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Abstract. In this paper, we study the kernel methods for density estimation of
stationary samples under generalized conditions, which unify both the linear and o-
mixing processes discussed in the literature and also adapt to the non-linear or/and
non-c-mixing processes. Under general, mild conditions, the kernel density estima-
tors are shown to be asymptotically normal. Some specific theorems are derived
within various contexts, and their applications and relationship with the relevant
references are considered. It is interesting that the conditions on the bandwidth may
be very simple, even in the generalized context. The stationary sequences discussed
cover a large number of (linear or ponlinear) time series and econometric models
(such as the ARMA processes with ARCH -errors).
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1. Introduction

Density estimation for dependent observations has received extensive attention in
the literature. A number of papers have investigated it under various mixing conditions,
including Robinson (1983) , Gyorfi et al. (1989), Roussas (1988), Tran (1989) and Irle
(1997). Due to the fact that the mixings cannot cover all linear processes, Chanda
(1983), Tran (1992) and Hallin and Tran (1996) explored the consistency and asymptotic
normality of density estimators for some linear processes. In this paper, we consider
‘kernel density estimators within a more general context which cover most of the time
series models in the literature, unify both the stationary mixing and the linear processes
and adapt to the nonlinear or/and non-mixing processes in practice.

We assume that {X;} is a stationary sequence defined on a probability space (2, F,
P). As may be known, a-mixing is the weakest among the widely used ¢-, p-, 8- and
o~-mixings. For later reference, its definition is given below.

DEFINITION 0. The stationary sequence {X;,t = 0,+1,...} is a-mixing if

(1.1) a(k)= __ sw _ |P(4B)-PA)P(B) -0

as k — oo, where F*, and Fg3, are two o-fields generated by {X;,t < n} and {X;,t >
n + k}, respectively. The a(k) is called the mixing coefficient.
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Under some suitable conditions, the stationary solutions of many time series (linear
and nonlinear) models are o~mixing (cf., for example, Gorédetskii (1977), Pham (1986)
and Tong (1990)). From a practical point of view, however, the mixing concept may
lead to some undesirable features. Firstly, it is not easy to check the a-mixing of the
realizations of a stationary process in practice. Secondly, the requirement of the mixing
dependence imposed upon all events (past and future) rules out some stationary processes
of interests. As emphasized by Tran et al. (1996) and Hallin and Tran (1996), the mixing
does not cover all linear processes. Andrews (1984) showed that the stationary solution of
a simple linear AR(1) model —X; = 1/2X,_;+e; with e;’s being independent symmetric
Bernoulli random variables (r.v.’s) taking values —1 and 1— is not a-mixing. Chanda
(1983), Tran (1992) and Hallin and Tran (1996) thus developed the density estimation
for time series under linear processes covering many important time series models (e.g.,
linear ARMA models and some long-memory fractional processes),

0

(12) Xt = ZaTZt_r,

T

where {Z;} are i.i.d. r.v.’s with EZ; = 0 and EZ? = 6% < co. Finally, a function of
a mixing process is not readily the corresponding mixing. For example, even if {Z;} in
(1.2) is @ -mixing, {X;} in (1.2) needs not be a-mixing. In econometrics, the process
{X:} in (1.2), with {Z,} being a-mixing, is of great interest. The ARMA process with
ARCH errors discussed in Weiss (1984) and Engle (1982) is, for instance, of this form
(note that the ARCH model proposed by Engle (1982) is a-mixing under mild conditions,
cf., Lu (19964, 1996b)). In addition, it is also noticed that the process in (1.2) with {Z;}
being a-mixing may include some long-memory fractional processes with ARCH type
errors (cf., Lin and Li (1997)).

Due to the above shortcomings, in this paper we first extend the concept of the
a-mixing to a more general context in which a nonlinear form includes the linear process
in (1.2) with {Z;} being a-mixing. That is,

(13) Xt = Q(Zt, Zt_l,Zt_2,~--),

where g : R® — R! is a Borel measurable function and {Z;} may be vector-valued.
The i.id. process {Z;} is one of the simplest a-mixing stationary processes. To our
knowledge, the idea of extending a mixing process to a function of the entire mixing
process goes back to Ibragimov (1962) and was also formalized by Billingsley (1968) and
Bierens {1983). We introduce the formal definition as follows:

DEFINITION 1. The stationary process {X,} is stable in Ly norm (Lz-stable for
simplicity) with respect to (hereafter w.r.t.) the stationary a-mixing process {Z;}, if

(1.4) v(m) = E|X, — X™ |2 -0

as m - 00, where Xt(m) = 9m(Zt,- - Zt—m+1), 9m is a Borel function with m arguments
involved and v(m) will be called the stable coefficients.

