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Abstract

This paper aims to establish asymptotic normality of the local linear kernel estimator

for quantile regression under near epoch dependence, a useful concept in characterising time

series dependence of extensive interests in Econometrics. In particular, near epoch dependence

can cover a wide range of linear or nonlinear time series models that are even not of strong

or α-mixing property (a property usually assumed in the nonlinear time series literature).

Under the mild conditions, the Bahadur representation of the quantile regression estimators

is established in weak convergence sense. The method provides much richer information

than mean regression and covers much more processes, which do not satisfy general mixing

conditions. Simulation and application to a real data set are studied, which demonstrate the

usefulness of the introduced method for analysis of time series. The theoretical results of this

paper will be of widely potential interest for time series econometric semiparametric quantile

regression modelling.

Keywords: Local linear fitting; Quantile regression; Near epoch dependence; Bahadur

representation
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1. Introduction

Nonlinear modelling of time series data has drawn a lot of attention from researchers

in the past few decades (c.f., Fan & Yao, 2003; Härdle et al., 1997; Tjøstheim & Auestad,

1994; Tong, 1990, etc). In these literatures, most modellings are based on conditional mean

regression perspective, while fewer work has focused on nonlinear modelling by quantile

regression for time series. In this study, we are mainly concerned with the nonlinear

modelling of time series data from view point of quantile regression. Specifically, we

consider a (strictly) stationary time series that are near-epoch dependent (NED) introduced

by Ibragimov (1962).

Assume that {(Yt, Xt)} is a stationary multivariate time series on a probability space

(Ω, F , P) in general context, where Xt and Yt are random variables taking their values

in Rp and R1 respectively. In time series econometrics, Xt may involve both the lags of

endogenous and/or exogenous variables. We are here interested in the τ-th (0 < τ < 1)

conditional quantile function of Yt given Xt = x.

qτ(x) = arg min
a∈R1

E {ρτ(Yi − a)|Xi = x} , (1.1)

where ρτ(y) = y(τ − I{y<0}) with y ∈ R1 and IA is the indicator function of set A.

This conditional quantile regression was initially developed under i.i.d. samples for linear

regression models in econometric literature (Koenker & Bassett Jr, 1978, 1982).

In comparison with the mean regression, the modelling based on quantile regression

has some essential advantages. Firstly, a well known special case with τ = 1/2, i.e., median

regression, is much explored and more robust than the mean regression when the data

distribution is typically skewed or possesses a few outliers. Secondly, a heteroscedastic

model can be easily detected if the regression quantiles of the model are not parallel

(c.f., Efron, 1991). Thirdly, a collection of conditional quantiles can describe the whole

distribution of the independent variable (c.f., Yu & Jones, 1998). Fourthly, pairs of extreme

conditional quantiles can be used to depict the conditional prediction interval, which is

important in econometric forecasting (see, Granger et al., 1989; Koenker & Zhao, 1996;

2

Electronic copy available at: https://ssrn.com/abstract=3555740



Quantile NED

Kuester et al., 2006, for example). Finally, the value-at-risk (VaR) has become a popular

tool to measure market risk, which is just the quantile of the potential loss to be expected

over a given future period (for a given probability) (c.f., Jorion, 1997). Therefore, the

regression quantile would be helpful to factor analysis of the risk modelling based on

VaR.

The asymptotic properties of kernel estimators for quantile regression have been

investigated under i.i.d. or α-mixing conditions. To be specific, Yu & Jones (1998) used

local linear fitting to estimate the quantile regression, Cai (2002) introduced an estimate

of conditional quantile based on the inverse of conditional distribution function (Hall

et al., 1999), and Honda (2000) estimate the quantile regression by local polynomial fitting.

Recently, for time-varying coefficient models, Honda (2004) and Kim (2007) considered

the nonparametric quantile estimation based on the i.i.d. errors term. Cai & Xu (2009)

assumed that error is α-mixing process. In Wu & Zhou (2017), the errors are locally

stationary processes with cross-dependent. Moreover, Cai & Xiao (2012) investigated the

partially varying coefficients quantile regression models based on β-mixing assumption,

and Wang et al. (2009) without any specification of the error distribution. Oberhofer &

Haupt (2016) established the asymptotic properties of the nonlinear quantile regression,

with allowing the error process to be heterogeneous and mixing. Differently, we will

develop a theory for nonlinear modelling of the quantile regression function in nonpara-

metric way for time series under NED condition. The main motivation for the NED

condition is that α-mixing is a stricter assumption, which is hard to cover compound

processes (Davidson, 1994; Lu & Linton, 2007). For this reason, the NED processes, which

can cover more kinds of processes, have been considered extensively in econometrics

(Andrews, 1995; Gallant, 2008; Jenish, 2012; Li et al., 2012; Lu, 2001).

We will introduce a local linear kernel method to estimate both the quantile regression

and its derivatives under NED condition, which is an extension of the work of Welsh

(1996) and Yu & Jones (1998) under i.i.d. samples. In addition, we establish the asymptotic

distribution for quantile regression estimators, which is important both for assessing the

estimates and constructing an asymptotic confidence interval as well as testing hypothesis

on the quantile regression, where a powerful tool of Bahadur representation will be
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established in convergence in probability for our aim. Our asymptotic normality result

generalizes Honda (2000) who obtained a Bahadur representation with rather strong

conditions.

The rest of the paper is organized as follow. Section 2 shows the definition of setting

and estimator we shall examine. Section 3 proves asymptotic normality of local linear

estimator for quantile regression under NED. Section 4 contains some numerical results

based on some common econometric models.

2. Local linear quantile regression estimators

The stationary processes Yt and Xt are R1- and Rp- valued random fields, respectively.

And

Yt = ΨY(εt, εt−1, εt−2, . . .), (2.1)

Xt = (Xt1, · · · , Xtp)
′ = ΨX(εt, εt−1, εt−2, . . .), (2.2)

where the stationary process{εt} may be vector-valued, X′ denotes the transpose of the

vector X, ΨY : R∞ −→ R1 and ΨX : R∞ −→ Rp are two Borel measurable functions,

respectively.

In this research, we are interested in estimating the τ-th (0 < τ < 1) conditional

quantile function of Yt given Xt = x:

qτ(x) = arg min
a∈R1

E {ρτ(Yi − a)|Xi = x} , (2.3)

where ρτ(y) = y(τ − I{y<0}) with y ∈ R1 and IA is the indicator function of set A. This

conditional quantile is usually termed quantile regression, which under i.i.d samples was

initially proposed by Koenker & Bassett Jr (1978, 1982). We will use the local linear

estimation method.

The idea of the local linear fit (Fan & Gijbels, 1996; Loader, 1999) is to approximate

the qτ(z) in a neighborhood of x by a linear function

qτ(z) ≈ qτ(x) + (q̇τ(x))′(z− x) ≡ a0 + a
′
1(z− x), (2.4)
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where q̇τ(x) = (∂qτ(x)/∂x1, · · · , ∂qτ(x)/∂xp)′ is the vector of the first order partial

derivatives of qτ(x) at x = (x1, · · · , xp)′ ∈ Rp. Locally, estimating (qτ(x), q̇τ(x)) is

equivalent to estimating (a0, a1). This motivates us to define an estimator by setting

q̂τ(x) ≡ â0 and ̂̇qτ(x) ≡ â1. Thenâ0

â1

 = arg min
(a0, a1)

n

∑
i=1

ρτ(Yi − a0 − a′1(Xi − x))Kh(Xi − x), (2.5)

where Kh(x) = h−p
n K(x/hn), K is a kernel function on Rp, and hn > 0 is the bandwidth.

Note that if qτ(x) has no derivative, qτ(x) can still be estimated by (2.5), but the estimate

of its derivative is vacuous.

To establish the asymptotic properties of quantile regression, we first give some

definitions and assumptions about the dependence structure of the data-generating

processes (DCP) {(Xt, Yt)}. We consider the processes {(Xt, Yt)} that are near-epoch

dependent on stationary α-mixing process {εt}. In the following, | · | and ‖ · ‖ denote the

absolute value and the Euclidean norm of Rp, respectively. Y(m)
t = ΨY,m(εt, . . . , εt−m+1),

X(m)
t = (X(m)

t1 , · · · , X(m)
tp )τ = ΨX,m(εt, . . . , εt−m+1), and ΨY,m and ΨX,m are R1- and Rp-

valued Borel measurable functions with m arguments, respectively. Let ν > 0 be a positive

real number.

Definition 1. The stationary process {(Yt, Xt)} is said to be Lν-NED on {εt} if

vν(m) = E|Yt −Y(m)
t |ν + E‖Xt − X(m)

t ‖ν → 0 (2.6)

as m→ ∞. The vν(m) are called the stability coefficients of order ν of the process {(Yt, Xt)}.

Definition 2. Let F n
−∞ and F∞

n+k be the σ–fields generated by {εt, t ≤ n} and {εt, t ≥

n + k}, respectively. And let α(k) = supA∈Fn
−∞, B∈F∞

n+k
|P(AB)− P(A)P(B)| → 0 as k → ∞.

The stationary sequence {εt, t = 0, ±1, . . .} is said to be α–mixing and the α(k) is termed mixing

coefficient.

Clearly, {(Y(m)
t , X(m)

t )} is an α-mixing process with mixing coefficient

αm(k) ≤

 α(k−m) k ≥ m + 1,

1 k ≤ m.
(2.7)

Throughout, we assume that the observations of the NED process {(Yt, Xt)} are

(Yt, Xt), t = 1, 2, . . . , n. For the sake of convenience, we are summarizing here the main
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assumptions on the data generating process (DGP) (2.6), the kernel K and the bandwidth to

be used in the estimation method. In what follows, we denote FY|X(x) = P(Yt < y|Xt = x)

and fX(y|x) as the conditional distribution and the conditional density function of Yt

given Xt = x, respectively, and fX(x) as the marginal density function of Xt.

