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Abstract

Empirical processes indexed by classes of functions based on dependent observations are
considered. Sufficient conditions in order to satisfy stochastic equicontinuity are given. The
derived conditions are in terms of bracketing numbers with respect to a norm arising from a
Rosenthal type moment inequality satisfied by the process. The application involves mixing
sequences and improves on the result of Andrews and Pollard (Int. Statist. Rev. 62 (1) (1994)
119) for strong mixing, Shao and Yu (Ann. Probab. 24 (4) (1996) 2098) for p-mixing
sequences, and Csorgé and Mielniczuk (Probab. Theory Relat. Fields 104 (1) (1996) 15) for
functions of Gaussian sequences.
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1. Introduction

Let (X;);»o be a stationary sequence of real random variables defined on a
probability space (2, A, P) and # be a class of real valued functions of real variables.

*Tel.: +33243833082; fax: +33243833579
E-mail address: Samir.Ben_Hariz@univ-lemans.fr (S. Ben Hariz).
IThis work is a part of my Ph.D. Thesis in the University of Paris Sud under the supervision of Professor
Jean Bretagnolle.

0304-4149/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.spa.2004.09.006


www.elsevier.com/locate/spa

340 S. Ben Hariz | Stochastic Processes and their Applications 115 (2005) 339-358

Let [®(ZF) denote the space of bounded real functions defined on #. Given a
collection % one can define a map from % to R as follows:

Z,.: F—R
1 n
fr—Z,(f) = 7 ; [f(X) — E(F(X )]

If supzsup, |f(x) — E(f(Xo))| exists and is finite, then the map Z, is an element of
[°°(F). Consequently, it makes sense to investigate conditions under which the
sequences Z, converge in law in /°°(%#) endowed with the uniform topology. A class
& for which this is true is called a Donsker class. To prove weak convergence in
[°°(F), according to Pollard [11] (see also Van Der Vaart [15]) we need the following
two conditions.

(i) Convergence of marginal: for all f,...,f} elements of &,
(Zu(f1),-..,Zn(f})) converges in law.

(i) There exists a pseudo metric p such that (#,p) is totally bounded, and for
all £>0,

lim lim sup P sup |Z,(f —¢g)|>¢] =0. (1)
020 n—>+oo p(f-9)<d

The second property is known as the stochastic equicontinuity of the family Z,,. It
is useful in proving uniform central limit theorems as well as in other contexts (see
for example Andrews [2]).

Convergence of the finite dimensional distributions is proved for many classes of
processes. Roughly speaking, property (i) is satisfied as soon as the sequence X is
sufficiently weak dependent. Dependence between the past and the future of the
process is measured either by mixing coefficients such as ¢-mixing (strong mixing),
p-, f- and ¢-mixing, or by the decay of covariances for functions of Gaussian, linear
processes and associated sequences. Therefore, in order to conclude the uniform
CLT, it remains to prove the stochastic equicontinuity. And this will be the main
purpose of the present paper.

Several results exists in the literature. In what follows we recall some of them with
an emphasis on those which are close to the spirit of this work. Let || - ||, denote the
L? norm for p<oo. In 1987, Ossiander [9] proved that if the variables are i.i.d then
(ii) is fulfilled if

1
/0 BN G T, 7) ds <o,

where Ny (e, || - I, %) is the minimal number of e-brackets sufficient to cover # (see
Definition 1 below).

This result has been generalized by Doukhan et al. [6] to f-mixing sequences
under the summability of the sequence of f-mixing and the following condition on
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the family 7

1
/0 Iog N @ - oy 7) de< oo,

where |[f||§’ﬁ = fol ﬁ_l(u)Qj%(u) du. The proof in the two cases was based on
exponential inequalities for independent random variables.

On the other hand, using a moment inequality of order 2, Arcones [3] showed that
the stochastic equicontinuity of {Z,(f), f € #},-o holds when the process X is
Gaussian with summable covariance function and if the family satisfies the condition.

1
| WiFe 1P dv<oo,
0

Andrews and Pollard [2] have concluded the tightness of the empirical process of a
strong mixing sequence under the following hypothesis:

v
> Pt <o,

i>0

o
sup |f|<1 and /x—mN[/]p(x,||-||2,97)dx<oo,
7 0

where p>2 and y>0. Here also, the main tool was a moment inequality of order p.

