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Abstract

This paper presents the first Rademacher complexity-based error bounds for non-
i.i.d. settings, a generalization of similar existing bounds derived for the i.i.d. case.
Our bounds hold in the scenario of dependent samples generated by a stationary
(-mixing process, which is commonly adopted in many previous studies of non-
i.i.d. settings. They benefit from the crucial advantages of Rademacher complexity
over other measures of the complexity of hypothesis classes. In particular, they are
data-dependent and measure the complexity of a class of hypotheses based on the
training sample. The empirical Rademacher complexity can be estimated from
such finite samples and lead to tighter generalization bounds. We also present
the first margin bounds for kernel-based classification in this non-i.i.d. setting and
briefly study their convergence.

1 Introduction

Most learning theory models such as the standard PAC learning framework [13] are based on the as-
sumption that sample points are independently and identically distributed (i.i.d.). The design of most
learning algorithms also relies on this key assumption. In practice, however, the i.i.d. assumption
often does not hold. Sample points have some temporal dependence that can affect the learning pro-
cess. This dependence may appear more clearly in times series prediction or when the samples are
drawn from a Markov chain, but various degrees of time-dependence can also affect other learning
problems.

A natural scenario for the analysis of non-i.i.d. processes in machine learning is that of observations
drawn from a stationary mixing sequence, a standard assumption adopted in most previous studies,
which implies a dependence between observations that diminishes with time [7,9,10,14,15]. The pi-
oneering work of Yu [15] led to VC-dimension bounds for stationguyixing sequences. Similarly,

Meir [9] gave bounds based on covering numbers for time series prediction [9]. Vidyasagar [14]
studied the extension of PAC learning algorithms to these non-i.i.d. scenarios and proved that under
some sub-additivity conditions, a PAC learning algorithm continues to be PAC for these settings.
Lozano et al. studied the convergence and consistency of regularized boosting under the same as-
sumptions [7]. Generalization bounds have also been derived for stable algorithms with weakly
dependent observations [10]. The consistency of learning under the more general scenario of
mixing with non-stationary sequences has also been studied by Irle [3] and Steinwart et al. [12].

This paper gives data-dependent generalization bounds for statiGraiying sequences. Our
bounds are based on the notion of Rademacher complexity. They extend to the non-i.i.d. case the
Rademacher complexity bounds derived in the i.i.d. setting [2, 4, 5]. To the best of our knowledge,
these are the first Rademacher complexity bounds derived for non-i.i.d. processes. Our proofs make



use of the so-callethdependent block technigdae to Yu [15] and Bernstein and extend the appli-
cability of the notion of Rademacher complexity to non-i.i.d. cases.

Our generalization bounds benefit from all the advantageous properties of Rademacher complexity
as in the i.i.d. case. In particular, since the Rademacher complexity can be bounded in terms of
other complexity measures such as covering numbers and VC-dimension [1], it allows us to derive
generalization bounds in terms of these other complexity measures, and in fact improve on existing
bounds in terms of these other measures, e.g., VC-dimension. But, perhaps the most crucial advan-
tage of bounds based on the empirical Rademacher complexity is that they are data-dependent: they
measure the complexity of a class of hypotheses based on the training sample and thus better capture
the properties of the distribution that has generated the data. The empirical Rademacher complex-
ity can be estimated from finite samples and lead to tighter bounds. Furthermore, the Rademacher
complexity of large hypothesis sets such as kernel-based hypotheses, decision trees, convex neu-
ral networks, can sometimes be bounded in some specific ways [2]. For example, the Rademacher
complexity of kernel-based hypotheses can be bounded in terms of the trace of the kernel matrix.

In Section 2, we present the essential notion of a mixing process for the discussion of learning in
non-i.i.d. cases and define the learning scenario. Section 3 introduces the idea of independent blocks
and proves a bound on the expected deviation of the error from its empirical estimate. In Section 4,
we present our main Rademacher generalization bounds and discuss their properties.

2 Preliminaries

This section introduces the concepts needed to define the non-i.i.d. scenario we will consider, which
coincides with the assumptions made in previous studies [7,9, 10, 14, 15].

2.1 Non-l.1.D. Distributions

The non-i.i.d. scenario we will consider is basedstationary3-mixing processes

Definition 1 (Stationarity) A sequence of random variabl& = {Z,},~ __ is said to besta-
tionary if for any ¢ and non-negative integers and k, the random vector§Z,, ..., Z;y.,) and
(Zisky -y Zirm+r) have the same distribution.

