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 LOCAL LINEAR FITTING UNDER
 NEAR EPOCH DEPENDENCE:

 UNIFORM CONSISTENCY WITH
 CONVERGENCE RATES

 Degui Li
 Monash University

 Zudi Lu
 University of Adelaide

 Oliver Linton
 University of Cambridge

 Local linear fitting is a popular nonparametric method in statistical and econometric
 modeling. Lu and Linton (2007, Econometric Theory 23, 37-70) established the
 pointwise asymptotic distribution for the local linear estimator of a nonparametric
 regression function under the condition of near epoch dependence. In this paper, we
 further investigate the uniform consistency of this estimator. The uniform strong and

 weak consistencies with convergence rates for the local linear fitting are established
 under mild conditions. Furthermore, general results regarding uniform convergence
 rates for nonparametric kernel-based estimators are provided. The results of this
 paper will be of wide potential interest in time series semiparametric modeling.

 1. INTRODUCTION

 Local linear fitting is a popular nonparametric method in nonlinear statistical and
 econometric modeling. See, for example, Fan and Gijbels (1996), Fan and Yao
 (2003), and Li and Racine (2007). Lu and Linton (2007) recently established the
 pointwise asymptotic distribution (central limit theorem) for the local linear esti
 mator of a nonparametric regression function under the weak assumption of near
 epoch dependence, which covers a wide range of popular time series econometric
 models. In this paper, we further investigate the uniform consistency of this non
 parametric estimator for near epoch dependent (NED) processes. The results of
 this paper will be of wide potential interest in time series semiparametric model
 ing (see, e.g., Andrews, 1995) and structured nonparametric modeling (see, e.g.,
 Linton and Mammen, 2005).

 The authors thank the co-editor Yoon-Jae Whang and two referees for their valuable comments, which substantially

 improved the earlier version of this paper. This research was partially supported by Discovery Project and Future Fel

 lowship grants from the Australian Research Council, and the European Research Council. Address correspondence
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 936 DEGUILIETAL.

 Uniform consistency results of nonparametric kernel-based estimators have
 been studied by many authors, as they are useful in many applications such as
 semiparametric estimation and specification testing. For recent developments, the
 reader is referred to Liebscher (1996), Masry (1996), Bosq (1998), Fan and Yao
 (2003), Hansen (2008), and Kristensen (2009) and the references therein. A rather

 obvious feature of the preceding literature is that the observed time series are gen
 erally assumed to be a-mixing (i.e., strongly mixing), a-mixing dependence has
 been one of the most popular dependence conditions in statistics and economet
 rics. Indeed, the stationary solutions of many linear and nonlinear time series
 models are a-mixing under some suitable conditions; see, for example, Withers
 (1981), Tj0stheim (1990), Tong (1990), Masry and Tj0stheim (1995), Lu (1998),
 and Cline and Pu (1999).
 However, from a practical point of view, a-mixing dependence suffers from

 many undesirable features. As pointed out by Davidson (1994) and Lu (2001),
 the a-mixing condition is difficult to verify in practice, especially in the case of
 compound processes. For example, the autoregressive conditional heteroskedas
 ticity (ARCH) model and its generalized version GARCH have been proved to
 be a-mixing under some mild conditions (Bollerslev, 1986; Lu, 1996a, 1996b;
 Carrasco and Chen, 2002). But for compound processes such as autoregressive
 moving average process with ARCH or GARCH errors, it is still difficult to
 show whether they are a-mixing or not except in some very special cases. In fact,
 even very simple autoregressive processes may not be a-mixing for some cases.
 Andrews (1984) showed that the stationary solution to a simple linear AR(1)
 model of the form

 Xt = -X,-1+et, (1.1)

 with et 's being independent symmetric Bernoulli random variables taking values
 — 1 and 1, is not a-mixing. Hence, it is natural to consider a more generalized ver
 sion of stochastic processes beyond a-mixing process in both linear and nonlinear
 time series analysis.
 In this paper, we consider the stationary NED or stable process, which includes
 the a-mixing process as a special case. One can allow some types of nonsta
 tionarity, but this complicates the notation considerably, so we do not formally
 consider this but discuss subsequently some special cases. Let both {Yt} and {X,}
 be stationary processes of R1- and Revalued, respectively. Based on a stationary
 process {e,}, {Y, | and {X,} are defined by

 Yt =yVY(e,,Et-i,st-2,...),
 T (1.2)

 X/ — (Xfi, ..., Xl({) — ^x^f, S(-l, £f_2, ...),

 where XT denotes the transpose of X, y¥y : M°° —> R1 and Vx : R°° —» Rrf are
 two Borel measurable functions, and {er} may be vector-valued. The definition of
 NED process is provided as follows.
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 LOCAL LINEAR FITTING UNDER NEAR EPOCH DEPENDENCE  937

 DEFINITION 1. The stationary process {(Yt, X,)} is said to be near epoch
 dependent in Lv-norm (NED in Lv) with respect to a stationary a-mixing process
 {st}, if

 vv(m)=E\Yt-Y^m)\v+E\\Xt-X.<jm)\\v 0, v > 0, (1.3)
 as m —> oo, where \ ■ \ and || • || are the absolute value and the euclidean norm

 ofRd, respectively, Yt{m} = Vy.miet, ■■■, £t-m+\), X,(m) = {X(t'"\..., xffl)T =
 vfX,mi^t> ■■■, £t-m+1)> and H;)/m and ¥x,m are K1- and Rd-valued Borel mea
 surable functions with m arguments, respectively. We call vv(m) the stability co
 efficients of order v of the process {(Yt, X,)}.

 The concept of NED process dates back to Ibragimov (1962) and was further
 developed by Billingsley (1968), McLeish (1975a, 1975b, 1977), and Lin (2004).
 Basically, most of these authors assumed that [e,} is a martingale difference or
 is ^-mixing. It has been used in econometrics following Bierens (1981); see, for
 example, Gallant (1987), Gallant and White (1988), and Andrews (1995). In this
 paper, we are concerned with NED process with respect to the stationary a-mixing
 process {er}. The NED process can easily cover some important compounded
 econometric processes and many nonlinear processes that are not a-mixing.

