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Invariance principles for absolutely
regular empirical processes
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ABSTRACT. - Let be a strictly stationary sequence of random
n

variables with marginal distribution P. Let Zn = n-1/2 ~(6~~ _ p) denote
i

the centered and normalized empirical measure. Assume that the sequence
of fl-mixing coefficients of satisfies the summability

condition L (3n  +00. Define the mixing rate function /?(.) by (3( t) = 
Tt&#x3E;0

if t &#x3E; 1, and {3(t) = 1 otherwise. For any numerical function f, we denote
by Q~ the quantile function of If(ço)l. We define a new norm for f by

where /3-1 denotes the càdlàg inverse of the monotonic function /3 ( . ). This
norm coincides with the usual in the independent case. We
denote by jC2,/?(~) the class of numerical functions with ~/~2,/?  +0oo.
Let F be a class of functions, F C /~2,/3(~). In a recent paper, the authors
have shown that the finite dimensional convergence f E 0)
to a Gaussian random vector holds.
The main result of this paper is that a functional invariance principle

in the sense of Donsker holds f E 0) if the entropy with
bracketing of F in the sense of Dudley with respect to ~. ~2,/3 satisfies
some integrability condition. This result generalizes Ossiander’s theorem
( 1987) for independent observations.
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RÉSUMÉ. - Soit une suite strictement stationnaire de variables

aléatoires de loi marginale P. Soit Zn = n-1/2(03B403BEi - P) la mesure

~ ~ 
i

empirique normalisée et centree. On suppose que la suite est (3-
melangeante, de coefficients de (3-mélange (3n en série sommable. On lui
associe la fonction de mélange /?(.) définie par ,~ (t) = (3[t] si t 2: 1 et

(3(t) = 1 sinon. Pour toute fonction numerique f, on note Qy la fonction
de quantile de Nous definissons une nouvelle norme pour f par

ou /3-1 désigne 1’ inverse càdlàg de la fonction décroissante /?(.). Cette
norme coincide avec la norme usuelle de L2(P) dans le cas independant.
On note alors L2,03B2(P) l’espace des fonctions numériques de norme 11.//2,{3
finie. Soit F une classe de fonctions de ~2,/?(P). Dans un article recent, les
auteurs ont montré la convergence vers un vecteur gaussien des marginales

f E 0) de dimension finie.
Dans cet article, nous démontrons un principe d’invariance fonctionnel au

sens de Donsker pour {~(/) : f E sous une condition d’ integrabilite
de l’entropie avec crochets de .~’ par rapport a la norme ~.~2,~. Ce théorème
généralise celui d’ Ossiander (1987) pour des variables indépendantes.

1. INTRODUCTION

Let be a strictly stationary sequence of random elements of a
Polish space X , with common distribution P. Let us denote by Pn the

n

empirical probability measure Pn = V bf.i and then by Zn the centered
%==!

and normalized empirical measure Zn = P). Let F be a class
of functions of £2(P).

Independent observations

Let us assume the variables to be independent. The theory
of uniform central limit theorems (CLT) for the empirical process

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



395ABSOLUTELY REGULAR EMPIRICAL PROCESSES

E 0) was historically motivated by the classical example
.~’ == {][]_oo~]~ to justify the heuristic of Doob for explaining
the convergence of the Kolmogorov-Smirnov statistics. The first result in
this context is due to Donsker ( 1952). The first attempts at generalizing this
theorem concerned classes of sets, that is when Dudley
(1966) extended Donsker’s result to the multivariate empirical distribution
function, which corresponds to the case where C is the class of quadrants
(actually, Dudley also provided a more rigorous formulation of Donsker’ s
theorem). The problem is that in the multidimensional situation, several
classes of sets are candidate to extend the class of intervals of the real

line. In that spirit, several new results were established in the seventies.
Bolthausen (1978) proved the uniform CLT for the class of convex subsets
of the unit square, Sun (1976) and Révész (1976) studied the CLT for
classes of subsets with a-differentiable boundaries.

In his landmark paper, Dudley (1978) has unified these various results:
he gave a precise definition of the uniform CLT property in terms of
weak convergence of the empirical process in the (generally non separable)
Banach space to the Gaussian process with the same covariance

structure and almost sure uniformly continuous (with respect to the

covariance pseudo-metric) sample paths. The existence of such a regular
version of the Gaussian process is now refered to as the P-pregaussian
property and the existence of a uniform CLT as the P-Donsker property.
He also provided two different sufficient conditions on C for the P-Donsker

property to hold. The first one is of combinatorial type, namely C is

a Vapnik-Chervonenkis class of sets. In that case, the uniform CLT is

universal in the sense that it holds for all P. The second one is a condition

of integrability on the metric entropy with inclusion of C [with respect
to the Since that time the theory of CLT’s for empirical
processes has been developped mainly in the direction of unbounded classes
of functions .F. The P-Donsker property is equivalent to the fact that .F
is totally bounded and Zn is asymptotically equicontinuous [this tightness
criterion may be found in Dudley (1984)]. So the main challenge is to

provide minimal geometric conditions on the class .~’ ensuring the tightness
of Zn . Gine and Zinn ( 1984) pointed out that F is a P-Donsker class if F is

P-pregaussian and satisfies some extra condition ensuring that the empirical
process Zn may be controlled on the small balls. Two main techniques
have been proposed to solve this problem. The guiding idea has been

Dudley’s criterion (1967) which ensures the stochastic equicontinuity of a
Gaussian process ~G(t), t E T~ if the metric entropy function H(., T, d)
with respect to the pseudo-metric d(s, t) = Var (G(s) - G(t)) satisfies

Vol. 31, n° 2-1995.



