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of a limiting variance for Zn(f) does not imply the CLT. Secondly it does
not allow bracketing. We will provide a norm depending on P and on
the mixing structure of the sequence of observations, which coincides with
the usual £2(P)-norm in the independent case. Denoting by ~2,/?(~) the
so-defined normed space, the finite dimensional convergence of Zn to

some Gaussian vector with covariance function F holds on r
is the limiting covariance of Zn and is majorized by the square of the

Moreover, this norm allows bracketing and we will obtain
a generalization of Ossiander’s theorem by simply measuring the size of
the brackets with the instead of the £2(P)-norm.

2. STATEMENT OF RESULTS

Throughout the sequel, the underlying probability space (S2, T, IP) is
assumed to be rich enough in the following sense: there exists a random
variable U with uniform distribution over [0,1], independent of the sequence

For any numerical integrable function f, we set = / 
For any r &#x3E; 1, let £r (P) denote the class of numerical functions on (X, P)
such that ==  +oo.

Since is a strictly stationary sequence, the mixing coefficients
of the sequence are defined by j3n = where

Fo = I  0) and 0n = a(çi : i &#x3E; n). is called a j3-mixing
sequence if lim j3n = 0. Examples of such sequences may be found in
Davydov (1973), Bradley (1986) and Doukhan (1994).
We now need to recall the definitions of entropy and entropy with

bracketing.
Entropy. - Given a metric set (V, d), let .IV (6, V, d) be the minimum of

The entropy function H(6, V, d) is the logarithm of .J~( s, V, d).
Bracketing. - Let V be some linear subspace of the space of numerical

functions on (~ P). Assume that there exists some application A : V - R+
such that, for any f and any g in V,
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400 P. DOUKHAN, P. MASSART AND E. RIO

Assume that F C V. A pair ( f, g] of elements of V such that f  g is
called a bracket of V..F is said to satisfy (A.1) if, for any 6 &#x3E; 0, there
exists a finite collection of brackets of V such that

The bracketing number JU~ ~ (6, .~’) of .~’ with respect to ( V, A) is the
minimal cardinality of such collections S(6). The entropy with bracketing

(8, 0, A) is the logarithm of (8, 0) . When A is a norm, denoting by
dA the corresponding metric, it follows from (2.1) and (2.2) that

We now define a new norm, which emerges from a covariance inequality
due to Rio (1993).

Notations. - Throughout the sequel, we make the convention that /30 = 1.
If (un)n2::0 is a nonincreasing sequence of nonnegative real numbers,
we denote by u(.) the rate function defined by u ( t) = For any
nonincreasing function denote the inverse function of 

For any f in we denote by Qy the quantile function of 1!(ço)l,
which is the inverse of the tail function t - 1P(1!(ço)1 ] &#x3E; t).

Let denote the sequence of strong mixing coefficients of 
It follows from (1.5) that Q~(i6) ~ /~(2~). Hence, by Theorem 1.2 in
Rio (1993), the following result holds.

PROPOSITION 1 [Rio, 1993]. - Assume that the 03B2-mixing coefficients of
satisfy the summability condition

Let G2,~(P) denote the class of numerical functions f such that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques

⼀ 0
⼀

⼀

∞
xO >① .

x 0 -f)( e
< x 0 .1 1 ←←

a ( x
=

0
σ

x π

- 州( cx
。

∞

← nta
…tnxx

.

t

∞

—xA , B)2 ≤β (A , B ) .

∞

⼀



401ABSOLUTELY REGULAR EMPIRICAL PROCESSES

Then, for any f in ,C~,~ (P),

and denoting by T ( f, f ) the sum of the series we

tEZ
have:

Remark. - Note that ~,~~ = J /~i /3-1(u)du. So, under condition (2.4),n&#x3E;o °
GZ,p(P) contains the space G~(P) of bounded functions. Moreover, we
will prove in section 6 the following basic lemma.

