
∞∑

k=−n

(-n+k − -k)
2.(2.3)

(C3). The density function fε of ε1 is positive and

sup
x∈R

[fε(x) + |f ′
ε(x)| + |f ′′

ε (x)|] < ∞.

(C4). The support of K is [−A,A], where K is differentiable over (−A,A), the
right (resp., left) derivative K ′(−A) [resp., K ′(A)] exists, and sup|x|≤A|K ′(x)| <
∞. The Lebesgue measure of the set {x ∈ [−A,A] :K(x) = 0} is zero. Let λK =∫

K2(y) dy, K1 = [K2(−A) + K2(A)]/(2λK) and K2 = ∫ A
−A(K ′(t))2 dt/(2λK).

THEOREM 2.1. Let l, u ∈ R be fixed and Xn be of form (2.2). Assume (C1)–
(C4). Then we have for every z ∈ R,

P
(
(2 log b̄−1)1/2(%n − dn) ≤ z

) → e−2e−z
,(2.4)

where b̄ = b/(u − l),

dn = (2 log b̄−1)1/2 + 1
(2 log b̄−1)1/2

{
log

K1

π1/2 + 1
2

log log b̄−1
}
,

if K1 > 0, and otherwise

dn = (2 log b̄−1)1/2 + 1
(2 log b̄−1)1/2

log
K

1/2
2

21/2π
.
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2392 W. LIU AND W. B. WU

We now discuss conditions (C1)–(C4). The bandwidth condition (C1) is fairly
mild. In (C2), the quantity -n measures the cumulative dependence of X0, . . . ,Xn

on ε0, and, with (C1), it gives sufficient dependence and bandwidth conditions
for the asymptotic Gumbel convergence (2.4). For short-range dependent lin-
ear process Xn = ∑∞

j=0 ajεn−j with Eε1 = 0 and Eε2
1 = 1, (C2) is satisfied if

∑∞
j=0 |aj | < ∞ and

∑∞
j=n a2

j = O(n−γ ) for some γ > 2δ1/(1 − δ1). The latter
condition can be weaker than

∑∞
j=0 |aj | < ∞ if δ1 < 1/3. Interestingly, (C2) also

holds for some long-range dependent processes; see Theorem 2.3. With (C3), it
is easily seen that Xi does have a density. If (C3) is violated, then Xi may not
have a density. For example, if εi are i.i.d. Bernoulli with P(εi = 0) = P(εi =
1) = 1/2, then X0 = ∑∞

i=0 ρiε−i , where ρ = (
√

5 − 1)/2, does not have a den-
sity [Erdös (1939)]. The kernel condition (C4) is quite mild and it is satisfied
by many popular kernels. For example, it holds for the Epanechnikov kernel
K(u) = 0.75(1 − u2)1|u|≤1.

In Theorem 2.2 below, we do not assume the special form (2.2). We need reg-
ularity conditions on conditional density functions. For jointly distributed ran-
dom vectors ξ and η, let Fη|ξ (·) be the conditional distribution function of η
given ξ ; let fη|ξ (x) = ∂Fη|ξ (x)/∂x be the conditional density. For function g with
E|g(η)| < ∞, let E(g(η)|ξ) = ∫

g(x) dFη|ξ (x) be the conditional expectation of
g(η) given ξ .

Conditions (C2) and (C3) are replaced, respectively, by:
(C2)′. Suppose that X1 ∈ Lp and θn,p = O(ρn) for some p > 0 and 0 < ρ < 1.
(C3)′. The density function f is positive and there exists a constant B < ∞ such

that

sup
x

[|fXn|ξn−1(x)| + |f ′
Xn|ξn−1

(x)| + |f ′′
Xn|ξn−1

(x)|] ≤ B almost surely.

THEOREM 2.2. Under (C1), (C2)′, (C3)′ and (C4), we have (2.4).