396 P. DOUKHAN, P. MASSART AND E. RIO

the integrability condition

Specializing to the Gaussian process with the same covariance structure as
Zn, we have T = .~’ and d( f, g) = dp ( f, g) = Kolchinskii
(1981) and Pollard (1982) proposed independently a sufficient condition
analogous to ( 1.1 ) but involving the universal entropy function which
is defined as the envelope function of the H(., 0, d~*~) when Q is any
probability measure. On the other hand, Pollard (1982) was able to relax
the boundedness condition on 0, assuming only that sup If I is bounded

by some function F in £2(P), Another approach is to consider entropy
with bracketing, which is the natural extension to functions of entropy with
inclusion, used by Dudley (1978) for classes of sets. It has taken quite a long
time before one realizes that the £2(P)-norm was still the right norm to
consider in order to measure the size of the brackets. In fact the first results
in that direction were involving the [see for instance Dudley
(1984)]. Using a delicate adaptive truncation procedure, Ossiander (1987)
proved that a sufficient condition for .~’ to be a P-Donsker class is that

where Hj j ( . , 0, d p ) denotes the entropy with bracketing function with

respect to d p. Next, Andersen et al. (1988) have weakened the bracketing
condition [controling the size of the brackets in a weak /:2(P)-space]
and also used majorizing measure instead of metric entropy [actually it
is known since Talagrand (1987) that the P-pregaussian property may be
characterized in terms of the existence of a majorizing measure].
We see that the plays a crucial role in this theory in

the independent case. In fact, on the one hand the finite dimensional

convergence of Zn to a Gaussian random vector holds whenever .~’ is
included in L2(P) and on the other hand the geometry of F with respect to
the characterizes the P-pregaussian property and is involved
in the description of tightness of the empirical process.

Weakly dependent observations

There are several notions of weak dependence. It is quite natural when
dealing with empirical processes to consider mixing type conditions which
are defined in terms of coefficients measuring the asymptotic independence

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



397ABSOLUTELY REGULAR EMPIRICAL PROCESSES

between the a-fields of the past and the future generated by Of

course different mixing coefficients have been introduced, corresponding
to different ways of measuring the asymptotic independence. To our
knowledge, all these coefficients are nondecreasing with respect to these
a-fields. Hence, has smaller mixing coefficients than the initial
sequence.

Let us recall the definitions of some classical mixing coefficients.

Rosenblatt (1956) introduced the strong mixing coefficient a (A, B) between
two a-fields A and B :

The absolutely regular mixing coefficient was defined by
Volkonskii and Rozanov (1959) [see also Kolmogorov and Rozanov (1960)].
Namely

where the supremum is taken over all the finite partitions (Ai)iEI and
respectively A and B measurable. This coefficient is also called

fl-mixing coefficient between A and B. Ibragimov (1962) introduced the
p-mixing coefficient between A and B:

The following relations between these coefficients hold:

The Markov chains for instance are geometrically p-mixing under the
Doblin recurrence condition [Doob (1953)] and ,Q-mixing under the

milder Harris recurrence condition if the underlying space is finite

[Davydov (1973)]. Mokkadem (1990) obtains sufficient conditions for Rd-
valued polynomial autoregressive processes to be Harris recurrent and

geometrically absolutely regular. He also shows that these processes may
fail to be 03C6-mixing.
As in the independent case, the first results for weakly dependent

observations were concerned with the (possibly multivariate) empirical
distribution function. Berkes and Philipp (1977) [resp. Philipp and

Vol. 31, n° 2-1995.
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Pinzur (1980)] generalized Donsker’s theorem for the univariate (resp. d-
dimensional) empirical distribution function of a strongly mixing stationary
sequence with an = O(n-a), a &#x3E; 4 + 2d. Next, Yoshihara ( 1979) weakened
the strong mixing assumption of Berkes and Philipp: he proved that, if
the strong mixing coefficients ( an ) n &#x3E; o of the sequence satisfy
an = O(n-a), for some a &#x3E; 3, then the uniform CLT for the univariate
distribution function holds. Dhompongsa ( 1984) extended Yoshihara’s result
to the multivariate empirical distribution function. For Rd-valued random
variables, he obtained the uniform CLT for the multivariate empirical
distribution function under the condition an = 0(?~), a &#x3E; d + 2, which
is the best known result for the class of quadrants in the strong mixing case.
Doukhan, Leon and Portal (1987) studied classes of functions embedded

in Hilbertian spaces in the strong mixing case. Massart (1987) proved
a uniform CLT for strongly or uniformly mixing empirical processes in
a more general framework: if the class F has a finite dimension d of
,C1 (P)-entropy with bracketing, and if the strong mixing coefficients satisfy
an = O(n-a) for some a &#x3E; 32d+ 3, then the uniform CLT holds. Moreover,
nonpolynomial covering numbers are allowed in the geometrically mixing
case. Some related results in the setting of polynomial bracketing covering
numbers [with respect to £2(P)] may be found in Andrews and Pollard
(1994). Looking carefully at these papers, we see that, for classes F with
finite dimension of entropy, some polynomial rate of decay of the strong
mixing coefficients is required and that this rate depends on the entropy
dimension of F.