Thus, the index or time, does not affect the distribution of a varialdgin a stationary sequence
(note that this does not imply independence).

Definition 2 (3-mixing). LetZ = {Z;},- __ be a stationary sequence of random variables. For

anyi,j € ZU{—o0,+o0}, let o{ denote ther-algebra generated by the random variablgs,
1 < k < j. Then, for any positive integéf, the 3-mixing coefficient of the stochastic proc&ss
defined as

B(k) =sup E [ sup ‘Pr[A | B] — Pr[A]H. 1)

n Be€ol Aeg?ﬁrk

Z is said to bes-mixing if 5(k) — 0. It is said to bealgebraically3-mixing if there exist real
numbersg, > 0 andr > 0 such that3(k) < (y/k" for all k, andexponentially mixingf there
exist real numberg, and; such thats(k) < By exp(—/p1k") for all k.

Thus, a sequence of random variables is mixing when the dependence of an event on those occurring
k units of time in the past weakens as a functiort of

2.2 Rademacher Complexity
Our generalization bounds will be based on the following measure of the complexity of a class of
functions.

Definition 3 (Rademacher Complexity)Given a sampleS € X™, the empirical Rademacher
complexity of a set of real-valued functioAsdefined over a seX is defined as follows:

st - 28y St
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‘S:(xl,...,wm) . (2)



The expectation is taken over= (o1, ..., 0,) whereo;s are independent uniform random vari-
ables taking valuesifi—1, +1} called Rademacher random variables. The Rademacher complexity

of a hypothesis sdf is defined as the expectationififg(H) over all samples of size::

R, (H) = B [Rs(H)||S| = m]. (3)

The definition of the Rademacher complexity depends on the distribution according to which sam-
plesS of sizem are drawn, which in general is a depend@gsnixing distributionD. In the rare

instances where a different distributidfhis~considered, typically for an i.i.d. setting, we explicitly
indicate that distribution as a superscri) (H ).

The Rademacher complexity measures the ability of a class of functions to fit noise. The empirical
Rademacher complexity has the added advantage that it is data-dependent and can be measured from
finite samples. This can lead to tighter bounds than those based on other measures of complexity
such as the VC-dimension [2,4,5].

We will denote byf%s(h) the empirical average of a hypothesisX — R and byR(h) its expec-
tation over a samplé drawn according to a stationafiymixing distribution:

Rs(h) = — S h(z)  R(n) = B[Rs(h)] @
=1

The following proposition shows that this expectation is independent of the size of the ssnagle
in the i.i.d. case.

Proposition 1. For any samples of sizem drawn from a stationary distributio®, the following
hO|dS:E5NDm [Rs(h)] = EZND[h(Z)].

Proof. LetS = (x1,...,2,,). By stationarityE., .p[h(z;)] = E.,~p[h(z;)] forall 1 < i,j <m,
thus, we can write:

m

B{Rs(h)] = - > Blh()] = - > Elh(=0)] = Blh(:)]. 0
i=1 i=1

3 Proof Components

Our proof makes use of McDiarmid’s inequality [8] to show that the empirical average closely
estimates its expectation. To derive a Rademacher generalization bound, we apply McDiarmid’s
inequality to the following random variable, which is the quantity we wish to bound:

®(S) = sup R(h) - Rs(h). (5)

McDiarmid’s inequality bounds the deviation @f from its mean, thus, we must also bound the
expectatiorE[®]. However, we immediately face two obstacles: both McDiarmid’s inequality and
the standard bound dg|[®] hold only for samples drawn in an i.i.d. fashion. The main idea behind
our proof is to analyze the non-i.i.d. setting and transfer it to a close independent setting. The
following sections will describe in detail our solution to these problems.

3.1 Independent Blocks

We derive Rademacher generalization bounds for the case where training and test points are drawn
from a stationary3-mixing sequence. As in previous non-i.i.d. analyses [7,9, 10, 15], we use a
technique transferring the original problem based on dependent points to one based on a sequence
of independent block§ he method consists of first splitting a sequefiéato two subsequences

andS;, each made of: blocks ofa consecutive points. Given a sequertte= (z1,. .., z,,) with
m = 2au, Sy andS; are defined as follows:
So = (21,22, ...,2,), whereZ; = (2(2i—1)+1s - - - » 2(2i—1)+a)> (6)
Sl = (Zfl)7 22(1), ey Zl(tl))’ WhereZi(l) = (Z2i+17 ceey ZQ'H»G)- (7)



Instead of the original sequence of odd blodks we will be working with a sequencgo of
mdependenblocks of equal sizex to which standard i.i.d. techniques can be apphé@

(Zl, Z2, ..., Z,) with mutually mdependenzks but, the points within each bIode follow the
same distnbutlon as i0;. As stated by the following result of Yu [15][Corollary 2.7], for a suffi-
ciently large spacing between blocks and a sufficiently fast mixing distribution, the expectation of

a bounded measurable functibris essentially unchanged if we work wiffy instead ofS,.
Corollary 1 ([15]). Leth be a measurable function bounded/y> 0 defined over the blocks,

then the following holds:
|E[W] - B[] < (u— )MB(a), (®)

0

whereEg, denotes the expectation with respecbto Eg the expectation with respect to ti5g.

