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Abstract

Empirical processes indexed by classes of functions based on dependent observations are

considered. Sufficient conditions in order to satisfy stochastic equicontinuity are given. The

derived conditions are in terms of bracketing numbers with respect to a norm arising from a

Rosenthal type moment inequality satisfied by the process. The application involves mixing

sequences and improves on the result of Andrews and Pollard (Int. Statist. Rev. 62 (1) (1994)

119) for strong mixing, Shao and Yu (Ann. Probab. 24 (4) (1996) 2098) for r-mixing
sequences, and Csörg +o and Mielniczuk (Probab. Theory Relat. Fields 104 (1) (1996) 15) for

functions of Gaussian sequences.
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1. Introduction

Let ðX iÞiX0 be a stationary sequence of real random variables defined on a
probability space ðO;A;PÞ andF be a class of real valued functions of real variables.
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Let l1ðFÞ denote the space of bounded real functions defined on F: Given a
collection F one can define a map from F to R as follows:

Zn : F�!R

f 7�!Znðf Þ ¼
1ffiffiffi
n

p
Xn

i¼1

½f ðX iÞ � Eðf ðX iÞÞ
:

If supFsupxjf ðxÞ � Eðf ðX 0ÞÞj exists and is finite, then the map Zn is an element of
l1ðFÞ: Consequently, it makes sense to investigate conditions under which the
sequences Zn converge in law in l1ðFÞ endowed with the uniform topology. A class
F for which this is true is called a Donsker class. To prove weak convergence in
l1ðFÞ; according to Pollard [11] (see also Van Der Vaart [15]) we need the following
two conditions.
(i)
 Convergence of marginal: for all f 1; . . . ; f k elements of F;

ðZnðf 1Þ; . . . ;Znðf kÞÞ converges in law.
(ii)
 There exists a pseudo metric r such that ðF; rÞ is totally bounded, and for
all e40;

lim
d!0

lim sup
n!þ1

P sup
rðf ;gÞod

jZnðf � gÞj4e

 !
¼ 0: (1)
The second property is known as the stochastic equicontinuity of the family Zn: It
is useful in proving uniform central limit theorems as well as in other contexts (see
for example Andrews [2]).
Convergence of the finite dimensional distributions is proved for many classes of

processes. Roughly speaking, property (i) is satisfied as soon as the sequence X is
sufficiently weak dependent. Dependence between the past and the future of the
process is measured either by mixing coefficients such as a-mixing (strong mixing),
r-, b- and f-mixing, or by the decay of covariances for functions of Gaussian, linear
processes and associated sequences. Therefore, in order to conclude the uniform
CLT, it remains to prove the stochastic equicontinuity. And this will be the main
purpose of the present paper.
Several results exists in the literature. In what follows we recall some of them with

an emphasis on those which are close to the spirit of this work. Let k � kp denote the
Lp norm for po1: In 1987, Ossiander [9] proved that if the variables are i.i.d then
(ii) is fulfilled ifZ 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logN ½ 
ðe; k � k2;FÞ

p
deo1;

where N ½ 
 e; k � k2;Fð Þ is the minimal number of e-brackets sufficient to coverF (see
Definition 1 below).
This result has been generalized by Doukhan et al. [6] to b-mixing sequences

under the summability of the sequence of b-mixing and the following condition on



ARTICLE IN PRESS

S. Ben Hariz / Stochastic Processes and their Applications 115 (2005) 339–358 341
the family F:Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logN ½ 
ðe; k � k2;b;FÞ

q
deo1;

where kf k22;b ¼
R 1
0 b

�1
ðuÞQ2

f ðuÞdu: The proof in the two cases was based on
exponential inequalities for independent random variables.
On the other hand, using a moment inequality of order 2, Arcones [3] showed that

the stochastic equicontinuity of fZnðf Þ; f 2 Fgn40 holds when the process X is
Gaussian with summable covariance function and if the family satisfies the condition.Z 1

0

N
1=2
½ 
 ðx; k � k2;FÞdxo1:

Andrews and Pollard [2] have concluded the tightness of the empirical process of a
strong mixing sequence under the following hypothesis:X

i40

ip�2a
g

pþgðiÞo1;

sup
F

jf jp1 and

Z 1

0

x�
g

gþ2N
1=p
½ 
 ðx; k � k2;FÞdxo1;

where pX2 and g40: Here also, the main tool was a moment inequality of order p.
In view of these results we can see that the conditions ensuring the tightness of the

empirical process is a kind of balance between the regularity of the process on the
one hand, expressed here in term of weak dependence, and the size or the complexity
of the family F on the other hand, measured here by the bracketing numbers with
respect to a norm induced by the process.
A goal of this work is to give a general approach to this problem which generalizes

and improves on some existing results. The main result asserts that if the process
satisfies a Rosenthal type moment inequality of order p and if

R 1
0 N

1=p
½ 
 ðx;

k � k2;X ;FÞdxo1; where F is an uniformly bounded class of functions and
k � k2;X is an appropriate norm induced by the moment inequality then (ii) is satisfied.
The paper is structured as follows, in Section 2 we give the main results,
several applications are discussed in Section 3 and Section 4 is devoted to the
proofs of results.
2. Main results

Before stating the main result we recall the following definition of bracketing
numbers.