LEMMA 1. - Assume that the sequence of 03B2-mixing coefficients of
satisfies condition (2.4). Then, G2,~(P~, equipped with ~~y~z,~ is

a normed subspace of GZ(P) satisfying (2.1), and for any f in G2,~(P),
~ 

We now define the corresponding weak space as follows. Let

B(t) = J /’c 0 For any measurable numerical function f, we set

Throughout,the sequel, denotes the space of measurable functions

f on X such that A2,~(/)  +00. Clearly ,CZ,p(P) C Az,p(P) and

Now we compare the so defined spaces with the Orlicz spaces of

functions, and with the so-called weak Orlicz spaces of functions.

Comparison with Orlicz spaces

Let 03A6 be the class of increasing functions

j) ~ (~ : R~ 2014~R~:~~ convex and differentiable,
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402 P. DOUKHAN, P. MASSART AND E. RIO

For any ~ E ~, we denote by G~,2(P) the space of functions

~,2(~P) is equipped with the following norm :

This norm is the usual Orlicz norm associated with the function x - 

Let us now define the corresponding weak Orlicz spaces. For any cp in
~, let A~(P) be the space of measurable functions f on X such that

or equivalently such that

Of course, by Markov’s inequality, 
The purpose of the following lemma is to relate the £2,,B-norm with

1I./lcjJ,2 and 
LEMMA 2. - For any element ~ of ~P, let define the dual function 4J* by

~*~y~ = sup ~~x~~~ If
x&#x3E;o

then

and so

then

and so
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403ABSOLUTELY REGULAR EMPIRICAL PROCESSES

The main result

In a recent paper, Doukhan, Massart and Rio ( 1994) prove that, for
any finite subset 0 c ,C2,~(P), the convergence of ~Zn(g) : g E ~~
to a Gaussian random vector with covariance function r holds true.
Moreover, a counterexample shows that fidi convergence may fail to hold
if G  L2,03B2(P). So, it is quite natural to assume that 0 c L2,03B2(P). Now
the question raises whether an integrability condition on the metric entropy
with bracketing in ,C2,~ (P) is sufficient to imply the uniform CLT. In fact
the answer is positive, as shown by the following theorem.
THEOREM 1. - Let be a strictly stationary and ,3-mixing sequence

of random variables with common marginal distribution P. Assume that
the sequence satisfies (2.4). Let .~’ be a class of functions f ,
.~ c ,C2"~ (P). Assume that the entropy with bracketing with respect to

which we denote by H,~ (b, 0), satisfies the integrability condition

Then,
(i) the series ~ Cov ( f (~o), f (~t)) is absolutely convergent over .~’ to a

tEZ

nonnegative quadratic form I’( f, f), and

(ii) There exists a sequence of Gaussian processes indexed by
.~’ with covariance function r and a. s. uniformly continuous sample paths
such that

Applications of Theorem 1

1. Orlicz spaces. - Let § be some element such that the mixing
coefficients /3n satisfy

and suppose that F C ~,2~). Then (2.9a) holds [see Rio, 1993]. Hence
it follows from Lemma 2 that F satisfies the assumptions of Theorem 1 if
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404 P. OOUKHAN, P. MASSART AND E. RIO

the metric entropy with bracketing of 0 in fulfills the integrability
condition

For example, if ~(~) == xr, G~,z(P) _ !).t!~,2 is the usual norm

and (S.I) means that the series is convergent.
n&#x3E;o

As an application of (2.11), we can derive the following striking result.
Assume that the mixing coefficients satisfy !3k = O(bk) for some b in ]0, 1 [.
There exists some s &#x3E; 0 such that (S.I) holds with

We notice that G~,2(P) is the space (P) of numerical functions f
such that  oo and it is equipped with a norm which is
equivalent to the usual Orlicz norm in this space. Hence, by Lemma 2 and
Theorem 1, the uniform CLT for the empirical process holds as soon as the
entropy with bracketing of F in L2 ~g+ (P) satisfies the usual integrability
condition.

