On Hoeffding’s inequality for
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ABSTRACT. Let {Zy: 6 € O} be a random process indexed by a parameter # in some
(metric) space ©. Given an appropriate moment or probability inequality for each fixed
0 (a pointwise inequality), one can often derive an inequality that holds uniformly in
0 € © by applying the chaining technique. Therefore, pointwise inequalities are (apart
from being of interest in itself) quite relevant within the theory of stochastic processes.
We present a generalization of Hoeffding’s inequality, and the related bounded difference
inequality of McDiarmid [7]. We also state the corresponding uniform inequality. As
an application, we consider estimation in the auto-regression model.

1 Introduction

For a stochastic stochastic process {Zy : 6 € O}, one is often interested in moment or
probability inequalities, that hold uniformly in 6 € ©. For instance, in some statistical
applications, one may want to apply an inequality with § randomly chosen (an estimator,
say), which is possible indeed when the inequality is uniform. Uniform inequalities are in
quite a few cases an immediate consequence of pointwise inequalities, that is, inequalities
that hold for all 8 € O fixed.

In Theorem 1.2 below we briefly review a result given in van der Vaart and Wellner
[11] (their Corollary 2.2.5). This theorem serves as a major illustration that for many
situations, it is enough to prove a pointwise inequality. The theorem is followed by a
short discussion. We then establish in Section 2 a pointwise Hoeffding type inequality.
The extension to a uniform inequality is presented in Section 3. Section 4 is a statistical
application, namely on proving rates of convergence in auto-regression.

The inequalities of Theorem 1.2 concern the Orlicz norm of the random variables
involved, which is defined as follows.

Definition 1.1. Let ¢ be a convex, nondecreasing, nonzero function on [0,00), with
¥ (0) = 0 (an Orlicz function). The Orlicz norm of the random variable X is defined as

[Xly = inf{K >0: E¢(|X|/K) <1},
(with the usual conventions if the expectation is infinite).
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For example, when ¢(z) = zP, with p > 1, the Orlicz norm || X||y is equal to the L,
norm (E|X|[P)'/?.

Condition (1.1) below is a pointwise inequality for the Orlicz norm (albeit that there
are two parameters 8 and 9 involved), and (1.2) is the resulting uniform inequality.

Theorem 1.2. Let ¢ be an Orlicz function satisfying limsup, , ., ¥ ()¢ (y)/¢(czy) <
00, for some constant c. Suppose {Zy: 6 € O} is a separable stochastic process indexed
by 6 in the (pseudo-)metric space (0©,7). Assume that

||Z9 - Z19||’¢ S 07(0,19), fO’I" every 07197 (11)

where C' is some constant. Then there exists a constant C' depending only on v and C,
such that

diam(©)
lsup 20 — Zollly < €' / V=1 (D(8))do, (12)
5 0

where diam(©) is the diameter of © and D(§) is the §-packing number of © (i.e. the
mazimum number of §-separated points in © ).

When 9 is the L, norm, the theorem may be applied to the case where O is a
bounded subset of d-dimensional Euclidean space, with d < p. But for very large
(infinite dimensional) ©, Theorem 1.2 needs more than an L, norm.

An important special case is

Y(z) = exp[z?] - 1. (1.3)

A random variable with finite Orlicz norm for this choice of % is called sub-Gaussian,
because its tails behave like those of a Gaussian random variable, or are even slimmer.
Theorem 1.2 with ¢ given in (1.3) gives the uniform bound in terms of the square root of
the log-packing number (or the entropy) of ©. The resulting uniform bound can be used
to prove e.g. tightness of empirical processes based on independent observations, (using
symmetrization techniques) or equicontinuity of certain Gaussian processes indexed by
functions.
One may also consider

P(z) = explz] — 1. (1.4)

A random variable with finite Orlicz norm for this choice of 1) is called sub-exponential,
because its tails decrease at least exponentially fast. In Theorem 1.2, the uniform bound
in the sub-exponential case is again in terms of the log-packing number, but the square
root which appeared in the sub-Gaussian case is now lost.

We remark however that in special cases one can prove that a bound of the form (1.2)
holds in the sub-exponential case, with on the left hand side ¢ given by (1.4) and on the
right hand side a different ¢, namely the one given in (1.3). This is for example true when
{Zy} is the empirical process based on i.i.d. observations with distribution P. One may
then take © as a subset of Ly (P), in which case the log-packing number(entropy), should
be replaced by the stronger entropy with bracketing. The result is closely intertwined
with Bernstein’s inequality, which is roughly speaking sub-Gaussian in the near tails,
and sub-exponential in the far tails.