A1: (i) The DGP is a strictly stationary NED process L1-NED on {εt}. For the mixing

coefficient of εt, the function α is such that limk→∞ ka ∑∞
j=k α(j) = 0, for some positive real

number a.

(ii) The marginal density function fX(·) of X is continuous and fX(x) > 0 at x.

(iii) The conditional density function fY|X(y|x̃) is continuous as a function of y in

a neighborhood of qτ(x) uniformly for x̃ in a neighborhood of x, and continuous as

a function of x̃ in a neighborhood of x for all y in a neighborhood of qτ(x). Also,

fY|X(qτ(x)|x) > 0.

(iv) For all i and j in Z, the vectors Xi and Xj admit a joint density (Xi, Xj) at (x, x̃);

moreover,

sup
i,j

sup
(x, x̃)

fij(x, x̃) ≤ C, (2.8)

where C is a generic positive constant.

A2. The kernel function K: Rp → R satisfies:

(i) K(·) is a bounded and symmetric density kernel function such that
∫

Rp K(u)du = 1,∫
Rp uK(u)du = 0 and µ2 =

∫
Rp uu′K(u)du > 0 (positive definite).

(ii) For any c := (c0, cτ
1)

τ ∈ Rp+1, the function Kc(u) := (c0 + cτ
1 u)K(u) satisfies:

supu∈Rp ‖Kc(u)‖ ≤ K+
c , and

∫
Rp
|Kc(x)|dx < ∞.

(iii) For any c ∈ Rp+1, |Kc(u)− Kc(v)| ≤ C‖u− v‖ for any u, v ∈ Rp and C < ∞.

A3. The quantile function qτ(·) is twice continuously differentiable. The ϑ-th order

derivative q(ϑ)τ (·) of the quantile function qτ(·) satisfies the Lipschitz condition of degree

δ (0 < δ ≤ 1), such that

‖q(ϑ)τ (x)− q(ϑ)τ (x̃)‖ ≤ C‖x− x̃‖δ, for any x, x̃ ∈ Rp, (2.9)

where q(0)τ (x) = qτ(x), q(1)τ (x) = q̇τ(x), and ‖ · ‖ is the Euclidean norm.

Remark. Assumption A1 suppose that the DGP {(Yt, Xt)} is L1-NED, which is easily

satisfied for econometric time series models and has larger fields than mixing random
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fields considered by Honda (2000). Different to Lu & Linton (2007) and Jenish (2012),

who require uniform L2+δ boundedness of DGP, we just need L1-NED processes. A2 is

standard and mild in the nonparametric literature and similar to assumptions of Lu &

Linton (2007) and Jenish (2012). A3 describes the properties of quantile function qτ(·),

which is used to establish the convergence rates.

B1.

hn → 0 and nh(1+2/a)p
n → ∞, as n→ ∞, (2.10)

where a is the positive constant defined in A1(i).

B2. There is two positive integers m = mn → ∞ and L = Ln =
√

v1(m) → 0 such

that the stability coefficients, defined in (2.3) with ν = 1, satisfy

h−1−p
n v1(m)→ 0, n6v1(m)→ 0, as n→ ∞. (2.11)

B3. There exist two sequences of positive integer vectors, p∗ = p∗n ∈ Z and

q∗ = q∗n = 2mn ∈ Z, with m = mn → ∞ such that p∗ = p∗n = o(( nhp∗
n )1/2), q∗/p∗ → 0

and n/p∗ → ∞, and
n
p∗

α(m)→ 0.

B4. hn tends to zero in such a manner that q∗hp
n = O(1) such that

hp
n

∞

∑
t=q

αm(t)→ 0 as T → ∞.

Remark. Assumption B1 is standard on the bandwidth and same as in the α-mixing

case; while B2 is concerned with the conditions on the stability coefficients related

to the bandwidth and sample size; and B3 and B4 describe the mixing coefficients

associated with the bandwidth, which is similar to the assumptions of Lu & Linton (2007).

Assumptions B2-B4 specify the restrictions on the decay rates of the stability and mixing

coefficients for a given bandwidth.

3. Asymptotic behaviours

In this section, we establish the asymptotic normality of the local linear quantile

regression estimators under near-epoch dependence. To this purpose, we need to develop

7

Electronic copy available at: https://ssrn.com/abstract=3555740



Quantile NED

a powerful tool of Bahadur representation in weak convergence sense for the quantile

regression estimators which are not of analytical expression as the mean regression.

3.1. Bahadur representation

In this subsection, we consider the weak conditions to ensure the Bahadur represen-

tation of the local linear estimators of qτ(·) and its derivatives. If qτ(x) is first order

differentiable, then its derivatives can be estimated reasonably well by the local linear

fitting. We first introduce a notation. Let Zn = oP(1) represent the random sequence

Zn
P→ 0, where P→ denotes convergence in probability.

Theorem 3.1 Assume that Assumptions A1, A2 and A3 are satisfied for some a ≥ 1, and that

the quantile function qτ(x) is twice continuously differentiable at x. Then

√
nhp

n

 (q̂τ(x)− qτ(x))

hn
(̂̇qτ(x)− q̇τ(x)

)
 = φτ(x)

1√
nhp

n

n

∑
i=1

ψτ(Y∗i )

 1
Xi−x

hn

K(
Xi − x

hn
) + oP(1),

(3.1)

as n → ∞, where ψτ(y) = τ − I{y<0}, Y∗i = Y∗i (τ) = Yi − qτ(x) − (q̇τ(x))′(Xi − x) and

φτ(x) = ( fY|X(qτ(x)|x) fX(x))−1.

Remark. The proofs of theorem 3.1 are given in Appendix B.

If qτ(x) has the first order derivatives which are Lipschitz continuous, then qτ(x) and

its derivatives can be estimated with optimal convergence rates of Stone (1980) as in the

i.i.d. setting.

Theorem 3.2 Under the conditions of Theorem 3.1, if A3 with v = 1 is satisfied, then

q̂τ(x)− qτ(x) = OP(h1+δ
n ) + OP((nhp

n)
−1/2), (3.2)

and

̂̇qτ(x)− q̇τ(x) = OP(hδ
n) + OP((nhp+2

n )−1/2). (3.3)

Furthermore, if in A1(i) a > p/(v + δ) and hn = n−1/[p+2(1+δ)], then

q̂τ(x)− qτ(x) = OP(n−(1+δ)/[p+2(1+δ)]), (3.4)
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and

̂̇qτ(x)− q̇τ(x) = OP(n−δ/[p+2(1+δ)]) (3.5)

as n→ ∞.

Remark. The condition a > p/(z + δ) in the theorem is to ensure that the requirement

in Assumption B1 can be satisfied with the optimal bandwidth, hn = n−1/[p+2(1+δ)].

3.2. Asymptotic normality

Based on the powerful tool of the weak Bahadur representation, we can establish the

asymptotic distribution of the local linear quantile regression estimates under near-epoch

dependence. Toward the asymptotic normality result, we prove the following lemmata.

Suppose

Wn :=

 wn0

wn1

 , (Wn)j := (nhp
n)
−1

n

∑
i=1

ψτ(Y∗i )
(

Xi − x
hn

)
j

K
(

Xi − x
hn

)
, j = 0, . . . , p,

with
(

Xi−x
hn

)
0
= 1.

The usual Cramér-Wold device will be adopted. For all c := (c0, c′1)
′ ∈ R1+p, let

An := ( nhp
n)

1/2c′Wn =
1√
nhp

n

n

∑
i=1

ψτ(Y∗i )Kc(
Xi − x

hn
),

with Kc(u) defined in A2. The following lemma provides the expectation and asymptotic

variance of An for all c.

Lemma 3.1 Assume that Assumptions A1 and A2 hold, and that hn satisfies Assumptions B1 –

B2. The expectation is as

E [φτ(x)An] =

√
nhp

n

(1 + o(1))

B0(x)

B1(x)

 ,

where B0(x) = 1
2 f−1

X (x)tr[
··
qτ(x)

∫
uu′K(u)du]h2

n, and B1(x) = (B11(x), ..., B1p(x))′, B1j(x) =
1
2 f−1

X (x)tr[
··
qτ(x)

∫
uu′ujK(u)du]hn , j = 1, ..., p. The asymptotic variance is as

lim
n→∞

Var[φτ(x)An] = c′Σc,
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where

Σ := φ2
τ(x)τ(1− τ) fX(x)

 ∫
K2(u)du

∫
u′K2(u)du∫

uK2(u)du
∫

uu′K2(u)du


Lemma 3.2 Suppose that Assumptions in Lemma 3.1 hold. Denote by σ2 the asymptotic variance

of An . Then (nhp
n)

1/2(c′[Wn(x)− EWn(x)]/σ) is asymptotically standard normal as n→ ∞.

The proof of Lemma 3.1-3.2 will be given in Appendix C. Based on these lemmata,

we can show the main consistency and asymptotic normality result of the local linear

quantile estimator.