2. Weak Orlicz spaces. - Let § be some element of 03A6 such that
~ 2014~ x-r cjJ(x) is nondecreasing for some r &#x3E; 1. Then, (2.9b) is equivalent
to the summability condition of Herrndorf ( 1985) on the mixing coefficients:

It follows from Lemma 2 that F c 11~(P) satisfies the assumptions of
Theorem 1 if the entropy with bracketing of F with respect to A~(.) verifies

Some calculations (cf. Rio, 1993) show that (S.2) is stronger than (S.I). For
example, if 03C6(x) = xr for some r &#x3E; 1, is the usual weak L2r(P)-
space equipped with the usual weak norm A2r(.) and (S.2) is

equivalent to the convergence of the series while (S. I) holds
_ 

n&#x3E;0

iff the series ~ n~~~’‘-~~,C3~ is convergent, which is a weaker condition.
n&#x3E;0

We refer the reader to application 3 of Theorem 1 in Doukhan, Massart
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405ABSOLUTELY REGULAR EMPIRICAL PROCESSES

and Rio (1994), for more about comparisons with the previous conditions
of Ibragimov ( 1962) and Herrndorf ( 1985).

3. Conditions involving the envelope function of F. - Let G c 
be a class of functions satisfying the entropy condition

Let F be some element of G2,R(P) satisfying F &#x3E; 1 and .~’ == {gF : g E ~}.
Both Theorem 1 and the elementary inequality ~~gF~~z,p  
imply the uniform CLT.

4. Conditions involving the L2(P)-entropy of 0. - In this subsection,
we consider the following problem: given a class .~’ c with metric

entropy with bracketing Hz ( . ) with respect to the metric induced by ~.~2.
we want to find a condition on the mixing coefficients and on the £2(P)-
entropy implying (2.10). Throughout application 4, we assume that the
envelope function of F is in A2r(P), for some r where we
make the convention that Aoo(P) = We shall prove in appendix
C that condition (2.10) is satisfied if any of the three following conditions
is fulfilled:

In particular, (2.15) and (2.16) are satisfied if /3n = O(n-b), 
0(~"~) with b(l - () &#x3E; r/(r - 1). Also (2.17) holds whenever

/3n = and is the class of quadrants, which improves
in this special case on Corollary 3 of Arcones and Yu (1994).
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The outline of the paper is as follows: in section 3, the technique of
blocking for mixing processes is applied to establish an upper bound on
the mean of the supremum of Zn over a finite class of bounded functions.
Next, in section 4, we show how both the upper bound of section 3
and a generalization of Ossiander’s method for proving tightness of the
empirical process yield the stochastic equicontinuity of {~(/) : f E 0)
under the assumptions of Theorem 1. In section 5, we weaken the
bracketing conditions, in the spirit of Andersen et al. ( 1988). The stochastic
equicontinuity of Zn is ensured in the bounded case by the following result,
which is in fact the crucial technical part of the paper. In what follows,
for any positive (non necessarily measurable) random element X, E(X)
denotes the smallest expectation of the (measurable) random variables
majorizing X.

THEOREM 2. - Let a be a positive number and let C ,C2,,~ be a class of
functions satisfying the condition ~f~2,03B2  a for any f in 0a. Suppose that

fulfills (2.10) and that for some M &#x3E; 1, f I  M for any function f
in 0a. Then there exists a constant K, depending only on () = ( ~ ,Q ) 1 /2

n&#x3E;_0
such that, for any positive integer q, 

-

3. A MAXIMAL INEQUALITY FOR 03B2-MIXING PROCESSES
INDEXED BY FINITE CLASSES OF FUNCTIONS

In order to establish the stochastic equicontinuity of the empirical process
~ Zn ( f ) : f E 0), we need to control the mean of the supremum of the
empirical process Zn ( . ) over a finite class of bounded functions. This
control is performed via the approximation of the original process by
conveniently defined independent random variables. The main argument is
Berbee’s coupling lemma.

LEMMA [Berbee (1979)]. - Let X and Y be two r.v.’s taking their
values in . Borel spaces S1 and S2 respectively and let U be a r.v. with

uniform distribution over [0, 1], independent of (X, Y). Then, there exists a
random variable Y* = f (X, Y, U), where f is a measurable function from
81 x 52 x [0, 1] into 82, such that:

. Y* is independent of X and has the same distribution as Y.

. Y* ) _ {3, where {3 denotes the ,~-mixing coefficient between the
a-fields generated by X and Y respectively.
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