We denote byD the distribution corresponding to the independent blatks Also, to work with
block sequences, we extend some of our definitions: we define the exténsidgff — R of any
hypothesis: € H to a block-hypothesis by, (B)=1 3" | h(Z;) for any blockB=(z1,...,z.) €
7%, and defindd, as the set of all block-based hypothesggienerated fronk € H.

It will also be useful to define the subsequeistg which consists of: singleton points separated
by a gap of2a — 1 points. This can be thought of as the sequence constructedSgoor Sy, by
selecting only theth point from each block, for any fixefle {1,...,a}.

3.2 Concentration Inequality

McDiarmid’s inequality requires the sample to be i.i.d. Thus, we first showRb@k(S)] can be
bounded in terms of independent blocks and then apply McDiarmid’s inequality to the independent
blocks.

Lemma 1. Let H be a set of hypotheses bounded\dy Let S denote a sample, of size, drawn
according to a stationary-mixing distribution and let, denote a sequence of independent blocks.
Then, for alla, p, e > 0 with 2ua = m ande > Eg [® (So)], the following bound holds:

Pr{@(S5) > €] < 2Pr[ (S0) — E E[®(S0)] > €] +2(u — 1)B(a),

0

wheree' = ¢ — Eg [®(S))].

Proof. We first rewrite the left-hand side probability in terms of even and odd blocks and then apply
Corollary 1 as follows:

Pr{®(S) > ] = Prlsup(R(h) — Rs(h)) > €
h

= Pr[sup( Aty M (0 ] (def. of s ()
h

< Igr[% (sup(R(h) — Rs,(h)) + sup(R(h) - Rs, (h))) > e] (convexity ofsup)

r[(I)(So) + ®(S1) > 2¢] (def. of @)
<P b r[®(So) > €] + Pr[ (S1) > € (union bound)
= 2I;r[ (So) > € (stationarity)
= QPY[ (So) — s[ (S0)] > €. (def. of ')

The second inequality holds by the union bound and the factdtég) or ®(.S;) must surpass
for their sum to surpas. To complete the proof, we apply Corollary 1 to the expectation of the

indicator variable of the eved®>(Sy) — Eg [® ®(Sy)] > €'}, which yields
2 Br[@(S) — E E[®(S))] > €] < QPY[ (S0) — B[®(S0)] > €] +2(1 — 1)B(a). O

o So

We can now apply McDiarmid’s inequality to the independentkt of Lemma 1.



Proposition 2. For the same assumptions as in Lemma 1, the following bound holds fer=all

Eg, [®(S0)):

Pr(@(S) > d < 2exp < e ) T 2(u - 1)Ba),
wheree’ = ¢ — Eg, [®(S0)].

Proof. To apply McDiarmid’s inequality, we view each block as an i.pdint with respect toh,.
®(Sy) can be written in terms of,, as: ®(S;) = R(ha) — Rg (ha) = R(ha) — 1 b1 ha (Z).
Thus, changing a blocK;. of the sampleS, can changeb(S) by at mostﬁ|h(Zk)| < M/u. By

McDiarmid’s inequality, the following holds for ary> 2(u — 1) M §(a):

—2¢'? —2p€”?
< _ | = — ).
B ) - B > ] <o o G ) = (S
Plugging in the right-hand side in the statement of Lemma 1 proves the proposition. O

3.3 Bound on the Expectation

Here, we give a bound diig [®(S0)] based on the Rademacher complexity, as in the i.i.d. case [2].
But, unlike the standard case, the proof requires an analysis in terms of independent blocks.