 There has been some literature on estimation and testing issues for NED pro
 cesses. Andrews (1995) established uniform convergence with rates for nonpara
 metric density and regression estimators based on the local constant paradigm
 under NED conditions. Lu (2001) established asymptotic normality for kernel
 density estimators for NED processes. Ling (2007) developed a strong law of
 large numbers and a strong invariance principle for NED sequences when {e,) is
 independent and used the results to test for change points. Lu and Linton (2007)
 established the pointwise asymptotic distribution of local linear estimators for
 NED process. In this paper, we further establish the uniform strong and weak
 convergence rates of the local linear estimators. In particular, we obtain the uni
 form rate over expanding subsets of the covariate support. We also provide new
 results on estimation of a countable number of regression functions, for exam
 ple, gj(x) = E(Tr|Xr_j = x), j = 1,2,.... This application occurs naturally in a
 number of time series settings (Hong, 2000; Linton and Mammen, 2005) but does
 not appear to have been formally treated before at this level of generality. We es
 tablish the uniform rate of convergence of the local linear estimators uniformly
 over j also.

 The proofs for the main results are different from those in Andrews (1995),
 which may be the only existing uniform convergence results for nonparametric
 kernel estimation under the NED assumption. Andrews (1995) made use of a
 Fourier transformation of the kernel and obtained a number of uniform consis

 tency results for the nonparametric density and regression estimators based on the
 local constant approximation. In this paper, we will use the local linear approach
 and then establish the uniform consistency results by approximating the NED
 process by an a-mixing process and applying some effective ways such as finite
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 938 DEGUILIETAL.

 covering and truncation methods in the proofs. The rate we obtain is constrained
 by the amount of dependence but does not explicitly depend on it, as it does in
 Andrews (1995), thereby yielding faster convergence rates in general. This means
 that in some special cases our convergence rate is optimal (see Stone, 1980).
 We remark that an alternative extension of dependence beyond mixing can also

 be found in Nze, Btihlmann, and Doukhan (2002) and Nze and Doukhan (2004).
 These authors investigated a class of dependent processes they call "weakly de
 pendent," the definition of which is quite involved. They established the asymp
 totic normality and uniform consistency of the local constant nonparametric
 regression estimator under some conditions, which included a fixed compact
 support.

 The rest of the paper is organized as follows. The local linear fitting and the
 uniform convergence rates of the proposed local linear estimators are presented
 in Section 2. The general results of uniform convergence rates for nonparametric
 kernel-based estimators are provided in Section 3. Application of our results in
 estimation of a countable number of conditional expectations is given in Section 4.
 The technical lemmas and the proofs of the main results are collected in two
 Appendixes.

 2. UNIFORM CONVERGENCE RATES OF LOCAL LINEAR FITTING

 In this section, we study the local linear estimator of the conditional mean regres
 sion function defined by

 g(x):=E(rf|X,=x). (2.1)

 Local linear fitting is a widely used nonparametric estimation method, and we
 refer to Fan and Gijbels (1996) for a detailed account of this subject. The main
 idea of local linear fitting consists in approximating, in a neighborhood of x, the
 unknown regression function g(-) by a linear function. Under the condition that
 g(-) has continuous derivatives up to the second order, we have

 g(z) s»g(x) + (g'(x))T(z-x) =:ao + a[(z-x).

 Locally, this suggests estimating (ao, aj") = (g(x), (g'(x))T) by

 f f0^) arg min ^(Yt —ao — aj(X, —x.))2K \ > (2-2) Val/ (o0,a1)eR''+1f_i V h )

 where h \=hj is a sequence of bandwidths tending to zero at an appropriate rate
 as T tends to infinity and K(-) is a kernel function with value in R+. Denote the
 local linear estimators of (g(x), (g'(x))T) by (g(x), (g'(x))T), where g(x) — an
 and g'(x) = ai.

 There has been rich literature on the uniform convergence rates for the local lin

 ear estimators under mixing conditions; see, for example, Masry (1996), Fan and
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 Yao (2003), and Hansen (2008). Lu and Linton (2007) established the pointwise
 asymptotic distribution for the local linear estimators under the NED condition.
 In this section, we provide the uniform convergence rates for g(x) over expand
 ing sets. The distribution of the covariates plays a role in determining the rate at
 which the set considered may expand, and such set is defined by

 {x : ||x|| < Ct], where Ct = (logTY*Tr°, z* > 0, to > 0. (2.3)

 Define

 aT(/):= inf /(x) > 0, (2.4)
 l|x||<Cr

 where /(•) is the density function of {X?}. Let

 Mj —  Tl-2/p0fld | 1/2

 j
 riogri1/2

 ' (2-5)

 where po = 2 + e* and s* > 0 and [a] stands for the integer part of a real
 numbers.

 We first introduce some regularity conditions to establish the uniform conver
 gence rates for the proposed estimators.

 Al. The kernel function K(•) is positive, bounded, and Lipschitz continuous
 such that

 |^(xi)-^(x2)| < CK llxi — x21|,

 where Ck is some positive constant. Furthermore, fR<j \\u\\2K{u)du < oo.

 A2.

 (a) The density function /(•) is continuous on R''. Furthermore, the joint
 density function of (Xq, X;) exists and satisfies that for some
 positive integer j* and all j > j*, /o;(xi, xo) < C/ for all (xi,X2) e R2cl,
 0 < Cf < oo.

 (b) The regression function g(-) has continuous derivatives up to the second
 order over Rrf.

 A3.

 (a) {Ft,Xr} is stationary NED in Lpo-norm with respect to a stationary a
 mixing process [st], EIF,^0 < oo, where po = 2 + e*.

 (b) The mixing coefficient at of the stationary a-mixing {ef}
 satisfies at < Cat~d°, 0 < Ca < oo, 0q > /?j, —

 (ppo + 6)/Apo-\-{\ + To)dsJ / (j-(l/Po)), where ro is defined
 in CT of (2.3).
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 A4.