Remark 1. (a) This definition follows Bierens (1983) except that he defined a
stable stationary process w.r.t. ¢-mixing, a special case of the context here.
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(b) As done in Bierens (1983), it is usually taken that Xt(m) =FE(X¢ | Zey. oy Ztmr1)-
Clearly, {Xfm)} is a-mixing with mixing coefficients a*(k) <1 for k=0, 1,...,m, and
equals a(k — m) for k> m + 1, where a(-) is the mixing coefficient of {Z;}.

(c) Clearly, we may define a L,-stable process w.r.t. {Z;} with a p-th-order expecta-
tion instead of the second order in (1.4). The results in this paper can be easily adapted
to such a situation and so we don’t pursue this generality here.

(d) If g in (1.3) is of a linear form and {Z;} is i.i.d. as in (1.2), then a(k) < 1 for

=0, and = 0 for k > 1. Further, assuming that > oo a2 < 0o, the stable coefficient
v(m) = E|X, — X{™ |2 = E| o2 arZe—r|> = 023 o2 a2, This is also considered
in Chanda (1983), Tran (1992) and Hallin and Tran (1996). When {Z;} is a-mixing,
our model framework covers the ARMA process with ARCH errors discussed in Weiss
(1984) and Engle (1982) as well as some long-memory fractionally integrated processes
with ARCH type errors.

(e) If g is of a nonlinear form, then many nomnlinear time series models fall into
our category, e.g., the bilinear and the random coefficient models in references such as
Granger and Andersen (1978), Nicholls and Quinn (1982), Tjgstheim (1986) and Tong
(1990).

(f) If {X,} itself is a-mixing stationary with EX; = 0 and EX? < oo, then setting
Zy = X and g the identity function leads to the stable coefficient being v(m) = 0 for
m> 1.

In Section 2, we define the kernel density estimators based on the realization of the
Lo-stable stationary process and give a general result which shows the mild conditions
under which the asymptotic normality of the density estimators is ensured. To shed
light on the wide applications of this general result, some specific theorems are derived
in Sections 3 and 4. In Section 3, we are concerned with the specific theorems under
two contexts related with the relevant references, one covering the a-mixing processes
considered in Robinson (1983) and the other deducing a result under linear processes
better than Hallin and Tran (1996)’s (cf. Remark 6 below). It should be pointed out
that the results obtained in Section 2 can also be applied to density estimation for
the stationary sequences which are neither a-mixing nor linear processes. In this case,
some mild specific conditions are also derived in Section 4 to guarantee the asymptotic
normality of the density estimators. To our knowledge, no one has examined this case.
The proofs of the theorems in Section 2 are postponed to Section 5.

2. General result

In the following, we let X1, Xo, ..., X, be a realization of size n from the L,-stable
stationary process {X:} defined in Definition 1. In time-series analysis, estimating a
one-dimensional marginal density is of certain interest (cf., Hallin and Tran (1996)), but
even more interesting is to consider the estimation of a marginal joint density because
a one-dimensional marginal density cannot capture the dependence of the stationary
sequence. For background on estimating the marginal joint density, the reader is referred
to, for example, Tjgstheim (1996). Generally speaking, we may consider estimating a
d-dimensional marginal joint density of (X;—r, ,,...,Xi—r,, Xi), say, where 0 < 11 <
+o < Tg-1 < 400 are positive integers and Y’ denotes the transpose -of vector Y. For
simplicity of notation, we are concerned with ¥; = (X;-g41,...,Xi—1,X;)’ in this paper
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(the results obtained can be adapted for general 74’s). Let f(y) be the marginal joint
density of ¥;. The kernel density estimator of f(y) is therefore defined by

(2.1) faly) = (b S K((y — Yi) ).

i=d

Here K(-) is a kernel function defined on R?, and h, > 0 are bandwidths tending to
ZEero as n — o0.

Our purpose in this paper is to investigate the asymptotic normality of the kernel
density estimators for stable stationary sequences. In this section, we first give a general
result which will be applied specifically in Sections 3 and 4, and its usefulness will be
seen later on. Throughout the paper, C' will denote a generic constant which may differ
at different places.