In view of these results we can see that the conditions ensuring the tightness of the
empirical process is a kind of balance between the regularity of the process on the
one hand, expressed here in term of weak dependence, and the size or the complexity
of the family & on the other hand, measured here by the bracketing numbers with
respect to a norm induced by the process.

A goal of this work is to give a general approach to this problem which generalizes
and improves on some existing results. The main result asserts that if the process
satisfies a Rosenthal type moment inequality of order p and if fol N[l/]p(x,
I -ll2x,#)dx<oo, where # is an uniformly bounded class of functions and
| - Il2.x is an appropriate norm induced by the moment inequality then (ii) is satisfied.
The paper is structured as follows, in Section 2 we give the main results,
several applications are discussed in Section 3 and Section 4 is devoted to the
proofs of results.

2. Main results

Before stating the main result we recall the following definition of bracketing
numbers.

Definition 1. Given two functions / and u the bracket [/, u] is the set of all functions f
with /<f <u. Given a norm | - | on a space containing %, an ¢-bracket for || - || is a
bracket [/, u] with ||/ — u|| <e. The bracketing number Ny (e, || - ||, %) is the minimal
number of e-brackets needed to cover &.
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For p>=2 we define two kind of conditions, the first one on the process, and the
second one on the family %.

H(p, X). There exists constants a(p) and b(p) such that for every measurable f

EIZ, (N1 <a@IF 12 + b PIAIES 2112 2
where || - ||, y norm is a norm satisfying':
® || <CJ - |l,x for some positive constant C.

o [fI<lgl = Iflx <lglyx-
H(p, #). & is uniformly bounded and

1
1
| Ve 7 dv<ce, )
0
We are now able to state our first result.

Theorem 1. Let (X;);5( be a strictly stationary sequence of random variables and F be
a class of functions satisfying H(p, X) and H(p, ), then: Ve >0,

lim lim sup P( sup | Zy(f = 9)l >8> =0.

0=0 n—4o0 If=gliox <o

The condition under which the family % is uniformly bounded, may be relaxed by
strengthening the condition on the covering numbers and imposing further
assumptions on the envelope function of the family. This is what is done in the
following theorem.

Theorem 2. Let (X;);( be a strictly stationary sequence of random variables and F be
a class of functions satisfying H(p, X). Let F>=sups.5 |f| be a measurable function.
Assume that F € ', for some r>1, and

1
| Ve o 7y dr < “

where 1/v=1— (1 —2).
Then the conclusion of Theorem 1 holds.

In what follows we are aimed to give sufficient conditions for & in order to satisfy
the stochastic equicontinuity property in the case when the a-mixing coefficient
decays exponentially. The result is closely related to the work of Massart [8],

"The norm || - o,y is simply the L? norm in the independent case and is some norm who extends the L?
norm to the dependent case. In the latter case this norm depends generally on the process X via the
measure of dependence used to control the covariance terms. In particular for a-mixing process, this is
simply the || - ||,,, (see Lemma 2 for the definition).
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however, the technique’s proof is slightly different. The proof of the next result relies
on a Rosenthal type moment inequality, with explicit bounds of the coefficients a(p)
and b(p), due to Rio and combined, as usual, with a chaining argument.

Theorem 3. Let (X;);5( be a stationary sequences and F be a family of functions
bounded by 1. We assume

(a) ocgi) < cexp(—ai), where ¢>0,0>0.
() Jy log? Ny (e, I - Iy, 7) de < co.

Then, Ve>0,

lim lim sup P( sup | Zu(f — g)|>s> =0.

0>+ n—+oo If—gll <6

The previous theorem improves on Massart’s result. Indeed, under the same
hypothesis of mixing, the assumption on % was

1 ¢

We point out however, that Massart shows a rate of convergence for the given weak
invariance principle. We note also that Andrews and Pollard [2] conjectured in their
paper that the condition implying the stochastic equicontinuity under the same
assumption of mixing, may be

1 o
| eogN el 1, #)de<ce,
0
for some positive constant 7.

Remark. In the independent case, the same method of proof shows that the
condition is fol log" >Ny (e, || - Il1,#)e~"/> de<oo. This condition is known to be
optimal when % is the class of all subset of N.