Theorem 3.3 If A3 with v = 2 is satisfied, a > p/(1 + δ) in A1(i) and nhp+2(1+δ)
n → 0, then

for any 0 < τ1, τ2 < 1,

√
nhp

n

q̂τ1(x)− qτ1(x)− B1(x)

q̂τ2(x)− qτ2(x)− B2(x)

 L→ N

0,

σ2
000(x) σ2

001(x)

σ2
010(x) σ2

011(x)

 , (3.6)

√
nhp+2

n

̂̇qτ1
(x)− q̇τ1(x)̂̇qτ2
(x)− q̇τ2(x)

 L→ N

0,

σ2
100(x) σ2

101(x)

σ2
110(x) σ2

111(x)

 , (3.7)

as n→ ∞. Here L→ denotes the convergence in distribution,

Bi(x) = h2
n

2 f−1
X (x)tr[

··
qτi(x)

∫
uu′K(u)du], i = 1, 2, σ2

000(x) = φ∗1(x)
∫

K2(u)du, σ2
011(x) =

φ∗2(x)
∫

K2(u)du, σ2
001(x) = σ2

010(x) = φ∗3(x)
∫

K2(u)du, σ2
100(x) = φ∗1(x)

∫
uu′K2(u)du,

σ2
111(x) = φ∗2(x)

∫
uu′K2(u)du, σ2

101(x) = σ2
110(x) = φ∗3(x)

∫
uu′K2(u)du,

and where

φ∗i (x) = φ2
τi
(x)τi(1− τi) fX(x) =

τi(1− τi)

fX(x) f 2
Y|X(qτi(x)|x)

, i = 1, 2

φ∗3(x) = φτ1(x)φτ2(x)(min(τ1, τ2)− τ1τ2) fX(x) =
min(τ1, τ2)− τ1τ2

fX(x) fY|X(qτ1(x)|x) fY|X(qτ2(x)|x)

Remark. The proof of Theorem 3.3 is relegated to the Appendix C.
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4. Numerical results

4.1. Simulation

In this section, we will show the results of a small Monte Carlo study of the finite

sample performance of median regression and mean regression under near epoch depen-

dence. The purpose is to illustrate that local linear median regression with a bandwidth

choice pointed by Masry & Fan (1997), which is under α-mixing, can work more efficient

and robust for the processes under near-epoch dependence.

We considered the following model(Reference to Lee, 2003):

Yt = g(Xt) + a3ξt, (4.1)

where ξt was drawn from the Student t-distribution with the 2 degrees of freedom

(denoted by t2) and a3 = 0.2. The Student t-distribution is of great interest in financial

modeling of market volatility(c.f., Bollerslev et al., 1992).In particular the variance of the

time series may not exist if the ξt is heavily tailed enough (e.g., t2 distribution).

g(x) = a0x + a1sin(a2x), (4.2)

where a0 = a1 = 1, a2 = 4. And Xt was drawn from the ARMA(1,1)-GARCH(1,1) model,

which is as follows:

Xt = µ + φXt−1 + θεt−1 + εt, (4.3)

εt = eth1/2
t , ht = α0 + α1ε2

t−1 + β1ht−1, (4.4)

where Xt is modeled by an ARMA(1,1) model (4.3), and ht is the conditional variance

of Xt, given the past information up to day t − 1, modeled by a GARCH(1,1) model

(4.4), with α0 > 0, α1 ≥ 0, β1 ≥ 0, and {et} being i.i.d. random sequence with Eet = 0

and Ee2
t = 1 (taken to be standard normally distributed in this example). Referring

to the estimations of the model (4.3) with (4.4) in section 4.2, we take the parameters

µ = −0.0177, φ = 0.6057, θ = −0.6263, α0 = 0.3002, α1 = 0.1078, and β1 = 0.8518, which

are the obtained from the real oil price return data by the maximum likelihood method

procedure in the ARMA-GARCH module of R.
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If |a| < 1, the model (4.3) can be expressed as (Lu & Linton, 2007)

Xt = µ/(1− φ) + θεt−1 + εt +
∞

∑
j=1

φj(θεt−j−1 + εt−j),

and under α1 + β1 < 1 with some suitably regular conditions (c.f. Carrasco & Chen, 2002),

the εt in the GARCH(1,1) model (4.4) is α- mixing with a geometrically decaying mixing

coefficient. Here it is difficult to show under such natural and mild conditions |a| < 1

and α1 + β1 < 1 (to the best of our knowledge) that Xt is α- mixing, but it can be shown

that Xt is NED of order 1 with regard to a α- mixing process, if E|εt| < ∞, with stable

coefficients (owing to the convex property of | · |)

v1(k) = E
∣∣∣Xt − X(k)

t

∣∣∣ = wkE

∣∣∣∣∣ ∞

∑
j=k+1

φj

wk

(
θεt−j−1 + εt−j

)∣∣∣∣∣
≤ wkE

[
∞

∑
j=k+1

φj

wk
|
(
θεt−j−1 + εt−j

)
|
]
= O

(
|φ|k

)
,

decaying at a geometric rate, where X(k)
t = µ/(1−φ)+ θεt−1 + εt +∑k

j=1 φj(θεt−j−1 + εt−j),

and wk = ∑∞
j=k+1 φj = O(φk). E|Xt| < ∞ can be ensured by E|εt| < ∞, which Carrasco &

Chen (2002) shows the conditions. Therefore, (Xt, Yt) is a stationary NED of order 1 w.r.t.

a strongly (α-) mixing process.

We generate data Xt from the model (4.3) and (4.4), and Yt from model (4.1) with

(4.2), denoted as {(Xt, Yt)} for t = 1, ..., n. We consider two time series of sample

size: n = 100 and n = 500. We are assessing the estimate of the median regression

q0.5(x) = argmina∈R1 E{ρ0.5(Yi − a)|Xi = x} and mean regression m(x) = E(Yt|Xt = x),

which are all equal to g(x). We partition 50 points of x between the -2.5 and 2.5, which

are approximately 10th and 90th percentiles of Xt.In the simulations, the bandwidth bT

was chosen by the conventional cross-validation rule of Stone (1984).

Figure 1 shows that the biases of 100 replications of median and mean estimates of g(·)

for sample size 100 and 500 are acceptable. Figure 2 displays the the results of local linear

estimators of median regression q0.5(x) = g(x) and mean regression function m(x) = g(x)

in 50 points of x, based on 100 replications with each sample size n = 100 and n = 500.

Figure 3 assesses the accuracy of estimation by defining a squared estimation error (SEE)
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Mean of 100 mean estimates of g(.) for n=500

Mean of 100 median estimates of g(.) for n=500

Figure 1: Comparison of mean of 100 median and mean estimates of g(·) for sample size 100 and 500

of mean regression and median regression estimation about g(·).

SEE(q̂0.5(·)) =
1

50

50

∑
k=1

{
q̂(r)0.5(xk)− g(xk)

}2

SEE(m̂(·)) = 1
50

50

∑
k=1

{
m̂(r)(xk)− g(xk)

}2

where r = 1, ..., 100 is the simulation times, for the sample size n = 100 and n = 500.

Overall, the simulation results of Model (4.1) adapt very well to asymptotic theory: with

the sample size increasing, the both mean and median regressions with a cross validation

method for bandwidth selection become more stable and fit better to the true g(·) function,

and even for the sample size of 100, the estimate procedure and bandwidth selection

looks acceptable with the median regression. Clearly, the median regression has better

performance in estimated results than the mean regression, and the median regression in

sample size 500 works very well in all cases.
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(a) mean regression, n = 100
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(b) median regression, n = 100
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(c) mean regression, n = 500

−2.5 −2 −1.5 −1 −0.5 0.2 0.7 1.2 1.7 2.2

−
2

−
1

0
1

2

x

M

(d) median regression, n = 500

Figure 2: Simulation results-Boxplots of the local linear fitting for the median regression and mean

regression, for n = 100(top) and n = 500 (bottom)
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Figure 3: Simulation results-Boxplots of squared estimation error(SEE) of mean regression and median

regression estimation of g(·), for n = 100 (left) and n = 500 (right)
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4.2. An Empirical Application

Climate change has received a great deal of attention in recent years and become

one of the world’s supreme policy challenges. In order to promote greener growth

and internalise the costs of future environmental damage, the economists advise on the

appropriate design of a price on the thing that causes it – namely carbon emissions. The

European Union Emissions Trading System (EU ETS), launched in 2005, was the first

large, and remains the biggest greenhouse gas emissions trading scheme in the world.

It is well known that oil is one of the biggest sources of world greenhouse gases.

Low oil prices could discourage further innovation in and adoption of cleaner energy

technologies, which result in higher emissions of carbon dioxide and other greenhouse

gases (Balaguer & Cantavella, 2016). Through corrective carbon pricing, governments

could restore appropriate price incentives, and lower the risk of irreversible and potentially

devastating effects of climate change. Correspondingly, the interaction betweeen carbon

price and oil price has been increasingly closer, due to the rapid development and steady

expansion of carbon market. The relationship oil price and carbon market has drawn

attention in many recent studies (Benz & Trück, 2009; Chevallier, 2011; Mansanet-Bataller

et al., 2007). To capture well the underlying impact of oil price on the carbon market, we

investigate the relationship between daily return of WTI crude oil price and carbon future

price 1, with sample size 454 from 27th July 2015 to 15th May 2017, for an illustration.

In Figure 4,(a) and (b) show WTI crude oil price( Wt) and carbon future price( Ct),

and the daily return of WTI crude oil price Xt and daily return of carbon future price Yt,

defined by

Xt = log(Wt/Wt−1)× 100, Yt = log(Ct/Ct−1)× 100,

are plotted in (c) and (d), respectively.

ARMA-GARCH models have been used to describe the oil prices in many studies

(Chang et al., 2010; Lee & Chiou, 2011; Zhang & Chen, 2011, 2014). Therefore, we used the

daily return of WTI crude oil price data to estimate the model (4.3) with (4.4) and check

1Historical Futures Prices: ECX EUA Futures, Continuous Contract # 1. Non-adjusted price based on

spot-month continuous contract calculations. Raw data from ICE.
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Figure 4: Real example – WTI crude oil daily price and carbon future daily price
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Figure 5: The local linear fitting for the conditional mean and conditional quantile of the relationship

between daily return of WTI crude oil price and carbon future price, from 27th July 2015 to 15th

May 2017 with 454 observations.
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Table 1: Estimation results of ARMA-GARCH

Coe�cients Estimate Std. Error t value Pr(> |t|)

µ -0.0177 0.1208 -0.1462 0.8838

φ 0.6057 0.2222 2.7259 0.0064

θ -0.6263 0.2230 -2.8087 0.0050

α0 0.3002 0.1449 2.0713 0.0383

α1 0.1078 0.0442 2.4403 0.0147

β1 0.8518 0.0489 17.4335 0.0000

whether the conditional variance follows the GARCH process. The estimation results

show in Table 1, which all the coefficients are statistically significant except the intercept.

