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1. Introduction

Concentration Inequalities for Dependent Random
Variables and Related Studies

@ Article I: Sara Van De Geer (2002). On Hoeffding's inequality for
dependent random variables. Empirical Process Techniques for
Dependent Data (Springer Book).

e Article IlI: Kontorovich, L. A., Ramanan, K. (2008). Concentration
inequalities for dependent random variables via the martingale
method.. The Annals of Probability, 36(6), 2126-2158.

e Article IlI: Chang, J., Chen, X., Wu, M. (2022). Central limit
theorems for high dimensional dependent data.. Forthcoming
Bernoulli.
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1. Introduction

We consider the concept of pointwise inequalities, i.e., inequalities that
hold uniformly for any 8 € ©.

Define the function

Ya(x) :=exp(x*) —1, forany x> 0. (1)
For a real-valued random variable &, we define with

Iely, = inf{r>0: o (§1)] <1] @

Moreover, we write that £ € L9 for some g > 0 if it holds that

€l = {E (]9} (3)
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2. Main Definitions

Definition (Orlicz-norm)

For any convex function ¢ : Rt — R such that ¢(0) = 0 and (x) — oo
as x — oo and (real-valued) random variable X, we denote with |[x||, the
Orlicz-norm, which is defined by

X1, = inf{C>0:E[w (@)] gl}. (4)J

o Denote the (P Orlicz-norm of X by [|X||, for p € [0, +-00) by setting
Y(x) = xP and || X||, the exponential Oricz-norm for v > 0 by
setting 1(x) = exp(x?) — 1 for some v > 1.

@ The function 1(x) is the convex hull of x — exp(x?) — 1 for some
~v € (0,1), which ensures convexity.

@ Moreover, when X is a random vector, we define its Orlicz-norm by
HXHw = SUp|u|<1 H“/XM-
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2. Main Definitions

Central limit theorems for high dimensional dependent data

Recall that we define with S, = n"*/23>7_ . X;. Let G ~ N(0,=) where
= :=Cov (n"¥/23°7 | X;). Without loss of generality we assume that G is
independent of X = {X1, ..., X, }. We write with X¢ = (X¢.1, ..., Xe p)'-

Then, the long-run variance of the j—th coordinate marginal sequence
{Xt,j}gzl is defined as below

1 n
Vi,j = Var (\ﬁ;xw-). (5)

Therefore, in order to determine the convergence rate of p, for the
a—mixing sequence {X;}, we impose additional regularity conditions.
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2. Main Definitions

Assumption (Subexponential moment)

There exists a sequence of constants B, > 1 and a universal constant
M = 1such that || X, < B, forall t € [n] and j € [p].
1

Assumption (Decay of a—mixing coefficients)

There exist some universal constants K; > 1, K, > 0 and ~» > 0 such that
an(k) < K1e(=KK2) for any k > 1.

Assumption (Non-degeneracy)

There exists a universal constant K3 > 0 such that min;c; Vi > Ks.
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2. Main Definitions

The above condition assumes that the partial sum % Y opeq Xejis
non-degenerated which is necessary to bound the probability of a Gaussian
vector taking values in a small region. When {X;;},. is stationary, then

n—1
Vg 1= 50+ 23 (1 5) 10 ©)
k=1

where ', (k) = Cov (X1,j, Xk+1,j) is the autocovariance of {X;;},.; at lag
k. -
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Application: Orlicz norm Space

Consider the inverse of the covariance matrix such that

—~
~
~

=, < <

For the polynomial case, applying the union bound followed by Markov's
inequality we conclude that

X,({t)‘ <p (nkT)V/P. (8)

o1
p2P H <p n'/P and max

max
i iyt

1

Let X and Y be random elements defined in the same probability space
(Q, F,P) taking values in the metric space (S, d). Then for measurable A
andd >0
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Application: Orlicz norm Space

Due to the fact that x — exp [(X/H|X|||ey)7] is non-decreasing then

P(IX] = x) = P<eXP [(IXI/ X)) = exp [(</lIXlex )] )
< exp [— (x/lIXlex) "] EBexp [(IXI/11Xlex)"] -

It holds that,
her(x) = Kyx1{0 < x < ay} + [exp(x”) — 1] 1{x > a,} 9)
where K, := (expai—1) and a, is defined as below

ay

—_ A\ Y
ay = inf {x eERy x> (177) } (10)

Moreover, it holds that
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3. Hoeffding's inequality for dependent random variables

Consider the martingale sequence
Sn=_ Xin>1 (12)

Consider the F;_imeasurable random variables K; > 0, for i = 1,2, ....
Define with B = 0 and for any n > 1 such that

zéKﬁ{HE[ (' ")|f 1}} (13)
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3. Hoeffding's inequality for dependent random variables

Let 1) be an Orlicz function such that it holds that

SUPy .y 0o (X)1(y)/1(cxy) < 0o, for some constant c. Suppose that
{Zy : 0 € O} is a separable stochastic process indexed by 0 in the
pseudo-metric space (©, 7). Assume that

diam(©)
125 - Zoll, < c’/o vY(D(8))do (14)

where diam(©) is the diameter of © and D(6) is the d—packing number.

v,
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3. Hoeffding's inequality for dependent random variables

Let W; be F;—measurable and E(W;|F;_1) =0 for i > 1. Suppose that
for some constant ¢ < oo it holds that

W,
IE< (’ |> |77 > <1, almost surelyi=1,2,... (15)

Key Points:

@ Partitioning entropy could be applied to nonstationary time series?
This could be the case when considering a discretenized method, such
as block of nonstationary time series (i.e., m—dependence).

@ Notice that this paper doesn't have in depth explanation of the
dependence structure. However, the Orlicz norm provides related
moment condition for understanding the asymptotic behaviour.
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3. Hoeffding's inequality for dependent random variables

o We define with ¢(d) the following quantity

d d
o(d) = / HY2(6,d)ds V d := min {/ HY2(6, d)ds, d} . (16)
0 0

What type of dependence structure does the entropy integral ¢(d)

introduce? For example, what form this integral would have in the

case of Garch processes or for the autoregressive model?

@ Are there any related results to Hoeffding's inequality for F—mixing
sequences? (e.g., Geometric ergodicity in autoregressive models)

@ To derive the proofs of main results presented in the paper we use
that P(A) < exp {—Ba +252b%}

@ Notice that P(A’) is considered to be a negligible probability.

@ All probability bounds are derived with respect to S,,, which the sum
of stationary martingale differences. Similarly, we can consider
expressions for partial-sums or partial-sum self normalized processes.
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3. Hoeffding's inequality for dependent random variables

@ Related reference: Rademacher Complexity of Stationary Sequences.

o Define with g(yi, ..., yn) a measurable function of the data, which for
example could be extended to sample moments of estimators.

@ Under the assumption of stationary sequences we assume that
sub-Gaussianity condition holds in order to obtain probability bounds.

o Furthermore, an important related assumption is the Geometric
ergodicity which along with S—mixing can facilitate the development
of further the asymptotic theory in time series model. .

@ The theoretical framework presented in the paper shows that the
theory can be also extended to the case of M estimators (such as
quantile autoregression) using suitable smoothing conditions and
deriving the corresponding probability bounds.
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