Definition 1. Given two functions l and u the bracket ½l; u
 is the set of all functions f

with lpfpu: Given a norm k � k on a space containing F; an e-bracket for k � k is a
bracket ½l; u
 with kl � ukoe: The bracketing number N ½ 
ðe; k � k;FÞ is the minimal
number of e-brackets needed to cover F:
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For pX2 we define two kind of conditions, the first one on the process, and the
second one on the family F:

H(p;X ). There exists constants aðpÞ and bðpÞ such that for every measurable f

EjZnðf Þj
ppaðpÞkf k

p
2;X þ bðpÞn1�p=2kf kp�2

1 kf k22;X ; (2)

where k � k2;X norm is a norm satisfying1:
�

no

me

sim
k � k1pCk � k2;X for some positive constant C:

�
 jf jpjgj ) kf k2;Xpkgk2;X :
H(p;F). F is uniformly bounded andZ 1

0

N
1=p
½ 
 ðx; k � k2;X ;FÞdxo1: (3)

We are now able to state our first result.

Theorem 1. Let ðX iÞiX0 be a strictly stationary sequence of random variables and F be

a class of functions satisfying H(p;X ) and H(p;F), then: 8e40;

lim
d!0

lim sup
n!þ1

P sup
kf�gk2;Xod

jZnðf � gÞj4e

 !
¼ 0:

The condition under which the familyF is uniformly bounded, may be relaxed by
strengthening the condition on the covering numbers and imposing further
assumptions on the envelope function of the family. This is what is done in the
following theorem.

Theorem 2. Let ðX iÞiX0 be a strictly stationary sequence of random variables and F be

a class of functions satisfying Hðp;X Þ: Let FXsupf2F jf j be a measurable function.

Assume that F 2 Lrþ1; for some r41; andZ 1

0

N
n=p
½ 
 ðx; k � k2;X ;FÞdxo1; (4)

where 1=n ¼ 1� 1
r
ð1� 2

p
Þ:

Then the conclusion of Theorem 1 holds.

In what follows we are aimed to give sufficient conditions forF in order to satisfy
the stochastic equicontinuity property in the case when the a-mixing coefficient
decays exponentially. The result is closely related to the work of Massart [8],
1The norm k � k2;X is simply the L2 norm in the independent case and is some norm who extends the L2

rm to the dependent case. In the latter case this norm depends generally on the process X via the

asure of dependence used to control the covariance terms. In particular for a-mixing process, this is
ply the k � k2;a (see Lemma 2 for the definition).
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however, the technique’s proof is slightly different. The proof of the next result relies
on a Rosenthal type moment inequality, with explicit bounds of the coefficients aðpÞ

and bðpÞ; due to Rio and combined, as usual, with a chaining argument.

Theorem 3. Let ðX iÞiX0 be a stationary sequences and F be a family of functions

bounded by 1. We assume
(a)
 aðiÞpc expð�aiÞ; where c40; a40:R

(b)
1

0
log2N ½ 
ðe; k � k1;FÞdeo1:
Then, 8e40;

lim
d!þ1

lim sup
n!þ1

P sup
kf�gk1pd

jZnðf � gÞj4e

 !
¼ 0:

The previous theorem improves on Massart’s result. Indeed, under the same
hypothesis of mixing, the assumption on F was

logN ½ 
ðe; k � k1;FÞpC
1

e

	 
x

; xo1=4:

We point out however, that Massart shows a rate of convergence for the given weak
invariance principle. We note also that Andrews and Pollard [2] conjectured in their
paper that the condition implying the stochastic equicontinuity under the same
assumption of mixing, may beZ 1

0

e�
g

gþ2log2N ½ 
ðe; k � k1;FÞdeo1;

for some positive constant g:

Remark. In the independent case, the same method of proof shows that the
condition is

R 1
0 log

1=2N ½ 
ðe; k � k1;FÞe�1=2 deo1: This condition is known to be
optimal when F is the class of all subset of N:
3. Examples of application

In this section, we give some examples for which the hypothesis Hðp;X Þ is fulfilled
and we compare with some existing results. For Hðp;FÞ; we refer the reader to
[8,15].
First we recall the following measures of dependence. Suppose ðO;K;PÞ is a

probability space. For any two s-fields A and B of K; we define

aðA;BÞ ¼ sup jPðA \ BÞ � PðAÞ � PðBÞj; A 2 A; B 2 B

and

rðA;BÞ ¼ sup jcorrðf ; gÞj; f 2 L2ðAÞ; g 2 L2ðBÞ:
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The following inequality holds:

rðA;BÞpaðA;BÞ:

If ðX kÞ is a sequence of random variables we define

cðnÞ ¼ sup
k

cðGk
1 ;G

1
kþnÞ;

where c ¼ a; r and Gm
n is the s field generated by ðX k; npkpmÞ:
3.1. Case of a-mixing

Let ðX kÞ be a stationary sequence, and for u positive real, set aðuÞ ¼ að½u
Þ; where
½x
 denotes the integer part of x. We denote the quantile function of jf ðX 0Þj by Qf ;
which is the inverse of the tail function t�!Pðjf ðX 0Þj4tÞ: The following corollary is
an immediate consequence of Theorem 1.