Table 2: Estimation results of mean squared prediction error for two methods

Methods τ = 0.1 τ = 0.5 τ = 0.9

parametirc quantile regression 0.3937184 0.97913 0.4405764

local linear quantile regression 0.3806771 0.98394 0.4240236

nonlinear threshold quantile regression 0.3511665 0.96354 0.4210472

The local linear estimates of the conditional mean and the conditional quantiles based

on the asymptotic normality in Section 3 are plotted in Figure 5, where the bandwidths

used for the conditional mean and conditional quantiles are 1.85 and 1.370132 (τ = 0.9),

2.907967 (τ = 0.5), and 1.185506 (τ = 0.1), respectively, chosen by cross-validation rule.

From Figure 5, we can observe that both the conditional upper and lower conditional

quantiles (e.g. τ = 0.1 and τ = 0.9) functions appear to be nonlinear.

To further evaluate the local linear quantile method, we consider comparison of

the prediction based on different parametric forms of quantile regression. The first is

a linear quantile function Q0
Yt
(τ|Xt) = a0

τ + α0
τXt, where a0

τ and α0
τ are linear quantile

coefficients (Koenker, 2005). Then, we consider the local linear quantile regression. In

general, although nonparametric specification can help to explore the possibly nonlinear

relationship, it may not give optimal prediction. Therefore, we consider a nonlinear

19

Electronic copy available at: https://ssrn.com/abstract=3555740



Quantile NED

threshold quantile function based on Figure 5.

We set aside the last 50 quarters for prediction and use the first T=404 quarters for

model estimation. A quantile prediction error (QPE) of the one-step ahead prediction is

computed for the linear quantile regression and nonlinear threshold quantile regression

at 10th, 50th and 90th quantile levels. Here, we define QPE as:

QPE(q̂τ(·)) =
1
n

n

∑
i=1

ρτ(q̂τ(xi)− qτ(xi)), (4.5)

where ρτ(y) = y(τ − I{y<0}) and IA is the indicator function of set A.

The results show in Table 2. The QPE values are 0.3937184 and 0.3511665 for linear and

nonlinear threshold quantile regression at 10th quantile level, respectively. Compared with

the linear quantile function, the threshold quantile regression outperforms in prediction,

with a relative improvement of 11%. This result further illustrates that local linear quantile

regression can help to uncover the relationship between daily returns of WTI crude oil

price and carbon future price which is more complex than linear.
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. Appendix: Proofs

A: Proofs of lemmata

Some basic lemmata are given in this section for later reference.

Lemma A.1 Let X and Y are two random variables on two σ–algebras generated fields A and

B, respectively. For two constants C1 and C2, there exist |X| ≤ C1 and |Y| ≤ C2, then

|EXY− EXEY| ≤ 4C1C2α(A,B), (A.1)

and

α(A, B) = sup
A∈A, B∈B

|P(AB)− P(A)P(B)|.

Proof. See the appendix of Hall & Heyde (2014).

Lemma A.2 Let m = mn be a positive integer and tending to mn → ∞ as n → ∞. b(·) :

Rp → R1 is continuous function. Then under Assumptions A1(ii,iv) and A2, if E|b(X(m)
i )| < ∞

and hn → 0 as n→ ∞,

h−p
n Eb(X(m)

i )K((x− X(m)
i )/hn)→ b(x) fX(x)

∫
K(u)du + O

(
h−1−p

n v1(m)
)

, (A.2a)

h−p
n Eb(X(m)

i )K2((x− X(m)
i )/hn)→ b(x) fX(x)

∫
K2(u)du + O

(
h−1−p

n v1(m)
)

, (A.2b)

as n→ ∞. for i 6= j,

Eb(X(m)
i )b(X(m)

j )K((x− X(m)
i )/hn)K((x− X(m)

j )/hn)

= Eb(Xi)b(Xj)K((x− Xi)/hn)K((x− Xj)/hn) + O
(

h−1−p
n v1(m)

)
(A.2c)

Furthermore, for j > 0,

h−p
n EK((x− X(m)

1 )/hn)K((x− X(m)
j+1)/hn) = O(hmin(p, j)

n ) + O
(

h−1−p
n v1(m)

)
, (A.2d)

where (A.2c) holds uniformly for j ≥ p.

Proof. The main idea of the proof is similar to that of Lemma A.2 of Lu & Linton (2007),

though details are different. We only briefly sketch it here.
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To prove (A.2a), note first that

Eb(X(m)
i )K((x− X(m)

i )/hn)

=Eb(Xi)K((x− X(m)
i )/hn) + E(b(X(m)

i )− b(Xi))K((x− X(m)
i )/hn)

= : Eb(Xi)K((x− X(m)
i )/hn) + δ1T. (A.3)

Here, using the bounded property of the kernel function K(·),

|δ1T| ≤E|b(X(m)
i )− b(Xi))| K((x− X(m)

i )/hn)

≤CE|b(X(m)
i )− b(Xi))| ≤ CE||X(m)

i − Xi|| = O (v1(m)) .

Next,

Eb(Xi)K((x− X(m)
i )/hn)

= Eb(Xi)K((x− Xi)/hn) + Eb(Xi)(K((x− X(m)
i )/hn)− K((x− Xi)/hn))

=: δ2T + δ3T,

δ2T = Eb(Xi)K((x− Xi)/hn) = hp
nb(x) fX(x)

∫
K(u)du; (A.4)

under A2(iii),

|δ3T| ≤ E|b(Xi)| |K((x− X(m)
i )/hn)− K((x− Xi)/hn)|

≤ CE

∥∥∥∥∥X(m)
i − Xi

hn

∥∥∥∥∥ = O
(

h−1
n v1(m)

)
; (A.5)

Then we can get

Eb(Xi)K((x− X(m)
i )/hn) = hp

nb(x) fX(x)
∫

K(u)du + O
(

h−1
n v1(m)

)
. (A.6)

For (A.2b), (A.2c) and (A.2d), it can be proved in an argument similar to that in the above.

Lemma A.3 (Cross-term lemma) Let {(Y(m)
j , X(m)

j ); 1 ≤ j ≤ q} be a stationary sequence

with mixing coefficient

αm(j) := sup
{
|P(AB)− P(A)P(B)| : A ∈ B({Y(m)

i , X(m)
i }), B ∈ B({Y(m)

i+j , X(m)
i+j )}

}
.
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Let (y, x) 7→ b̃(y, x) be a bounded measurable function defined on R×Rp. Set η
(m)
j (x) =

b̃(Y(m)
j , X(m)

j )K̃
(
(x− X(m)

j )/hn

)
, where K̃ is a kernel function satisfying Assumption A2, and

∆(m)
j (x) = η

(m)
j (x) − Eη

(m)
j (x), R̃(x) = ∑1≤i<j≤n E∆(m)

i (x)∆(m)
j (x). Then, under Assump-

tions A1, A2 and A3, there exists a constant C > 0 such that

|R̃(x)| ≤ Cnhp
n
[

J̃1(x) + J̃2(x)
]

. (A.7)

where J̃1(x) := hp
nNnmax

{
1, h−2−2p

n v1(m)
}

and

J̃2(x) := hp
n

(
n

∑
j=Nn

αm(j)

)
max

{
1, h−2−2p

n v1(m)
}

.

Proof. The main idea of the proof is similar to that of Lemma A.3 of Lu & Linton (2007),

though details are different. We only briefly sketch it here.

E∆(m)
j (x)∆(m)

i (x) =
{

E
(

η
(m)
j (x)η(m)

i (x)
)
− E

(
η
(m)
j (x)

)
E
(

η
(m)
i (x)

)}
Then applying Lemma A.2,

E
[
∆(m)

j (x)∆(m)
i (x)

]
=
[
EZiK((x− Xi)/hn)ZjK((x− Xj)/hn)− EZiK((x− Xi)/hn)EZjK((x− Xj)/hn)

]
+
[
O
(
h−2

n v2
1(m)

)
+ O

(
h−1

n v1(m)
)]

+ hp
n

[
O
(

h−1
n v1(m)

)]
≤ Ch2p

n

[
1 + O

(
h−2p−2

n v1(m)
)]

, (A.8)

Therefore,

n

∑
i=1

Nn

∑
j−i=1

E
[
∆(m)

j (x)∆(m)
i (x)

]
≤ Ch2p

n (nNn)max
{

1, h−2p−2
n v1(m)

}
= nhp

n J̃1(x). (A.9)

where Nn is a positive integer depending on n to be specified later. On the other hand,

n

∑
i=1

n

∑
j−i=Nn

E
[
∆(m)

j (x)∆(m)
i (x)

]
≤ Ch2p

n

(
n

n

∑
j=Nn

αm(j)

)
max

{
1, h−2p−2

n v1(m)
}
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= nhp
n J̃2(x). (A.9)

B: Proofs for Subsection 3.1

In this section, we will mainly focus on the proof of Theorem 3.1. C will denote a generic

constant in the proof.

We first introduce some notations. Denote Xhi = (Xi − x)/hn, Xhi = (1, X′hi)
′, Ki =

K(Xhi), X(m)
hi = (X(m)

i − x)/hn, X (m)
hi = (1, X′(m)

hi )′, K(m)
i = K(X(m)

hi ), Hn =
√

nhp
n,

θn = Hn (â0 − qτ(x), hn(â1 − q̇(x))′)′ , θ = Hn (a0 − qτ(x), hn(a1 − q̇(x))′)′, θ̃ = Hn(ã0 −

qτ(x), hn(ã1 − q̇(x))′)′ where (a0, a′1)
′, (ã0, ã′1)

′ ∈ R1+p. Let Y∗i be defined in Theorem 3.1,

and set Y∗ni(θ) = Y∗i − θ′Xhi/Hn, Tni = (q̇(x))′Xhihn, Uni = Uni(θ) = Tni + θ′Xhi/Hn.