 (a) There exist two sequences of positive integers mr and Mj, which satisfy
 rnj —> oo, mj =

 Mf=o(Mr), M*Thd = o( 1), (Mf)-(W(4+£*))+Vd=o( 1),
 (2.6)

 where 0o is defined in A3(b). Furthermore,

 h~d~l p^xv\{mT) = 0(1),

 h~2d (v^2(m) -\-h~(e*^2+E'^v(f*^2+E*\mT)j =o(l).

 (b) The bandwidth h satisfies, as T h> oo,

 /j Q; (log 7,)(0o/2)+/?3^-(6,o<//2)-/?27,(^1-#o)((1/2)-(1/«|)) Q

 (2.7)

 where /?2 = (7+^d and /?3 = (2zt~Vd + I.

 Remark 2.1. A1 is a mild condition on the kernel function K(■), and some
 commonly used kernel functions such as the standard normal probability density
 function can be shown to satisfy Al. By contrast, Masry (1996) required ker
 nels that have compact support. A2(a) and (b) are some conditions on the density
 functions and the regression function, and they are similar to the corresponding
 assumptions in Lu and Linton (2007). If the regression function g is less smooth
 than assumed here, one obtains a different magnitude of the bias terms, but other
 wise the argument goes through. A3 provides the moment conditions on {Yt, X(}
 and the mixing coefficient condition for {?;,}. There is a trade-off between the mo
 ment condition and dependence, and we work in the special case with at least two
 moments because the case with fewer moments requires different techniques; see,
 for example, Lu and Cheng (1997), who considered pointwise strong consistency
 of kernel regression estimators, and Kanaya (2010) for uniform convergence un
 der weaker moment conditions.

 A4(a) is on the stability coefficient defined by (1.3) in Section 1 and can be
 satisfied by some interesting time series models under mild conditions (see, e.g.,
 Lu and Linton, 2007 Sect. 4.1). When po = 3, d. = 1, and 9o is large enough, by
 letting

 VfWh jTWh , ,/5
 my = r, Mt — , hacT ' ,

 (log T)2 T log T
 we can show that (2.6) is satisfied. The crucial assumption A4(b) allows for slow
 decay in general, but it can be simplified in some special cases. For example, if
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 LOCAL LINEAR FITTING UNDER NEAR EPOCH DEPENDENCE 941

 6o —» oo (a-mixing process decays with the exponential rate), the second term in
 (2.7) can be rewritten as

 T(l/2)-(l/p0)hi
 1 ^(]Og7'-)-/?3/0O/j^2/0O7'-/?l((l/2)-(l/po))/0O^

 00.

 (log T) 2

 As /?), /?2, and /?3 are constants, this means that

 /?i(- )/0q—.> 0, /?2/^0^0, ^3/^0^0, as^o^oo
 2 po

 Hence, for the case of #0 —> 00, the second term in (2.7) is just slightly stronger
 than

 T(l/2)-(l/p0)hd/2

 (log 7)1/2 »°°'
 which is comparable to condition (12) in Hansen (2008) and is slightly stronger
 than the condition Th/log J —> 00 as po > 00.

 As the NED condition (with respect to the a-mixing {c(}) is more general than
 the mixing condition in Hansen (2008), to obtain the same convergence rates in
 this paper, we need some technical assumptions on the mixing coefficient and
 stability coefficients that are a bit more involved. However, the moment condition
 on {Yt} in A3 (a) is the same as the corresponding moment condition in Hansen
 (2008).

 We first give the uniform convergence rate of the local linear estimator g(x)

 in probability. Denote bj(g) = sup ||/(x)g"(x)||, where g"(x) denotes the
 l|x||<CT

 d xd matrix of second partial derivatives of the function g(-) and the norm here
 is the matrix euclidean norm ||A|| = tr(ATA)1/2 for matrix A.

 THEOREM 2.1. Suppose that the conditions A1-A4 are satisfied. Then, we
 have

 sup ||(x) - g(x) | = Op (PT+ h'(<£>h ^ , (2.8) |X||<C/ V UTJ
 where ajif) and pj are defined in (2.4) and (2.5), respectively.

 Remark 2.2. The preceding theorem can be regarded as an extension of Theo
 rem 10 in Hansen (2008) from a-mixing process to NED process. Hansen (2008)
 used the slightly different condition that the second derivatives of g(x)f(x)

 are bounded, whereas we allow that bj(g) = sup l|/(x)g"(x)|| increases
 l|x||<Cr

 with T. If the second-order derivatives of g(x) and /(x) are uniformly bounded,

 brig) < Cg for some 0 < Cg < 00. Then (2.8) would become

 sup |g(x)-g(x)| = Op [ PT^1? )• (2.9) l|x||<Cr I ar/
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 942 DEGUILIETAL.

 Furthermore, if we let Cj = C and a-[ ( f) > cq > 0, (2.9) becomes

 sup |g(x)-g(x)| = 0P (pT + h2) . (2.10)
 l|x||<C V '

 Taking h oc (log7/7")1 /(4+^)^ the right-hand side becomes (logT/T)2^4+d\
 which is the optimal rate in the compactly supported independent and identically
 distributed case (see, e.g., Stone, 1980). This bandwidth is consistent with A4
 under some restrictions on po, d, 8q, to and the stability coefficients vj, j = 1,2.
 Equation (2.10) can be regarded as the extension of some existing results under
 the mixing dependence assumption such as Theorem 6.5 in Fan and Yao (2003).

 Remark 2.3. We next briefly discuss some nonstationary extensions. There
 has been a lot of work recently on nonparametric regression with nonstationary
 covariates; see, for example, Wang and Phillips (2009) and included references.
 One particularly tractable type of nonstationarity is that of local stationarity; see,
 for example, Dahlhaus (1997). Suppose the data come from a triangular array
 Ztj = {Ytj,~Kt,T, t = 1,..., T}. The stochastic process {Ztj} is called locally
 stationary if there exists a stationary stochastic process {ZUJ}, u e [0,1], such that

 p{ max Z, T — Zt/r, <DtT~1/2\ = 1 (2.11)
 [ l<r<T ' J

 for all T, where {Dt} is a well-defined positive process satisfying for some >/ > 0,

 E(|£>rl4+") < oo; see Koo and Linton (2010). For locally stationary processes,
 our results will go through provided all conditions are made on Zu t to hold uni
 formly over u e [0,1].