Corollary 1. Let kf k22;X ¼
R 1
0
½a�1ðuÞ
Q2

f ðuÞdu: If Hðp;FÞ is fulfilled, then Znðf Þ

converges in l1ðFÞ to a Gaussian process indexed by F with kf k2;X continuous sample

paths.
In particular, this convergence holds whenever the following conditions are satisfied:

ðH1Þ
X
iX0

ði þ 1Þðp�1Þ=ð1�yÞ �1aðiÞo1

ðH2Þ

Z 1

0

N
1=p
½ 
 ðx; k � k2=y;FÞdxo1:

To compare with the assumptions of Andrews and Pollard we first note that if
NrðxÞ ¼ N ½ 
ðx; k � kr;FÞ; and ifF is bounded above by 1, then Nrðx

2=rÞp N2ðxÞ: By
a change of variable we conclude that ðH2Þ is implied by

ðH02Þ

Z 1

0

N
1=p
½ 
 ðx; k � k2;FÞx�1þy dxo1:

The assumptions of Andrews and Pollard are

ðA1Þ
X
iX0

ði þ 1Þp�2aðiÞð2�2yÞ=ðpyþ2�2yÞo1

ðA2Þ

Z 1

0

N
1=p
½ 
 ðx; k � k2;FÞx�1þy dxo1:

Now ðH1Þ is weaker for p42; (e.g., for a polynomial rate of mixing, say aðiÞ � ci�a;
ðH1Þ is satisfied if a4ðp � 1Þ= ð1� yÞ while ðA1Þ is fulfilled if a4ðp � 1Þðpyþ 2�
2yÞ=ð2� 2yÞÞ:
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3.2. Case of r-mixing

The forthcoming corollary considers r-mixing sequences. Its proof relies on a
moment inequality established by Shao [13] and the CLT for r-mixing sequences (see
[10] for example).

Corollary 2. Let ðX kÞ be a stationary, r-mixing sequence. Assume that F 2 L2þd;

X1
i¼0

rð2iÞo1 and

Z 1

0

N
Z
½ 
ðx; k � k2;FÞdxo1;

where Z; d are positive reals. Then Znðf Þ converges in l1ðFÞ to a Gaussian process

indexed by F with k � k2 continuous sample paths.

The corollary applies to the family of quadrants, and generalizes the result of Shao and
Yu [14] in the sense that the continuity of the distribution function is not needed here.

3.3. Case of Gaussian sequences

Let ðX iÞiX0 be a stationary Gaussian sequence satisfying: EðX 0Þ ¼ 0; EðX 2
0Þ ¼ 1

and let rðkÞ ¼ EðX 0X kÞ: To apply Theorem 1, we need a Rosenthal type inequality
for partial sums of a function of Gaussian sequences. This is the subject of the
following lemma. The lemma handles the particular case when p ¼ 4: Let
Hk :¼ð�1ÞkpðkÞ=p denotes the kth Hermite’s polynomial (p is the density of a
standard normal distribution). We recall that the rank of a real function f is defined
by rankðf Þ ¼ inffk40jEðHkðX Þf ðX ÞÞa0g:

Lemma 1. Let f be a real function and assume thatX
kX0

jrðkÞjmo1;

where m ¼ infðrankðf Þ; rankðf 2ÞÞ: Then there exists a constant K ¼ Kðrð�ÞÞ such that

E
Xn

i¼1

f ðX iÞ � Ef ðX iÞ

�����
�����
4

pKðn2ðEf 2ðX iÞÞ
2
þ nkf k21Ef 2ðX iÞÞ:

As a consequence of the previous lemma and Theorem 1, we deduce that if r

belongs to L1 and if
R 1
0 N

1=4
½ 
 ðx; k � k2;FÞdxo1 where F is a class or family

bounded by 1, then (ii) is satisfied. Since the condition that r belongs to L1 is
sufficient for convergence of marginals (see for example [4]), we have then proved the
following corollary.

Corollary 3. Let ðX iÞ be a stationary Gaussian sequence such that EðX 0Þ ¼ 0; EðX 2
0Þ ¼

1 and let rðkÞ ¼ EðX 0X kÞ: Let F be a family of function bounded by 1. If

r 2 L1 and

Z 1

0

N
1=4
½ 
 ðx; k � k2;FÞdxo1
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then fZnðf Þ; f 2 Fgn40 converge in l1ðFÞ to a Gaussian, centered process G indexed

by F with covariance function given by

CovðGðf Þ;GðgÞÞ ¼ EðGðf ÞGðgÞÞ ¼
X
i2Z

Covðf ðX 0Þ; gðX iÞÞ:

In the particular case when F ¼ f1Gð�Þpx : x 2 Rg where G is some measurable
function, the condition that r belongs to L1 can be relaxed to the following one:

Xn

k¼1

jrmðkÞjo1;

where m is the Hermite rank of the family F: Indeed, in this case the moment
inequality of order 4 will be applied to F�F :¼ff � g; ðf ; gÞ 2 ðF;FÞg: Since for
f 2 F we have rankðf 2ÞXrankðf Þ it suffices to have

Pn
k¼1 jr

mðkÞjo1: In addition
N ½ 
ðx; k � k2;FÞp C

x2
for this family. Thus the result applies and this generalizes

Theorem 1 in [5] to the case when the distribution function of GðX Þ is discontinuous.
4. Proof of main results

For any expressions A and B let us write A%B if ApKB for some absolute
constant K ; and let ½x
 stand for the integer part of x:

4.1. Proof of Theorem 1

By hypothesis (3), for all integers k there exists a finite sequence of pairs of
functions ðf k

i ;D
k
i Þ1pipNðkÞ; where NðkÞ ¼ N ½ 
ð2

�k; k � k2;X ;FÞ such that:
�
 kDk
i k2;Xp2�k:
�
 8f 2 F there exists i such that jf � f k
i jpDk

i :
We set ðpkðf Þ;Dkðf ÞÞ the first pair ðf
k
i ;D

k
i Þ which satisfies: jf � f k

i jpDk
i : Let q0; k

and q be integers verifying q0pkpq: Following a technique used by Arcones [3] we
define a map from F into a finite subset of F by:

Tkðf Þ ¼ pk � pkþ1 � � � � � pqðf Þ:

For 1pipNðq0Þ let us define

Ei ¼ ff 2 F : Tq0ðf Þ ¼ f
q0
i g

then the sets Ei form a partition of F: For d40 we define

Fi;j ¼ fðf ; gÞ 2 F�Fjf 2 Ei; g 2 Ej and kf � gk2;Xpdg:

Let now L ¼ fði; jÞjF i;ja;g: For every pair in L we fix an element of F i;j and denote
this pair by ðFi;j ;Ci;jÞ:
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Let ðf ; gÞ be a pair satisfying kf � gk2;Xpd; then necessarily ðf ; gÞ 2 Fi;j for some
ði; jÞ 2 L: We write

f � g ¼ f � Tq0ðf Þ þ Tq0 ðf Þ � Fi;j þ Fi;j �Ci;j þCi;j � Tq0ðgÞ þ Tq0ðgÞ � g;

but Tq0 ðf Þ ¼ Tq0 ðFi;jÞ and Tq0 ðgÞ ¼ Tq0ðCi;jÞ; since f ;Fi;j are in Ei and g;Ci;j are in
Ej : Consequently

sup
kf�gk2;Xpd

jZnðf � gÞjp4 sup
f2F

jZnðf � Tq0ðf ÞÞj þ sup
ði;jÞ2L

jZnðFi;j �Ci;jÞj:

Take the expectation in the previous inequality to get

E sup
kf�gk2;Xpd

jZnðf � gÞj

" #
ð5Þ

p4E sup
f2F

jZnðf � Tq0 ðf ÞÞj

" #
þ E sup

ði;jÞ2L
jZnðFi;j �Ci;jÞj

" #
ð6Þ

:¼4E1 þ E2:

For the shake of brevity we put supf2FjZnðf Þj ¼ kZnðf ÞkF: In order to control the
two terms in Eq. (6) we shall use the following maximal inequality from Pisier,
combined with a chaining argument. For all random variables Z1;Z2; . . . ;ZN

E max
1pipN

jZij

����
����

	 

pN1=p max

1pipN
ðEjZij

pÞ
1=p: (7)

Control of E1: For f in F we write

f � Tq0ðf Þ ¼ f � Tqðf Þ þ
Xq

k¼q0þ1

Tkðf Þ � Tk�1ðf Þ

¼ f � pqðf Þ þ
Xq

k¼q0þ1

Tkðf Þ � Tk�1ðf Þ:

Therefore

E1:¼EkZnðf � Tq0ðf ÞÞkF

pEkZnðf � pqðf ÞÞkF þ
Xq

k¼q0þ1

EkZnðTkðf Þ � Tk�1ðf ÞÞkF

pE1;qþ1 þ 2
ffiffiffi
n

p
sup
f2F

EjDqðf Þj þ
Xq

k¼q0þ1

E1;k; ð8Þ

where

E1;k ¼ EkZnðTkðf Þ � Tk�1ðf ÞÞkF; q0 þ 1pkpq

E1;qþ1 ¼ EkZnDqðf ÞkF:

Now observe that Tkðf Þ � Tk�1ðf Þ ¼ Tkðf Þ � pk�1ðTkðf ÞÞ and Tkðf Þ takes values
on a finite set with cardinality less than or equal to NðkÞ: Using inequality (7)
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we can write

E1;kpNðkÞ1=p max
g2TkðFÞ

kZnðg � pk�1ðgÞÞkp: (9)

Since by hypothesis F is uniformly bounded, we may assume that f, pk�1ðf Þ and
Dqðf Þ are bounded by 1. Apply hypothesis (2) to h ¼ g � pk�1ðgÞ to get

kZnðhÞkpp21=pa1=pðpÞkhk2;X þ 21=pðbðpÞn1�p=2khkp�2
1 khk22;X Þ

1=p

p21=pa1=pðpÞ2�ðk�1Þ þ 21=pb1=p
ðpÞn1=p�1=22�2ðk�1Þ=p: ð10Þ

Combining (9) and (10) yields

E1;kp2a1=pðpÞNðkÞ1=p2�k þ 2b1=p
ðpÞNðkÞ1=p2�kðn�1=22kÞ

1�2=p:

A similar bound holds for E1;qþ1: Finally, using the fact that EjDqðf Þjp
CkDqðf Þk2;XpC2�q we obtain

E1%
ffiffiffi
n

p
2�q þ

Xqþ1
k¼q0þ1

E1;k

%
ffiffiffi
n

p
2�q þ a1=pðpÞ

Xqþ1
k¼q0þ1

NðkÞ1=p2�k þ b1=p
ðpÞ

Xqþ1
k¼q0þ1

NðkÞ1=p2�kðn�1=22kÞ
1�2=p

%
ffiffiffi
n

p
2�q þ a1=pðpÞ

Xqþ1
k¼q0þ1

NðkÞ1=p2�k þ b1=p
ðpÞðn�1=22qÞ

1�2=p
Xqþ1

k¼q0þ1

NðkÞ1=p2�k:

Hence

E1%
ffiffiffi
n

p
2�q þ cðpÞ

Xqþ1
k¼q0þ1

NðkÞ1=p2�kð1þ ðn�1=22qÞ
1�2=p

Þ: (11)

Control of E2: Noting that jLjpN2ðq0Þ and kFi;j �Ci;jk2;Xpd we get

E2 ¼ E sup
ði;jÞ2L

jZnðFi;j �Ci;jÞj

" #

pN2=pðq0Þ max
ði;jÞ2L

kZnðFi;j �Ci;jÞkp:

Again by Hðp;X Þ;

E2%N2=pðq0Þ a1=pðpÞdþ ðbðpÞn1�p=2d2Þ
1=p

� �
%cðpÞðNðq0ÞdÞ

2=p: ð12Þ
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Let W ðn; dÞ denote Eðsupkf�gk2;XodjZnðf � gÞjÞ: From (11) and (12) it follows that:

W ðn; dÞp4E1þE2

%
ffiffiffi
n

p
2�q þ cðpÞ

Xqþ1
k¼q0þ1

NðkÞ1=p2�kð1þ ðn�1=22qÞ
1�2=p

Þ

þ cðpÞðNðq0ÞdÞ
2=p:

Let q0 ¼ q0ðdÞ be the largest integer satisfying Nðq0Þpd�1=2: Without loss of
generality we may assume that q0ðdÞ goes to infinity as d goes to zero. Therefore, if
we set eðdÞ ¼

P1

k¼q0þ1
NðkÞ1=p2�k we have by Hðp;FÞ that eðdÞ ! 0 when d ! 0:

Take q ¼ qðn; dÞ ¼ ½ 1
2 log 2

log n
eðdÞ
 þ 1:With this choice q4q0 and

ffiffiffi
n

p
2�qo1 if n4nðdÞ

and for n4nðdÞ we have

W ðn; dÞ%
ffiffiffiffiffiffiffiffi
eðdÞ

p
þ cðpÞ

ffiffiffiffiffiffiffiffi
eðdÞ

p
þ cðpÞd1=p:

Consequently

lim
d!0

lim sup
n!þ1

W ðn; dÞ% lim
d!0

ffiffiffiffiffiffiffiffi
eðdÞ

p
þ cðpÞ

ffiffiffiffiffiffiffiffi
eðdÞ

p
þ cðpÞd1=p

¼ 0

and Theorem 1 is proved.
4.2. Proof of Theorem 2

We will follow the same lines of the proof of Theorem 1 with small modifications.
Therefore notations will also be similar.

Control of E1:

E1 ¼ EkZnðf � Tq0 ðf ÞÞkF

pEkZnððf � Tq0 ðf ÞÞ1FpM ÞkF þ EkZnðf � Tq0ðf Þ1F4MÞkF

:¼E1;M þ E 0
1;M : ð13Þ

On the one hand, since F 2 Lrþ1 we can write

E0
1;Mp2

ffiffiffi
n

p
EjF1F4M jp

ffiffiffi
n

p

Mr rðMÞ;

where rðMÞ goes to zero as M goes to þ1: On the other hand

E1;MpE Zn ðf � pqðf ÞÞ1FpM

� ��� ��
F

ð14Þ

þ
Xq

k¼q0þ1

EkZnððTkðf Þ � Tk�1ðf ÞÞ1FpM ÞkF

pEM
1;qþ1 þ 2

ffiffiffi
n

p
sup
f2F

EjDqðf Þj þ
Xq

k¼q0þ1

EM
1;k; ð15Þ
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where

EM
1;k ¼ EkZnððTkðf Þ � Tk�1ðf ÞÞ1FpMÞkF ; q0 þ 1pkpq;

EM
1;qþ1 ¼ EkZnDqðf Þ1FpMkF:

Note that when FpM ; we have that Tkðf Þ and Dqðf Þ are bounded above by M:
Apply hypothesis Hðp;X Þ to h :¼ðTkðf Þ � Tk�1ðf ÞÞ1FpM after applying (7) to obtain

EM
1;kpNðkÞ1=p max

f2F
khkp

p2a1=pðpÞNðkÞ1=p2�k þ 2b1=p
ðpÞNðkÞ1=p2�2k=pðn�1=2MÞ

1�2=p: ð16Þ

A similar bound holds to EM
1;qþ1 that is

EM
1;qþ1p2a1=pðpÞNðqÞ1=p2�q þ 2b1=p

ðpÞNðqÞ1=p2�2q=pðn�1=2MÞ
1�2=p:

Therefore

E1;M%
ffiffiffi
n

p
2�q þ

Xqþ1
k¼q0þ1

E1;k

%
ffiffiffi
n

p
2�q þ cðpÞ

Xqþ1
k¼q0þ1

NðkÞ1=p2�k þ cðpÞðn�1=2MÞ
1�2=p

Xqþ1
k¼q0þ1

NðkÞ1=p2�2k=p:

Taking M ¼ n1=2r; from the estimations of E1;M and E0
1;M ; we deduce that

E1%
ffiffiffi
n

p
2�q þ cðpÞ

Xqþ1
k¼q0þ1

NðkÞ1=p2�k

þ cðpÞðn�1=2MÞ
1�2=p

Xqþ1
k¼q0þ1

NðkÞ1=p2�2k=p þ r0ðnÞ; ð17Þ

where r0ðnÞ ! 0: Let R denote the third term in the previous equation, then

R:¼cðpÞðn�1=2MÞ
1�2=p

Xqþ1
k¼q0þ1

NðkÞ1=p2�2k=p

pcðpÞðn�1=2n1=2rÞ
1�2=p

Z 2�q0

2�q

N1=pðxÞx2=p�1 dx

pcðpÞnð�1=2þ1=2rÞð1�2=pÞ

Z 2�q0

2�q

N1=pðxÞx2=p�1 dx:
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We apply Hölder’s inequality to f ¼ N1=p; g ¼ x2=p�1 and 1=n ¼ 1� 1=rð1� 2=pÞ; to
obtainZ 2�q0