By contrast, Arcones and Yu (1994) have established a uniform CLT
for absolutely regular empirical processes indexed by Vapnik-Chervonenkis
subgraph classes of functions under some polynomial rate of decay of
the /3-mixing coefficients not depending on the entropy dimension of
the class. This makes feasible the existence of a uniform CLT for 03B2-
mixing empirical processes which does not require a geometrical decay of
the mixing coefficients. Actually since /?-mixing allows decoupling (see
Berbee’s lemma in section 3 below), it is much easier to work with this
notion rather than with strong mixing. Moreover it still covers a wide class
of examples (from this point of view, the p-mixing may happen to be too
restrictive). Hence, in this paper, we shall deal with fl-mixing, which seems
to be a good compromise.
Our approach consists in exhibiting a norm which plays the role of the

£2 (P)-norm in the independent setting. At a first glance, one could think
that the Hilbertian pseudonorm associated with the limiting covariance of
Zn should be a good candidate. It has two main defaults. First, the existence
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of a limiting variance for Zn(f) does not imply the CLT. Secondly it does
not allow bracketing. We will provide a norm depending on P and on
the mixing structure of the sequence of observations, which coincides with
the usual £2(P)-norm in the independent case. Denoting by ~2,/?(~) the
so-defined normed space, the finite dimensional convergence of Zn to

some Gaussian vector with covariance function F holds on r

is the limiting covariance of Zn and is majorized by the square of the
Moreover, this norm allows bracketing and we will obtain

a generalization of Ossiander’s theorem by simply measuring the size of
the brackets with the instead of the £2(P)-norm.

2. STATEMENT OF RESULTS

Throughout the sequel, the underlying probability space (S2, T, IP) is

assumed to be rich enough in the following sense: there exists a random
variable U with uniform distribution over [0,1], independent of the sequence

For any numerical integrable function f, we set = / 
For any r &#x3E; 1, let £r (P) denote the class of numerical functions on (X, P)
such that ==  +oo.

Since is a strictly stationary sequence, the mixing coefficients
of the sequence are defined by j3n = where

Fo = I  0) and 0n = a(çi : i &#x3E; n). is called a j3-mixing
sequence if lim j3n = 0. Examples of such sequences may be found in

Davydov (1973), Bradley (1986) and Doukhan (1994).
We now need to recall the definitions of entropy and entropy with

bracketing.
Entropy. - Given a metric set (V, d), let .IV (6, V, d) be the minimum of

The entropy function H(6, V, d) is the logarithm of .J~( s, V, d).
Bracketing. - Let V be some linear subspace of the space of numerical

functions on (~ P). Assume that there exists some application A : V - R+
such that, for any f and any g in V,

Vol. 31, n° 2-1995.
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Assume that F C V. A pair ( f, g] of elements of V such that f  g is
called a bracket of V..F is said to satisfy (A.1) if, for any 6 &#x3E; 0, there
exists a finite collection of brackets of V such that

The bracketing number JU~ ~ (6, .~’) of .~’ with respect to ( V, A) is the

minimal cardinality of such collections S(6). The entropy with bracketing
(8, 0, A) is the logarithm of (8, 0) . When A is a norm, denoting by

dA the corresponding metric, it follows from (2.1) and (2.2) that

We now define a new norm, which emerges from a covariance inequality
due to Rio (1993).

Notations. - Throughout the sequel, we make the convention that /30 = 1.
If (un)n2::0 is a nonincreasing sequence of nonnegative real numbers,
we denote by u(.) the rate function defined by u ( t) = For any

nonincreasing function denote the inverse function of 

For any f in we denote by Qy the quantile function of 1!(ço)l,
which is the inverse of the tail function t - 1P(1!(ço)1 ] &#x3E; t).

Let denote the sequence of strong mixing coefficients of 
It follows from (1.5) that Q~(i6) ~ /~(2~). Hence, by Theorem 1.2 in
Rio (1993), the following result holds.

PROPOSITION 1 [Rio, 1993]. - Assume that the 03B2-mixing coefficients of
satisfy the summability condition

Let G2,~(P) denote the class of numerical functions f such that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Then, for any f in ,C~,~ (P),

and denoting by T ( f, f ) the sum of the series we

tEZ
have:

Remark. - Note that ~,~~ = J /~i /3-1(u)du. So, under condition (2.4),
n&#x3E;o °

GZ,p(P) contains the space G~(P) of bounded functions. Moreover, we
will prove in section 6 the following basic lemma.

LEMMA 1. - Assume that the sequence of 03B2-mixing coefficients of
satisfies condition (2.4). Then, G2,~(P~, equipped with ~~y~z,~ is

a normed subspace of GZ(P) satisfying (2.1), and for any f in G2,~(P),
~ 

We now define the corresponding weak space as follows. Let

B(t) = J /’c 0 For any measurable numerical function f, we set

Throughout,the sequel, denotes the space of measurable functions

f on X such that A2,~(/)  +00. Clearly ,CZ,p(P) C Az,p(P) and

Now we compare the so defined spaces with the Orlicz spaces of

functions, and with the so-called weak Orlicz spaces of functions.

Comparison with Orlicz spaces

Let 03A6 be the class of increasing functions

j) ~ (~ : R~ 2014~R~:~~ convex and differentiable,

Vol. 31, n° 2-1995.
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For any ~ E ~, we denote by G~,2(P) the space of functions

~,2(~P) is equipped with the following norm :

This norm is the usual Orlicz norm associated with the function x - 

Let us now define the corresponding weak Orlicz spaces. For any cp in
~, let A~(P) be the space of measurable functions f on X such that

or equivalently such that

Of course, by Markov’s inequality, 
The purpose of the following lemma is to relate the £2,,B-norm with

1I./lcjJ,2 and 

LEMMA 2. - For any element ~ of ~P, let define the dual function 4J* by
~*~y~ = sup ~~x~~~ If

x&#x3E;o

then

and so

then

and so

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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The main result

In a recent paper, Doukhan, Massart and Rio ( 1994) prove that, for
any finite subset 0 c ,C2,~(P), the convergence of ~Zn(g) : g E ~~
to a Gaussian random vector with covariance function r holds true.