Y∗(m)
ni (θ) = Y∗(m)

i − θ′X (m)
hi /Hn, T(m)

ni = (q̇(x))′X(m)
hi hn, U(m)

ni = U(m)
ni (θ) = T(m)

ni + θ′X (m)
hi /Hn.

The following properties are useful in the discussion.

Y∗i = Yi − qτ(x)− Tni, (B.1a)

Y∗(m)
i = Y(m)

i − qτ(x)− T(m)
ni ,

Y∗ni(θ) = Yi − qτ(x)−Uni(θ) = Yi − a0 − a′1(Xi − x), (B.1b)

Y∗(m)
ni (θ) = Y(m)

i − qτ(x)−U(m)
ni (θ) = Y(m)

i − a0 − a′1(X(m)
i − x).

Since K(·) is a bounded density function with a bounded support,

‖Xhi‖ ≤ C, ‖Xhi‖ ≤ C when Ki > 0, (B.1c)

and when ‖θ‖ ≤ M and Ki > 0,

|Tni| ≤ Chn, |Uni| ≤ Chn + CH−1
n → 0 as n→ ∞. (B.1d)

It follows from (2.5) that

θn = argminθ∈R1+p

n

∑
i=1

ρτ(Y∗ni(θ))Ki
∆
= argminθ∈R1+p Gn(θ). (B.1e)

Set

Vn(θ) = H−1
n

n

∑
i=1

ψτ(Y∗ni(θ))XhiKi. (B.2)
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Note that

Vn(θ)−Vn(0) = H−1
n

n

∑
i=1

[ψτ(Y∗ni(θ))− ψτ(Y∗i )]XhiKi

∆
= H−1

n

n

∑
i=1

Vni(θ). (B.3)

Set Vni(θ) = (V0
ni(θ), (V

1
ni(θ))

′)′ and ∆i = Vni(θ)−EVni(θ), where V0
ni(θ) = [ψτ(Y∗ni(θ))−

ψτ(Y∗i )]Ki and V1
ni(θ) = [ψτ(Y∗ni(θ))−ψτ(Y∗i )]XhiKi. And set V(m)

ni (θ) = (V0(m)
ni (θ), (V1(m)

ni (θ))′)′

and ∆(m)
i = V(m)

ni (θ) − EV(m)
ni (θ), where V0(m)

ni (θ) = [ψτ(Y
∗(m)
ni (θ)) − ψτ(Y

∗(m)
i )]K(m)

i and

V1(m)
ni (θ) = [ψτ(Y

∗(m)
ni (θ))− ψτ(Y

∗(m)
i )]X(m)

hi K(m)
i .

Lemma B.1 Let Vn(π) be a vector function that satisfies

(i) −π′Vn(λπ) ≥ −π′Vn(π), λ ≥ 1,

(ii) sup‖π‖≤M ‖Vn(π) + fY|X(qτ(x)|x)Dπ − An‖ = oP(1),

where ‖An‖ = OP(1), 0 < M < ∞, fY|X(qτ(x)|x) > 0, and D is a positive-definite matrix.

Suppose that πn such that ‖Vn(πn)‖ = oP(1). Then, ‖πn‖ = OP(1) and

πn = [ fY|X(qτ(x)|x)]−1D−1An + oP(1).

Proof. This is Lemma A.4 of Koenker & Zhao (1996).

The following lemmata is to check the conditions of Lemma B.1. We then can proof Theorem

3.1 based on Lemma B.1.

Lemma B.2 Under Assumptions A1(ii, iii) and A2,

E|ψτ(Y∗ni(θ))− ψτ(Y∗ni(θ̃))|Ki ≤ CEI(|Y∗ni(θ̃)|<C‖θ−θ̃‖/Hn)
Ki ≤ C‖θ − θ̃‖hp

n/Hn,

E|ψτ(Y∗ni(θ))− ψτ(Y∗ni(θ̃))|2K2
i ≤ CEI(|Y∗ni(θ̃)|<C‖θ−θ̃‖/Hn)

K2
i ≤ C‖θ − θ̃‖hp

n/Hn,

E|ψτ(Y∗ni(θ))− ψτ(Y∗i )|2K2((X(m)
i − x)/hn) ≤ CEI(|Y∗ni(θ̃)|<C‖θ‖/Hn)

K(m)2
i ≤ C‖θ‖hp

n/Hn.

for any θ, θ̃ ∈ {θ : ‖θ‖ ≤ M}.

E|ψτ(Y∗ni(θ))− ψτ(Y
∗(m)
ni (θ))|2K2((X(m)

i − x)/hn) ≤ CL +
C
L

v1(m)

E|ψτ(Y∗i )− ψτ(Y
∗(m)
i )|2K2((X(m)

i − x)/hn) ≤ CL +
C
L

v1(m),

where L = Ln → 0
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Proof. From (B.1c)

|ψτ(Y∗ni(θ))− ψτ(Y∗ni(θ̃))|Ki = |I{Y∗ni(θ)<0} − I{Y∗ni(θ̃)<0}|Ki

=|I{Y∗ni(θ̃)<(θ−θ̃)′Xhi/Hn} − I{Y∗ni(θ̃)<0}|Ki ≤ I{|Y∗ni(θ̃)|<C‖θ−θ̃‖/Hn}Ki.

We have

E|ψτ(Y∗ni(θ))− ψτ(Y∗ni(θ̃))| Ki ≤ CEI(|Y∗ni(θ̃)|<C‖θ−θ̃‖/Hn)
Ki.

From (B.1b), there exists 0 < ξ < 1 such that

EI(|Y∗ni(θ̃)|<C‖θ−θ̃‖/Hn)
Ki

≤CE[FY|X(qτ(x) + Uni(θ̃) + C‖θ − θ̃‖/Hn|Xi)− FY|X(qτ(x) + Uni(θ̃)− C‖θ − θ̃‖/Hn|Xi)]Ki

≤CE[ fY|X(qτ(x) + Uni(θ̃)− C‖θ − θ̃‖/Hn + 2ξC‖θ − θ̃‖/Hn)|Xi]2C‖θ − θ̃‖/HnKi

≤C‖θ − θ̃‖H−1
n E[ fY|X(qτ(x) + Uni(θ̃)− C‖θ − θ̃‖/Hn + 2ξC‖θ − θ̃‖/Hn)|Xi]Ki.

for any θ, θ̃ ∈ {θ : ‖θ‖ ≤ M}.

Then using Assumptions A1(iii) and A2 together with (B.1d) and Lemma A2 with n large

enough, we have

E|ψτ(Y∗ni(θ))− ψτ(Y∗hi(θ̃))| Ki

≤C‖θ − θ̃‖H−1
n E[ fY|X(qτ(x)|Xi)

× fY|X(qτ(x) + Uni(θ̃)− C‖θ − θ̃‖/Hn + 2ξC‖θ − θ̃‖/Hn|Xi)/ fY|X(qτ(x)|Xi)]Ki

≤C‖θ − θ̃‖H−1
n [E fY|X(qτ(x)|Xi)Ki] = C‖θ − θ̃‖ O(hp

nH−1
n ).

This is the first inequality of Lemma B2. The second one and third one can be proved similarly.

For the fourth inequality, we have

E|ψτ(Y∗ni(θ))− ψτ(Y
∗(m)
ni (θ))|2K2((X(m)

i − x)/hn)

=E|I{Y∗ni(θ)<0} − I{Y∗(m)
ni (θ)<0}|

2K2((X(m)
i − x)/hn)

≤E|I{Y∗ni(θ)<0} − I{Y∗ni(θ)<Y∗ni(θ)−Y∗(m)
ni (θ)}|

2K(m)2
i

≤CEI2
{|Y∗ni(θ)|<|Y∗ni(θ)−Y∗(m)

ni (θ)|}
K(m)2

i
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≤C{P(|Y∗ni(θ)| < |Y∗ni(θ)−Y∗(m)
ni (θ)|, |Y∗ni(θ)| ≤ L)

+ P(|Y∗ni(θ)| < |Y∗ni(θ)−Y∗(m)
ni (θ)|, |Y∗ni(θ)| > L)}

≤C{P(|Y∗ni(θ)| ≤ L) + P(|Y∗ni(θ)−Y∗(m)
ni (θ)| > L)}

≤CL +
C
L

E|Y∗ni(θ)−Y∗(m)
ni (θ)|

≤CL +
C
L
{E|Yi −Ym

i |+ E|Xi − Xm
i |}

≤CL +
C
L

v1(m),

where L = Ln.

Lemma B.3 Under the conditions of Lemma 3.1,

sup
‖θ‖≤M

‖Vn(θ)−Vn(0)− E(Vn(θ)−Vn(0))‖ = oP(1). (B.4)

Proof. The proof is divided into two steps. First we prove that for any fixed θ : ‖θ‖ ≤ M,

‖Vn(θ)−Vn(0)− E(Vn(θ)−Vn(0))‖ = oP(1). (B.5)

Then from (B.3), the left-hand side of (B.5) is bounded by

H−1
n |

n

∑
i=1

(V0
ni(θ)− EV0

ni(θ))|+ H−1
n ‖

n

∑
i=1

(V1
ni(θ)− EV1

ni(θ))‖
∆
= V0

n + V1
n . (B.6)

It follows from the stationarity and Lemma A.1 that

E(V0
n )

2 = (nhp
n)
−1

{
n

∑
j=1

E(∆0
j )

2 + 2 ∑
1≤i<j≤n

E∆0
i ∆0

j

}

= h−p
n E(∆0

j )
2 + 2(nhp

n)
−1 ∑

1≤i<j≤n
E∆0

i ∆0
j := An1 + 2An2. (B.7a)

In order to bound (B.7a), we apply Lemma B1 with θ̃ = 0; for ‖θ‖ ≤ M,

h−p
n E(∆0

j )
2 ≤ h−p

n var(V0
n1(θ)) ≤ h−p

n E(V0
n1)

2 = h−p
n E|ψτ(Y∗ni(θ))− ψτ(Y∗i )|2K2

i ≤ CH−1
n .

