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Abstract

This paper presents the first Rademacher complexity-based error bounds for non-
i.i.d. settings, a generalization of similar existing bounds derived for the i.i.d. case.
Our bounds hold in the scenario of dependent samples generated by a stationary
β-mixing process, which is commonly adopted in many previous studies of non-
i.i.d. settings. They benefit from the crucial advantages of Rademacher complexity
over other measures of the complexity of hypothesis classes. In particular, they are
data-dependent and measure the complexity of a class of hypotheses based on the
training sample. The empirical Rademacher complexity can be estimated from
such finite samples and lead to tighter generalization bounds. We also present
the first margin bounds for kernel-based classification in this non-i.i.d. setting and
briefly study their convergence.

1 Introduction

Most learning theory models such as the standard PAC learning framework [13] are based on the as-
sumption that sample points are independently and identically distributed (i.i.d.). The design of most
learning algorithms also relies on this key assumption. In practice, however, the i.i.d. assumption
often does not hold. Sample points have some temporal dependence that can affect the learning pro-
cess. This dependence may appear more clearly in times series prediction or when the samples are
drawn from a Markov chain, but various degrees of time-dependence can also affect other learning
problems.

A natural scenario for the analysis of non-i.i.d. processes in machine learning is that of observations
drawn from a stationary mixing sequence, a standard assumption adopted in most previous studies,
which implies a dependence between observations that diminishes with time [7,9,10,14,15]. The pi-
oneeringwork of Yu [15] led to VC-dimension bounds for stationary β-mixing sequences. Similarly,
Meir [9] gave bounds based on covering numbers for time series prediction [9]. Vidyasagar [14]
studied the extension of PAC learning algorithms to these non-i.i.d. scenarios and proved that under
some sub-additivity conditions, a PAC learning algorithm continues to be PAC for these settings.
Lozano et al. studied the convergence and consistency of regularized boosting under the same as-
sumptions [7]. Generalization bounds have also been derived for stable algorithms with weakly
dependent observations [10]. The consistency of learning under the more general scenario of α-
mixing with non-stationary sequences has also been studied by Irle [3] and Steinwart et al. [12].

This paper gives data-dependent generalization bounds for stationary β-mixing sequences. Our
bounds are based on the notion of Rademacher complexity. They extend to the non-i.i.d. case the
Rademacher complexity bounds derived in the i.i.d. setting [2, 4, 5]. To the best of our knowledge,
these are the first Rademacher complexity bounds derived for non-i.i.d. processes. Our proofs make
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use of the so-called independent block technique due to Yu [15] and Bernstein and extend the appli-
cability of the notion of Rademacher complexity to non-i.i.d. cases.

Our generalization bounds benefit from all the advantageous properties of Rademacher complexity
as in the i.i.d. case. In particular, since the Rademacher complexity can be bounded in terms of
other complexity measures such as covering numbers and VC-dimension [1], it allows us to derive
generalization bounds in terms of these other complexity measures, and in fact improve on existing
bounds in terms of these other measures, e.g., VC-dimension. But, perhaps the most crucial advan-
tage of bounds based on the empirical Rademacher complexity is that they are data-dependent: they
measure the complexity of a class of hypotheses based on the training sample and thus better capture
the properties of the distribution that has generated the data. The empirical Rademacher complex-
ity can be estimated from finite samples and lead to tighter bounds. Furthermore, the Rademacher
complexity of large hypothesis sets such as kernel-based hypotheses, decision trees, convex neu-
ral networks, can sometimes be bounded in some specific ways [2]. For example, the Rademacher
complexity of kernel-based hypotheses can be bounded in terms of the trace of the kernel matrix.

In Section 2, we present the essential notion of a mixing process for the discussion of learning in
non-i.i.d. cases and define the learning scenario. Section 3 introduces the idea of independent blocks
and proves a bound on the expected deviation of the error from its empirical estimate. In Section 4,
we present our main Rademacher generalization bounds and discuss their properties.

2 Preliminaries

This section introduces the concepts needed to define the non-i.i.d. scenario we will consider, which
coincides with the assumptions made in previous studies [7, 9, 10, 14, 15].

2.1 Non-I.I.D. Distributions

The non-i.i.d. scenario we will consider is based on stationary β-mixing processes.
Definition 1 (Stationarity). A sequence of random variables Z = {Zt}∞t=−∞ is said to be sta-
tionary if for any t and non-negative integers m and k, the random vectors (Zt, . . . , Zt+m) and
(Zt+k, . . . , Zt+m+k) have the same distribution.