Moreover, a counterexample shows that fidi convergence may fail to hold
if G  L2,03B2(P). So, it is quite natural to assume that 0 c L2,03B2(P). Now
the question raises whether an integrability condition on the metric entropy
with bracketing in ,C2,~ (P) is sufficient to imply the uniform CLT. In fact
the answer is positive, as shown by the following theorem.

THEOREM 1. - Let be a strictly stationary and ,3-mixing sequence
of random variables with common marginal distribution P. Assume that
the sequence satisfies (2.4). Let .~’ be a class of functions f ,
.~ c ,C2"~ (P). Assume that the entropy with bracketing with respect to

which we denote by H,~ (b, 0), satisfies the integrability condition

Then,
(i) the series ~ Cov ( f (~o), f (~t)) is absolutely convergent over .~’ to a

tEZ

nonnegative quadratic form I’( f, f), and

(ii) There exists a sequence of Gaussian processes indexed by
.~’ with covariance function r and a. s. uniformly continuous sample paths
such that

Applications of Theorem 1

1. Orlicz spaces. - Let § be some element such that the mixing
coefficients /3n satisfy

and suppose that F C ~,2~). Then (2.9a) holds [see Rio, 1993]. Hence
it follows from Lemma 2 that F satisfies the assumptions of Theorem 1 if

Vol. 31, n ° 2-1995.
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the metric entropy with bracketing of 0 in fulfills the integrability
condition

For example, if ~(~) == xr, G~,z(P) _ !).t!~,2 is the usual norm

and (S.I) means that the series is convergent.
n&#x3E;o

As an application of (2.11), we can derive the following striking result.
Assume that the mixing coefficients satisfy !3k = O(bk) for some b in ]0, 1 [.
There exists some s &#x3E; 0 such that (S.I) holds with

We notice that G~,2(P) is the space (P) of numerical functions f
such that  oo and it is equipped with a norm which is
equivalent to the usual Orlicz norm in this space. Hence, by Lemma 2 and
Theorem 1, the uniform CLT for the empirical process holds as soon as the
entropy with bracketing of F in L2 ~g+ (P) satisfies the usual integrability
condition.

2. Weak Orlicz spaces. - Let § be some element of 03A6 such that
~ 2014~ x-r cjJ(x) is nondecreasing for some r &#x3E; 1. Then, (2.9b) is equivalent
to the summability condition of Herrndorf ( 1985) on the mixing coefficients:

It follows from Lemma 2 that F c 11~(P) satisfies the assumptions of
Theorem 1 if the entropy with bracketing of F with respect to A~(.) verifies

Some calculations (cf. Rio, 1993) show that (S.2) is stronger than (S.I). For
example, if 03C6(x) = xr for some r &#x3E; 1, is the usual weak L2r(P)-
space equipped with the usual weak norm A2r(.) and (S.2) is

equivalent to the convergence of the series while (S. I) holds
_ 

n&#x3E;0

iff the series ~ n~~~’‘-~~,C3~ is convergent, which is a weaker condition.
n&#x3E;0

We refer the reader to application 3 of Theorem 1 in Doukhan, Massart
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and Rio (1994), for more about comparisons with the previous conditions
of Ibragimov ( 1962) and Herrndorf ( 1985).

3. Conditions involving the envelope function of F. - Let G c 
be a class of functions satisfying the entropy condition

Let F be some element of G2,R(P) satisfying F &#x3E; 1 and .~’ == {gF : g E ~}.
Both Theorem 1 and the elementary inequality ~~gF~~z,p  
imply the uniform CLT.

4. Conditions involving the L2(P)-entropy of 0. - In this subsection,
we consider the following problem: given a class .~’ c with metric

entropy with bracketing Hz ( . ) with respect to the metric induced by ~.~2.
we want to find a condition on the mixing coefficients and on the £2(P)-
entropy implying (2.10). Throughout application 4, we assume that the
envelope function of F is in A2r(P), for some r where we

make the convention that Aoo(P) = We shall prove in appendix
C that condition (2.10) is satisfied if any of the three following conditions
is fulfilled:

In particular, (2.15) and (2.16) are satisfied if /3n = O(n-b), 
0(~"~) with b(l - () &#x3E; r/(r - 1). Also (2.17) holds whenever

/3n = and is the class of quadrants, which improves
in this special case on Corollary 3 of Arcones and Yu (1994).

Vol. 31, n° 2-1995.
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The outline of the paper is as follows: in section 3, the technique of
blocking for mixing processes is applied to establish an upper bound on
the mean of the supremum of Zn over a finite class of bounded functions.
Next, in section 4, we show how both the upper bound of section 3
and a generalization of Ossiander’s method for proving tightness of the
empirical process yield the stochastic equicontinuity of {~(/) : f E 0)
under the assumptions of Theorem 1. In section 5, we weaken the

bracketing conditions, in the spirit of Andersen et al. ( 1988). The stochastic
equicontinuity of Zn is ensured in the bounded case by the following result,
which is in fact the crucial technical part of the paper. In what follows,
for any positive (non necessarily measurable) random element X, E(X)
denotes the smallest expectation of the (measurable) random variables
majorizing X.

THEOREM 2. - Let a be a positive number and let C ,C2,,~ be a class of
functions satisfying the condition ~f~2,03B2  a for any f in 0a. Suppose that

fulfills (2.10) and that for some M &#x3E; 1, f I  M for any function f
in 0a. Then there exists a constant K, depending only on () = ( ~ ,Q ) 1 /2

n&#x3E;_0
such that, for any positive integer q, 

-

3. A MAXIMAL INEQUALITY FOR 03B2-MIXING PROCESSES
INDEXED BY FINITE CLASSES OF FUNCTIONS

In order to establish the stochastic equicontinuity of the empirical process
~ Zn ( f ) : f E 0), we need to control the mean of the supremum of the
empirical process Zn ( . ) over a finite class of bounded functions. This
control is performed via the approximation of the original process by
conveniently defined independent random variables. The main argument is
Berbee’s coupling lemma.