Many nonlinear time series models (e.g., ARCH models, bilinear models, ex-
ponential AR models) satisfy (C2)′; see Shao and Wu (2007). If (Xi) is a Markov
chain of the form Xi = R(Xi−1, εi), where R(·, ·) is a bivariate measurable
function, then fXi |ξi−1(·) is the conditional density of Xi given Xi−1. Consider
the ARCH model Xi = εi (a

2 + b2X2
i−1)

1/2, where a > 0, b > 0 are real para-
meters and εi has density function fε , then fXi |Xi−1(x) = fε(x/Hi)/Hi , where
Hi = (a2 +b2X2

i−1)
1/2. So (C3)′ holds if supx[fε(x)+|f ′

ε(x)|+|f ′′
ε (x)|] < ∞ [cf.

(C3)]. For more general ARCH-type processes see Doukhan, Madre and Rosen-
baum (2007).

For short-range dependent processes for which

-∞ =
∞∑

i=0

θ
p′/2
i,p′ < ∞,(2.5)

e
c∞

sup[+ε (x ) + (f {(x ) ) +H ε
"

(x) ] ] <∞
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we have Zn = O(n) and (2.3) of condition (C2) trivially holds. For long-range
dependent processes, (2.5) can be violated. A popular model for long-range de-
pendence is the fractionally integrated auto-regressive moving average process
[Granger and Joyeux (1980), Hosking (1981)]. Here we consider the more gen-
eral form of linear processes with slowly decaying coefficients:

Xn =
∞∑

j=0

ajεn−j where aj = j−β2(j),1/2 < β < 1.(2.6)

Here a0 = 1, 2(·) is a slowly varying function and εi are i.i.d. with Eεi = 0 and
Eε2

i = 1.

THEOREM 2.3. Assume (2.6). Let l, u ∈ R be fixed. (i) Assume (C1), (C3),
(C4), δ1/(1 − δ1) < β − 1/2 and

b1/2
n n1−β2(n) = o(log−1/2 n).(2.7)

Then (2.4) holds. (ii) Assume (C1), (C3), (C4), supx |f ′′′
ε (x)| < ∞ and

log1/2 n = o(b1/2
n n1−β2(n)).(2.8)

Let cβ = ∫ ∞
0 (x + x2)−β dx/[(3 − 2β)(1 − β)]. Then

%n

b
1/2
n n1−β2(n)

⇒ |N(0,1)|
√

cβ√
λK

max
l≤x≤u

|f ′(x)|√
f (x)

.(2.9)

Theorem 2.3 reveals the interesting dichotomy phenomenon for the maximum
deviation %n: if the bandwidth bn is small such that (2.7) holds, then the asymp-
totic distribution is the same as the one under short-range dependence. However,
if bn is large, then both the normalizing constant and the asymptotic distribution
change. Let bn = n−δ21(n), where 21 is another slowly varying function. Sim-
ple algebra shows that, if max((1 + δ)/(1 − δ),2 − δ) < 2β , then the bandwidth
condition in Theorem 2.3(i) holds. The latter inequality requires β >

√
3/2 =

0.866025, . . . . If β < 1 − δ/2, then (2.8) holds. Theorem 2.3(ii) is similar to The-
orem 3.1 in Ho and Hsing (1996), with our result having a wider range of β .

2.2. Estimation of µ(·) and σ 2(·). Let ξ̃i = (. . . ,ηi−1,ηi , ξi). For a function
h with Eh2(ηi) < ∞, write

Mr
n(x) = 1

nb

n∑

k=1

K

(
Xk − x

b

)
Zk where Zk = h(ηk) − Eh(ηk).

PROPOSITION 2.1. Let l, u ∈ R be fixed. Assume σ 2 = EZ2
1 and E|Z1|p < ∞,

p > 2/(1 − δ1). (i) Assume (2.2), (C1), (C3)–(C4) and +n,q = O(n−γ ) for some
q > 0 and γ > δ1/(1 − δ1). Then for all z ∈ R,

P

(√
nb

λK
sup

l≤x≤u

|Mr
n(x)|

f 1/2(x)σ
− dn ≤ z

(2 log b̄−1)1/2

)

→ e−2e−z
(2.10)
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2394 W. LIU AND W. B. WU

as n → ∞. (ii) Assume (1.2), (C1), (C2)′, (C3)′ and (C4) hold with ξn−1 in (C2)′

replaced by ξ̃n−1. Then (2.10) holds.