3. Examples of application

In this section, we give some examples for which the hypothesis H(p, X) is fulfilled
and we compare with some existing results. For H(p, %), we refer the reader to
[8,15].

First we recall the following measures of dependence. Suppose (2,4, 2) is a
probability space. For any two o-fields .o/ and % of ", we define

(L, B)=sup|P(ANB)—P(A)-P(B), AeoA, BeH
and

p(</,B) = sup [cort(f,g)l, [ el (A), gel*).
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The following inequality holds:
p(, B) <ol , B).
If (Xy) is a sequence of random variables we define

c(n) = sup <(GY, Gi3,),
k

where ¢ = o, p and G’ is the o field generated by (X, n<k <m).

3.1. Case of a-mixing

Let (X) be a stationary sequence, and for u positive real, set o(u) = a([u]), where
[x] denotes the integer part of x. We denote the quantile function of |f(Xo)| by Oy,
which is the inverse of the tail function — P(|f(X¢)| > ¢). The following corollary is
an immediate consequence of Theorem 1.

Corollary 1. Let ”f”%,x = fol [oc"(u)]Q}(u) du. If H(p,F) is fulfilled, then Z,(f)
converges in [°°(F) to a Gaussian process indexed by F with ||f ||,y continuous sample
paths.

In particular, this convergence holds whenever the following conditions are satisfied:

(H1) > i+ )P0 gy <00
i=0
1 y
M) [ N o F) dr<oe
0
To compare with the assumptions of Andrews and Pollard we first note that if

N (x)=Npy(x, || - |I,, F), and if 7 is bounded above by 1, then N (x*")< Ni(x). By
a change of variable we conclude that (H2) is implied by

1
(H'2) /0 N[l/]p(x, I N, Z)x~ 1 dx < o0

The assumptions of Andrews and Pollard are

(A1) Z(z’—i—1)”‘29((,')(2—29)/@9+2—29) o

i=0
1

(D) [ WP oo,
0

a

Now (H1) is weaker for p>2, (e.g., for a polynomial rate of mixing, say a(i) ~ ¢i™¢,
(H1) is satisfied if a>(p — 1)/ (1 — ) while (A1) is fulfilled if a>(p — D)(pO +2 —
20)/(2 — 20)).
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3.2. Case of p-mixing

The forthcoming corollary considers p-mixing sequences. Its proof relies on a
moment inequality established by Shao [13] and the CLT for p-mixing sequences (see
[10] for example).

Corollary 2. Let (Xy) be a stationary, p-mixing sequence. Assume that F € L**°,

o)

1
p)<co and [ N1 ) dv<oc,
i=0 0

where 1,0 are positive reals. Then Z,(f) converges in I®(F) to a Gaussian process
indexed by F with || - ||, continuous sample paths.

The corollary applies to the family of quadrants, and generalizes the result of Shao and
Yu [14] in the sense that the continuity of the distribution function is not needed here.

3.3. Case of Gaussian sequences

Let (X;);>o be a stationary Gaussian sequence satisfying: E(X¢) =0, E(X (2)) =1
and let r(k) = E(X¢X%). To apply Theorem 1, we need a Rosenthal type inequality
for partial sums of a function of Gaussian sequences. This is the subject of the
following lemma. The lemma handles the particular case when p =4. Let
Hy=(—1p®/p denotes the kth Hermite’s polynomial (p is the density of a
standard normal distribution). We recall that the rank of a real function f'is defined
by rank(f) = inf{k > 0|E(H;(X)f (X))+#0}.

Lemma 1. Let f be a real function and assume that

> k1" < oo,

k=0
where m = inf (rank(f), rank(f 2)). Then there exists a constant K = K(r(-)) such that
4

E <K@ (EA(X)) + nllf 1L Ef(X)).

> S - EA(X)
i=1

As a consequence of the 1previous lemma and Theorem 1, we deduce that if r
belongs to L' and if fol N[/]4(x, I+ 12, #)dx<oco where & is a class or family
bounded by 1, then (ii) is satisfied. Since the condition that r belongs to L' is
sufficient for convergence of marginals (see for example [4]), we have then proved the

following corollary.