LEMMA [Berbee (1979)]. - Let X and Y be two r.v.’s taking their
values in . Borel spaces S1 and S2 respectively and let U be a r.v. with

uniform distribution over [0, 1], independent of (X, Y). Then, there exists a
random variable Y* = f (X, Y, U), where f is a measurable function from
81 x 52 x [0, 1] into 82, such that:

. Y* is independent of X and has the same distribution as Y.

. Y* ) _ {3, where {3 denotes the ,~-mixing coefficient between the
a-fields generated by X and Y respectively.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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The following lemma will be used repeatedly in the proof of Theorem 2.
In fact, this lemma is the only thing one has to know about (3-mixing
sequences in order to prove Theorem 2.

LEMMA 3. - Let a and 6 be positive reals and G be any finite subclass of
G2,R (P~ satisfying the following assumptions:

(i) For any g in 9, ~(g(~~)) = 0.
(ii) For any g in 9,  a and  6.

Let L(G) = max (1, log 191), where 191 denotes the cardinality of G. There
exists some universal positive constant C such that, for any q in [1, rt~,

Proof. - The proof of Lemma 3 is mainly based on Bernstein’s

exponential inequalities for independent r.v.’s and on Berbee’s lemma.
Let us now give a Corollary of Berbee’s lemma, whose proof only uses the
fact that a countable product of Polish spaces is a Polish space (the proof
will be omitted, being elementary).

PROPOSITION 2. - Let sequence of random variables

taking their values in a Polish space X. For any integer j &#x3E; 0, let

i &#x3E; j)). Then, there exists a sequence (Xz )Z&#x3E;o
of independent random variables such that, for any positive integer j, X~
has the same distribution as Xj X~ )  bj .

Invoke now Proposition 2 to construct a sequence of real-
valued r. v.’ s such that the random vectors Yk = ( ~q ~+ ~ , ... , and

Yk = (~+1~’’’ Ç;(k+1)) fulfill the conditions below:
. For any k &#x3E; 0, Y~* and Yk have the same distribution and

~) ~ {3q.
.. the r.v.’s are independent, the r.v .’ s are

independent.
n

Now, let Z~ = n-1/2 ~(b~i - P) denote the normalized empirical
i=l 

measure associated with the r.v.’s ~:

First, we give an upper bound on the error term due to this substitution.
Clearly,

Vol. 31, n° 2-1995.



408 P. DOUKHAN, P. MASSART AND E. RIO

Now, recall that, for any positive integer i, # ~)  /3q. It follows that

It remains to handle the first term on right hand in (3.1). Let

The random variables are centered and each bounded by qa.

Moreover, it follows from Proposition 1 that

for any g in ~. So, recalling that the r.v.’s are independent,
and that the corresponding r.v.’s with odd index also are independent, and
applying twice Bernstein’s inequality [see Pollard (1984), p. 193] we get:
there exists some positive constant c, such that for any positive A,

It follows that

Let Ao and Ai be the positive numbers defined by the equations

Integrating the above inequality yields

Both (3.4) and (3.5) ensure that

for some positive constant C, which, together with (3.2), implies Lemma 3.

Annales de l’Institut Henri Poincaré - Probabilites et Statistiques



409ABSOLUTELY REGULAR EMPIRICAL PROCESSES

4. PROOF OF THEOREM 1

We first notice that we may assume Ep(f) = 0 for any f in .~’. This

follows from the elementary inequality below (proof omitted).

Throughout the proof, ~2,/? stands for ~2,/?(~). (i) follows from

Proposition 1. To prove (ii), we know from Doukhan, Massart, Rio (1994)
that fidi convergence of Z~ holds. Moreover (2.3) and (i) ensure that
the integral entropy condition (2.10) imply that (0, F) is pregaussian via

Dudley’s criterion. It is well known [see for instance Pollard (1990)] that

(ii) will be ensured by the asymptotic stochastic equicontinuity of Zn with

respect to the ~2,/3-metric. This will follow easily from the fundamental
inequality below, which is in fact a corollary of Theorem 2.

THEOREM 3. - Let a be a positive nunber and let 0a C £’2,3 be a class
of functions satisfying the condition  ~ for any f in Suppose
that fulfills (2.10) and let

Let B : R+ -&#x3E; [0, B(1)~ be the application defined by B(x) = J ~ ~3-1(t)dt
[note that 03B2-1(t) = 0 if t &#x3E; lJ and, for any measurable function h, det

Let F be some positive function satisfying the following conditions: F &#x3E; ~ f ~ I
for any f in F, and lim 03B4F (~) = 0. Then there exists some positive constant

e-o

A depending only on B(l) = 82 such that, for any positive integer n,

where n) is the unique solution of the equation
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Remark. - Since B is a nondecreasing concave function, x - x2 /B(x)
is an increasing and continuous application from R+ onto R+. Hence the
equation defining has an unique solution, and lim = 0.

Furthermore, the bracketing condition implies the existence of an envelope
function F belonging to ~2,~ which in turn ensures that lim bF (~) = 0,
via (2.8). 

e-o

It follows from the above remark that, if n is large enough

Hence; applying Theorem 3 to 0a = {f - 9 : f, g E F and !!./’-~2,/3  ~},
we obtain the asymptotic stochastic equicontinuity of {~(/) : f E 0),
which completes the proof of Theorem 1.