Theorem 1.2 can be applied to sums of random variables, say Zy = 2?21 Xip. Itis
then not necessary to assume independence of the X; g, as long as (1.1) is met. Also
more complicated objects based on dependent random variables can be studied with the
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help of Theorem 1.2. See for example the paper of Dahlhaus and Polonik [4] (in this
volume), where the empirical spectral process is examined.

In this paper, we consider an analogue of the sub-Gaussian case for dependent vari-
ables. Related results for the sub-exponential case have been treated in Nishiyama [8],
and van de Geer [9)].

Our main result is the derivation of a pointwise inequality, which will be a general-
ization of Hoeffding’s inequality (and which will be further generalized to a bounded
difference inequality, cf. [7]). The extension to a uniform inequality for weighted sums
is straightforward. This extension makes use of a partitioning entropy condition, which
relies on a generalization of the usual entropy concept.

2 Hoeffding’s inequality and related results
Consider a probability triple (2, F,P) and let § = Fy C F1,C ... C F be an increasing
sequence of sigma-algebras. Let for each i, X; be a real-valued F;-measurable random

variable, satisfying
E(X,l'fzfl) = 0, a.8S.

We will consider the martingale
n
Sn = Z Xi, n Z 1.
i=1

Throughout the rest of this paper, we let 1 be the Orlicz function

Y(z) = exp[z?] — 1, = > 0.

Consider F;_; measurable random variables K; > 0, i = 1,2,.... Define B = 0 and
forn > 1,
2 - 2 |Xz|
B, = ;Ki (1 + E(iﬂ(?iﬂfil)) :

Lemma 2.1. For all 3,
{én(B) = exp[BSy — 2:823i]}

is a supermartingale.

Proof. By a slight extension of Lemma 8.1 in van de Geer [10], we have that for all
i>1,

o2 Xl \\qy 1o,
E | exp[BX; — 28°K; (1 + ( 7@ NIFi-1) < 1,as.
2

Thus,
E(exp[3S, — 262B2]|Fi_1) < exp[8Sn_1 — 26%°B2_,], as.,, n > 1.

n—1

Theorem 2.2. For alla >0, b> 0,

a2

P(S, > a and B2 < b* for some n) < exp[—Sﬁ .
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Proof. The argument is as in Freedman [5]. Let {,(8)} be defined as in Lemma 2.1.
Then, for any stopping time o,

E(§ (B){o <oo}) < 1.

Take A as the set
A ={S, >aand B2 < b? for some n},

and take
o=inf{n: S, >a}.

Because A C {o < o0},
Ega(ﬂ)lA <1

On A,
&, (B) > exp[Ba — 26%7).
So
P(A) < exp[—Ba + 26°57].
Now, take 8 = a/(4b?). O

An important special case is the one where S, is a weighted sum of martingale
differences, with predictable weights.

Corollary 2.3. Let W; be F;-measurable, and E(W;|F;_1) = 0, ¢ > 1. Suppose that

for some constant ¢ < oo,

e <1, asi=12,...

Let g; be F;_1-measurable weights, and take X; = g;W;, 1 = 1,2,.... It follows that for
alla>0,d>0
a2

P(Z gW;: >a cdegi2 < d* for some n) < exp[——1662d2].

i=1 =1

(2.1)

Clearly, Theorem 2.2 can also be applied to the case where the X; are bounded.
In that case, one arrives at a Hoeffding-type of inequality. However, the constants
that appear in the exponential bound are then larger than those of Hoeffding [6]. We
therefore present the improvement with Hoeffding’s constants for the bounded case.

Lemma 2.4. Suppose that
L; < X; <U;, a.s. foralli>1,

where L; < U; are F;—1-measurable random variables, 1 > 1. Define Cg =0 and

Cfb = Z(U’ - Li)2, n > 1.

i=1

Then for all (3,
{¢n(B) = exp[BSn — B°C1/8]}

is a supermartingale.
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Proof. This follows from a slight extension of Hoeffding [6]:
E(exp[8X;]|Fi—1) < exp[B*(U; — L;)?/8], as.
(]

Theorem 2.5. (Hoeffding’s inequality.) Suppose the condition of Lemmma 2.4 holds.
Let {C,,} be defined as there. Then for all a > 0, ¢ > 0,

2a?
“.