Lemma 2. The following inequality holds for the expectatify, [<I>(§0)] defined in terms of an

independent block sequenEg; [®(So)] < ERD( ).
Proof. By the convexity of the supremum function and Jensen’s mequ:Egé ] can be
bounded in terms of empirical averages over two samples:
B(2(S0)] = Blsup BlRg (n)] - Rg, (0] < E_[sup Ry, (h) - Rg, (b)]
So So heH S, So S/ heH

We now proceed with a standard symmetrization argument with the independent blocks thought of
as i.i.d.points

E[2(S))] < _E_[sup Rg (h) — R, (h)]

So S(),S/ heH
= sup = > def. of R
2 Lo, £ 3] et ot
1 M
= E [ sup = > 0i(ha(Z:) - ha(Z{))} (Rad. var.’3
So,54,0 Lha€Ho M7

<

sup —Zol o 1} E {sup —ZUZ o ’} (sub-add. ofsup)

50,5}, U[h €H, M1 S0,54,0 LhacHy M =1

=2 E [sup —Zol o Z].

So,0 Lha€Ha, I

In the second equality, we introduced the Rademacher random varigbled/ith probabilityl /2,

o; = 1 and the differencé,(Z;) — hq(Z}) is left unchanged; and, with probability2, o; = —1

andZ; andZ! are permuted. Since the blocKs, or Z! are independent, taking the expectation over

o leaves the expectation unchanged. The inequality follows from the sub-additivity of the supremum
function and the linearity of expectation. The final equality holds bec&ysad.S| are identically
distributed due to the assumption of stationarity.

We now relate the Rademacher block sequence to a sequence over independent points. The right-
hand side of the inequalityjust presented can be rewritten as

sup —Zm . ]_E {bup Zaz Zh }

50, L cH, M % So,o LheH H %



wherezj(.i) denotes thejth point of theith block. Forj € [1,q], let 5-3 denote the i.i.d. sample

constructed from theth point of each independent bloék, i € [1, u]. By reversing the order of
summations and using the convexity of the supremum function, we obtain the following:

s 12 ; _
E[®(S))] < E [Sup = P 16 ))} (reversing order of sums
So 0,0 LheH @ = I
1 < 2 & (%)
<- E {sup — oih(z )] convexity ofsup
ajzzlso,a heH.U; (J ( )
1 — 2 & ()
== E |sup = ) oih(z) } marginalizatio

The first equality in this derivation is obtained by marginalizing over the variables that do not appear
within the inner sum. Then, the second equality holds since, by stationarity, the chgiame$

not change the value of the expectation. The remaining quantity, modulo absolute values, is the
Rademacher complexity ovarindependent points. O

4 Non-i.i.d. Rademacher Generalization Bounds

4.1 General Bounds

This section presents and analyzes our main Rademacher complexity generalization bounds for sta-
tionary 5-mixing sequences.

Theorem 1 (Rademacher complexity bound)et H be a set of hypotheses boundedidy> 0.
Then, for any sampl# of sizem drawn from a stationarys-mixing distribution, and for any;, a >
0 with 2ua = m andd > 2(u — 1)5(a), with probability at leastl — 4, the following inequality
holds for all hypotheselk € H:

log %

-5 b
R(h) < Rs(h) + R (H) + My [ =

whered’ = § — 2(n — 1)5(a).

Proof. Setting the right-hand side of Proposition 2itand using Lemma 2 to bouridg, [®(S)]
with the Rademacher complex'mﬁ’(H) shows the result. O

As pointed out earlier, a key advantage of the Rademacherleaitypis that it can be measured
from data, assuming that the computation of the minimal empirical error can be done effectively and

efficiently. In particular we can closely estim%ﬂ (H), whereS,, is a subsample of the samyfie
drawn from ag-mixing distribution, by considering random samplesofThe following theorem

gives a bound precisely with respect to the empirical Rademacher comgkexjty

Theorem 2 (Empirical Rademacher complexity bound)nder the same assumptions as in Theo-
rem 1, for anyu, a > 0 with 2ua = m anddé > 4(u — 1)5(a), with probability at leastl — ¢, the
following inequality holds for all hypothesésc H:

~ -~ log %
R(h) < Rs(h) + ERSH (H) +3M W’

whered’ = § — 4(pn — 1)5(a).