Proposition 2.1(i) allows for long-range dependent processes. For (2.6), by
Karamata’s theorem, +n,2 = O(n1/2−β2(n)). So we have +n,2 = O(n−γ ) with
γ > δ1/(1 − δ1) if δ1 < (2β − 1)/(2β + 1).

For S ⊂ R, denote by Cp(S) = {g(·) : supx∈S |g(k)(x)| < ∞, k = 0, . . . , p} the
set of functions having bounded derivatives on S up to order p ≥ 1. Let Sε =⋃

y∈S{x : |x − y| ≤ ε} be the ε-neighborhood of S, ε > 0.

THEOREM 2.4. Let l, u ∈ R be fixed and K be symmetric. Assume that the
conditions in Proposition 2.1 hold with Zn = ηn, fε(·),µ(·) ∈ C 4(T ε) for some
ε > 0, where T = [l, u], and that b satisfies

0 < δ1 < 1/3, nb9 logn = o(1) and Znb
3 = o(n logn).

Let ψK = ∫
u2K(u)du/2 and ρµ(x) = µ′′(x) + 2µ′(x)f ′(x)/f (x). Then

P

(√
nb

λK
sup

l≤x≤u

√
fn(x)|µn(x) − µ(x) − b2ψKρµ(x)|

σ (x)
(2.11)

− dn ≤ z

(2 log b̄−1)1/2

)

→ e−2e−z
.

Note that σ 2(x) = E[(Yk − µ(Xk))
2|Xk = x]. It is natural to use the Nadaraya–

Watson method to estimate σ 2(x) based on the residuals êk = Yk − µn(Xk):

σ 2
n (x) = 1

nhfn1(x)

n∑

k=1

K

(
Xk − x

h

)
[Yk − µn(Xk)]2,

where the bandwidths h = hn → 0 and nhn → ∞, and

fn1(x) = 1
nh

n∑

k=1

K

(
Xk − x

h

)
.

THEOREM 2.5. Let l, u ∈ R be fixed and K be symmetric. Assume νη = Eη4
1 −

1 < ∞. Further assume that the conditions in Proposition 2.1 hold with Zn =
η2

n − 1, f (·),σ (·) ∈ C 4(T ε) for some ε > 0, where T = [l, u], and that h - b
satisfies

0 < δ1 < 1/4, nb9 logn = o(1)

and

Znb
3 = o(n logn).

X =G (s ,

… 1
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Let ρσ (x) = 2σ ′2(x) + 2σ (x)σ ′′(x) + 4σ (x)σ ′(x)f ′(x)/f (x). Then

P

(√
nh

λKνη
sup

l≤x≤u

√
fn1(x)|σ 2

n (x) − σ 2(x) − h2ψKρσ (x)|
σ 2(x)

(2.12)

− dn ≤ z

(2 log h̄−1)1/2

)

→ e−2e−z
,

where dn is defined as in Theorem 2.1 by replacing b̄ with h̄ = h/(u − l).

We now compare the SCBs constructed based on Theorem 1 in Zhao and Wu
(2008) and Theorem 2.4. Assume l = 0 and u = 1. The former is over the grid point
Tn = {2bnj, j = 0,1, . . . , Jn} with Jn = .1/(2bn)/, while the latter is a genuine
SCB in the sense that it is over the whole interval T = [0,1]. Let ρ̂µ(·) [resp.,
σ̂ (·)] be a consistent estimate of ρµ(·) [resp., σ (·)] and zα = − log log(1 −α)−1/2,
0 < α < 1. By Theorem 2.4, we can construct the 1 − α SCB for µ(x) over x ∈
[0,1] as

µn(x) − b2ψK ρ̂µ(x) ± l1σ̂ (x)

√
λK

nbfn(x)
(2.13)

where l1 = zα

(2 logb−1)1/2 + dn.