Thus, the index t or time, does not affect the distribution of a variable Zt in a stationary sequence
(note that this does not imply independence).
Definition 2 (β-mixing). Let Z = {Zt}∞t=−∞ be a stationary sequence of random variables. For
any i, j ∈ Z ∪ {−∞, +∞}, let σj

i denote the σ-algebra generated by the random variables Zk,
i ≤ k ≤ j. Then, for any positive integer k, the β-mixing coefficient of the stochastic process Z is
defined as

β(k) = sup
n

E
B∈σn

−∞

[
sup

A∈σ∞

n+k

∣∣∣Pr[A | B] − Pr[A]
∣∣∣
]
. (1)

Z is said to be β-mixing if β(k) → 0. It is said to be algebraically β-mixing if there exist real
numbers β0 > 0 and r > 0 such that β(k) ≤ β0/kr for all k, and exponentially mixing if there
exist real numbers β0 and β1 such that β(k) ≤ β0 exp(−β1kr) for all k.

Thus, a sequence of random variables is mixing when the dependence of an event on those occurring
k units of time in the past weakens as a function of k.

2.2 Rademacher Complexity

Our generalization bounds will be based on the following measure of the complexity of a class of
functions.
Definition 3 (Rademacher Complexity). Given a sample S ∈ Xm, the empirical Rademacher
complexity of a set of real-valued functionsH defined over a set X is defined as follows:

R̂S(H) =
2

m
E
σ

[
sup
h∈H

∣∣∣
m∑

i=1

σih(xi)
∣∣∣
∣∣∣∣S = (x1, . . . , xm)

]
. (2)
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The expectation is taken over σ = (σ1, . . . , σn) where σis are independent uniform random vari-
ables taking values in {−1, +1} called Rademacher random variables. The Rademacher complexity
of a hypothesis set H is defined as the expectation of R̂S(H) over all samples of size m:

Rm(H) = E
S

[
R̂S(H)

∣∣|S| = m
]
. (3)

The definition of the Rademacher complexity depends on the distribution according to which sam-
ples S of size m are drawn, which in general is a dependent β-mixing distribution D. In the rare
instances where a different distribution D̃ is considered, typically for an i.i.d. setting, we explicitly
indicate that distribution as a superscript: R eD

m(H).

The Rademacher complexity measures the ability of a class of functions to fit noise. The empirical
Rademacher complexity has the added advantage that it is data-dependent and can be measured from
finite samples. This can lead to tighter bounds than those based on other measures of complexity
such as the VC-dimension [2, 4, 5].

We will denote by R̂S(h) the empirical average of a hypothesis h : X → R and by R(h) its expec-
tation over a sample S drawn according to a stationary β-mixing distribution:

R̂S(h) =
1

m

m∑

i=1

h(zi) R(h) = E
S
[R̂S(h)]. (4)

The following proposition shows that this expectation is independent of the size of the sample S, as
in the i.i.d. case.
Proposition 1. For any sample S of size m drawn from a stationary distribution D, the following
holds: ES∼Dm [R̂S(h)] = Ez∼D[h(z)].

Proof. Let S = (x1, . . . , xm). By stationarity, Ezi∼D[h(zi)] = Ezj∼D[h(zj)] for all 1 ≤ i, j ≤ m,
thus, we can write:

E
S
[R̂S(h)] =

1

m

m∑

i=1

E
S
[h(zi)] =

1

m

m∑

i=1

E
zi

[h(zi)] = E
z
[h(z)].

3 Proof Components

Our proof makes use of McDiarmid’s inequality [8] to show that the empirical average closely
estimates its expectation. To derive a Rademacher generalization bound, we apply McDiarmid’s
inequality to the following random variable, which is the quantity we wish to bound:

Φ(S) = sup
h∈H

R(h) − R̂S(h). (5)

McDiarmid’s inequality bounds the deviation of Φ from its mean, thus, we must also bound the
expectation E[Φ]. However, we immediately face two obstacles: both McDiarmid’s inequality and
the standard bound on E[Φ] hold only for samples drawn in an i.i.d. fashion. The main idea behind
our proof is to analyze the non-i.i.d. setting and transfer it to a close independent setting. The
following sections will describe in detail our solution to these problems.