Proof. To derive this result from Theorem 1, it suffices to bom@(H) in terms ofi)A%sM (H). The
application of Corollary 1 to the indicator variable of the evght? (H) — i)A‘iS“ (H) > €} yields

Pr (R0 (H) — Rs, (H) > ¢) < Pr (RD(H) =Ry (H) > ¢) + (u—1)F2a—1).  (9)

~

Now, we can apply McDiarmid’s inequality tﬁﬁf’(H) — ER—S~H (H) which is defined over points
drawn in an i.i.d. fashion. Changing a point$f can aﬁecﬁ%gﬂ by at most(2M /), thus, McDi-
armid’s inequality gives

2

HE

o) + (1= DB2a - 1). (10)
Note 3 is a decreasing function, which implié$2a — 1) < fB(a). Thus, with probability at least
1-0/2,R,(H) < E)A%SH (H)+ M 21°g ==L with & = §/2 — (n — 1)B(a), a fortiori with ¢’ =

5/4 — (u — 1)B(a). The result follows th|s inequality combined with the statement of Theorem 1
for a confidence parameté&r2. O

Pr(f)‘if?(H)—i%su(H) > €) <exp(

This theorem can be used to derive generalization boundséoiety of hypothesis sets and learning
settings. In the next section, we present margin bounds for kernel-based classification.

4.2 Classification

Let X denote the input spac¥,={—1, +1} the target values in classification, afid= X x Y. For
any hypothesi& and margirp > 0, let R%(h) denote the average amount by whigh(x) deviates

from p over a sample: ﬁ”( h) = L Zl 1(p —yih(x;))+. Given a positive definite symmetric
kernelK: X x X — R, IetK denote its Gram matnx for the sampeand H the kernel-based
hypothesis sef — 7" o, K (i, 2): aKa™ < 1}, wherea € R™*! denotes the column-vector
with componentsy;,i = 1,...,m.

Theorem 3(Margin bound) Letp> 0 and K be a positive definite symmetric kernel. Then, for any
1, a>0with 2ua = mandé > 4(u — 1)5(a), with probability at leasti — § over samples of size

m drawn from a stationary3-mixing distribution, the following inequality holds for all hypotheses
heHg:

whered’ = § — 4(pn — 1)5(a).

Proof. For anyh € H, let h denote the corresponding hypothesis defined &vby: Vz € Z, h(z) =
—yh(z); andH i the hypothesis setz € Z +— h(z): h € Hx}. Let L denote the loss function
associated to the margin log&;(h). Then,Prlyh(z) < 0] < Pr[(L o h)(z) < 0] = R(L o h).
SinceL — 1is1/p-Lipschitz and(L — 1)(0) =0, by Talagrand’s lemma [Gﬁ%s((L —1)oHg)<
2R (H k) /p. The result is then obtained by applying Theorem B{0L — 1) o h) = R(Loh) — 1

with R((L — 1) o h) = R(Lo k) — 1, and using the known bound for the empirical Rademacher
complexity of kernel-based classifiers [2, 1&18 Hg)< ISI v/ Tr O

In order to show that this bound converges, we must apprefyielhoose the parameteyor equiv-
alently a, which will depend on the mixing parameter In the case of algebraic mixing and using
the straightforward boundir[K] < mR? for the kernel trace, wherR is the radius of the ball that
contains the data, the following corollary holds.

Corollary 2. With the same assumptions as in Theorem 3, ig further algebraically3-mixing,
B(a) = Boa™", then, with probability at least — ¢, the following bound holds for all hypotheses

heHg:
1 SRm™ 1
Prlyh(x) < 0] < - RE(h) + ;” +3m 4 flog =,

wherey; = %(% —1),72 = %(ﬁ —1)andd’ =4 — 28ym™.




This bound is obtained by choosing= %m% which, modulo a multiplicative constant, is the
minimizer of (vm/u + p3(a)). Note that forr > 1 we havey;,v2 < 0 and thus, it is clear that

the bound converges, while the actual rate will depend on the distribution parameietighter
estimate of the trace of the kernel matrix, possibly derived from data, would provide a better bound,
as would stronger mixing assumptions, e.g., exponential mixing. Finally, we note thataso

andjgy — 0, that is as the dependence between points vanishes, the right-hand side of the bound

approacheé)(f%g +1/+/m), which coincides with the asymptotic behavior in the i.i.d. case [2,4,5].

5 Conclusion

We presented the first Rademacher complexity error bounds for dependent samples generated by a
stationary-mixing process, a generalization of similar existing bounds derived for the i.i.d. case.
We also gave the first margin bounds for kernel-based classification in this non-i.i.d. setting, includ-
ing explicit bounds for algebrai@-mixing processes. Similar margin bounds can be obtained for

the regression setting by using Theorem 2 and the properties of the empirical Rademacher com-
plexity, as in the i.i.d. case. Many non-i.i.d. bounds based on other complexity measures such as
the VC-dimension or covering numbers can be retrieved from our framework. Our framework and
the bounds presented could serve as the basis for the design of regularization-based algorithms for
dependent samples generated by a statiofianyxing process.
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