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Abstract

Most generalization bounds in learning theory are base@oresneasure of the complexity of the
hypothesis class used, independently of any algorithmomtrast, the notion of algorithmic stabil-
ity can be used to derive tight generalization bounds theatailored to specific learning algorithms
by exploiting their particular properties. However, as inah of learning theory, existing stability
analyses and bounds apply only in the scenario where thdssuamg independently and identically
distributed. In many machine learning applications, havethis assumption does not hold. The
observations received by the learning algorithm often lsavee inherent temporal dependence.

This paper studies the scenario where the observationsasa drom a stationarg-mixing or
B-mixing sequence, a widely adopted assumption in the stfidgm-i.i.d. processes that implies a
dependence between observations weakening over time.d¥e povel and distinct stability-based
generalization bounds for stationaymixing andB-mixing sequences. These bounds strictly gen-
eralize the bounds given in the i.i.d. case and apply to ablstlearning algorithms, thereby ex-
tending the use of stability-bounds to non-i.i.d. scerario

We also illustrate the application of ogrmixing generalization bounds to general classes of
learning algorithms, including Support Vector Regresskernel Ridge Regression, and Support
Vector Machines, and many other kernel regularizatioretiasnd relative entropy-based regular-
ization algorithms. These novel bounds can thus be viewdldeafirst theoretical basis for the use
of these algorithms in non-i.i.d. scenarios.

Keywords: learning in non-i.i.d. scenarios, weakly dependent olzems, mixing distributions,
algorithmic stability, generalization bounds, learnihgdry

1. Introduction

Most generalization bounds in learning theory are based on some meéatheecomplexity of the
hypothesis class used, such as the VC-dimension, covering numb&agdemacher complexity.
These measures characterize a class of hypotheses, independantly aforithm. In contrast,
the notion of algorithmic stability can be used to derive bounds that are tatmsgecific learning
algorithms and exploit their particular properties. A learning algorithm is sthtile hypothesis it
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outputs varies in a limited way in response to small changes made to the trainiddgsetthmic
stability has been used effectively in the past to derive tight generalizationds (Bousquet and
Elisseeff, 2001, 2002; Kearns and Ron, 1997).

But, as in much of learning theory, existing stability analyses and boundg aply in the
scenario where the samples are independently and identically distributed (iri.chiany machine
learning applications, this assumption, however, does not hold; in fadtj.theassumption is not
tested or derived from any data analysis. The observations redgmbée learning algorithm often
have some inherent temporal dependence. This is clear in system dsagnose series prediction
problems. Clearly, prices of different stocks on the same day, or oéithe stock on different days,
may be dependent. But, a less apparent time dependency may affecamigiadsin many other
tasks as well.

This paper studies the scenario where the observations are drawra fstationaryh-mixing
or B-mixing sequence, a widely adopted assumption in the study of non-i.i.d. gaex¢hat im-
plies a dependence between observations weakening over time (Yu,M8042000; Vidyasagar,
2003; Lozano et al., 2006; Mohri and Rostamizadeh, 2007). We provel and distinct stability-
based generalization bounds for stationfyixing andp-mixing sequences. These bounds strictly
generalize the bounds given in the i.i.d. case and apply to all stable leatgoritans, thereby
extending the usefulness of stability-bounds to non-i.i.d. scenarios. @afspare based on the
independent block technique described by Yu (1994) and attributedrtes®é (1927), which is
commonly used in such contexts. However, our analysis somewhat difbensprevious uses of
this technique in that the blocks of points we consider are not necesdagilyial size.

For our analysis of stationadymixing sequences, we make use of a generalized version of Mc-
Diarmid’s inequality given by Kontorovich and Ramanan (2008) that holdg{mixing sequences.
This leads to stability-based generalization bounds with the standard ew@brfierm. Our gen-
eralization bounds for stationaf}smixing sequences cover a more general non-i.i.d. scenario and
use the standard McDiarmid’s inequality, however, unlikedifmixing case, thg-mixing bound
presented here is not a purely exponential bound and contains arvadelith depending on the
mixing coefficient.