3.1 Independent Blocks

We derive Rademacher generalization bounds for the case where training and test points are drawn
from a stationary β-mixing sequence. As in previous non-i.i.d. analyses [7, 9, 10, 15], we use a
technique transferring the original problem based on dependent points to one based on a sequence
of independent blocks. The method consists of first splitting a sequence S into two subsequences S0

and S1, each made of µ blocks of a consecutive points. Given a sequence S = (z1, . . . , zm) with
m = 2aµ, S0 and S1 are defined as follows:

S0 = (Z1, Z2, . . . , Zµ), where Zi = (z(2i−1)+1, . . . , z(2i−1)+a), (6)

S1 = (Z(1)
1 , Z(1)

2 , . . . , Z(1)
µ ), where Z(1)

i = (z2i+1, . . . , z2i+a). (7)
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Instead of the original sequence of odd blocks S0, we will be working with a sequence S̃0 of
independent blocks of equal size a to which standard i.i.d. techniques can be applied: S̃0 =
(Z̃1, Z̃2, . . . , Z̃µ) with mutually independent Z̃ks, but, the points within each block Z̃k follow the
same distribution as in Zk. As stated by the following result of Yu [15][Corollary 2.7], for a suffi-
ciently large spacing a between blocks and a sufficiently fast mixing distribution, the expectation of
a bounded measurable function h is essentially unchanged if we work with S̃0 instead of S0.
Corollary 1 ([15]). Let h be a measurable function bounded byM ≥ 0 defined over the blocks Zk,
then the following holds:

| E
S0

[h] − E
eS0

[h]| ≤ (µ − 1)Mβ(a), (8)

where ES0
denotes the expectation with respect to S0, EeS0

the expectation with respect to the S̃0.

We denote by D̃ the distribution corresponding to the independent blocks Z̃k. Also, to work with
block sequences, we extend some of our definitions: we define the extension ha : Za → R of any
hypothesis h∈H to a block-hypothesis by ha(B)= 1

a

∑a
i=1 h(Zi) for any blockB=(z1, . . . , za)∈

Za, and defineHa as the set of all block-based hypotheses ha generated from h∈H .

It will also be useful to define the subsequence Sµ, which consists of µ singleton points separated
by a gap of 2a − 1 points. This can be thought of as the sequence constructed from S0, or S1, by
selecting only the jth point from each block, for any fixed j ∈ {1, . . . , a}.

3.2 Concentration Inequality

McDiarmid’s inequality requires the sample to be i.i.d. Thus, we first show that Pr[Φ(S)] can be
bounded in terms of independent blocks and then apply McDiarmid’s inequality to the independent
blocks.
Lemma 1. Let H be a set of hypotheses bounded byM . Let S denote a sample, of size m, drawn
according to a stationary β-mixing distribution and let S̃0 denote a sequence of independent blocks.
Then, for all a, µ, ε > 0 with 2µa = m and ε > EeS0

[Φ(S̃0)], the following bound holds:

Pr
S

[Φ(S) > ε] ≤ 2 Pr
eS0

[Φ(S̃0) − E
eS0

[Φ(S̃0)] > ε′] + 2(µ − 1)β(a),

where ε′ = ε − EeS0
[Φ(S̃0)].

Proof. We first rewrite the left-hand side probability in terms of even and odd blocks and then apply
Corollary 1 as follows:
Pr
S

[Φ(S) > ε] = Pr
S

[sup
h

(R(h) − R̂S(h)) > ε]

= Pr
S

[
sup

h

(
R(h)− bRS0

(h)
2 +

R(h)− bRS1
(h)

2

)
> ε

]
(def. of R̂S(h))

≤ Pr
S

[1

2

(
sup

h
(R(h) − R̂S0

(h)) + sup
h

(R(h) − R̂S1
(h))

)
> ε

]
(convexity of sup)

= Pr
S

[Φ(S0) + Φ(S1) > 2ε] (def. of Φ)

≤ Pr
S0

[Φ(S0) > ε] + Pr
S1

[Φ(S1) > ε] (union bound)

= 2 Pr
S0

[Φ(S0) > ε] (stationarity)

= 2 Pr
S0

[Φ(S0) − E
eS0

[Φ(S̃0)] > ε′]. (def. of ε′)

The second inequality holds by the union bound and the fact that Φ(S0) or Φ(S1) must surpass ε
for their sum to surpass 2ε. To complete the proof, we apply Corollary 1 to the expectation of the
indicator variable of the event {Φ(S0) − EeS0

[Φ(S̃0)] > ε′}, which yields

2 Pr
S0

[Φ(S0) − E
eS0

[Φ(S̃0)] > ε′] ≤ 2 Pr
eS0

[Φ(S̃0) − E
eS0

[Φ(S̃0)] > ε′] + 2(µ − 1)β(a).