Corollary 3. Let (X;) be a stationary Gaussian sequence such that E(Xy) = 0, EF(X (2)) =
1 and let r(k) = E(X¢X}). Let F be a family of function bounded by 1. If

1
rel' and /N[l/]4(x,||~||2,?/7)dx<oo
0
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then {Z,(f),f € F},~¢ converge in I°(F) to a Gaussian, centered process G indexed
by F with covariance function given by

Cov(G(f), G(9)) = E(G()G(9)) = D Cov(f(Xo),g(X ).

ieZ

In the particular case when & = {lg()<. : x € R} where G is some measurable
function, the condition that r belongs to L' can be relaxed to the following one:

> (k) <oo,

k=1

where m is the Hermite rank of the family &%. Indeed, in this case the moment
inequality of order 4 will be applied to & — % ={f — ¢g;(f,g) € (¥, %)}. Since for
f € Z we have rank(fz)>rank(f) it suffices to have Y ;_, ["(k)|<oo. In addition
N, 7)< X—CZ for this family. Thus the result applies and this generalizes
Theorem 1 in [5] to the case when the distribution function of G(X) is discontinuous.

4. Proof of main results

For any expressions A and B let us write A< B if A<KB for some absolute
constant K, and let [x] stand for the integer part of x.

4.1. Proof of Theorem 1

By hypothesis (3), for all integers k there exists a finite sequence of pairs of
functions O‘f, Af)lsig,v(k), where N(k) = N; ](Z_k, Il - ll2,x, %) such that:
o 4|y <27"

® Vf € 7 there exists i such that | — f¥|<4¥.

We set (nx(f), 4x(f)) the first pair (ff.‘,Af.‘) which satisfies: |f —ff.‘| sAf.‘. Let ¢4, k
and ¢ be integers verifying g, <k <gq. Following a technique used by Arcones [3] we
define a map from % into a finite subset of # by:

Ti(f) = Mg 0 Mg © - - - 0 ().

For 1<i<N(q,) let us define
Ei={f €7 :T,() =/

then the sets E; form a partition of %. For 6 >0 we define
Fij={(/,9) € #F x F|f € Ej,g € Ej and |[f — gllx <0}.

Let now A = {(i,/)|F;; #9}. For every pair in A we fix an element of F;; and denote
this pair by (®;;, Vi)
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Let (f, g) be a pair satisfying |/ — gll, x <9, then necessarily (f,g) € F;; for some
(i,j) € A. We write

S=9=f T4+ Ty(f) —Pij+Pij— Vij+ Vij— Ty(9) + Ty (9) — 9,
but Ty (f) = T4, (®ij) and Ty (9) = T4 (¥i;), since f, P;; are in E; and g, ¥;; are in
E;. Consequently

sup | Z,(f —@I<4 sup |Z,(f — Ty, ()| + sup |Zu(P;; — Vi)l
f =gllox <o feF (i,j)eA

Take the expectation in the previous inequality to get

[El sup |Zu(f — g)l] ®)
f =gl x <o
<AE(sup |Z,(f — T, ()| +E| sup |Z(Dij — ¥ij)l (6)
feF (i,j)eA
Z=4E1 + Ez.

For the shake of brevity we put sup,c 7 |Z,(f)| = | Z,(f)|l 7. In order to control the
two terms in Eq. (6) we shall use the following maximal inequality from Pisier,
combined with a chaining argument. For all random variables Z,,Z;,...,Zy

(&

Control of E\: For fin & we write

max |Z;]|
I<i<N

) <SN'P max (E|Z;|?)"/7. @)
I<i<N

q

S=Ta()=F—Ty)+ Z Ti(f) — Ti—1(f)
k=qy+1
q
=f—mn,(f)+ Z Ti(f) — Tr—1(f).
k=qy+1

Therefore

Ev=E|Z,(f — qu(f))”.%t

q
<EIZ(f = n(Dlz + Y EIZuTe() = Tea(N)ll#

k=qy+1
q
<Eign +2vnsup El 4,01+ > Eu, (8)
JeF k=qo+1
where
Evi =B ZATi(f) = Tr—1(0M))l g0+ 1<k<q
E1 g1 =EIZ, 4,0l 7.