 Remark 2.4. Our Cj defined in (2.3) is quite general to cover different situa
 tions in applications of Theorem 2.1. For example, if taking Cj — (log T)]'dT]/I"
 as in Hansen (2008), the uniform convergence rate on the right-hand side of (2.8)
 would become inapplicable when the regressor is gaussian, by noticing that when
 {X,} is real-valued gaussian, it is easy to check that

 inf /(x)cxexp(-^fl, cT -» oo,
 \x\<cT [ 2 J

 which implies that

 aT (/) oc exp | - ^ | oc exp 1 -
 r2/ro(iogr)2/rf |

 /'
 and the convergence rate on the right-hand side of (2.8) would tend to infinity.
 Hence, it is more sensible for us to consider the uniform convergence rate of the
 local linear estimator with gaussian regressors by letting to = 0 in Cj (i.e., Ct =
 (log T)T*) defined in (2.3). Hence, our results are more widely applicable than the
 results of Hansen (2008), who only considered the form of Ct = (log)l /V/7l'/r°.
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 LOCAL LINEAR FITTING UNDER NEAR EPOCH DEPENDENCE 943

 Th

 We next establish the uniform strong convergence rate of the local linear esti
 mator g(x).

 THEOREM 2.2. Suppose that the conditions in Theorem 2.1 are satisfied,
 E|^|Sl < oo, ii > 2po,

 -(rf+1V(mT)PTl = O ((logrr(1+f)) , > 0, (2.12)
 and

 (log7,)(0o/2)+^/!-^od/2)-y827l+O81-^o)((l/2)-(l/p°)) _ q ((logrr(1+f))
 (2.13)

 Then, we have

 sup |g(x)-g(x)| = O fpT+bT(g)h \ a s (2.14)
 l|x||<cr V aTU) J

 3. GENERAL RESULTS

 Let {Yt, X;} be a stationary NED sequence defined in Section 1. We next consider
 the weighted average form

 ««=0 = ^ir.*T(*p). 0-l>
 where h is the bandwidth and Kr( ) : —> R is a kernel-based weight func
 tion. By suitable choice of Kj (-) and *?(•), many kernel-based nonparametric
 estimators such as the kernel density estimator, Nadaraya-Watson estimator, and
 local polynomial estimator can be written in the form of (3.1). In this section,
 we provide some general results for uniform convergence rates of Wj under our
 NED assumption, from which we can derive the two theorems in Section 2 con
 veniently. Hansen (2008) established the weak and strong uniform convergence
 rate of Wr(x) for stationary a-mixing process. We will provide the uniform con
 vergence rate for Wy(x) when the a-mixing dependence is replaced by the NED
 condition.

 To establish the uniform convergence rate of WV(x), we need the following
 regularity condition on Kj(-).

 A5. The kernel-based weight function Kf(-) is integrable, bounded, and Lip
 schitz continuous satisfying

 sup |KY(xi) — .KYte)! <C*K ||xi — x2||,
 T> l

 where C*K is some positive constant.

 The uniform convergence rate results for Wj (x) are provided in the following
 two theorems.
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 THEOREM 3.1. Suppose that the conditions A2(a) and A3-A5 are satisfied.
 Then we have

 sup |WV(x)—E[Wr(x)]| = 0P(pT),
 l|x||<Cr

 where pT is defined in (2.5).

 (3.2)

 THEOREM3.2. Suppose that the conditions in Theorem 3.1, (2.12), and(2.13)
 are satisfied, E|y;|S| < oo, si > 2p$. Then, we have

 sup |Wr(x) — E[Wr(x)]| = O (pT) a.s., (3.3)
 l|x||<Cr

 where pT is defined in (2.5).

 Remark 3.1. The preceding theorems establish the weak and strong con
 vergence rates for WV(x). We remark that under some suitable conditions, an
 Lq0-convergence of Wr(x), for some Qo > 1, can also be established. Letting
 Q\ > Qo > l,E|F,|e> < oo and the mixing coefficient

 a,<C*r9K 0*0>(QlQo)/2(Ql-Qo).
 Then, applying Theorem 4.1 in Shao and Yu (1996) and following the proofs of
 Lemmas A.2 and A.5 in Appendix A, we can show that, if {(Xr, Yt)} is NED with
 the stable coefficient decaying at a geometric rate,

 sup fE|Wr(x) —E[W7-(x)]|eoy/e° = O (T~^2h((i-Qi)d)/QA (3.4)
 ||x||<Cr v ' v '

 under mild conditions.

 Remark 3.2. It is of interest to consider the uniform consistency over the set
 {x : /(x) > dr), dj —> 0, similarly to Andrews (1995). Under some conditions
 on /(•) and dr, we conjecture that the uniform convergence rates obtained in this
 paper also hold over the set {x: /(x) > dj-} ■ We will consider this in future study.