2�q

N1=pðxÞx2=p�1 dx

p
Z 2�q0

2�q

Nn=pðxÞdx

	 
1=n Z 2�q0

2�q

xð2=p�1Þ n
n�1 dx

	 
n�1
n

p
Z 2�q0

2�q

Nn=pðxÞdx

	 
1=n
ðr � 1Þ�1 x�rþ1

� �2�q0

2�q

� �n�1
n

p
Z 2�q0

2�q

Nn=pðxÞdx

	 
1=n
ðr � 1Þ�

n�1
n ð2�qÞ

ð1�2=pÞð1=r�1Þ:

It follows that

Rpcðp; rÞð
ffiffiffi
n

p
2�qÞ

ð1=r�1Þð1�2=pÞ

Z 2�q0

2�q

Nn=pðxÞdx

	 
1=n
: (18)

Combining (17) and (18) we obtain

E1%
ffiffiffi
n

p
2�q þ cðpÞ

Xqþ1
k¼q0þ1

NðkÞ1=p2�k

þ cðp; rÞð
ffiffiffi
n

p
2�qÞ

ð1=r�1Þð1�2=pÞ

Z 2�q0

2�q

Nn=pðxÞdx

	 
1=n
þ r0ðnÞ: ð19Þ

Control of E2: Similarly we have

E2 ¼ E sup
ði;jÞ2L

jZnðFi;j �Ci;jÞj

" #
pE2;M þ E 0

2;M :

Firstly, we write

E0
2;M :¼E sup

ði;jÞ2L
jZnððFi;j �Ci;jÞ1F4MÞj

" #

p4
ffiffiffi
n

p
EjF1F4M jprðnÞ; ð20Þ

where rðnÞ goes to zero. Secondly, applying Hðp;X Þ to ðFi;j �Ci;jÞ1FpM ; which
satisfies kðFi;j �Ci;jÞ1FpMk2;Xpd we obtain

E2;M :¼E sup
ði;jÞ2L

jZnðFi;j �Ci;jÞ1FpM j

" #

pN2=pðq0Þ a1=pðpÞdþ ðbðpÞn1�p=2Mp�2d2Þ
1=p

� �
ð21Þ

pcðpÞðNðq0ÞdÞ
2=p: ð22Þ

From (20) and (22) we conclude that

E2pcðpÞðNðq0ÞdÞ
2=p

þ rðnÞ: (23)
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End of the proof: Using that W ðn; dÞ ¼ Eðsupkf�gk2;XodjZnðf � gÞjÞ: Then (19)
together with (23) imply

W ðn; dÞp4E1þE2

%
ffiffiffi
n

p
2�q þ cðpÞ

Xqþ1
k¼q0þ1

NðkÞ1=p2�k þ cðpÞðNðq0ÞdÞ
2=p

þ rðnÞ

þ cðp; rÞð
ffiffiffi
n

p
2�qÞ

ð1=r�1Þð1�2=pÞ

Z 2�q0

2�q

Nn=pðxÞdx

	 
1=n
þ r0ðnÞ:

Putting b ¼ �ð1=r � 1Þð1� 2=pÞ and letting

q0 ¼ q0ðdÞ ¼ maxfk; k 2 N ;NðkÞpd�1=2g:

We may assume that q0ðdÞ goes to infinity as d goes to zero. Putting

eðdÞ ¼
Z 2�q0 ðdÞ

0

Nn=pðxÞdx

 !1=n

;

we have by (4) that eðdÞ ! 0 when d ! 0: Now choose q ¼ qðn; dÞ in such a way thatffiffiffi
n

p
2�q and ð

ffiffiffi
n

p
2�qÞ

ð1=r�1Þð1�2=pÞeðdÞ have the same order of magnitude, that is

q ¼ qðn; dÞ ¼
1

2 log 2
log

n

e1=ð1þbÞðdÞ

� �
þ 1:

With this choice q4q0 if n4nðdÞ; and in this case we have

W ðn; dÞ%e1=ð1þbÞðdÞð1þ cðp; rÞÞ þ cðpÞ
Xqþ1

k¼q0þ1

NðkÞ1=p2�k

þ cðpÞd1=p
þ rðnÞ þ r0ðnÞ:

It follows that:

lim
d!0

lim sup
n!þ1

P sup
kf�gk2;Xod

jZnðf � gÞj4e

 !
¼ 0

and this concludes the proof of Theorem 2.
4.3. Proof of Theorem 3

In the sequel all the inequalities are valid up to a multiplicative constant. First we
recall the following moment inequality which is a corollary of Theorem 6.3 in Rio [12].

Lemma 2. Let ðanÞnX0 be the sequence of strong mixing coefficients of the process

ðX iÞiX0: Let f be a measurable function. Then for all pX2:

EjZnðf Þj
ppaðpÞkf k

p
2;a þ bðpÞn1�p=2

Xn

i¼1

ði þ 1Þp�2aikf kp
1 (24)
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with
�
 Qf is the quantile function of jf ðX 0Þj:R 1

�
 kf k22;a ¼ 0 a

�1ðuÞQ2
f ðuÞdu:
�
 aðpÞpðCpÞp=2; bðpÞpðCpÞp:
We have assumed that: 8f 2 F; kf k1p1: Hence without loss of generality, we
may assume that 8f 2 F; 8k40; Dkðf Þp1: From (30) it follows that:

kZnðf ÞkppAðp; f Þ þ Bðp; f Þ

with

Aðp; f Þ%
ffiffiffi
p

p
kf k2;a

Bðp; f Þ%p2n�1=2þ1=pkf k1:

Applying Hölder’s inequality gives

kf k22;ap
Z 1

0

½a�1ðuÞ
1=ð1�yÞ du

	 
1�y Z 1

0

Q
2=y
f ðuÞdu

	 
y

p
1

1� y

Xn

i¼1

ði þ 1Þ1=ð1�yÞaðiÞ

 !1�y

kf k22=y

p
1

1� y

Xn

i¼1

ði þ 1Þ1=ð1�yÞaðiÞ

 !1�y

kf ky1:

Therefore

Aðp; f Þ%
ffiffiffi
p

p
kf k

y=2
1 ;

Bðp; f Þ%p2n�1=2þ1=pkf k1:

We proceed as in the proof of Theorem 1, and thus we keep the same notation.
Control of E1: We recall that if NðkÞ ¼ N ½ 
ð2

�k; k � k1;FÞ then

E1pEkZnDqðf ÞkF þ 2
ffiffiffi
n

p
sup
f2F

EjDqðf Þj

þ
Xq

k¼q0þ1

EkZnTkðf Þ � Tk�1ðf ÞkF ð25Þ

we also recall that

E1;k ¼ EkZnTkðf Þ � Tk�1ðf ÞkF; q0 þ 1pkpq;

E1;qþ1 ¼ EkZnDqðf ÞkF:

From the hypothesis and inequality (7) we have

E1;kpNðkÞ1=p max
g2TkðFÞ

kZnðg � pk�1ðgÞÞkp: (26)
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We now apply the moment inequality to g � pk�1ðgÞ which is bounded by Dk�1 gð Þ to
obtain

E1;kpNðkÞ1=p max
g2TkðFÞ

Aðp; g � pk�1ðgÞÞ þ max
g2TkðFÞ

Bðp; g � pk�1ðgÞÞ

� �
%NðkÞ1=p

ð
ffiffiffi
p

p
2�ky=2 þ p2n�1=2þ1=pÞ

%NðkÞ1=p
ð
ffiffiffi
p

p
2kð1�y=2Þ2�k þ p2ðn�1=22kÞ

1�2=p22k=p2�kÞ: ð27Þ

Therefore if p42; n�1=22q
X1; we get

E1;k%NðkÞ1=p ffiffiffi
p

p
2kð1�y=2Þ2�k þ ðn�1=22qÞp222k=p2�k

� �
:

Let p ¼ k þ logNðkÞ; then

E1;k%
ffiffiffi
k

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logNðkÞ

p� �
2kð1�y=2Þ2�k þ ðn�1=22qÞðk2 þ log2 NðkÞÞ2�k:

A similar bound holds for E1;qþ1: Hence if we assume thatZ 1

0

log2 N ½ 
ðe; k � k2;FÞd eo1

and Z 1

0

log1=2N ½ 
ðe; k � k2;FÞxy=2�1 deo1

for some 0oyo1: Then there exists a positive sequence lðkÞ satisfying
P

lðkÞo1;
such that for all k; q0pkpq þ 1; if n�1=22q

X1; we have

E1;k%ðn�1=22q þ 1ÞlðkÞ:

Since
R 1
0
log2 N ½ 
ðe; k � k2;FÞdeo1 implies

R 1
0
log1=2 N ½ 
ðe; k � k2;FÞey=2�1 deo1;

for some convenient y; we conclude that under the hypothesis of the theorem we
have: 8qXq0 such that n�1=22q

X1;

E1%
ffiffiffi
n

p
2�q þ 2n�1=22q

Xqþ1
k¼q0þ1

lðkÞ: (28)

Control of E2: Recall that jLjpN2ðq0Þ hence

E2 ¼ E sup
ði;jÞ2L

jZnðFi;j �Ci;jÞj

" #

pNðq0Þ max
ði;jÞ2L

kZnðFi;j �Ci;jÞk2:

Using a moment inequality of order 2,

EjZnðf Þj
2pCðy0; aÞkf ky

0

1 ;
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where 0oy0o1=2: Applying this to Fi;j �Ci;j which satisfies kFi;j �Ci;jk1pd we get

E2pCðy0; aÞNðq0Þd
y0=2: (29)

End of the proof: Let W ðn; dÞ denote Eðsupkf�gk1odjZnðf � gÞjÞ: Combining (28)
and (29) gives

W ðn; dÞ%
ffiffiffi
n

p
2�q þ 2n�1=22q

Xqþ1

k¼q0þ1
lðkÞ þ Cðy0; aÞNðq0Þd

y0=2:

Take y0 ¼ 1=3 for example and let q0 ¼ q0ðdÞ the greatest integer satisfying
Nðq0Þpd�1=12: Without loss of generality we may assume that q0ðdÞ tends to infinity
as d tends to zero. Therefore, if we set eðdÞ ¼

P1

k¼q0þ1
lðkÞ we have that eðdÞ ! 0

when d ! 0: Take q ¼ qðn; dÞ ¼ ½ 1
2 log 2

log n
eðdÞ
 þ 1: Note that q4q0 and

ffiffiffi
n

p
2�qo1

for n sufficiently large, say n4nðdÞ and hence for n4nðdÞ

W ðn; dÞ%e1=2ðdÞ þ Cðy0; aÞd1=12:

Consequently

lim
d!0

lim sup
n!þ1

W ðn; dÞ% lim
d!0

e1=2ðdÞ þ Cðy0; aÞd1=12 ¼ 0

and this conclude the proof of Theorem 3.
4.4. Other proofs

4.4.1. Proof of Corollary 1

From Rio [12] Theorem 6.3 we infer that

EjZnðf Þj
ppaðpÞ

Z 1

0

a�1ðuÞQ2
f ðuÞdu

	 
p=2

þ bðpÞn1�p=2

Z 1

0

½a�1ðuÞ
p�1Qp
f ðuÞdu; ð30Þ

where Qf is the quantile function of jf ðX 0Þj: Assume moreover that kf k1pM ; then
(30) can be written

EjZnðf Þj
ppaðpÞ

Z 1

0

a�1ðuÞQ2
f ðuÞdu

	 
p=2

þ bðpÞn1�p=2Mp�2

Z 1

0

½a�1ðuÞ
p�1Q2
f ðuÞdu:

Therefore, we can apply Theorem 1 with kf k22;X ¼
R 1
0 ½a

�1ðuÞ
p�1Q2
f ðuÞdu: Now

Hðp;FÞ implies that for f 2 F;
R 1
0 a

�1ðuÞQ2
f ðuÞduo1; and this implies (i) according

to Doukhan et al. (see [7]).
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Using Hölder’s inequality, we get, for any y in ð0; 1Þ;Z 1

0

½a�1ðuÞ
p�1Q2
f ðuÞdup

Z 1

0

½a�1ðuÞ
ðp�1Þ=ð1�yÞ du

	 
1�y Z 1

0

Q
2=y
f ðuÞdu

	 
y

:

Since
R 1
0
½a�1ðuÞ
q dupq

P
iX0ði þ 1Þq�1aðiÞ and Qf ðUÞ ¼

law
jf ðX Þj if U is uniformly

distributed on ½0; 1
; we deduce that

Z 1

0

½a�1ðuÞ
p�1Q2
f ðuÞdup

p � 1

1� y

X
iX0

ði þ 1Þðp�1Þ=ð1�yÞ�1aðiÞ

 !1�y

kf k2=y

� �2
:

Hence the following hypotheses are sufficient to imply (ii),

ðH1Þ
X
iX0

ði þ 1Þðp�1Þ=ð1�yÞ �1aðiÞo1;

ðH2Þ

Z 1

0

N
1=p
½ 
 ðx; k � k2=y;FÞdxo1

and this proves the second part of the corollary.

4.4.2. Proof of Corollary 2

First we recall the following result from Shao [13]. 8pX2; 9K ¼ K rð�Þ; pð Þ such
that for every measurable f,

EjZnðf Þj
ppK exp

X½log n


i¼0

rð2iÞ

 !
kf ðX Þk

p
2

þ Kn1�p=2 exp K
X½log n


i¼0

r2=pð2iÞ

 !
kf ðX Þkp

p:

In particular, if
P½log n


i¼0 rð2iÞo1; then expðK
P½log n


i¼0 r2=pð2iÞÞ is a slowly varying
function for every p: Hence, 8pX2; 8e409K ¼ Kðrð�Þ; p; eÞ such that for every
measurable f,

EjZnðf Þj
ppKkf ðX Þk

p
2 þ Kn1þe�p=2kf ðX Þkp

p: (31)

Arguing as in the proof of Theorem 2, it is easy to see that under (31) (ii) is
satisfied as soon as F, the envelop function belongs to Lrþ1; for some r41 andZ 1

0

N
1=pð1�1=rð1�2=pÞ�2e=pÞ
½ 
 ðx; k � k2;FÞdxo1:

Since p can be chosen arbitrary large and e arbitrary small, (ii) follows under our
hypothesis. The proof of (i) follows from Theorem 1 in [10] for example.

4.4.3. Proof of Lemma 1

We will take back the proof of a similar result given in Csörg +o and
Mielniczuk [5, inequality 3.2] with small changes. In particular, we recall
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that for k ¼ 1; 2; 3; 4;

EðSknÞ ¼
X

1pi1ai2���aikpn

E½ðf ðX i1Þ � Ef ðX i1ÞÞ � � � ðf ðX ik
Þ � Ef ðX ik

ÞÞ
:

We first assume that R :¼ supkX1 jrðkÞjo1=3; then we proceed as in [5] to handle the
general case.

EðS1nÞ ¼ nEðf ðX 0Þ � Ef ðX 0ÞÞ
4
%nkf k21Ef 2ðX iÞ:

EðS2nÞ ¼ 3
X

1pi1ai2pn

E ðf ðX i1 ÞÞ
2
ðf ðX i2ÞÞ

2
� �

þ 4
X

1pi1ai2pn

E½ðf ðX i1ÞÞ
3f ðX i2Þ
;

where f ¼ f � Ef ðX 0Þ: The first term is bounded by

n2ðEf 2ðX iÞÞ
2
þ n

Xn

i¼1

jrmðf 2ÞðiÞjEjf ðX iÞj
4

and the second one is bounded by

n
Xn

i¼1

jrmðf ÞðiÞjE1=2jf ðX iÞj
2E1=2jf ðX iÞj

6:

Hence

EðS2nÞ%n2ðEf 2ðX iÞÞ
2
þ nkf k21Ef 2ðX iÞ:

Using a lemma of Taqqu stated as Lemma 3 in [5], we have

EðS3nÞ%n3=2E1=2jf ðX iÞj
2E1=2jf ðX iÞj

4

%n2ðEf 2ðX iÞÞ
2
þ nEf 4ðX iÞ

%n2ðEf 2ðX iÞÞ
2
þ nkf k21Ef 2ðX iÞ:

Again by Lemma 3 we have

EðS4nÞ%n2E2jf ðX iÞj
2:

This completes the proof.
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