Now observe that Ty (f) — Tk_1(f) = Ti(f) — mi—1(Tx(f)) and Ty(f) takes values
on a finite set with cardinality less than or equal to N(k). Using inequality (7)
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we can write
Eix<NK)'? max [1Z,(g — m—1(9))ll- ©)
geT(F)

Since by hypothesis % is uniformly bounded, we may assume that f, n;_;(f) and
A4(f) are bounded by 1. Apply hypothesis (2) to & = g — m_1(g) to get

1Zu(W)ll, <2 a2 (p) oy + 2YP(B(p)n" /012217113 ) 7
<2l p(py2=k=1 4 21 /ppl/p () Ip=1/2=2k=1)/p, (10)

Combining (9) and (10) yields
E <2a" P (p)N (k) P27K 4 201 P (p)N (k) /P2 =K (= 1/22K) =2/

A similar bound holds for Ej ;. Finally, using the fact that [E|4,(f)|<
Cll44(f)llo.x < C277 we obtain

q+1
E\3vn2 '+ Y Eu
k=qy+1
q+1 q+1
4\/52*44_[11/1)([)) Z N(k)l/p27k+b1/[’(p) Z N(k)l/lisz(n—l/22k)1—2/p
k=qy+1 k=qy+1
q+l q+1
V24P (p) Y NP2 B P ) 220)! N N (k) P2,
k=q+1 k=qy+1
Hence
q+1
E\Sym2 ™+ cp) Y NG)P2TR (1220, (11)
k=qy+1

Control of E,: Noting that |A] <N2(q0) and || ®;; — Vil x <6 we get

Ey =E|sup |Z,(Pij — Vi)l

(ij)ed

2 .
<NY7(go) max 1Z(@ij = Vi)l

Again by H(p, X),

E2<N*7(qo) (a””(p)é + (b(p)nl’p/zéz)l/p>
< e(p)(N(g)d)". 12
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Let W(n,0) denote E(sup;_,,  <s5|Za(f — ¢)]). From (11) and (12) it follows that:

W(n,5)<4E, . E
g+l
4«/%2_‘1 +C(p) Z N(k)l/]?z—k(l +(n71/22q)172/p)
k=q,+1

+ c(p)(N(gy)d).

Let gy = ¢y(0) be the largest integer satisfying N(qo)sé_l/z. Without loss of
generality we may assume that ¢,(6) goes to infinity as é goes to zero. Therefore, if
we set £(0) = Y or, | N(K)'/727* we have by H(p, #) that &) — 0 when & — 0.
Take ¢ = g(n,d) = [W‘gzlog i1 + 1. With this choice ¢> g and /n27 <1 if n>n(9)

and for n>n(d) we have

W (n, 8)<1/e(0) + c(p)\/2(0) + c(p)d'/”.

Consequently
lSin}) lim sup W(n,d)=< el}in}) Vv &(0) + c(p)\/€(0) + c(p)él/p =0
0—> n—+00 —

and Theorem 1 is proved.

4.2. Proof of Theorem 2

We will follow the same lines of the proof of Theorem 1 with small modifications.
Therefore notations will also be similar.
Control of E1:

El = [E”Zn(f - qu(f))”ff
SENZu(f = Ty, UNr<ad)llz + BENZu(f — To)(N)1F>m)ll 7
Z=E1,M +E/1,M' (13)

On the one hand, since F € """ we can write
E yy S2VHEIF 1oy < %r(M),

where r(M) goes to zero as M goes to +oco. On the other hand

Exw <E|Z,((f — ngUDIr<n)]| » (14)
q
+ Y EIZ((Tx() = T (M) r<a)ll 7
k=qy+1
q
SEpg. +24n sup El4,(/)] + S EN, (15)
fe7

k=qy+1
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where

EY, = EIZi(Ti(f) = Tics O <)z 4o + 1<k<q,

E?ﬁﬁ.l = [E||ZnAq(f)1F<M||ﬁ7

Note that when F<M, we have that T(f) and 4,(f) are bounded above by M.
Apply hypothesis H(p, X) to h:=(T(f) — Tr—1(f))1 < after applying (7) to obtain

M 1
El <N()"" max 1Al
<24 P(P)N (k) /P27 4 20" P (p)N (k) /P2 =2KIP (n=12 )1 =20 (16)
A similar bound holds to E}% || that is

EX <247 (p)N(g)"/P279 + 2b"P(p)N(q)"/P2724/P(n="12 M) =27 |

Lg+1
Therefore
q+1
Ein</n2+ > Eix
k=qy+1
q+1 g+l
SVt ep) Y NP2 4 ep)nT M) TP N Nk P2,
k=qy+1 k=qy+1