 4. ESTIMATION OF A COUNTABLE NUMBER OF CONDITIONAL
 EXPECTATIONS

 Define the quantities gj(x) = E(Yt\Xt-j = x), j = 1,2,..., where both [Yt] and
 {X,} are real-valued. There are many cases of interest that require estimation of
 this whole family of regression functions. For example, consider the quantity

 OO

 G(x) = ^ Wjgj(x), (4.1)
 j=l

 where wj, j > 1, are summable weights and the sum in (4.1) is assumed to be well
 defined. This quantity is of interest in a number of applications, and we discuss
 three examples in detail here.
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 Hong (2000) proposed a test of serial independence of an observed scalar se
 ries X,. In practice checking the independence of Xt from Xt~i, Xt-i, ... is
 very difficult because of the curse of dimensionality. He proposed checking all
 pairwise joint relationships (Xt,Xt-j) for departures from the null. An alter
 native approach is to check all pairwise conditional relationships Xt\Xt~j\ for
 example, to check whether all functions g*(x) = E(Xt\Xt-j = x), j > 1, are
 constant. This can be done by evaluating an empirical version of the weighted

 00

 sum sup X wj I#,*(x) ~ gj I■ where w, and gj, j > 1, are summable weights and
 -v ;•=l

 average values, respectively.
 Linton and Mammen (2005) considered the semiparametric volatility model for

 observed returns Xt — a,e, with e, and ej — 1 martingale difference sequences
 and

 OO

 = X ¥j(0)g(Xt-j),
 i=i

 where g(-) is an unknown function and the parametric family (i//; (0) : 6 e
 0,7 = l,...,oo} satisfies some regularity conditions. This model includes the
 GARCH(1,1) as a special case. They assumed that {X;} is stationary and ge
 ometrically mixing. They obtained a characterization of the function g(-) that
 involves a weighted sum of the form (4.1); specifically, the quantity g#(x) =
 OO

 X Wj(^)li(x)- They proposed an estimation strategy for the unknown quan
 j=i

 tides, which requires as input the estimation of t]j(x) = E(Xj\Xt-j — x) for
 7 = 1,2,..., J(T), where J{T) = clog T for some c > 0. They required bounding

 the estimation error of r]j(x) uniformly over x and over / = 1,2,..., J(T). They
 provided only a sketch proof of this result in the case where the process is as
 sumed to have compact support and to be strongly mixing with geometric decay.
 We next give more definitive results under weaker conditions.

 As a final motivation, consider the nonparametric prediction of a future value
 X() given a sample {X_i,...,X-j\. Linton and Sancetta (2009) established
 consistency of estimators of E(Xo|X_i,...) under weak conditions, but rates
 of convergence are not available, and practical performance is likely to be
 poor. Instead, it makes sense to use lower dimensional predictors, but which
 one? Consider the following model averaging approach, which makes use of

 J(T)
 a large number of low dimensional predictors; that is, to use X WT jgjiX-j)

 7=1

 to estimate E(Xo|X_i,...), where wtj, j = 1 are weights such
 J(T)

 that X wjj — 1, J(T) is an increasing sequence and gj{ ), j > 1, are the
 ;'=l

 nonparametric regression fits.
 Let

 G{x i,x2,...)=E(Xt\Xt-] =xi,Xt-2=x2,...)
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 be the best prediction function. Then

 J(T)

 Gw(xi,x2,...)= X wTjgj(xj), gj(x) =E(X,\Xt-j =x),
 j=1

 can be considered as an approximation to G(x\,x2, ■ ■ -)• One can choose the
 weights according to several criteria, which we do not go into here. In this case, to
 show the rate of uniform convergence of G w (x i, X2, ■ ■ ■) to G w (x i, X2,...), where

 J(T)

 Gw(xi,x2,...)= X wTjgj(xj)
 j=i

 and gj(-) is the local linear estimator of gj(), it suffices to control the rate for
 each gj (xj) uniformly over 7 = 1,..., J(T). We next give a result that establishes
 the same rate of convergence as in Theorem 2.1 but uniformly over j also. We
 just need some restriction on the rate at which J(T) can increase to infinity. Our
 result allows J(T) to grow at a polynomial rate in some cases.

 PROPOSITION 4.1. Suppose that {X,} is stationary NED in Lpo-norm with
 respect to a stationary a-mixing process {ef} with E|X(|?0 < oo, A2 is satisfied
 when g(-) is replaced by g* (■), and the remaining conditions of Theorem 2.1 are
 satisfied. Furthermore, suppose that

 j(T)h-(d+^vMT)PTX = 0(\)
 and

 y(7')(log ]r(Ai-0o)((l/2)-(l/po)) _ o(l)_
 Then we have

 max sup
 i \x\<cT

 gj(x)-g*(x)

 where hj = max brig*) and bjig*) is defined as br(g) in Section 2.
 1 <j<J(T) 1 '

 Remark 4.1. In the preceding result, we establish the weak convergence rate

 for gj(x) uniformly over j and x. The strong uniform convergence rate result for
 g* (x) can also be established by applying proofs similar to those of Theorems 2.2
 and 3.2.
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 APPENDIX A: Some Useful Lemmas

 We next provide some critical lemmas, which are necessary for the proofs of the main
 results. The first one is the Bernstein inequality for a-mixing process, which can be found
 in several books such as Fan and Yao (2003).

 LEMMA A.l. Let [Zt\ be a zero-mean real-valued a-mixing process satisfying
 L
 2 P(|Zr| < B) = 1 for all t > 1. Then for each integer q e [1, y] and each e > 0, we have

 T

 t=1
 > Te < 4exp —

 8v2(q)J
 + 22 1 +

 4 B\  1/2

 qa
 T

 L2iq\

 where v~(q) = 2<j2{q)/p2 + Be/2 with p = ^ and

 a2(q) = max_ E (([;>] + 1 - jp)Z[jp]+1 + Z[jp]+2 + • • • + Z[(j+l)p]

 +(0 + i)p- [0 + i)p])-Z[(j+i)p]+i)2.
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 Letting y/'"' be defined as in Definition 1, we establish the result on the moment of

 y/m) in Lemma A.2, which follows.

 LEMMA A.2. Suppose that the sequence {Yi) is NED in Ls with E|7f |s < oo for s > 1.

 Then we have E | | < oo.

 Proof. Note that k/™' = Yt + — Yt. By applying the Cr inequality and (1.3) in
 I (m} I5

 Definition 1, we can prove that E \Y, < oo. ■

 Define

 <AJ>

 The next lemma shows that Wj (x) can be approximated by Wj*1^ (x) in probability as
 m —> oo, which is critical for uniform weak convergence rate of Wj(yi).