P(S, > a and C2 < ¢* for some n) < exp[— 2

Proof. In view of Lemma 2.4, this can be derived using the same arguments as in
Theorem 2.2. O

Indeed, Theorem 2.5 is the inequality of Hoeflding [6], except that Hoeffding as-
sumes non-random bounds {L;, U;}. The inequality is also known as Azuma’s inequality
(Azuma [1]).

Theorem 2.5 considers the F,,-measurable random variables S,, = 2?21 X;. We now
examine general JF,,-measurable random variables. We state the result for fixed n.

Theorem 2.6. (Bounded difference inequality.) Fixn > 1. Let Z,, be a F,-measurable
random variable, satisfying for eachi =1,...,n,

L; < E(Z,|F) < U;, as.

where L; < U; are F;_i-measurable, i = 1,...,n. Define C2 =% (U; — L;)®. Then
for alla>0,c¢c>0,

2 2
P(Z,-EZ,>aand C2<c*) < exp[—iQ].
c

Proof. We may write
Z,-EZ, =) X,

i=1
where X; = B(Zn|F;) — E(Z,|Fi_1), i = 1,...,n. Clearly, X; is F;-measurable, and
E(X;|Fi—1) =0,i=1,...,n. Moreover, for i =1,...,n,

Li = Li = E(Zu|Fi—1) < Xi <U; — E(Zo|Fim1) = U,

so that L; < U; are F;_;-measurable random variables, with U —L; =U; — L;. The
result is thus a consequence of Theorem 2.5. O

Theorem 2.6 generalizes the bounded difference inequality of McDiarmid [7]. As
an illustration, consider independent random variables Y7,...,Y,,, with values in some
measurable space V. Let F; = o(Y1,...,Y;), i =1,...,n. Let g(y1,...,¥yn) be some
real-valued function on Y™ satisfying the bounded difference assumption

|g(y17---;yifl;y'i;y'i+1;---ayn) _g(yla"'inflayfgayi+1a"'3yn)|

< k;, for all y;,y;, and all 1,
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where ki,...,k, are constants. Take Z, = g(¥1,...,Y,). Then one can take

Li = 1r;fE(g(Y1, .. 'Jm—lay,Y;-l—laYn)'fi)a
Ui = SupE(g(}/h '7le'—layayvi+17' 7Yn|‘7:l)7
Yy

which satisfy U; — L; < k;, ¢ = 1,...,n. The bounded difference inequality now reads:
for all a > 0,
2a2
P(g(y'h s 7Yn) - Eg(Yi, s 7Yn) Z a) S exp[_niz]'
Zi:l ki
In the case Y = R, and g(Y1,...,Y,) = Y1, Y;, this is Hoeffding’s inequality for
independent random variables.

3 A uniform inequality for weighted sums

In this section, we present an analogue of Theorem 1.2, with Orlicz function (x) =
exp[z?] — 1. Consider some space of parameters ©. Instead of using a metric 7 on ©, we
will define a random quantity D,,(8,%) to measure the closeness of two parameters § and
¥ (see below). Consider F;_;-measurable real-valued random variables g; 9, § € ©. Let
W, be real-valued F;-measurable, with E(W;|F;_1) =0, i =1,2,.... Assume moreover
that for all ¢, and some constant c,

(A <1 3.1)

Write .
D26,9) = = > (s ~ 91.0)" (3.2)

=1

Take a fixed 6y € ©. Let F' € F be some measurable set. This will be the set where the
partitioning entropy defined below is supposed to be well-behaved. It depends on the
particular application, but generally one wants that P(F°), where F° is the complement
of F', is small.

The log-packing number in (1.2) will be replaced by a partitioning entropy:

Assumption 3.1. (The partitioning entropy condition.) For 0 < § < d, let {6;}cs
be such that for all § € ©, there is a j = j(d) € J such that D,(0,0;) < ¢ on
{Dn(8,6p) < d} N F. We assume that J can be chosen as a finite set J = {1,...,J}
for each § and d. We then write N (d,d) = J, and let H(d,d) be a continuous majorant
of log(1+ J). We call H(d,d) a partitioning entropy.