Similarly, using Theorem 1 in Zhao and Wu (2008), the 1 −α confidence band for
µ(x) over x ∈ Tn is also of form (2.13) with l1 replaced by

l2 = zα

(2 logJn)1/2 + (2 logJn)
1/2 − 1/2 log logJn + log(2

√
π)

(2 logJn)1/2 .

Elementary calculations show that, interestingly, l1 and l2 are quite close: l1 − l2 =
(log logb−1)/(2 logb−1)1/2(1 + o(1)) if K1 > 0.

3. Application to the treasury bill data. There is a huge literature on models
for short-term interest rates. Let Rt be the interest rate at time t . Assume that Rt

follows the diffusion model

dRt = µ(Rt) dt + σ (Rt ) dB(t),(3.1)

where B is the standard Brownian motion, µ(·) is the instantaneous return or drift
function and σ (·) is the volatility function. Black and Scholes (1973) considered
the model with µ(x) = αx and σ (x) = σx. Vasicek (1977) assumed that µ(x) =
α0 +α1x and σ (x) ≡ σ , where α0,α1 and σ are unknown constants. Cox, Ingersoll
and Ross (1985) and Courtadon (1982) assumed that σ (x) = σx1/2 and σ (x) =
σx, respectively. Both models are generalized by Chan et al. (1992) to the form
σ (x) = σxγ , with σ and γ being unknown parameters. Stanton (1997), Fan and

—
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2396 W. LIU AND W. B. WU

Yao (1998), Chapman and Pearson (2000) and Fan and Zhang (2003) considered
the nonparametric estimation of µ(·) and σ (·) in (3.1); see also Aït-Sahalia (1996a,
1996b). Stanton (1997) constructed point-wise confidence intervals which serve
as a tool for suggesting which parametric models to use. Zhao (2008) gave an
excellent review of parametric and nonparametric approaches of (3.1). See also
the latter paper for further references.

Here we shall consider the U.S. six-month treasury yield rates data from January
2nd, 1990 to July 31st, 2009. The data can be downloaded from the U.S. Treasury
department’s website http://www.ustreas.gov/. It has 4900 daily rates and a plot is
given in Figure 1. Let Xi = Rti be the rate at day i = 1, . . . ,4900. For the daily
data, since one year has 250 transaction days, ti − ti−1 = 1/250. Let % = 1/250.
As a discretized version of (3.1), we consider the model

Yi = µ(Xi)% + σ (Xi)%
1/2ηi ,(3.2)

where Yi = Rti+1 − Rti = Xi+1 − Xi and ηi = (B(ti+1) − B(ti))/%
1/2 are i.i.d.

standard normal. For convenience of applying Theorem 2.4, in the sequel we shall
write µ(Xi)% [resp., σ (Xi)%

1/2] in (3.2) as µ(Xi) [resp., σ (Xi)]. So (3.2) is
rewritten as

Yi = µ(Xi) + σ (Xi)ηi .(3.3)

FIG. 1. U.S. six-month treasury yield curve rates data from January 2nd, 1990 to July 31st, 2009.
Source: U.S. Treasury department’s website http://www.ustreas.gov/ .
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FIG. 2. 95% SCB of the regression function µ(·) over the interval [l, u] = [0.35,8.06]. The dashed
curve in the middle is µn(x) − b2ψK ρ̂(x), the bias-corrected estimate of µ.