 LEMMA A.3. Suppose that the conditions of Theorem 3.1 are satisfied. Then, we have

 sup IW7~(x) — wim'(x)| = Op (h~d~iv\(m)). (A.3)
 IM<Cj- 1 v '

 Proof. Observe that

 WV(x) - <m)(x) = £ ( YtKT - Y^Kt ' X'm)' t=1

 Thd£[' { 1 V h
 T < - " /Xf-xf

 Thd,=l
 =: i (x) + IT,2(x). (A.4)

 We first consider //-^(x). Noting that E | — Ff | = uj (m) and by the boundedness
 condition on K-/(-) (see A5 in Section 3), we have

 ^ /. , >.\
 (A.5) sup |/r,2(x)| < h d sup |^r(^V^)| ~Yt\ = Op (h dv\(m)) .

 ||x||<cr l|x||<Cr • 11 1 v '

 For It(i (x), note that

 'r,. W = JpX » (*r (^) "*r

 Tf>d,=l

 =: /r3(x) + /r4(x). (A.6)
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 By the Lipschitz continuity of ^7-(•), we have uniformly for ||x|| < Cj,

 — 0P{p\(m)/K). (A.7)
 h

 By (A.7), we have

 sup
 11*11 <Ct

 \lT,Z&)\ = Op(h d '«i(m)J. (A.8)
 On the other hand, we have

 sup |/r,4(x)| = Op (h~d~lv\(m)\. (A.9)
 l|x||<Cr V '

 In view of (A.4)-(A.6), (A.8), and (A.9), we can show that (A.3) holds. ■

 LEMMA A.4. Suppose that the conditions of Theorem 3.2 are satisfied. Then, we have

 sup I Wp(x) — W^"T\-x)\ = O (px) a.s., (A.10)
 llx||<Cr 1

 where m j satisfies the condition A4(a) and pp is defined in (2.5).

 Proof. Let ij \ (x) and /y\2(x) be defined as in (A.4). By (2.12) and the Markov in
 equality, we have

 00

 T
 X p(k(mr)-yf| > pThd) < x pj]h~dE\vl
 '=1 Vl 1 ' T=l 1

 (mT) _ yt I

 ^ 1 j ^ 1

 <C X PT h dvl(mT) = C X 1+ < 00.
 7—1 T=\ 7'Og T

 (A.ll)

 By the boundedness condition on Kp() and (A.ll), we have

 sup |/r,2(x)| <^I \YtimT)-Y,\ sup kr(^)| /A^ ||x||<CT lh t= l1 . ||x||<Cr 1 (A.12)
 = 0(pT) a.s.

 Analogously, we can show that sup \lj i(x)| = Oipj) a.s., which together with
 l|x||<Cr

 (A. 12) implies that (A. 10) holds. ■

 LEMMA A.5. Let rp be a sequence of positive integers such that mp/rp = o(l) and

 1 rT / "yv _

 <A'I3)

 Suppose that the conditions of Theorem 3.1 are satisfied. Then, we have

 Var[t/r(x)] = 0(rTh~d). (A.14)

 r(mT)
 — X
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 Proof. For simplicity, we let m = mj and r = rj in this proof. Observe that

 Var[t/r(x)] = S(l) + E(2),

 where

 (A.15)

 :(1) = PiIVar

 1

 t=1
 Yjm)KT

 Xf(m)-x

 S(2) = ^HCov  y^kt  X,(m)-x
 Y^m)KT

 r=l s/;

 We first consider E(l). It is easy to check that

 Xim)-x

 3<» < ^ IE

 ' X* h2d  1=1
 y}k\

 Xf — x

 +

 /!2d

 1

 t=1

 IE

 ((r/m>)2->f)  a 2 I X;(m)-x

 A^
 r=l

 =:E(3) + 3(4) + 3(5).

 X,(m)-x
 — Ay

 X,-x

 (A.16)

 By the condition A4(a) and standard but tedious calculation similar to that in the proof
 of Lemma A.3, we have

 3(3) = 0(rh~d),

 E(4) = O (rh~2dv]l2(m)) = o{rh~d).

 Letting Bj = (h/v\(m))1/(2+e*' = {h/v\(m))l/po, we have

 (A.17)

 (A.18)

 K,z K
 X,(ffl)-x

 -Ki

 : E  Yfl{\Yt\<BT)\KlT

 +E

 X,-x

 X,(m)-x
 h

 (m)

 -Ki

 2,(ivk „_Jr2 1*1
 YfJ(\Yt\ > BT) (^Ar  h

 -Ki

 Xt-x
 h

 X; — X

 h

 = O [Bfvi{m)h~x + BjE*\

 = O ((h/v\(rn))~£*/po^J ,

 where /(•) is the indicator function. Then it is easy to check that
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 3(5) = O (rh~2d(h/v\ (m))~s*/po} =o(rh~d),

 as h d (£»/(2+£.))0®»/'2+£»)(m) _ o(l) in A4(a).
 Then, by (A.17)-(A.19), we have

 3(1) = 0{rh~d).

 (A.19)

 (A.20)

 We next turn to the calculation of 3(2). Note that

 3(2)
 h2d  X I Cov

 t=1 \s-t\<Ml
 y(m)KT

 1

 + ^2d I I C0V
 n t=\\s-t\>Mf

 ='■ 3(6) + 3(7),

 Y^m)KT

 Y^m)KT
 r(m)

 ) , Y^Kj
 X<m>-x

 (A.21)

 where Mj is defined in the condition A4(a).
 By standard calculation, we have

 1

 2(6) = ^ I I Cov  Y,KT
 Xt-x

 YSKT
 Xc-x

 + 0
 [rM^h~2d (u2/2(m) + (/!/oi(/n)r£*/w))) ,

 which together with h 2d + {h/v\(m)) £*/= o(l) in A4(a)

 MJ. = o{h~d), implies that

 (A .22)

 and the fact that

 3(6 ) = 0(rMl)=o(rh~d).  (A.23)

 On the other hand, noting that [Y^m\ X^} is an a-mixing process with mixing coeffi
 cient

 /f , , f at-m, t >m + 1;
 ,W-\l, t <m,

 we have

 e„/(4+6»)
 ^ ^ \s—t\—m

 " r=l \s-t\>Mj
 C r

 Y(tm)Kr
 Xf»-x

 2+(e./2)'

 i,2d

 " t=\\s-t\>MT

 x i E
 , . / y("0 _ Y

 Y( Kt 1 '
 2+(et/2)'  4/(4+6.)