AssuMPTION 1. {Z,} is o-mixing stationary with the mixing coefficients a(-) sat-
isfying

e o]
(22) kY a(j)—0 as k- oo
j=k
AssuMmPTION 2. {X.} is Lo-stable stationary w.r.t. {Z;} with stable coefficients

v(m) as defined in Definition 1. Let Y; = (X;—441,.-., X¢—1, X:)" have marginal joint
density f(y).

AssuMPTION 3. The kernel function K is a bounded density function with an
integrable radial majorant Q(z), that is Q(z) = sup{K(y) : |ly|| = |lz||} is integrable.
Assume, in addition, that K satisfies the following Lipschitz condition:

(2.3) |K(z) - K(y)| < Clz —yl,
where || - || is an Euclidean norm of R¢.

AssuMPTION 4. (i) The density function f of Y; is Lipschitz continuous, i.e., for
any z, y € R%,

(@24) /@) = FW)| < Cllo -yl
(ii) The joint density f;(x,y) of (Y5,Y;) is bounded uniformly in j (> 0), that is

(25) sup  sup  fi(z,y) < C,
J (z,y)eR*x R4

where if j < d, (Yo,Y;) reads as (X_q41,..., Xj—d41,---, X0y, X;) € RIT,
AssUMPTION 5. The bandwidth h,, satisfies that, as n — oo,
(i) hn — 0, nhd — oo, nh2d 0,

(ii) nh2td - 0.

AssUMPTION 6. There exist two sequences of positive integers, p(n) and g(n), such
that as n — oo,
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(i) p(n) = o0, p*(n)/n—0,
(ii) g(n) — o0, q(n)/p(n)— 0,
(iii) g(n)he — 0,
(iv) na(g(n))/p(n) — 0,
o (v) v(g(n)) = O(h3%+2).

Remark 2. Among the above assumptions, (i) Assumption 1 is the condition on
the mixing dependence by Robinson ((1983), A3.1, p. 189) for density estimation; (ii)
Assumptions 3, 4(i) and 5(ii) with d = 1 are the same as Assumptions 1, 4 and 5 in
Hallin and Tran ((1996), pages 432, 443) respectively; (iii) Assumption 4(ii) on the joint
density is often assumed in the literature (cf., Robinson (1983), A4.5, p. 191) and is easily
satisfied by time series models {cf., Lemma 5.1 of Hallin and Tran 1996, p. 446, for the
linear processes (1.2)). We assume, without loss of generality, that the mixing and the
stable coefficients, a(-) and v(-), in Assumptions 1 and 2 are monotonously decreasing.

Remark 3. Assumption 6 is general but looks cumbersome. In Sections 3 and
4 below, we will specify some more explicit and easily verifiable conditions to ensure
Assumption 6. From them, the existence of p(n) and g(n) will become clear.

The asymptotic normality of the kernel density estimators was studied by Robinson
(1983) under a-mixing and Hallin and Tran (1996) under linear processes. The following
theorems extend their contexts to stable stationary processes w.r.t. a-mixing:

Corresponding to Theorem 3.1 of Hallin and Tran ((1996), p. 443), we have

THEOREM 1. Suppose that Assumptions 1-3, 4(ii), 5(i) and 6 hold and y1,...,yx
are k distinct points of R%, then

(2.6) (k) (fa(®1) = Bfalyr), -, falyr) — Efaly)) 5 N(0,C)
where 0 = (0,...,0)" € R*, C is a diagonal matriz with elements Ci; = f(y;) [ ra K2 (u)du,
i=1,...,k, and “>*7” denotes the convergence in distribution.

The next theorem corresponds to Theorem 3.2 of Hallin and Tran (1996, p. 443).

THEOREM 2. If Assumptions 1-6 hold and, in addition,
2.7) / ]| K (w)du < oo,
R4

then for any k and any distinct points ,...,yx € R%,
(2.8) (k) (falyn) = 1), - - Fulyw) = F(gr)) = N(0,0).