Taking M = n'/?, from the estimations of Ey yr and E’LM, we deduce that
g+1

E\xV/m27 0 +c(p) Y N(k)'72*

k=qy+1

q+1
+e(p)n M) TN NG P2 4 (), (17)
k=qy+1

where r'(n) — 0. Let R denote the third term in the previous equation, then

g+1
Ri=c(p)(n™ "> M)' 7 N~ N(k)'/ra=2kir
k=qy+1
27%
<C(p)(n71/2n1/2r)172/p\/ Nl/p(x)XZ/pfl dx
-4
240
Sc(p)n(*l/ZH/Zr)(le/p) Nl/ﬂ(x)xz/P*I dx.

24
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We apply Hélder’s inequality to f = N7, g = x*/~Vand 1/v =1 — 1/r(1 = 2/p), to

obtain
21

N'P(x)x*P~ dx
274

27 v, om0 _ 5
< ( N"”’(x)dx) (/ x(z/p_l)ﬁdx)
24 24

2—q0 l/V q =1
< (/ N"/p(x) dx) ((r _ 1)—1 [x—r+1];_110) 5
2

-9

279 /v
< ( / N'/P(x) dx) (r— 1)*?(27:1)(172/,,)(1 fr=1),
2

-9

It follows that

R< c(p, r)(y/m2~4)1/r=00-2/p) (

2-90 1/\
N'P(x) dx) ) (18)
24
Combining (17) and (18) we obtain
q+1
E\x/m27+cp) Y N(k)'/r2*

k=qy+1

+ c(p, r)(\/ﬁzfq)(l/rfl)(ld/p) </
2

—q

274

0 1/v
NP (x) dx) + ¥ (n). (19)

Control of E,: Similarly we have
Ey =EF| sup |Z,(D;; — V)l

<Exu+ E5 .
(ij)ed '

Firstly, we write

E) \=E l sup |Z,((®;; — 'Pi,/)lF>M)|‘|
(ij)ed

<AVnE|Flps | <r(n), (20)

where r(n) goes to zero. Secondly, applying H(p, X) to (@;; — ¥i;)l1r<m, which
satisfies [[(®;; — Vi)l r<umll2x <0 we obtain

E>pr=E| sup |Z,(D;; — 'Pi,i)lF<M|‘|

(ij)ea
< Nz/P(qO)(al/p(p)é + (b7 Mpi(sz)””) Q1)
<c(p)(N(gg)d)™?. (22)

From (20) and (22) we conclude that
E><c(p)(N(g9)0)*"" + r(n). (23)
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End of the proof: Using that W(n,0) = E(sup_y,, <51Zs(f — 9)I). Then (19)
together with (23) imply
W(f’l, 5)<4E1+E2

+1
<V/n274 + (p) qz N(K)P27 4+ e(p)(N(go)3)*” + r(n)
k=qy+1
2-40 1/v
+ e(p.r)(/m2 1) r=D0=2/) ( / N"P(x) dx) + ).
274

Putting B = —(1/r — 1)(1 — 2/p) and letting
qo = 4o(9) = max{k,k € N, N(k)<o~'/?}.

We may assume that ¢g,(d) goes to infinity as ¢ goes to zero. Putting
1/v

2-40()
&(d) = < /0 N"?(x) dx> ,

we have by (4) that &(6) — 0 when 6 — 0. Now choose ¢ = ¢g(n, d) in such a way that
V1277 and (n2~9)/=D0=2/Pg(5) have the same order of magnitude, that is

1 n
q=q(n,d) = {ZIOg 2log 81/(1+ﬁ)(5):| + 1

With this choice ¢> ¢, if n>n(d), and in this case we have
q+1
W(n,0)<e/MHPG)1 + cpr) +cp) Y N2
k=qo+1

+ e(p)o' P + r(n) + ¥ ().

It follows that:

lim lim sup P( sup | Zu(f — g)|>£> =0
L

=0 n—+oo f—gllox <9

and this concludes the proof of Theorem 2.

4.3. Proof of Theorem 3

In the sequel all the inequalities are valid up to a multiplicative constant. First we
recall the following moment inequality which is a corollary of Theorem 6.3 in Rio [12].