 , 4/(4+e.)

 (A.24)
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 By Lemma A.2, we have

 E  Y^m)KT
 Xf(m)-x

 2+(b,/2)'

 < 00.

 By the condition A4(a), (A.24), and (A.25), we have

 (7)<^X X S-W(++*.)^E
 t=\s>M}/2

 ^ X I ,s-^./(4+£.) < Crh-d ({M*re0e.l(4+s.)+lh-d\ = ofyh-dy
 h t=\s>M'T/2

 (A.26)

 -y-(m)

 ^(y/m))tfr1 ' X
 2+(e./2)'

 (A.25)

 4/(4+e.)

 By (A.21), (A.23), and (A.26), we have S(2) = o(rh el), which together with (A.15)
 and (A.20) implies that (A. 14) holds. ®

 APPENDIX B: Proofs of the Main Results

 We first prove Theorems 3.1 and 3.2 and then provide the proofs of the uniform conver
 gence rate results in Sections 2 and 4. In fact, the results in Sections 2 and 4 can be obtained
 as applications of Theorems 3.1 and 3.2. As in the proof of Lemma A.5, we let m = mj
 throughout this Appendix.

 Proof of Theorem 3.1. Note that

 sup | Wj (x) — E[WY(x)]| < sup |w^m)(x)-E[^m)(x)]|
 M<Cr  l|x||<Cr'

 + sup I Wj- (x) — Wj(x) I
 l|x||<Cr 1 1

 + sup |e[ Wr (x)] — E[ Wy.m) (x)] I
 l|x||<Cr 1

 =: Ht,1 + ^T,2 + ny-,3.

 By Lemma A.3, we have

 nr.2 = Op (h~d~xv\(m)sj = Op(pT), 117-3 = 0(pT).

 (B.l)

 (B.2)

 By (B.l) and (B.2), to prove (3.2), we need only to show that IT/] = Op(pj). Recall

 that {F/m\x[m'} is an a-mixing process with mixing coefficient

 ®m(0 <
 at-m, t >m + 1;
 1,  t < m.

 We cover the set {x : ||x|| < Cj \ by a finite number of subsets Sk,k — 1,..., Nj, which
 are centered at with radius pphd+l. Observe that
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 nr i < max sup \Wj1\x) — Wj"\si(:)\
 l<k<Nr ||x||eSt 1

 + max sup Ie[w4"^(x)] — E[wi"^(^)]l
 l<k<NT ||X||eSt I I

 + max |wdm)(sfe)-E[wim)Cs*)]|
 l<k<NjI I

 =: 117-4 + ny;5 +

 By the Lipschitz continuity of K j(-) in A5, we have

 max max sup
 T> 1 l<k<NTxesk

 K1
 Xf — x

 By (B.4) and noting that E j f/'"' j < 00 by Lemma A.2, we have

 nr,4 = Op {^Thd+X ^j=Op(pT), 117- 5 = 0(pT).

 ■ kt
 Xt-Sk

 h
 < max sup
 l<k<NTxeSk

 X-Sk

 (B.3)

 (B.4)

 (B.5)

 By (B.3) and (B.5), to prove n^i = Op(pf), we need only to show that =
 0P(pT). Let At = T1/po,

 v(m)
 = Yt(m)I (|Fr(m)| < Ar) , ?/m) = F((m)/ (V/m)| > &t) ,

 ^ (X) = Yhd J T'm) Kt

 <,(x)=^zi
 It is easy to check that

 X,(m)-x

 Xf(m)-x

 nr (. < max
 1 <^<^7  \wf\sk)-^[wf\sk)

 + max \W{Tm\Sk)-E\Wf>(Sk) l<k<nT1 L

 =: IT7-7 + Il^g.

 By the Markov inequality and Lemma a.2, for any tj > 0,

 \w(mh

 (B.6)

 P (nr,8 > >!Pt) < X
 t e| y/m)

 1^0

 1-^0
 r

 < CTAtX° = O(Tl'X°/p0) = o(l),

 where po < ^0 < s0- Hence, we have

 nT 8 = opipj).  (B.7)
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 Letting

 B = ATh~d = Tl'P°h~d, e = r/pT, q = Tl+VP°pT

 in Lemma A.l and by Lemma A.5, we have

 Nf

 p (nr,7 > r,PT) < ^p(\w^\sk)-E\wP(.sk)\\> r,pT)
 k= 1 M L Jl 7

 { ctj2plThd

 SA,rexp| X
 + civr(iogr)(20o+1)/4/r(3+2W/4r(3^+6)/4^+0o(1/™-1/2)

 for some positive constant c. Noting that Nj = O ^ d Jfc+j J > by the bandwidth condition

 in A4(b), we have for rj large enough, P (ilj-j > rjpj) = o(l), which implies that

 nr,7 = 0P(pT). (B.8)

 By (B.6)-(B.8), we can show that Yij (, = O p(pj). Then, the proof of Theorem 3.1 is
 completed. ■

 Proof of Theorem 3.2. By Lemma A.4 and following the proof of Theorem 3.1, we
 need only to show that I Iy- f, = O(pj) a.s., where IT/,6 is" defined in (B.3).