3. Specific theorems related with relevant references

In Section 2, we gave a general result in which p(n) and g(n) are not defined explic-
itly in Assumption 6. Notice that Assumptions 6(iv) and 6(v) are related to the mixing
coeflicients, a(-), and the stable coeflicients, v(-), respectively. Different definitions of
p(n) and g(n) will lead to different conditions on the mixing and the stable coefficients.
In this section, we shall derive some specific conditions which will cover the contexts con-
sidered in Robinson (1983) (a-mixing) and in Hallin and Tran (1996) (linear processes),
respectively. An easily verifiable condition within a generalized context will be provided
in Section 4.
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3.1 Casel for Robinson (1983)

Robinson (1983) considered the setting where X; = Z; with the a-mixing coefficients
satisfying Assumption 1 in Section 2. To keep this condition on the mixing coefficients
hold, we may choose p(n) and ¢(n), as done in the proof of Lemma 7.1 of Robinson
((1983), p. 199), that is

p(n) ~ 1, g(n) ~ 0!, r(n) ~n/(p(n) + 2q(n)),
where a,, ~ b, means that lim,_. a,/b, = 1, and 75, is a positive sequence such that
p(n), ¢(n) and r(n) are nondecreasing, 7, — 0 and

o0
_ ~1/6 ~ .
> max(n 200, where 4= sup en, ev = N Y alj).
>n

j=N

Thus, as Robinson ((1983), p. 199) proved, Assumptions 6(i), 6(ii) and 6(iv) hold;
g(n)hE ~ n1/3p2hd — 0 follows from Assumption 5(i) and, hence, Assumption 6(iii)
holds.

To verify Assumption 6(v), we impose the following condition on the stable coeffi-
cient and the bandwidth:

AssuMmPTION 2’. The stable coefficients, v(-), in Assumption 2 satisfy

(3.1) v(n'/?) = O(K34+2),

Clearly, if we choose g(rn) ~ nl/3n2 > n'/3(n=1/24)2 = /4 then v(g(n)) < v(n'/%)
(recall we assume v(:) is monotonously decreasing). Assumption 6(v) thus follows from
Assumption 2’.

THEOREM 3. If Assumptions 1,2’ and 3-5 hold and, in addition, (2.7) in Theorem
2 is satisfied, then the conclusion of Theorem 2 holds.

If {X;} is a-mixing, then from Remark 1(f) in Section 1, it follows that v(j) = 0
for j > 1. Thus, Assumption 2’ holds naturally.

COROLLARY 1. If {X;} is an a-mizing stationary sequence with mizing coeffi-
cients, o), satisfying (2.1) in Assumption 1 and, in addition, Assumptions 3-5 and
(2.7) (in Theorem 2) all are satisfied, then the conclusion of Theorem 2 holds.

Remark 4. From Corollary 1, Theorem 3 clearly covers the context of a-mixing for
density estimation considered in Robinson ((1983), Theorem 4.1, p. 191) with a positive
definite matrix-valued bandwidth instead of a scalar bandwidth.

3.2 Case Il for Hallin and Tran (1996)

Hallin and Tran (1996) explored the asymptotic normality of the kernel density esti-
mators under linear processes (1.2). Their results cannot be derived well from Theorem
3 above because Assumption 2’ does not always hold under their conditions (see Remark
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7 below). In this subsection, we slightly strengthen the condition imposed on the mix-
ing coefficients but weaken the condition on the stable coefficients. Thus, the specific
theorem obtained will easily produce a better result for linear processes than Hallin and
Tran (1996)’s.

AssUMPTION 1°. The condition on the mixing coefficients, a(-), in Assumption 1
is strengthened to
(3.2) kta(k) -0 (k— o00)

for some 2 < a < co.

ASSUMPTION 2°. The stable coefficients, v(-), in Assumption 2 satisfy

(3.3) v(n?/(F1e)) = O(R3H2),

THEOREM 4. If Assumptions 1°, 2° and 3-5 hold and, in addition, (2.7) in The-
orem 2 is satisfied, then the conclusion of Theorem 2 holds.

Proor. First, take n/p(n) ~ ¢%(n), then Assumption 6(iv) follows from (3.2) in
Assumption 1°. To make p®(n)/n — 0 and ¢(n)/p(n) — 0 in Assumptions 6(i) and 6(ii)
hold simultaneously, we let g(n)/p(n) ~ p3(n)/n. Thus, we may take g(n) ~ n3/(1+4a)
p(n) ~ n/q*(n) ~ n(+a)/(+da) By 5 simple calculation, ¢(n)/p(n) ~ p3(n)/n ~
n~(@=2)/(+4a) 0 for 2 < a < oo and, hence, Assumptions 6(i) and 6(ii) clearly hold.
Assumption 6(v) follows from Assumption 2°. Finally, q(n)hd ~ (nhi H194/3)3/(1+4a) _,
0 follows easily from Assumption 5(i). Now Theorem 4 is clear from Theorem 2 in Section
2.