We also illustrate the application of ogrmixing generalization bounds to general classes of
learning algorithms, including Support Vector Regression (SVR) (Vadr$iR8), Kernel Ridge Re-
gression (Saunders et al., 1998), and Support Vector Machinddg{s\Cortes and Vapnik, 1995).
Algorithms such as SVR have been used in the context of time series prediictidrich the i.i.d.
assumption does not hold, some with good experimental resuligivet al., 1997; Mattera and
Haykin, 1999). However, to our knowledge, the use of these algorithmenn.i.d. scenarios has
not been previously supported by any theoretical analysis. The stalilityds we give for SVR,
SVMs, and many other kernel regularization-based and relative gntased regularization algo-
rithms can thus be viewed as the first theoretical basis for their use in seichrgos.

The following sections are organized as follows. In Section 2, we int@the definitions rel-
evant to the non-i.i.d. problems that we are considering and discuss thetgacenarios in that
context. Section 3 gives our main generalization bounds for statigramxing sequences based
on stability, as well as the illustration of its applications to general kernelaggation-based algo-
rithms, including SVR, KRR, and SVMs, as well as to relative entropy-dbasgularization algo-
rithms. Finally, Section 4 presents the first known stability bounds for the general stationary
[3-mixing scenario.
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2. Preliminaries

We first introduce some standard definitions for dependent obsersdiamxing theory (Doukhan,
1994) and then briefly discuss the learning scenarios in the non-i.i.d. case

2.1 Non-i.i.d. Definitions

Definition 1 A sequence of random variablBs={Z};" ., is said to bestationaryif for any t and
non-negative integers m and k, the random vect@rs...,Z.m) and (Zk, - - -, Zt+mik) have the
same distribution.

Thus, the index or time, does not affect the distribution of a varialdlen a stationary sequence.
This does not imply independence however. In particularj fofj <k, PrZ;|Z] may not equal
Pr[Z« | z], that is, conditional probabilities may vary at different points in time. The ¥alg

is a standard definition giving a measure of the dependence of the ravat@ablesz; within a
stationary sequence. There are several equivalent definitionss# thantities, we are adopting
here a version convenient for our analysis, as in Yu (1994).

Definition 2 LetZ= {Z:}-._., be a stationary sequence of random variables. For af§¢iZ U

{—o, +}, leta! denote thes-algebra generated by the random variables & k< j. Then, for
any positive integer k, th&-mixing andd-mixing coefficients of the stochastic procéssre defined
as

B(k)=sup E [sup

Beo" o0
n —o “A€0p

PiA|B]—PriA]|| $(k) = sup |PriA| B]—PriA]|.

o0
Ac Onk

Bea",,

Z is said to beB-mixing @-mixing) if B(k) — O (resp. ¢(k) — 0) as k— . It is said to be
algebraicallyp-mixing (algebraicallyp-mixing) if there exist real numbery > 0 (resp. ¢o > 0)

and r> 0 such tha3(k) < Bo/K" (resp.d (k) < ¢o/k") for all k, exponentially mixingf there exist
real numbergg (resp. ¢po > 0), B1 (resp. $1 > 0) and r > 0 such tha3(k) < Boexp(—P1k") (resp.
d (k) < doexp(—¢1K")) for all k.

Both B(k) and$ (k) measure the dependence of an event on those that occurred mokeuthiés
of time in the pastp-mixing is a weaker assumption théamixing and thus covers a more general
non-i.i.d. scenario.

This paper gives stability-based generalization bounds both ip-thixing andp-mixing case.
The B-mixing bounds cover a more general case of course, howevep; thiging bounds are sim-
pler and admit the standard exponential form. $hmixing bounds are based on a concentration
inequality that applies td-mixing processes only. Except for the use of this concentration bound
and two lemmas 5 and 6, all of the intermediate proofs and results to depinmiging bound in
Section 3 are given in the more general casp-ofixing sequences.