Proof of Theorem 2. - In order to prove Theorem 2 we shall use a chaining
argument with adaptive truncatures. This technique was initiated by Bass
(1985) in the context of set-indexed partial sum processes and then used
by Ossiander (1987) and next by Andersen et al. (1988) in order to prove
uniform central limit theorems for function-indexed empirical processes.
Contrary to Ossiander and Andersen et al., we do not force the brackets
to be decreasing all along the chaining. This may be done using a new
chaining decomposition (1).

We need to impose some additional monotonicity condition on the entropy
function H{3. The following claim is a direct consequence of Lemma 6,
which is elementary but of independent interest. This lemma will be proved
in section 6.

CLAIM 2. - There exists a nonincreasing function H(.), majorizing
H~(.,.~’a), such that x - is nondecreasing and

Since Theorem 2 is trivial when 2-6 y’n (in that case

Theorem 2 holds with K = 213) we shall assume that condition

(~) The idea of using such a decomposition was given to us by D. Pollard (private
communication).
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is satisfied. We define 80 = a and then, for any integer k, 8k = 2-~bo.
Now, since (Al) holds for .F, for each nonnegative integer k, we may
choose a covering of F by brackets Bj,k == [9j,k, hj,k], ,1  j  Jk, with

 b~ and Of course we may assume

that 9j,k I  2M . Then in each bracket Bj,k we fix a point fj,k
belonging to .F . We now define a mapping from .~’ to [1, Jk] by

= min{j E [1, Jk] : f E Finally we set 03A0kf = and
= comes from these definitions that

with

We need to define some more functions and parameters. For any positive
6 we set H(6) = ~~ H(6k). This function H will be usefull because

s,~ &#x3E; a
the mapping (~c/y, ~ ~ ranges in a finite set with cardinality less

than or equal to The choice of parameters that we propose
hereunder will tend to make the three terms of Lemma 3 of the same

order of magnitude when applied to the control of the different terms of
decomposition (4.8). We define q(6) = min {s E N* : 
and the parameter e(6) by ~e(~) == ((q(6) - 1) V I)H(6). Let

and

We note that both sequences (bk)k and (qk)k are nonincreasing. Moreover,
it follows from the definitions of q and e that {3 -1 ( ê ( 8)) ~ (q(6) - 1) V 1.
So ne(6)  /3-~(c(~))H(~), which means that

Also q(b)  2((q(6) - 1) V 1) , .thus

Let
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We note that, because of (4.2), N &#x3E; 1 . We will check at the end of the

proof of Theorem 2 that n, which implies that 1 for all
1~  n. Finally for any f E .F, we set 

’ 

- -

Let I denote the identity operator. Starting from

and noting that

we get

Let k be an integer 1  ~  N - 1 . Since bk, we have

Plugging this relation in the decomposition above produces the following
relation where the summations have to be taken as 0 if N = 1

The following inequality derives straightforwardly from (4.8)
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where

C ontrol of Ei

We note that IIo ranges in the finite set of functions As a direct

application of Lemma 3 and Claim 2 we get that for any integer q

In order to control the expectations Ei, i = 2, 3, 4 we will need to relate the
1-norm of a function which is truncated from below to the 2,03B2-norm of
the nontruncated function. This is what is done in the following lemma.

LEMMA 4. - Let h be some function in ,Ci{P). Then, for any ~ in ]0, 1],
the following inequality holds

In particular, if

then
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Proof of Lemma 4. - Clearly, for all t  E,

Now E. So,

thus, applying (4.9) and the concavity of B(.) provides:

proving (a). Noticing that eR-1(e)  B(e), condition (i) implies, via (4.9)
that a &#x3E; Qh(e). Hence, (b) follows from (a).
We can use this lemma to produce a result which is crucial for what

follows.

CLAIM 3. - For any integer k  N - 1, we have

Proof of Claim 3. - We wish to apply Lemma 4 with a = bk/ qk , 8 = b~
and e = ek. We have to check that condition (i) is satisfied. By (4.6) and
(4.7b) we have

thus, it follows from (4.7a) that 6k, hence condition (i) is
fulfilled. Therefore

so, using (4.7a) again provides
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Also, it is usefull to notice that 19 I  h implies

Control of E2

Since {v( f ) = 0) = &#x3E; bo}, (4.3) and (4.10) yield

but (2.1 ) together with Claim 1 and (4.4) ensure that

so applying Lemma 3 with a = 2M and 6 = (1 + 0)a, we get for any
integer q

Hence, using Claim 3 with k = 0, for any integer q , we have:

Control of E3

By (4.3) and (4.10) we have

To control the first term of the above inequality we notice that on the one
hand (2.1 ), Claim 1 and (4.4) ensure that
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and on the other hand that v( f ) = k implies bk-1 . Hence,
applying Lemma 3 with q = a = bk_I/qk-1 and 6 = (1 + B)6k_1
and considering (4.5), we get as an upper bound for the first term

which is in turn bounded via (4.6) by

To bound the second term we note that

Hence, since (qk)k and (bk)k are both nonincreasing sequences

So, we may now apply Claim 3 and get

Control of E4

By (4.3) and (4.10) we have

Majorizing the first term requires the same arguments as in the control of
E3 above. Namely, we first notice that
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and then apply Lemma 3 with with q = qk, a = and 6 = (1 + 0)6k
and considering (4.5), we get as an upper bound for the first term

Now, by Claim 2, we have H(6k+1)  16~(~), hence ~0(b~+1) 
17H(~~), so via (4.6) the above upper bound of the first term becomes