Figure 2 shows the estimated 95% simultaneous confidence band for the regres-
sion function µ(·) over the interval T = [l, u] = [0.35,8.06], which includes 96%
of the daily rates Xi . To select the bandwidth, we use the R program bw.nrd
which gives b = 0.37. Then we use the R program locpoly for local polynomial
regression. The Nadaraya–Watson estimate is a special case of the local polyno-
mial regression with degree 0. The function ρ(x) in the bias term b2ψKρ(x) in
Theorem 2.4 involves the first and second order derivatives µ′, f ′ and µ′′. The
program locpoly can also be used to estimate derivatives µ′ and µ′′, where we
use the bigger bandwidth 2b = 0.74. For f , we use the R program density, and
estimate f ′ by differentiating the estimated density. Then we can have the bias-
corrected estimate µ̃n(x) = µn(x) − b2ψK ρ̂(x) for µ, which is plotted in the the
middle curve in Figure 2. To estimate σ (·), as in Stanton (1997), we shall make
use of the estimated residuals êi = Yi −µ̃n(Xi), and perform the Nadaraya–Watson
regression of ê2

i versus Xi with the bandwidth b. In our data analysis the bound-
ary problem of the Nadaraya–Watson regression raised in Chapman and Pearson
(2000) is not severe since we focus on the interval T = [0.35,8.06], while the
whole range is [minXi,maxXi] = [0.14,8.49].

The Gumbel convergence in Theorem 2.4 can be quite slow, so the SCB in (2.13)
may not have a good finite-sample performance. To circumvent this problem, we
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shall adopt a simulation based method. Let

6n = sup
x∈T

|∑n
k=1 K(X∗

k/b − x/b)η∗
k |

nbf 1/2(x)
,

where X∗
k are i.i.d. with density f , η∗

k are i.i.d. with Eηn = 0, Eη2
n = 1 and

E|η1|p < ∞, and (X∗
k ) and (η∗

k ) are independent. As in Theorem 2.4, let

6′
n = sup

x∈T

√
f (x)|µn(x) − µ(x) − b2ψKρ(x)|

σ (x)
.

By Theorem 2.4 and Proposition 2.1, with proper centering and scaling, 6n and
6′

n have the same asymptotic Gumbel distribution. So the cutoff value, the (1 −
α)th quantile of 6′

n, can be estimated by the sample (1 − α)th quantile of many
simulated 6n’s. For the U.S. Treasury bill data, we simulated 10,000 6n’s and
obtained the 95% sample quantile 0.39. Then the SCB is constructed as µ̃n(x) ±
0.39σ̂ (x)/f

1/2
n (x); see the upper and lower curves in Figure 2.

We now apply Theorem 2.5 to construct SCB for σ 2(·). We choose h = b, which
has a reasonably satisfactory performance in our data analysis. By Theorem 2.5,

6′′
n = 1√

νη

sup
x∈T

√
f (x)|σ 2

n (x) − σ 2(x) − b2ψKρσ (x)|
σ 2(x)

has the same asymptotic distribution as 6n and 6′
n. Based on the above sim-

ulation, we choose the cutoff value 0.39. As in the treatment of µ′ and µ′′ in
the bias term of µn, we use a similar estimate, noting that ρσ (x) = (σ 2(x))′′ +
2(σ 2(x))′f ′(x)/f (x) has the same form as ρµ(x). The 95% SCB of σ 2(·) is pre-
sented in Figure 3.

Based on the 95% SCB of µ(·), we conclude that the linear drift function hy-
pothesis H0 :µ(x) = α0 + α1x for some α0 and α1 is rejected at the 5% level.
Other simple parametric forms do not seem to exist. Similar claims can be made
for σ 2(·), and none of the parametric forms previously mentioned seems appropri-
ate. This suggests that the dynamics of the treasury yield rates might be far more
complicated than previously speculated.

4. Proofs of Theorems 2.1–2.3. Throughout the proofs C denotes constants
which do not depend on n and bn. The values of C may vary from place to place.
Let 2·3 and .·/ be the floor and ceiling functions, respectively. Without loss of
generality, we assume l = 0, u = 1 in (1.5) and A = 1 in condition (C4). Write

√
nb√

λKf (bt)
[fn(bt) − Efn(bt)] = Mn(t) + Nn(t),

where Mn(t) has summands of martingale differences

Mn(t) = 1√
nbλKf (bt)

n∑

k=1

{K(Xk/b − t) − E[K(Xk/b − t)|ξk−1]},

.
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