Therefore, to complete the proof of this lemma, it suffices to show that An2 → 0 as n → ∞.

By noticing E∆0
i ∆0

j = E∆0(m)
i ∆0(m)

j + E∆0(m)
i (∆0

j − ∆0(m)
j ) + E(∆0

i − ∆0(m)
i )∆0

j , we can further
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separate AT2 into three parts: An2 = An21 + An22 + An23,

An21 : = (nhp
n)
−1 ∑

1≤i<j≤n
E∆0(m)

i ∆0(m)
j ≤ C(nh(1+2/a)p

n )−1/2 + CNa
n

∞

∑
j=Nn

α(j−m) = o(1)

(B.7b)

where Nn = h−p/a
n , and the equality is due to Lemma A.3 and B2.

An22 = (nhp
n)
−1 ∑

1≤i<j≤n
E∆0(m)

i (∆0
j − ∆0(m)

j )

≤ (nhp
n)
−1 ∑

1≤i<j≤n

{
E(∆0(m)

i )2
}1/2 {

E(∆0
j − ∆0(m)

j )2
}1/2

= (nhp
n)
−1 n(n− 1)

2

{
E(∆0(m)

i )2
}1/2 {

E(∆0
j − ∆0(m)

j )2
}1/2

, (B.8)

and as a result E(∆0(m)
i )2 ≤ Chp

nH−1
n = o(1), and

E
(

∆0
j − ∆0(m)

j

)2

≤E
(

V0
nj(θ)−V0(m)

nj (θ)
)2

=E
{
[ψτ(Y∗nj(θ))− ψτ(Y∗j )− ψτ(Y

∗(m)
nj (θ)) + ψτ(Y

∗(m)
j )]K((X(m)

j − x)/hn)

+[ψτ(Y∗nj(θ))− ψτ(Y∗j )][K((Xj − x)/hn)− K((X(m)
j − x)/hn)]

}2

≤2
{

E[ψτ(Y∗nj(θ))− ψτ(Y∗j )− ψτ(Y
∗(m)
nj (θ)) + ψτ(Y

∗(m)
j )]2K2((X(m)

j − x)/hn)

+E[ψτ(Y∗nj(θ))− ψτ(Y∗j )]
2[K((Xj − x)/hn)− K((X(m)

j − x)/hn)]
2
}

≤C
[

E|ψτ(Y∗nj(θ))− ψτ(Y
∗(m)
nj (θ))|2K2((X(m)

j − x)/hn) + E|ψτ(Y∗j )− ψτ(Y
∗(m)
j )|2K2((X(m)

j − x)/hn)

+H−1
n hp−1

n E fY|X(qτ(x)|Xi)
∥∥∥Xj − X(m)

j

∥∥∥]
≤C

[
L +

1
L

v1(m) + H−1
n hp−1

n v1(m)

]
,

by using the Lipschitz continuity and boundedness of the kernel K(·). Therefore, we have

An22 ≤(nhp
n)
−1 n(n− 1)

2

{
E(∆0(m)

i )2
}1/2 {

E(∆0
j − ∆0(m)

j )2
}1/2

≤C(nhp
n)
−3/4n3/2

[
L + v1(m)L−1 + Hnhp−1

n v1(m)
]1/2

= o(1), (B.9)
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where the equality is due to Assumption B2 and L = Ln = v1(m). And similarly to An22, it can

be proved that

An23 := (nhp
n)
−1 ∑

1≤i<j≤n
E(∆0

i − ∆0(m)
i )∆0

j → 0.

Therefore,

E(V0
n )

2 = An1 + 2An2 = o(1), (B.10)

Similarly to E(V0
n )

2, we have

E(V1
n )

2 = o(1). (B.11)

Thus (B.4) follows from (B.6) together with (B.10) and (B.11).

The next step is to use standard chaining argument in Bickel (1975) and He & Shao

(1996). We only give a sketch here. Decompose {‖θ‖ ≤ M} into cubes based on the grid

(j1γM, · · · , jp+1γM), ji = 0, ±1, · · · , ±[1/γ] + 1, where [1/γ] denotes the integer part of

1/γ, and γ is a small positive number independent of n. Let R(θ) be the lower vertex of the cube

that contains θ. Clearly, ‖R(θ)− θ‖ ≤ Cγ and the number of the elements of {R(θ) : ‖θ‖ ≤ M}

is finite. Then

sup
‖θ‖≤M

‖Vn(θ)−Vn(0)− E(Vn(θ)−Vn(0))‖ ≤ V∗n1 + V∗n2 + V∗n3, (B.12)

where it follows from (B.4) that V∗n1 = sup‖θ‖≤M ‖Vn(R(θ))−Vn(0)−E(Vn(R(θ))−Vn(0))‖ =

oP(1), and V∗n2 = sup‖θ‖≤M ‖Vn(θ)−Vn(R(θ))‖ and V∗n3 = sup‖θ‖≤M ‖E(Vn(θ)−Vn(R(θ)))‖.

Using (B.1c) and for ‖θ‖ ≤ M, applying Lemma B2 with θ̃ = R(θ) with n large, we have

V∗n3 ≤ CH−1
n n sup

‖θ‖≤M
E|ψτ(Y∗ni(θ))− ψτ(Y∗ni(R(θ)))|Ki ≤ C sup

‖θ‖≤M
‖θ − R(θ)‖ ≤ Cγ.

(B.13)

Therefore letting n→ ∞ and then γ→ 0 leads to V∗n3 = o(1).

Set Bi(θ) = I(|Y∗ni(θ)|<Cγ/Hn)‖Xhi‖Ki. Then

V∗n2 ≤ sup
‖θ‖≤M

‖Vn(θ)−Vn(R(θ))‖ ≤ C sup
‖θ‖≤M

H−1
n

n

∑
i=1

Bi(R(θ)) ≤ Bn1 + Bn2, (B.14)
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where a similar argument to (B.13) leads to Bn1 = C sup‖θ‖≤M H−1
n ∑n

i=1 EBi(R(θ)) = o(1),

and similarly to (B.7), Bn2 = C sup‖θ‖≤M |H−1
n ∑n

i=1(Bi(R(θ))− EBi(R(θ)))| = oP(1). Thus,

V∗n2 = oP(1). Finally (B.3) follows from (B.12).

Lemma B.4 Under Assumptions A1(iii) and A2,

sup
‖θ‖≤M

‖E(Vn(θ)−Vn(0)) + fY|X(qτ(x)|x)Dθ‖ = o(1), (B.15)

where D = fX(x)diag(1,
∫

uu′K(u)du).

Proof. It follows from (B.5) and (B.1) that

E(Vn(θ)−Vn(0)) =H−1
n nE[I(Y∗i <0) − I(Y∗ni(θ)<0)]XhiKi

=Hnh−p
n E[F(qτ(x) + Tni|Xi)− F(qτ(x) + Uni(θ)|Xi)]XhiKi.

Then similar to the proof of Lemma B1 with Uni − Tni = θ′Xhi/Hn and ‖θ‖ ≤ M, there

exists a 0 < ξ < 1 such that

sup
‖θ‖≤M

‖E(Vn(θ)−Vn(0)) + fY|X(qτ(x)|x)Dθ‖

= sup
‖θ‖≤M

‖ − h−p
n E[ f (qτ(x) + Tni + ξθ′Xhi/Hn|Xi)]θ

′XhiXhiKi + fY|X(qτ(x)|x)Dθ‖

= sup
‖θ‖≤M

‖ − h−p
n E[ f (qτ(x) + Tni + ξθ′Xhi/Hn|Xi)− f (qτ(x)|Xi)]θ

′XhiXhiKi

− E[h−p
n f (qτ(x)|Xi)]XhiX

′
hiKi − fY|X(qτ(x)|x)D]θ‖

≤C sup
‖θ‖≤M

h−p
n E| f (qτ(x) + Tni + ξθ′Xhi/Hn|Xi)− f (qτ(x)|Xi)|‖XhiX

′
hi‖Ki

+ C‖E[h−p
n f (qτ(x)|Xi)]XhiX

′
hiKi − fY|X(qτ(x)|x)D‖ = o(1),

where the last inequality follows from Assumptions A1(iii) and A2, (B.1d) and Lemma A.2.

Lemma B.5 Let θn be the minimizer of the function defined in (B.1e). Then

‖Vn(θn)‖ ≤ dim(Xhi)H−1
n maxi≤n‖X

′
hiKi‖.

Proof. The proof follows from Ruppert & Carroll (1980).

Lemma B.6 Under Assumptions A1 and A2, if a ≥ 1 and hn → 0, then

E(c′Vn(0)− c′EVn(0))2 → τ(1− τ) fX(x)
∫

K2
c (u)du
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as n→ ∞, where c = (c0, c′1)
′ ∈ R1+p.

Proof. Set vi = ψτ(Y∗i )Kc((Xi − x)/hn), v(m)
i = ψτ(Y

∗(m)
i )Kc((X(m)

i − x)/hn), and

ηi = vi − Evi, η
(m)
i = v(m)

i − Ev(m)
i . A similar argument to (B.7) leads to

E(c′Vn(0)− c′EVn(0))2 = (nhp
n)
−1

{
n

∑
i=1

Eη2
i + 2 ∑

1≤i<j≤n
Eηiηj

}

= h−p
n Eη2

1 + 2h−p
n ∑

1≤i<j≤n
Eηiηj

∆
= vn1 + 2vn2 (B.16)

Note that (A.2a) and (A.2b) of Lemma A.2 gives

EI(Y∗1 <0)K
2
c ((X1 − x)/hn) = EFY|X(qτ(x) + q̇τ(X1 − x)|X1)K2

c ((X1 − x)/hn)

→ τ fX(x)
∫

K2
c (u)du,

EI(Y∗1 <0)Kc((X1 − x)/hn)→ τ fX(x)
∫

Kc(u)du,

which lead to

h−p
n Ev2

1 = E[τ2 − 2τ I(Y∗1 <0) + I(Y∗1 <0)]K
2
c ((X1 − x)/hn)

→ τ(1− τ) fX(x)
∫

K2
c (u)du,

and

h−p
n Ev1 = E[τ − I(Y∗1 <0)]Kc((X1 − x)/hn)→ (τ − τ) fX(x)

∫
Kc(u)du = 0.