To majorize the second term we note that

so that we are back to the same quantity that we have already majorized
when controling E3. Therefore

Control of ~5

By (4.3) and (4.10) we have

Since v( f ) &#x3E; N implies that bN-1, we can apply Lemma 3

with q = qN-1 , a = bN_1/qN-1 and 6 = (1+B)6N_1 , which, considering
(4.5), provides the following upper bound for the first term of the above

inequality:

which is in turn bounded via (4.6) by C(5 + B)bN_1(o-II(6N))1~2. It remains
to control the second term which is easily done because 
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!~A~-i/!!2,/? ~ 6N-1, thus, using the definition of N and
Claim 2, we obtain

Control of E6

The control of E6 is performed exactly as the control of the first term of
E4 . We note that v( f ) &#x3E; k implies bk-i. Because of (2.1),
Claim 1, (4.3) and (4.4) we can apply Lemma 3 with q = qk, a = 4bk-1 /qk
and 6 = 3(1 + which gives

Arguing as in the control of E4 we obtain

End of the proof of Theorem 2. - Collecting the above inequalities yields
for any integer q

where K’ = (390 + 68)C + 16. To finish the proof, it remains to majorize
the series above by the integral of the function H. We have
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Hence, by Claim 2, (4.1 ) holds with K = 16(K’ + 1 ) . Note also that, as
a byproduct, we have:

Proof of Theorem 3. - Let us denote n) by e for short, and set
q = ~-1 (e). Then

Choosing M = QF(e) , we now apply Theorem 2 to = 

f E In fact:

Considering (4.12), the first term is majorized via (4.1 ) by

Now, on the one hand, by definition of c,

and on the other hand, by Lemma 4,

Hence

therefore completing the proof of Theorem 3.
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5. WEAKENING THE BRACKETING ASSUMPTIONS

In the spirit of Andersen et al. ( 1988), it is possible to weaken the
bracketing assumptions and the enveloppe condition. This requires slight
modifications of the proof of Theorem 1 that we shall indicate below.

THEOREM 4. - Let be a strictly stationary and ,~-mixing sequence
of random variables with common marginal distribution P. Assume that
the sequence satisfies (2.4). Let .I ’ be a class of functions with
.~ C ,C2,~ (P). Let p be a pseudo-metric such g ~ ~ 2,~  p( f , g) for
all f, g E .~’. Let Bp ( f, 8) denote the closed ball of center f and radius ~ with
respect to p in .~’. Assume that .~’ satisfies to the local bracketing condition

where c is a positive constant. Assume furthermore that the metric entropy
function of .~ with respect to p satisfies to the integrability criterion

Finally, suppose that some positive function F with f ~  F for any f E .~’
fulfills the following condition

Then Zn converges weakly to some Gaussian process indexed by .~’ with
a. s. uniformly continuous sample paths.

Comments. - Of course Theorem 4 implies Theorem 1. The reason why
we proved Theorem 1 first is that we hope that it makes the proofs more
readable.

As an application of Theorem 4 we can provide a CLT in D[0,l].
In the i.i.d. case this example was pointed out by Andersen et al. as a-
typical situation where weak bracketing is needed. Let be a
centered uniformly bounded stochastic process with sample paths in D ~o,1~ .
Assume that sup jX(t,úJ)1 ~ 1 a.s. and

t,w

for some positive constant K. Following the lines of Andersen et al.

(example 4.8) we have, for all fixed t in [0,1]
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On the one hand, by Lemma 7, sect. 6, II(X(s) - X(t))/2~~2,~ 
t~/2}. On the other hand it is straightforward to verify that

B(E(Y)) for any [0, 1~-valued random variable Y. As a
consequence we get that, defining p(6~, 6t) = for all fixed

t in [0,1]

Hence (5.1) holds (note that since 0 is an increasing and concave function
which is null at zero, p is a pseudo-metric on F = ~6t, t E [0, 1] )). As
a conclusion we obtain that a strictly stationary sequence of

stochastic processes with the same distribution as and with

mixing coefficients has the CLT property whenever the sequence (/3n)
satisfies (2.18) [which ensures that (5.2) holds].

Proof of Theorem 4. - In order to prove Theorem 4 all we have to do
is to show that the conclusion of Theorem 2 holds true when substituting
(5.1 ) and (5.2) to (2.10). If so, the inequality of Theorem 3 remains valid
with 8F(E) ~ 0 as c ~ 0 because of assumption (5.3). This implies the
tightness of the empirical process. The existence of a uniformly continuous
version of the limiting Gaussian process is ensured by (5.2) and the fact
that p dominates dr. Hence Theorem 4 follows. We set

Let H( . ) be a function with the properties described in Claim 2 except that
F(’) majorizes H ( . , 0a , p) instead of H~ ( ~ , .~‘~ ~ .
We want to prove that (2.18) holds. The proof is essentially the same

as that of Theorem 2, so we will only sketch it. Let Dk = and

Hk be a projection of on a 8k-net (with respect to the pseudo-metric
p). Let = sup Ig - then If - and

A2,/3(A~/)  The main difficulty that we have to overcome is that
at some stages of the proof of Theorem 2, we used a maximal inequality
(Lemma 3) involving a control of the of truncated variables

defined from the In fact what happens is that we can show that for
these truncated variables ~ ~ ( 2,~ and A2,3 are of the same order. This will
be done via the following elementary lemma.