We can now apply McDiarmid’s inequality to the independent blocks of Lemma 1.
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Proposition 2. For the same assumptions as in Lemma 1, the following bound holds for all ε >
EeS0

[Φ(S̃0)]:

Pr
S

[Φ(S) > ε] ≤ 2 exp

(
−2µε′2

M2

)
+ 2(µ − 1)β(a),

where ε′ = ε − EeS0
[Φ(S̃0)].

Proof. To apply McDiarmid’s inequality, we view each block as an i.i.d. point with respect to ha.
Φ(S̃0) can be written in terms of ha as: Φ(S̃0) = R(ha) − R̂eS0

(ha) = R(ha) − 1
µ

∑µ
k=1 ha(Z̃k).

Thus, changing a block Z̃k of the sample S̃0 can change Φ(S̃0) by at most 1
µ |h(Z̃k)| ≤ M/µ. By

McDiarmid’s inequality, the following holds for any ε > 2(µ − 1)Mβ(a):

Pr
eS0

[Φ(S̃0) − E
eS0

[Φ(S̃0)] > ε′] ≤ exp

(
−2ε′2∑µ

i=1(M/µ)2

)
= exp

(
−2µε′2

M2

)
.

Plugging in the right-hand side in the statement of Lemma 1 proves the proposition.

3.3 Bound on the Expectation

Here, we give a bound on EeS0
[Φ(S0)] based on the Rademacher complexity, as in the i.i.d. case [2].

But, unlike the standard case, the proof requires an analysis in terms of independent blocks.
Lemma 2. The following inequality holds for the expectation EeS0

[Φ(S̃0)] defined in terms of an
independent block sequence:EeS0

[Φ(S̃0)] ≤ R
eD
µ (H).

Proof. By the convexity of the supremum function and Jensen’s inequality, EeS0
[Φ(S̃0)] can be

bounded in terms of empirical averages over two samples:

E
eS0

[Φ(S̃0)] = E
eS0

[ sup
h∈H

E
eS′

0

[R̂eS′

0
(h)] − R̂eS0

(h)] ≤ E
eS0, eS′

0

[ sup
h∈H

R̂eS′

0
(h) − R̂eS0

(h)].

We now proceed with a standard symmetrization argument with the independent blocks thought of
as i.i.d. points:

E
eS0

[Φ(S̃0)] ≤ E
eS0, eS′

0

[ sup
h∈H

R̂eS′

0
(h) − R̂eS0

(h)]

= E
eS0, eS′

0

[
sup

ha∈Ha

1

µ

µ∑

i=1

ha(Zi) − ha(Z ′
i)

]
(def. of R̂)

= E
eS0, eS′

0,σ

[
sup

ha∈Ha

1

µ

µ∑

i=1

σi(ha(Zi) − ha(Z ′
i))

]
(Rad. var.’s)

≤ E
eS0, eS′

0,σ

[
sup

ha∈Ha

1

µ

µ∑

i=1

σiha(Zi)

]
+ E

eS0, eS′

0,σ

[
sup

ha∈Ha

1

µ

µ∑

i=1

σiha(Z ′
i)

]
(sub-add. of sup)

=2 E
eS0,σ

[
sup

ha∈Ha

1

µ

µ∑

i=1

σiha(Zi)

]
.

In the second equality, we introduced the Rademacher random variables σis. With probability 1/2,
σi = 1 and the difference ha(Zi) − ha(Z ′

i) is left unchanged; and, with probability 1/2, σi = −1
and Zi and Z ′

i are permuted. Since the blocks Zi, or Z ′
i are independent, taking the expectation over

σ leaves the expectation unchanged. The inequality follows from the sub-additivity of the supremum
function and the linearity of expectation. The final equality holds because S̃0 and S̃′

0 are identically
distributed due to the assumption of stationarity.