Then

vn1 = h−p
n Ev2

1 − h−p
n (Ev1)

2 → τ(1− τ) fX(x)
∫

K2
c (u)du. (B.17)

Therefore, to complete the proof of this lemma, it suffices to show that vn2 → 0 as n→ ∞. By

noticing Eηiηj = Eη
(m)
i η

(m)
j + Eη

(m)
i (ηj − η

(m)
j ) + E(ηi − η

(m)
i )ηj, we can further separate vn2

into three parts: vn2 = vn21 + vn22 + vn23,

vn21 := (nhp
n)
−1 ∑

1≤i<j≤n
Eη

(m)
i η

(m)
j ≤ O(hn) + εO(hp(1−1/a)

n ) + CNa
n

∞

∑
j=Nn

α(j−m)→ 0

(B.18)

36

Electronic copy available at: https://ssrn.com/abstract=3555740



Quantile NED

Take Nn = εh−p/a
n , where ε is a small positive number, and a ≥ 1.

vn22 = (nhp
n)
−1 ∑

1≤i<j≤n
Eη

(m)
i (ηj − η

(m)
j )

≤ (nhp
n)
−1 ∑

1≤i<j≤n

{
E(η(m)

i )2
}1/2 {

E(ηj − η
(m)
j )2

}1/2

= (nhp
n)
−1 n(n− 1)

2

{
E(η(m)

i )2
}1/2 {

E(ηj − η
(m)
j )2

}1/2
, (B.19)

and as a result E(η(m)
i )2 ≤ E(v(m)

i )2 ≤ Chp
n = o(1) and by using the properties of the kernel

Kc(·)

E
(

ηj − η
(m)
j

)2
≤ E

(
vj − v(m)

j

)2

= E
{
[ψτ(Y∗j )− ψτ(Y

∗(m)
j )]Kc((X(m)

j − x)/hn)

+[ψτ(Y∗j )][Kc((Xj − x)/hn)− Kc((X(m)
j − x)/hn)]

}2

≤ 2
{

E[ψτ(Y∗j )− ψτ(Y
∗(m)
j )]2K2

c ((X(m)
j − x)/hn)

+E[ψτ(Y∗j )]
2[Kc((Xj − x)/hn)− Kc((X(m)

j − x)/hn)]
2
}

≤ C
[

E[ψτ(Y∗j )− ψτ(Y
∗(m)
j )]2K2

c ((X(m)
j − x)/hn)

+hp−1
n EFY|X(qτ(x)|Xj)

∥∥∥Xj − X(m)
j

∥∥∥]
≤ C

[
L + L−1v1(m) + hp−1

n v1(m)
]

,

we have

vn22 ≤(nhp
n)
−1 n(n− 1)

2

{
E(η(m)

i )2
}1/2 {

E(ηj − η
(m)
j )2

}1/2

≤C(nhp
n)
−1/2n3/2

[
L + v1(m)L−1 + Hnhp−1

n v1(m)
]1/2

= o(1). (B.20)

And similarly to vn22, it can be proved that

vn23 := (nhp
n)
−1 ∑

1≤i<j≤n
E(ηi − η

(m)
i )ηj → 0.

Therefore,

vn2 = vn21 + vn22 + vn23 = o(1). (B.21)
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Finally the lemma follows from (B.17) and (B.21).

Proof of Theorem 3.1 We now check the conditions of Lemma B.1, lemmata B.3 and B.4 lead

to (ii) of Lemma B.1 ‖Vn(θn)‖ = oP(1) follows from Lemma B.5 together with assumptions A2

and A3. Take An = Vn(0). It can be seen from Lemma B.6 that An = OP(1). Since ψτ(y) is an

increasing function of y, the function

−θ′Vn(λθ) = H−1
n

n

∑
i=1

ψτ(y∗i − λθ′Xhi/Hn)(−θ′Xhi)Ki

is increasing as a function of λ. Therefore, condition (i) of Lemma B.1 holds and the result follows.

Proof of Theorem 3.2 The arguments are similar. We only give the proof of (3.2).

Lemma 3.1 entails that

q̂τ(x)− qτ(x) = (nhp
n)
−1φτ

n

∑
i=1

ψτ(Y∗i )Ki + oP(1/Hn)

=(nhp
n)
−1φτ

n

∑
i=1

[ψτ(Y∗i )Ki − Eψτ(Y∗i )Ki] + (nhp
n)
−1φτ

n

∑
i=1

Eψτ(Y∗i )Ki + oP(1/Hn)

∆
= Qn1 + Qn2 + oP(1/Hn). (B.22)

Note that τ = F(qτ(Xi)|Xi) and by (B.1c) and Assumption A3 with v = 1 that when Ki > 0,

there exists 0 < ξ̃ < 1 such that

|∆i(x)| ∆
= |qτ(Xi)− qτ(x)− Tni|

= |[q̇(x + ξ̃Xhihn)− q̇(x)]′Xhihn| ≤ Ch1+δ
n . (B.23a)

There exists a 0 < ξ < 1 from (B.23a) that,

|Qn2| = |h−p
n φτE[τ − I(Y∗i <0)]Ki| = h−p

n φτE[F(qτ(Xi)|Xi)− F(qτ(x) + Tni|Xi)]Ki

= |h−p
n φτE[ f (qτ(x) + Tni + ξ∆i(x)|Xi)∆i(x)Ki]|

≤ O(h1+δ
n )h−p

n φτE[ f (qτ(x) + Tni + ξ∆i(x)|Xi)Ki] = O(h1+δ
n ), (B.23b)

where the last inequality is derived from (B.1d) and Assumption A1(iii).

On the other hand, it easily follows from Lemma B.6 with c = (1, 0′)′ ∈ R1+p that,

EQ2
n1 = (nhp

n)
−1φ2

τE(c′Vn(0)− c′EVn(0))2 = OP((nhp
n)
−1) = OP(H−2

n ),

which entails Qn1 = OP(H−1
n ). The result of this theorem follows from (B.22).
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C: Proofs for Subsection 3.2

The proof of Theorem 3.3 is based on the local Bahadur representation given in Subsection 3.1.

We first proof the Lemma 3.1 and Lemma 3.2.

Proof of Lemma 3.1 Based on the Bahadur representation of Theorem 3.1, the proof is similar

to the arguments in the corresponding proof for mean regression in Lu & Linton (2007) . We first

derive the asymptotic variance and expectation, with the Lemma A.3 replacing the corresponding

Lemma A.3 in Lu & Linton (2007). Suppose

Wn :=

 wn0

wn1

 , (Wn)j := (nhp
n)
−1

n

∑
i=1

ψτ(Y∗i )
(

Xi − x
hn

)
j

K
(

Xi − x
hn

)
, j = 0, . . . , p,

(C.1)

with
(

Xi−x
hn

)
0
= 1.

Denote by Kj(x) = (x)j K (x) Then it can be noted that

E
∣∣∣∣(W(m)

n

)
j
− (Wn)j

∣∣∣∣ = E

∣∣∣∣∣(nhp
n)
−1

n

∑
i=1

[
ψτ(Y

∗(m)
i )Kj

(
X(m)

i − x
hn

)
− ψτ(Y∗i )Kj

(
Xi − x

hn

)]∣∣∣∣∣
≤ (nhp

n)
−1

n

∑
i=1

E

∣∣∣∣∣ψτ(Y
∗(m)
i )Kj

(
X(m)

i − x
hn

)
− ψτ(Y∗i )Kj

(
Xi − x

hn

)∣∣∣∣∣
= h−p

n E

∣∣∣∣∣ψτ(Y
∗(m)
i )Kj

(
X(m)

i − x
hn

)
− ψτ(Y∗i )Kj

(
Xi − x

hn

)∣∣∣∣∣
≤ h−p

n E
∣∣∣ψτ(Y

∗(m)
i )− ψτ(Y∗i )

∣∣∣Kj

(
X(m)

i − x
hn

)
+ h−p

n E|ψτ(Y∗i )|
∣∣∣∣∣Kj

(
X(m)

i − x
hn

)
− Kj

(
Xi − x

hn

)∣∣∣∣∣
= Op

(
h−p

n v1(m)
)
+ Op

(
h−p−1

n v1(m)
)

= Op

(
h−p−1

n v1(m)
)

. (C.2)

The usual Cramér-Wold device will be adopted. For all c := (c0, c′1)
′ ∈ R1+p, let

An := ( nhp
n)

1/2c′Wn = φτ(x)
1√
nhp

n

n

∑
i=1

ψτ(Y∗i )Kc(
Xi − x

hn
),

with Kc(u) defined in A2(ii).