LEMMA 5. - Let Y be a nonnegative random variable bounded by some
constant a. Let Z be a nonnegative random variable and a’ be some fixed
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positive constant. Then

Proof of Lemma 5. - Noting that = B(P(Z &#x3E; a’)) we
have by (1.3) .

hence (5.4) follows by definition of A2,~.
The notations being the same as in the proof of Theorem 2, the controls of

Ei and E6 are not modified. In the same way, since Lemma 4 [inequality (b)]
provides an upper bound involving A2,~, we do not have to modify the
majorization of the quantities III appearing in the
controls of i = 2, 3, 4. The corresponding appearing in
the control of E5 is bounded by 2c03B4N-1 via Lemma 4, inequality (a), with
c = 1. To finish the control of E2 we use Lemma 5 with Y = Z = Ao f,
a = 2M and a’ = bo / qo, thus

It follows from the definition of qo that qo  q + for any

positive integer q. Hence we obtain the same bound for E2 (with different
constants of course) as in the proof of Theorem 2. To modify the control
of E3, we note that, using Lemma 5 with Y = Z = 

a = and a’ = 

Since (qk) is nonincreasing, we can finish the control of E3 as before.
To modify the control of E4, we note that, using Lemma 5 with

Y = Z = a = and a’ = bk/ qk

But bk-1/bk is bounded by 2m so that the control of 1E4 may be ended
as before. Finally in order to control E5, we simply notice that

which allows to end the majorization of E5 via Claim 2, using Lemma 3
and the definition of N. Thus an analogue of Theorem 2 is obtained and
Theorem 4 follows.
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6. APPENDIX

A. Properties of the space ~2,/?(~)
1. Proof of Lemma 1. - In order to prove Lemma 1, we show 

can be viewed as the supremum of f2-type norms, via a classical result
of Frechet (1951, 1957).

Fréchet’s result. - Let F and G be the d.f.’s of positive real-

valued random variables and denote the class of bivariate

r.v’s (X, Y) with given marginal d.f.’s F and G. Frechet (1951, 1957)
proved that, the maximum over ,C ( F, G ) is obtained when

(X, Y) = (F-1 (U), G-1 (U) ), where U is uniformly distributed over [0, 1]
[see Bartfai (1970) for a detailed proof]. In other words, we have:

Let G(3 be the distribution function on N defined by: G~(n) = 1 - /3~,
for any n E N [note that Gp(0) = 0]. Clearly, G~ 1 (u) _ /~(1 - u).
So, noticing that, for any f E the inverse of the d.f. of f2(~~)
is exactly ~ 2014~ u) and applying (6.1) and Skorohod’s Lemma
(1976), we obtain:

where /~(/3) denotes the class of integer valued random variables b on
(SZ, T, ~) with d.f. Gp. Now, let

be the Hilbertian norm associated with the r.v. b. Since is the

maximum of the norms over the class ~(/3), is a norm.

Since ~.~2,6 is a £2-type norm, f ~  ~9~ implies  Hence,

by (6.2), ~.!)2,/3 verifies (2.1). Moreover, since b &#x3E; 1 a.s., for any f in
 therefore completing the proof.

2. Comparisons with the Orlicz norms. - In this part, we prove Lemma 2.
Recall that, if U has the uniform distribution over [0,1], Qf(U) has the
same distribution as Hence, for any f in 
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Hence, for any c &#x3E; Young’s inequality + 
ensures that

therefore establishing (a) of Lemma 2.
Now ~~ f (u)~ 2  ~- ~ ( 1 /u) ~1~~ ( f )~ 2, which implies (b) of Lemma 2.

B. A monotonic saturation Lemma

In this section, we establish the following lemma, which implies Claim 2
of section 4.

LEMMA 6. - Let G : IR+ be a function fulfilling the
following conditions: for any positive y, x -~ G(x, y) is nonincreasing, and,
for any x in ~0,1~, ~ --&#x3E; (G(x, ~)/~) is nondecreasing. Let ]0, 1] -~ R+
be a nonincreasing function. Suppose that

Then, for any a &#x3E; 1, there exists a nonincreasing mapping :]0, 1] ~ R+
such that x - is nondecreasing, and, for any ~ in ]0,1],

Proof of Lemma 6. - We proceed exactly as in the proof of Claim 1 in
Doukhan, Massart and Rio (1994). Let = sup Clearly,

is a nonincreasing function, and x  is nondecreasing.
The monotonicity properties of the above functions imply that

Assume now that ~ is uniformly bounded over ]0, 1] . Then, both (6.4) and
the monotonicity properties of F and 03C8 ensure that
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therefore establishing Lemma 6 for uniformly bounded functions The

corresponding result for unbounded functions follows from (6.5) applied
to 03C8A(t) = 03C8(t) A A and from the fact that = lim r ’l/J1 combined
with Beppo-Levi lemma.

C. Inequalities involving Loo-type norms

Let F be some positive element of ,~~,,~(P~, and g be any function in
In this subsection, we compare the of gF with the

of F. Here the following lemma yields an upper bound on
which is used to derive application 4 of Theorem 1.

LEMMA 7. - Let F be some element of ,C2,~(P) satisfying F &#x3E; 1, and let

Then, for any g in g ~ 0,

where ~ is the real number in ~~3, l~ defined by the equation

Proof of Lemma 7. - Clearly, there is no loss of generality in assuming
that = 1. Let f =~F. We set 6 = Since f ~ I  F, QF.
Hence the elementary equality

implies that

which establishes Lemma 7.

Assume now that the envelope function of .~ C is in ~2,/?(~)
Then there exists some measurable function F such that
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By Lemma 7, condition (2.10) in Theorem 1 holds as soon as

In the general case, this integral condition leads to a very intricated

summability condition on the mixing coefficients. However this condition is
much more tractable if the envelope function F is in In this case,
we may, by increasing QF if necessary, assume that QF(U) = 
and (6.6) implies the criterions (2.15), (2.16) and (2.17).
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