We now relate the Rademacher block sequence to a sequence over independent points. The right-
hand side of the inequality just presented can be rewritten as

2 E
eS0,σ

[
sup

ha∈Ha

1

µ

µ∑

i=1

σiha(Zi)

]
= E

eS0,σ

[
sup
h∈H

2

µ

µ∑

i=1

σi
1

a

a∑

j=1

h(z(i)
j )

]
,
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where z(i)
j denotes the jth point of the ith block. For j ∈ [1, a], let S̃j

0 denote the i.i.d. sample
constructed from the jth point of each independent block Zi, i ∈ [1, µ]. By reversing the order of
summations and using the convexity of the supremum function, we obtain the following:

E
eS0

[Φ(S̃0)] ≤ E
eS0,σ

[
sup
h∈H

1

a

a∑

j=1

2

µ

µ∑

i=1

σih(z(i)
j )

]
(reversing order of sums)

≤
1

a

a∑

j=1

E
eS0,σ

[
sup
h∈H

2

µ

µ∑

i=1

σih(z(i)
j )

]
(convexity of sup)

=
1

a

a∑

j=1

E
eSj
0,σ

[
sup
h∈H

2

µ

µ∑

i=1

σih(z(i)
j )

]
(marginalization)

= E
eSµ,σ

[
sup
h∈H

2

µ

µ∑

i=1
zi∈eSµ

σih(zi)

]
≤ R

eD
µ (H).

The first equality in this derivation is obtained by marginalizing over the variables that do not appear
within the inner sum. Then, the second equality holds since, by stationarity, the choice of j does
not change the value of the expectation. The remaining quantity, modulo absolute values, is the
Rademacher complexity over µ independent points.

4 Non-i.i.d. Rademacher Generalization Bounds

4.1 General Bounds

This section presents and analyzes our main Rademacher complexity generalization bounds for sta-
tionary β-mixing sequences.
Theorem 1 (Rademacher complexity bound). Let H be a set of hypotheses bounded by M ≥ 0.
Then, for any sample S of sizem drawn from a stationary β-mixing distribution, and for any µ, a >
0 with 2µa = m and δ > 2(µ − 1)β(a), with probability at least 1 − δ, the following inequality
holds for all hypotheses h ∈ H:

R(h) ≤ R̂S(h) + R
eD
µ (H) + M

√
log 2

δ′

2µ
,

where δ′ = δ − 2(µ − 1)β(a).

Proof. Setting the right-hand side of Proposition 2 to δ and using Lemma 2 to bound EeS0
[Φ(S̃0)]

with the Rademacher complexityR
eD
µ (H) shows the result.

As pointed out earlier, a key advantage of the Rademacher complexity is that it can be measured
from data, assuming that the computation of the minimal empirical error can be done effectively and
efficiently. In particular we can closely estimate R̂Sµ(H), where Sµ is a subsample of the sample S
drawn from a β-mixing distribution, by considering random samples of σ. The following theorem
gives a bound precisely with respect to the empirical Rademacher complexity R̂Sµ .
Theorem 2 (Empirical Rademacher complexity bound). Under the same assumptions as in Theo-
rem 1, for any µ, a > 0 with 2µa = m and δ > 4(µ − 1)β(a), with probability at least 1 − δ, the
following inequality holds for all hypotheses h ∈ H:

R(h) ≤ R̂S(h) + R̂Sµ(H) + 3M

√
log 4

δ′

2µ
,

where δ′ = δ − 4(µ − 1)β(a).
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Proof. To derive this result from Theorem 1, it suffices to boundR
eD
µ (H) in terms of R̂Sµ(H). The

application of Corollary 1 to the indicator variable of the event {R eD
µ (H) − R̂Sµ(H) > ε} yields

Pr
(
R

eD
µ (H) − R̂Sµ(H) > ε

)
≤ Pr

(
R

eD
µ (H) − R̂eSµ

(H) > ε
)

+ (µ − 1)β(2a − 1). (9)

Now, we can apply McDiarmid’s inequality to R
eD
µ (H) − R̂eSµ

(H) which is defined over points
drawn in an i.i.d. fashion. Changing a point of Sµ can affect R̂eSµ

by at most (2M/µ), thus, McDi-
armid’s inequality gives

Pr
(
R

eD
µ (H) − R̂Sµ(H) > ε

)
≤ exp

(−µε2

2M2

)
+ (µ − 1)β(2a − 1). (10)

Note β is a decreasing function, which implies β(2a − 1) ≤ β(a). Thus, with probability at least

1 − δ/2, Rµ(H) ≤ R̂Sµ(H) + M
√

2 log 1

δ′

µ
, with δ′ = δ/2 − (µ − 1)β(a), a fortiori with δ′ =

δ/4 − (µ − 1)β(a). The result follows this inequality combined with the statement of Theorem 1
for a confidence parameter δ/2.

This theorem can be used to derive generalization bounds for a variety of hypothesis sets and learning
settings. In the next section, we present margin bounds for kernel-based classification.