The expectation of the first term on right-hand side of (3.1) is as

E

φτ(x)
1√
nhp

n

n

∑
i=1

ψτ(Y∗i )

 1
Xi−x

hn

K(
Xi − x

hn
)


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=φτ(x)
1√
nhp

n
nE

ψτ(Y∗i )

 1
Xi−x

hn

K(
Xi − x

hn
)


=φτ(x)

√
nhp

nh−p
n E

(FY|X(qτ(Xi)|Xi)− FY|X(qτ(x) + (q̇τ(x))′(Xi − x)|Xi)
) 1

Xi−x
hn

K(
Xi − x

hn
)


=

√
nhp

n

(1 + o(1))

B0(x)

B1(x)

 (C.3)

Based on Lemma B.6, the variance is as

Σ := Var

φτ(x)
1√
nhp

n

n

∑
i=1

ψτ(Y∗i )

 1
Xi−x

hn

K(
Xi − x

hn
)


=Var (φτ(x)Vn(0))

=φ2
τ(x)τ(1− τ) fX(x)

 ∫
K2(u)du

∫
u′K2(u)du∫

uK2(u)du
∫

uu′K2(u)du

 (C.4)

Then

lim
n→∞

Var[An] = (φτ(x))−2c′Σc, (C.5)

Proof of Lemma 3.2 The fundamental idea to prove the asymptotic normality of Wn(x) is to

divide Wn(x) into two parts: with m = mn → ∞ (to be specified later),

Wn(x) = W(m)
n (x) +

[
Wn(x)−W(m)

n (x)
]

, (C.6)

Then applying the approximation lemma 3.1,

(nhp
n)

1/2
[
Wn(x)−W(m)

n (x)
]
= Op

(
n1/2h−1/2p−1

n v1(m)
)
→P 0,

following from Assumption B2; and similarly

(nhp
n)

1/2E
[
Wn(x)−W(m)

n (x)
]
→ 0.

Therefore, like Lu & Linton (2007), it suffices to prove that

(nhp
n)

1/2(c′[W(m)
n (x)− EW(m)

n (x)]/σ)
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is asymptotically standard normal as n→ ∞, which is the main effort we will made in this paper.

Define

η
(m)
i (x) := ψτ(Y

∗(m)
i )Kc((X(m)

i − x)/hn),

ζ
(m)
ni := h−p/2

n

(
η
(m)
i (x)− Eη

(m)
i (x)

)
,

and let S(m)
n := ∑n

i=1 ζ
(m)
ni . Then,

n−1/2S(m)
n = (nhp

n)
1/2c′(W(m)

n (x)− EW(m)
n (x)) = A(m)

n − EA(m)
n ,

Then, we decompose n−1/2S(m)
n into smaller pieces involving "large" and "small" blocks. More

specifically, consider

U(m)(1, n, x, k) :=
k(p∗+q∗)+p∗

∑
j=k(p∗+q∗)+1

ζ
(m)
nj (x),

U(m)(2, n, x, k) :=
(k+1)(p∗+q∗)

∑
j=k(p∗+q∗)+p∗+1

ζ
(m)
nj (x)

where p∗ = p∗n and q∗ = q∗n are specified in Assumption B3. Without loss of generality, assume

that, for some integer r = rn, n is such that n = r(p∗ + q∗), with r → ∞. For each integer

1 ≤ j ≤ 2, define

Υ(m)(n, x, j) :=
r−1

∑
k=0

U(m)(j, n, x, k).

Clearly S(m)
n = Υ(m)(n, x, 1) + Υ(m)(n, x, 2). Note that Υ(m)(n, x, 1) is the sum of the random

variables ζ
(m)
nj over "large" blocks, whereas Υ(m)(n, x, 2) are sums over "small" blocks. If it is

not the case that n = r(p∗ + q∗) for some integer r, then an additional term Υ(m)(n, x, 3), say,

containing all the ζ
(m)
ni ’s that are not included in the big or small blocks, can be considered. This

term will not change the proof much. The general approach consists in showing that, as n→ ∞,

Q(m)
1 :=

∣∣∣∣∣Eexp[iu Υ(m)(n, x, 1)]−
r−1

∏
j=0

Eexp[iuU(m)(1, n, x, k)]

∣∣∣∣∣ −→ 0, (C.7)

Q(m)
2 := n−1E

(
Υ(m)(n, x, 2)

)2
−→ 0, (C.8)

Q(m)
3 := n−1

r−1

∑
k=0

E[U(m)(1, n, x, k)]2 −→ σ2, (C.9)

Q(m)
4 := n−1

r−1

∑
k=0

E[(U(m)(1, n, x, k))2 I{|U(m)(1, n, x, k)| > εσ n1/2}] −→ 0 (C.10)
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for every ε > 0. Note that

[A(m)
n − EA(m)

n ]/σ = ( nhp
n)

1/2c′[W(m)
n (x)− EW(m)

n (x)]/σ = S(m)
n /(σ n1/2)

= Υ(m)(n, x, 1)/(σ n1/2) + Υ(m)(n, x, 2)/(σ n1/2).

The term Υ(m)(n, x, 2)/(σ n1/2) is asymptotically negligible by (C.8). The random variables

U(m)(1, n, x, k) are asymptotically mutually independent by (C.7). The asymptotic normality of

Υ(m)(n, x, 1)/(σ n1/2) follows from (C.9) and the Lindeberg-Feller condition (C.10). The lemma

thus follows if we can prove (C.7)-(C.10). These proofs are similar to the arguments in the

corresponding proofs for mean regression in Lu & Linton (2007), with the different Lemma A.3

and (C.2) established in the above. Here, we only briefly sketch it.

Proof of (C.7) See the Proof of A.41 in appendix of Lu & Linton (2007).

Proof of (C.8). The proof follows exactly as in the corresponding proof for mean regression in

Lu & Linton (2007), with the Lemma A.3 and (C.2) replacing. Here, we just briefly show the proof.

For notational simplicity, refer to the random variables U(m)(2, n, x, k), k = 0, 1, · · · , r− 1,

as Û1, . . . Ûr. We have

E[Υ(m)(n, x, 2)]2 =
r

∑
i=1

Var(Ûi) + 2 ∑
1≤i<j≤r

Cov(Ûi, Ûj) := V̂1 + V̂2, say. (C.11)

Since Xn is stationary,

Var(Ûi) =
q

∑
i=1

E
[(

ζ
(m)
ni (x)

)2
]
+ ∑

1≤i<j≤q
E
[
ζ
(m)
nj (x)ζ(m)

ni (x)
]

:= V̂11 + V̂12.

From Lemma A.2 and the Lebesgue density theorem,

V̂11 = q Var{ζ(m)
ni (x)} = q {h−p

n E
(

∆(m)
i (x)

)2
}

≤= q{h−p
n E

(
ψτ(Y

∗(m)
i )K((x− X(m)

i )/hn)
)2
}

≤ q
{

h−p
n E (ψτ(Y∗i )K((x− Xi)/hn))

2 + O(h−1−p
n v1(m))

}
= O(q),

where the final equality follows from h−1−p
n v1(m) = o(1) by Assumption B2.
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We then need the cross lemma, Lemma A.3, for V̂12 and then taking Nn = q yields

V̂12 = h−p
n ∑

1≤i<j≤q
E
[
∆(m)

j (x)∆(m)
i (x)

]
≤ Cqhp

n

[
q +

∞

∑
t=q

αm(t)

]

:= Cqπn.

It follows from Assumption B3 that πn = O(1) and

n−1V̂1 = n−1r
(
V̂11 + V̂12

)
≤ n−1rCq[1 + πn] ≤ C(

q
p∗ + q

)[1 + πn]. (C.12)

Similarly, we can obtain

|V̂2| ≤ Cnhp
n

∞

∑
t=q

αm(t). (C.13)

Assumption B4 implies that q∗hp
n = O(1) and πn = O(1). Thus, from (C.11), (C.12), and (C.13),

n−1E[Υ(m)(n, x, 2)]2 ≤ C(
q

p∗ + q
)[1 + πn] + Chp

n

(
∞

∑
t=q

αm(t)

)
,

which tends to zero by q/p∗ → 0 and Assumption B4; (C.8) follows.

Proof of (C.9) and (C.10) The main idea of the proofs is similar to the proofs in Appendix of

Lu & Linton (2007). These easily follow by checking the Assumptions and changing the Lemma

A.3 and (C.2). The detail is omitted.

Proof of Theorems 3.3 Based on the Bahadur representation of Theorem 3.1, the main idea

of the proof of Theorem 3.3 is similar to the corresponding proofs for mean regression in Lu &

Linton (2007) and α-mixing condition in Hallin et al. (2009). Here, we only briefly sketch it.

Then consider (3.6). Set vi = [d1φτ1 ψτ1(y
∗
i (τ1)) + d2φτ2 ψτ2(y

∗
i (τ2))]Ki, τ̃ = d1φτ1 τ1 +

d2φτ2 τ2 and Ii(τ) = I(y∗i (τ)<0). Here di ∈ R1, i = 1, 2. A simple calculation leads to

v2
i =

{
τ̃2 − 2τ̃(d1φτ1 Ii(τ1) + d2φτ2 Ii(τ2)) + d2

1φ2
τ1

Ii(τ1)

+ 2d1φτ1 d2φτ2 Ii(τ1)Ii(τ2) + d2
2φ2

τ2
Ii(τ2)

}
K2

i . (C.14)
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It follows from (3.1) that√
nhp

n(d1q̂τ1(x) + d2q̂τ2(x)− d1qτ1(x)− d2qτ2(x)) = H−1
n

n

∑
i=1

vi + oP(1)
∆
= Dn + oP(1).

(C.15)

Similar to (B.23b),

EDn = H−1
n nEv1 = Hn(h

−p
n Ev1) = HnO(h1+δ

n ) = O((nhp+2(1+δ)
n )1/2)→ 0.

as n→ ∞. An analogous argument to (B.16) gives

E(Dn − EDn)
2 ∆

= vn1 + 2vn2. (C.16)

Similar to the proof of (B.17), (C.14) together with Lemma A.2 ensures

vn1 =h−p
n Ev2

1 − h−p
n (Ev1)

2

→[τ̃2 − 2τ̃2 + d2
1φ2

τ1
τ1 + 2d1φτ1 d2φτ2 min(τ1, τ2) + d2

2φ2
τ2

τ2] fX(x)
∫

K2(u)du

=[d2
1φ2

τ1
τ1 + 2d1φτ1 d2φτ2 min(τ1, τ2) + d2

2φ2
τ2

τ2 − τ̃2] fX(x)
∫

K2(u)du. (C.17)

In addition, similar argument to (B.20) leads to

|vn2| → 0. (C.18)

Then the asymptotic variance for (3.6) follows from (C.16)-(C.18). The asymptotic variance in

(3.7) can be obtained similarly.
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