 Let \ j = 7*1/po, Yfm\ y/m), riy 7, and g be defined as in the
 proof of Theorem 3.1. By the Markov inequality and Lemma A.2, for any rj > 0,

 FW|S1 00 00 T E

 X p (nr,8 > VPt) < X X ~ Asi
 r=1 T=\t=i

 00

 < C X Tx~Sl,P0 < 00,
 T=1

 as si > 2po- Hence, we have

 n T,S=°(PT) a.s. (B.9)

 Letting b = A jh~d = Ti/poh^d, e = t]Pr, q = T^+l^P0p-p in Lemma A.l, by
 (2.13) and Lemma A.5, we have

 00 00 Nf

 X P(nr>7 > vpt) < X X pflW^foO-EtW^fo)] > vpt)
 t=1 t=\k= 1

 < X^r(exp{
 rp- pjThd

 16

 + (log r) (26>0+1)/4 ^ - (3+20o )C?/4 r (3/>o+6)/4P0 +6>°(1 //7Q -1 /2)

 OO J

 -Cr?1riog1+fr <0°
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 by taking rj > 0 large enough. Hence, we have

 UTJ = O(pf) a.s. (B.10)

 By (B.9) and (B.10), we have Ut,6 = O(pj) a.s. Then, the proof of Theorem 3.2 is
 completed. ■

 Proof of Theorem 2.1. We only consider the case of d = 1 as the extension to the
 case of d > 2 is similar. Then X, and x become Xt and x, respectively. By the standard
 argument of local linear estimator as in Fan and Gijbels (1996),

 T

 g(x) = Y, u>T,t(x)Yt,
 t=1

 where

 wTj(x) =
 *1 'M 1 (ST,2(X)~ 1 (V) |5r,iW)

 Th ^ >T,o(x)STy2(x)  iW) 1

 Then,

 / T \ T

 g(x)-g(x) = £ wT,t(x)g(Xt) -g(x) + X wT,t(x)et
 \t=1 / t=\

 =:n^1(x) + n*2w, (B.ii)
 where e, = Y, -g(Xt).
 By Theorem 3.1, for any j > 1,

 sup \STJ(x)-Mjf(.x)\=oP(l), (B.12)
 M<Ct

 where fij = /ehj K(u)du. By (B.12) and standard calculation, we have

 sup In* jWUop (B.13)
 \x\<cT 1 V /
 Hence, to prove (2.8), we need only to show that

 sup \n*T2{x)\ = 0P (-~). (B.14)
 \x\<CT 1

 T'2 I

 By (B.12) and the definition of to prove (B.14), we need only to show that

 0P (pT) (B.15) sup
 \X\<CT

 and
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 sup
 U\<CT

 — I {— Th ±
 X,-x

 K
 Xt-x

 et  = Op (pJ  (B.16)

 By letting Yt = et in Theorem 3.1, we can show that (B.15) and (B.16) hold. Then, the
 proof of Theorem 2.1 is completed. ■

 Proof of Theorem 2.2. Following the proofs of Theorems 2.1 and 3.2, we can show
 that (2.14) holds. The details are omitted here. ■

 Proof of Proposition 4.1. The detailed proof is similar to the proof of Theorem 2.1. By

 the definition of the local linear estimators gj (x), j = 1,..., J(T), we have

 T

 8j (•*) = X wTJ,t(x)X t,
 *=7+1

 where

 *1 <^)  (Sr,j,2(x) ~ 1  iSr.y.ito)

 (T-j)h(  STJ,o(x)STJ,2(x) - ST,j, 1 w)  1

 Sj i k(.x) = t ^
 ,J' (T-j)htj

 Then,

 £ (Xt-j-x
 =7 + 1

 h
 K  Xt—j x

 gj(x)-"*f^ - (x)= I I wTjAx)8*(Xt)-g*(x))+ £ wTJtt(x)etJ
 \t=j+l J '=7+1

 =: n7-j;i(*) + nrjf2(jc)

 (B.17)

 where e,j = Xt-g*(Xt_j) = X,-E(X,\X,-j).
 Following the proof of Theorem 3.1 with some slight modification, we can show that

 max sup \STjk{x)-nkf(x)\=oP{\), k> 1.

 By (B.18), to prove

 max sup rir 2(x) = Op [ —7-— ),
 i<j<ht)\x\<ct W(/)y

 (B.18)

 (B.19)

 we need only to show

 max sup
 1 <i<J(t) \x\<CT (T — j)h

 t

 I *  Xt—j x
 et,i  = Op

 Pt

 ar(f)
 (B.20)

 and
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 max sup
 l<j<J(J) \x\<cT

 T 'Xt-j~x\ v(*t-j-x
 (T-j)h f=7+1

 I FF ^ Fr Ki  = Op
 aT(f)J

 (B.21)

 We only prove (B.20) as the proof of (B.21) is analogous. Let

 °r,iW = 7F-FHT 1 *■/
 1  T

 2 K\
 t=j+1

 (Xt-j — x
 (T  ~j)h  \ h

 1  T

 I *|
 t—j+1

 (*£)-*
 (T  ~j)h

 >(m)^ - 1 V f I _JzZ I

 where and are defined as in Definition 1. Note that E [Slj-j(x)] = 0 for all
 j = 1,..., J(T). Then, we have

 max sup I fly ; (x) I
 l<j<J(T)M<cT

 < max sup |ft!^(jc) — E [fl^")(jc)l I
 1 <j<J(T)\x\<cJ Tj L T'J Ji ~J(T) \x\<Cj 1

 SI

 >UI<Cr'
 + max sup I flj-/ (jc) — fly") (*) I

 i<J<J(T)\x\<ct\ J T'j I
 + max sup IeIa^OoI —E[fly (jc)1 I
 l<j<J(T) \x\<CT ' L 1

 =: fly (1) +fly (2) +fly (3). (B.22)

 Following the argument in the proof of Lemma A.3, we have

 fly (2) + fly (3) = Op (py) (B.23)

 as J(T)h~(dJr^v\{m)pj^ = 0(1). On the other hand, following the proof of Theorem
 3.1, we can show that

 fly(l ) = 0P(pT). (B.24)

 By (B.22)-(B.24), we can show that (B.20) holds.
 By (B.18) and the Taylor expansion, we can show that

 max sup Ily ■ 1 (jc) = Op ( ^T^ | . (B.25)

 Then, by (B.17), (B.19), and (B.25), we can prove Proposition 4.1. ■
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