4.2 Classification

LetX denote the input space, Y ={−1, +1} the target values in classification, and Z =X ×Y . For
any hypothesis h and margin ρ>0, let R̂ρ

S(h) denote the average amount by which yh(x) deviates
from ρ over a sample S: R̂ρ

S(h) = 1
m

∑m
i=1(ρ − yih(xi))+. Given a positive definite symmetric

kernel K : X×X → R, let K denote its Gram matrix for the sample S and HK the kernel-based
hypothesis set {x )→

∑m
i=1 αiK(xi, x) : αKαT ≤ 1}, where α ∈ Rm×1 denotes the column-vector

with components αi, i = 1, . . . , m.
Theorem 3 (Margin bound). Let ρ>0 andK be a positive definite symmetric kernel. Then, for any
µ, a>0 with 2µa = m and δ>4(µ− 1)β(a), with probability at least 1 − δ over samples S of size
m drawn from a stationary β-mixing distribution, the following inequality holds for all hypotheses
h∈HK :

Pr[yh(x) ≤ 0] ≤
1

ρ
R̂ρ

S(h) +
4

µρ

√
Tr[K] + 3

√
log 4

δ′

2µ
,

where δ′ = δ − 4(µ − 1)β(a).

Proof. For any h∈H , let h denote the corresponding hypothesis defined over Z by: ∀z∈Z, h(z)=
−yh(x); and HK the hypothesis set {z ∈ Z )→ h(z) : h ∈ HK}. Let L denote the loss function
associated to the margin loss R̂ρ

S(h). Then, Pr[yh(x) ≤ 0] ≤ Pr[(L ◦ h)(z) ≤ 0] = R(L ◦ h).
Since L − 1 is 1/ρ-Lipschitz and (L − 1)(0)=0, by Talagrand’s lemma [6], R̂S((L − 1) ◦ HK)≤
2R̂S(HK)/ρ. The result is then obtained by applying Theorem 2 toR((L− 1) ◦h) = R(L ◦h)− 1
with R̂((L − 1) ◦ h) = R̂(L ◦ h) − 1, and using the known bound for the empirical Rademacher
complexity of kernel-based classifiers [2, 11]: R̂S(HK)≤ 2

|S|

√
Tr[K].

In order to show that this bound converges, we must appropriately choose the parameter µ, or equiv-
alently a, which will depend on the mixing parameter β. In the case of algebraic mixing and using
the straightforward bound Tr[K] ≤ mR2 for the kernel trace, where R is the radius of the ball that
contains the data, the following corollary holds.
Corollary 2. With the same assumptions as in Theorem 3, if β is further algebraically β-mixing,
β(a) = β0a−r, then, with probability at least 1 − δ, the following bound holds for all hypotheses
h∈HK :

Pr[yh(x) ≤ 0] ≤
1

ρ
R̂ρ

S(h) +
8Rmγ1

ρ
+ 3mγ2

√
log

4

δ′
,

where γ1 = 1
2

(
3

r+2 − 1
)
, γ2 = 1

2

(
3

2r+4 − 1
)
and δ′ = δ − 2β0mγ1 .
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This bound is obtained by choosing µ = 1
2m

2r+1
2r+4 , which, modulo a multiplicative constant, is the

minimizer of (
√

m/µ + µβ(a)). Note that for r > 1 we have γ1, γ2 < 0 and thus, it is clear that
the bound converges, while the actual rate will depend on the distribution parameter r. A tighter
estimate of the trace of the kernel matrix, possibly derived from data, would provide a better bound,
as would stronger mixing assumptions, e.g., exponential mixing. Finally, we note that as r → ∞
and β0 → 0, that is as the dependence between points vanishes, the right-hand side of the bound
approachesO(R̂ρ

S +1/
√

m), which coincides with the asymptotic behavior in the i.i.d. case [2,4,5].

5 Conclusion

We presented the first Rademacher complexity error bounds for dependent samples generated by a
stationary β-mixing process, a generalization of similar existing bounds derived for the i.i.d. case.
We also gave the first margin bounds for kernel-based classification in this non-i.i.d. setting, includ-
ing explicit bounds for algebraic β-mixing processes. Similar margin bounds can be obtained for
the regression setting by using Theorem 2 and the properties of the empirical Rademacher com-
plexity, as in the i.i.d. case. Many non-i.i.d. bounds based on other complexity measures such as
the VC-dimension or covering numbers can be retrieved from our framework. Our framework and
the bounds presented could serve as the basis for the design of regularization-based algorithms for
dependent samples generated by a stationary β-mixing process.
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