Theorem 3.2. Suppose that on F, Y | W2 /n < 02, a.s. There exists a constant co
depending only on ¢ such that for

_a
ocq

d
Via > cof / HY2(5,d)d6 v d), (3.3)
we have

P <(% Z(gi,a — 9i,00)Wi > a and D,,(0,60) < d for some 6 € ©)N F)

i=1
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na>

<c exp[—cg?].

Proof. This follows by copying the proof of Lemma 3.2 in van de Geer [10], with its
pointwise sub-Gaussian probability inequality replaced by the extension (2.1) of Corol-
lary 2.3. O

4 Application to auto-regression

Now that Theorem 3.2 is available, one can start the engines for a theory on M-
estimation in auto-regression, possibly using sieves and/or penalties. The results are
very similar to the independent case. The only additional technicality is the handling
of random metrics. In this section, we will briefly present a sample of the theory.

Consider n real-valued observations Y7, ...,Y,, with Y; F;-measurable, ¢ > 1. Let ©
be a given parameter space, and suppose that

E(Yi|fi—1) = Gi,00 &-8., © > 1,

where 6p € ©. Define W; = Y; — gig,, @ > 1. We assume that {W;} satisfies the
sub-Gaussianity condition (3.1).
We let 6,, be the least squares estimator

n
0, = i Y; — gig)?.
argmén;( i — 9i0)

Let D, (6,9) be given in (3.2). Consider a partitioning entropy H (d,d) as introduced in
Assumption 3.1. A rate of convergence for Dn(én,é?o) can now be obtained in exactly
the same way as in Theorem 9.1 of van de Geer [10]. To facilitate the exposition, we
only consider the case where the entropy-integral exists.

Theorem 4.1. Define
d
o(d) = / H'2(5,d)dé V d,
0

and suppose that ¢(d)/d? is a non-increasing function of d. Then there exists a constant
co, such that for all d > d,, , where \/nd> > cop(dy,),

2
P(D,(6,,60) > d) < co exp[—nc;i] + P(F°).
0

Ezample 4.2. (Linear auto-regression.) Take ©® = R" and
9i9 =011+ -+ 0,0;,, €0,
where for each 4, the variables v; 1, ...,%¢;, are F;_i-measurable. Note that now
D2(8,9) = (6 —9)'T,(0 — 9),

with ¥, a random r x r matrix. We assume that the range of ¥, is non-random, and
let ¥ > 0 be a symmetric non-random r x r matrix with the same range. Take

1
Fc{g <S5, <4,
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where £~1/2 is the square root of the (generalized) inverse of £, and where || - || denotes
the norm of a matrix as linear map. On F, the random metric D, is equivalent to the
non-random metric D given by

D?*(0,9) = (6 —9)'%(0 — 9).
Therefore (invoke e.g. Corollary 2.6 of van de Geer [10]),

20d

H(d,d) < rlog( 5 ).

It follows that
¢(d) < Ady/r,

with A = fol log(%)du. Thus, for ¢; = ¢gA a constant depending only on ¢, and for

all T > c1,
22

P(D(én,eo) Z T\/g) S C1 exp[—rcj; ]+ P(FC)

1

For ways of handling P(F*°), see Baraud, Comte and Viennet ([2]). In fact, they study
the much more involved problem of adaptation.

Ezample 4.3. (Smooth regression.) One can easily extend Theorem 4.1 to the case of
penalized least squares. Let us briefly consider a simple example. Suppose that Y; €
[0,1] for all ¢, and that g; ¢ = 8(Y;—1), ¢ > 1 (with Y; = 1/2 (say)). Let m € {1,2,...}
be given, and let

0 ={0:1(0) < 0},

where 12(6) = fol |80™) (y)|?dy. Consider the penalized least squares estimator

n

0,, = argmin {% Z(YZ —0(Y;1))? + pen2(6)} ,

[A<]S]
€ i=1

with penalty
pen?(9) = A\21%(6).

Here 0 < A2 < 1 is a smoothing parameter. The partitioning entropy H(6,d) should
now be taken on the set where also pen(d) < d. Birman and Solomjak [3] show that the
d-entropy for the uniform norm of a set of functions 6, bounded by 1 and with I(8) < L,
is of order (L/8)*/™. Because in our case, pen(d) < d reads I(#) < d/\,, we find

H(6,d) < const.(%)l/m.

The condition v/nd? > co(fi" HY/?(6,d)ds V d,,) leads to dn > chn= /22", As a
consequence, one finds the rate n—1/2)\;/*™ v Al (60) for Dy,(,,60).
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