Hallin and Tran (1996) considered the estimation of one-dimensional marginal den-
sity (d = 1 in the setting of this paper) for the linear processes (1.2) with la,| =
O(r~—4+9) for some § > 0 (as r — o0) in their Assumption 2.

HT’s AssuMPTION 2. The coefficients of the linear process X; (in (1.2)) tend to
zero sufficiently fast that |a,] = O(r~(4+®) for some § > 0 as r — oo. In addition, Z;
(in (1.2)) has mean zero and finite variance and an absolutely integrable characteristic
function.

From Theorem 4, we may easily derive the following corollary:

COROLLARY 2. If HT'’s Assumption 2 above and our Assumptions 3, 4(i) and 5
and (2.7) in Section 2 with d = 1 hold and, in addition,

(3.4) lim inf p3(7+20/(+4a)p5 ~ g for some

n-—ro0

a € (2,(374126)/20) and some § > 1/4,

then the conclusion of Theorem 2 with d = 1 holds.

PRrROOF. First, from Remark 1(d) and HT’s Assumption 2, it follows that

(35) v(m) = o? i O(r~24+8)) = O(m~(7+20))

r=1m
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as m — oo and, hence, together with (3.4),

U(n3/(1+4a)) — O(n—3(7+25)/(1+4a)) — O(hi)

Thus, Assumption 2° with d = 1 is met. Assumption 1° holds naturally |
iid. Assumption 4(ii) is clear by Lemma 5.1 of Hallin and Tran ((1996),
Remark 2 above). Hence, Corollary 2 follows from Theorem 4.

Remark 5. First, we point out a negligence in Hallin and Tran (1996)’s
5 and Remark 3.1. From the proof of their Theorem 3.2, it is clear that their
5 should be nh2 — 0, not nh3 — oo, as n — oo. Hence, the assertion in t
3.1 that “their Assumption 3 (i.e., nh{T20)/(3+28) (loglogn)~! — 0o as n
their Assumption 5 when § < 1” is not right.

Remark 6. From Remark 5 above and the conditions of Hallin and 1
Theorem 3.2, we know that (13 + 26)/(3 + 26) < 3, ie., § > 1, shoul
to guarantee their Assumptions 3 and 5 simultaneously. However, in our
when § > 1/4, (3.4) may be met for some a (since § > 1/4, 2 < (37 + 1¢
may be chosen between 2 and (37 + 126)/20, and thus 5(1 + 4a)/[3(7 + 2¢
Assumption 5 with d = 1 and (3.4) may hold simultaneously). Hence, oun
improves Theorem 3.2 of Hallin and Tran (1996).

Remark 7. From (3.5), v(n'/4) = O(n~("+28)/4). To make Assump
5 with d = 1 hold simultaneously, it is necessary that 4 x 5/(7 + 26) +
6 > 3/2. Hence, the result following from Theorem 3 cannot always deduc
Tran (1996)’s Theorem 3.2 (§ > 1, cf., Remark 6).

4. Explicit conditions under the generalized context

Insofar as the incremental contributions cover nonlinear processes, tl
interest. In this section, under the generalized context, we will derive si
conditions to ensure Assumption 6, thus the results obtained will apply wel
for the nonlinear or/and non-mixing processes.

By choosing p(n) and ¢(n) in (iv) and (v) of Assumption 6 to satisfy

(4.1) n/p(n) = q(n)*,  h, 32 = g(n)?,

where a and b are some positive constants to be specified below, we found

LEMMA 1. The conditions in Assumption 6’ below are sufficient to ens:
tion 6.

AssSUMPTION 6’. (i) j%a(j) — 0, as j — oo, for some a > 2 ;
(ii) jPv(j) = O(1), as j — oo, for some b > (3d + 2)/d;
(iii) nh(I+a)Bd+2)/b _, o0 ph3e(3d+2)/(20) _, 0 as n — .

ProoF. First, Assumptions 6(iv) and 6(v) are satisfied by (4.1) and 4
6'(i) and 6'(ii). Next, it follows from (4.1) that g(n) = hy G4/t ang p(n) =|
Thus Assumptions 6(i), 6(ii) and 6(iii) are easily checked by Assumptions 6’(














