Lemma 2. Let (), be the sequence of strong mixing coefficients of the process
(X)i>o- Let f be a measurable function. Then for all p=2.

EIZ,(NF <a@)If 15, + bpyn' 17>~ i+ 1P allf 112, (24)
i=1
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with

® QO is the guantlle functton of I[f (Xo)l-
° IU’IIM = o ’I(M)Q (u) du.
® a(p)<(Cpy”? b(P)<(CP)’]

We have assumed that: Vf € &, ||f|lo <1. Hence without loss of generality, we
may assume that Vf € &, Vk>0, Ak(f)<l From (30) it follows that:

1Z,(D)l, < Ap.f) + B(p.f)
with

A, /)P N2
Bp./)xp*n P f o
Applying Hélder’s inequality gives

1
”f”ixg (/0 [afl(u)]l/(lfl?) du) (/ 2/()(u) du)

1 n
- (m S (4 1)V ma(l)> 136
i=1
| ; 1-0
< (m >+ 1)‘/<‘—"’a(i)> IFIY-

Therefore
AP,
B(p.f)<p*n™ £

We proceed as in the proof of Theorem 1, and thus we keep the same notation.
Control of Ey: We recall that if N(k) = N| ](2’]‘, Iy, ) then

E\<EIZ, 4,07 + 2~/ﬁf$UP El44()]
eF

q
+ > EIZTx() = Tea(Nll# (25)

k=q,+1
we also recall that
Evx =RIZ,Ti(f) — Ti-1(Dll 7, g0 + 1<k<q,
El,q+1 = [E”ZnAq(f)”%-
From the hypothesis and inequality (7) we have
Eix<NK)'? max (1 Z,(g — mi—1(g)l,- (26)
geTi(F)
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We now apply the moment inequality to g — mx_1(g) which is bounded by 4;_;(g) to
obtain

E1,k<N(k)]/p[ max  A(p,g — m—1(g9)) + max B(p,g — nkl(g)):|
geT(F)

geT(F)
#N(k)l/p(\/ﬁ2—k9/2 +p2n—1/2+1/p)
ﬁN(k)l/p(\/ﬁzk(l—()/ﬁz—k +pZ(n—l/sz)1—2/])22k/p2—k). (27)

Therefore if p>2, n=1/227>1, we get

El,kﬁN(k)l/p(\/ﬁzk(lfﬁ/Z)sz+(n—l/22q)p222k/p27k).

Let p = k + log N(k), then
Eix< (JJE + /log N(k)) 2K1=0/2=k 1 (=1/220)(}* + log® N(k))2~*.

A similar bound holds for E; 1. Hence if we assume that

1
/ log? Ny (e, | - I, F) d e <00
0

and

1
/0 log >N 1(e. I - 12, 73> de <o

for some 0<@<1. Then there exists a positive sequence /(k) satisfying > /(k) < oo,
such that for all k, gy <k<gq+ 1, if n~'/229>1, we have

E1x<(n™'220 4 DI(K).

Since fol log? N (e, || - I, #)de<oo implies fol log!? N (e, || - 1, 7)e?/> 1 de < 00,
for some convenient 0, we conclude that under the hypothesis of the theorem we
have: Vg = ¢, such that n=1/227>1,
g+l
Ey+/m270 +2071220 N " (k). (28)

k=qy+1

Control of E;: Recall that |A] < N?*(g,) hence

Er =E|sup |Z,(D:j — ¥,

(i)ea

<N(qp) max || Z,(D;; — Vi)l
(i,)ea

Using a moment inequality of order 2,
EIZ,(NI° < CO', 0l I,
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where 0< 0’ <1/2. Applying this to @;; — ¥;; which satisfies ||®;; — ¥;;Il; <J we get
E><C(0,2)N(gy)0" 2. (29)

End of the proof: Let W(n,0) denote E(sup,_g <5lZa(f — g)]). Combining (28)
and (29) gives

q+1

-q —1/2~q
W(n,é)ﬁ\/ﬁ?_ + 2n 2 kgt

1K)+ €O, )N (gg)d" .

Take 0’ = 1/3 for example and let ¢, = ¢,(9) the greatest integer satisfying
N(qy) <5~'/12. Without loss of generality we may assume that ¢,(J) tends to infinity
as 0 tends to zero. Therefore, if we set &(0) = ZZO:% 41 1(k) we have that &(6) — 0
when 6 — 0. Take ¢ = ¢(n,0) = [210‘710;7, ﬁ] + 1. Note that ¢>¢, and /n277<1
for n sufficiently large, say n>n(d) and hence for n>n(d)

W (n,0)<&"2(8) + C(0, )32,
Consequently
lim lim sup W(n,0)< lim &!/2(9) + C(0', )"/ = 0

n——+00

and this conclude the proof of Theorem 3.

4.4. Other proofs

4.4.1. Proof of Corollary 1
From Rio [12] Theorem 6.3 we infer that

1 p/2
Bz, <o) [ o an)

1
+ b [ o7y g du (30)
O «

where O, is the quantile function of [f(X)|. Assume moreover that ||/l <M, then
(30) can be written

1 p/2
[EIZn(f)I”Sa(p)( /0 a-1<u>Q}(u)du)

1
+ b(pyn' P2 MP=2 / [ @)V~ QF () du.
0

Therefore, we can apply Theorem 1 with |U"||§) ¥ = fol [oc‘l(u)]P’lQ/z-(u) du. Now
H(p, #) implies that for f € Z, fol orl(u)Q/?-(u) du < oo, and this implies (i) according
to Doukhan et al. (see [7]). '
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Using Hoélder’s inequality, we get, for any 6 in (0, 1),

1 1
/0 [al(u)]PIQ}(u)du<< /0 [ocl(u)](pl)/(lo)du) ( / 2/"(u)du> .

Since fol [ @)]? du<qy ;= o(i + 1) (i) and Qy(U) W\ £(X)| if U is uniformly
distributed on [0, 1], we deduce that

1 1-0
/[oc“(u)]”“Q}(u)du<< 5D (i1 10((1)) (ufnz/g)z.
0

1>0

Hence the following hypotheses are sufficient to imply (ii),
(HI) ) @i+ D00 "1g() <00,

i=0
1
(H2) /0 NG - lhajos 7) dv < 00

and this proves the second part of the corollary.

4.4.2. Proof of Corollary 2
First we recall the following result from Shao [13]. Vp>=2,3K = K(p(-),p) such
that for every measurable f,

[log n]
EIZu(/)IP <K exp ( > p(z")> (X115
i=0
[log n]

+ Kn'P/? exp (K > P )) F O

i=0

In particular, if Y08 "p(2") < oo, then exp(KY 18" p2/r(27)) is a slowly varying
function for every p. Hence, Vp>=2, Ve>03K = K(p(-),p,¢) such that for every
measurable f,

EIZ,(NF <KIf (XI5 + Kn' P2 f(X)|1. 31)

Arguing as in the proof of Theorem 2, it is easy to see that under (31) (ii) is
satisfied as soon as F, the envelop function belongs to L'*!, for some r>1 and

1
/ NP0 )y, 7) dx < oo,
0

Since p can be chosen arbitrary large and ¢ arbitrary small, (ii) follows under our
hypothesis. The proof of (i) follows from Theorem 1 in [10] for example.

4.4.3. Proof of Lemma 1
We will take back the proof of a similar result given in Cs6rgd and
Mielniczuk [5, inequality 3.2] with small changes. In particular, we recall
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that for k=1,2,3,4,
ESw)= Y,  E((X) = (X)) (F(X5) — (X))

I<iy#i-#ik<n

We first assume that R:=sup, . |r(k)|<1/3, then we proceed as in [5] to handle the
general case.

E(S1) = nE(f (Xo) — Ef (X)) <nllf 15 B (X).
ESu)=3 Y. E[(X) X)) +4 > HEX) (X)L,

I<ij#i<n I<ij#ir<n

where f = f — Ef(X,). The first term is bounded by
R EX) +n > 1P OGIES X
i=1
and the second one is bounded by
n Y P OGOIE P X)PE (X))
i=1
Hence
E(S2) < (B (X)) + nllf 5B (X))
Using a lemma of Taqqu stated as Lemma 3 in [5], we have
E(S3) < PE R (XO)PE2 (X))l
< (E (X)) + nEfH(X)
<P EFXD) + nllf IS E (X ).
Again by Lemma 3 we have

E(San) < B/ (X))
This completes the proof.
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