It has been argued by Vidyasagar (2003) fBamixing is “just the right” assumption for the
analysis of weakly-dependent sample points in machine learning, in parti@dause several PAC-
learning results then carry over to the non-i.i.d. case. @uonixing generalization bounds further
contribute to the analysis of this scenatio.

1. Some results have also been obtained in the more general contextigfng but they seem to require the stronger
condition of exponential mixing (Modha and Masry, 1998).
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We describe in several instances the application of our bounds in thefcakgebraic mixing.
Algebraic mixing is a standard assumption for mixing coefficients that hasdwskmted in previous
studies of learning in the presence of dependent observations (4; LMir, 2000; Vidyasagar,
2003; Lozano et al., 2006). Let us also point out that mixing assumptemmge checked in some
cases such as with Gaussian or Markov processes (Meir, 2000)a&nmdiking parameters can also
be estimated in such cases.

Most previous studies use a technique originally introduced by Berngt®R2v] based oin-
dependent blockef equal size (Yu, 1994; Meir, 2000; Lozano et al., 2006). This teghnis
particularly relevant when dealing with stationgdymixing. We will need a related but somewhat
different technique since the blocks we consider may not have the sagnd kiz following lemma
is a special case of Corollary 2.7 from Yu (1994).

Lemma 3 (Yu, 1994, Corollary 2.7) Let u> 1 and suppose that h is measurable function, with
absolute value bounded by M, on a product probability sp@q§:19j7 ni‘lzlcﬁ) wheref <s <
ri.1 for all i. Let Q be a probability measure on the product space with margimasures Qon
(Qi,0%), and let @** be the marginal measure of Q c(rﬂijille, ﬂijillcfj?), i=1,...,u—1. Let
B(Q) = sup<i<,_1B(ki), where k=ri1—s, and P= M, Q. Then,

| Bl —Elhl < (k- DMB(Q).

The lemma gives a measure of the difference between the distributioblotks where the blocks
are independent in one case and dependent in the other case. Tieitghstrwithin each block
is assumed to be the same in both cases. For a monotonically decreasingnfnaiie have

B(Q) = B(k*), wherek* = min;(k;) is the smallest gap between blocks.

2.2 Learning Scenarios

We consider the familiar supervised learning setting where the learningthlgoeceives a sample
of mlabeled pointS= (z1,...,zm) = ((X1,Y1), - - -, (Xm,Ym)) € (X xY)™, whereX is the input space
andY the set of labelsY{ C R in the regression case), both assumed to be measurable.

For a fixed learning algorithm, we denote bythe hypothesis it returns when trained on the
sampleS. The error of a hypothesis on a paie X x Y is measured in terms of a cost function
c:Y xY — R,. Thus,c(h(x),y) measures the error of a hypothelsisn a pair(x,y), c(h(x),y) =
(h(x) —y)? in the standard regression cases. We will often use the shortiilayml := c(h(x),y) for
a hypothesid andz= (x,y) € X x Y and will assume that is upper bounded by a constavit> 0.
We denote byR(h) the empirical error of a hypothedisfor a training sampl&= (z, ..., zm):

m

R(h) = r?]Zc(h,a).

In the standard machine learning scenario, the sample pairs, z,, are assumed to be i.i.d., a
restrictive assumption that does not always hold in practice. We will cenkigte the more general
case of dependent samples drawn from a stationary mixing seqdemes X x Y. As in the i.i.d.
case, the objective of the learning algorithm is to select a hypothesis with esmailover future
samples. But, here, we must distinguish two versions of this problem.
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In the most general version, future samples depend on the training s8apdethus the gener-
alization error or true error of the hypothehistrained onSmust be measured by its expected error
conditioned on the samp

R(hs) = Elc(hs 2) | S| (1)

This is the most realistic setting in this context, which matches time series predictiblems.
A somewhat less realistic version is one where the samples are dependeht test points are
assumed to be independent of the training sarBplEhe generalization error of the hypothelsis
trained onSis then:

Rhs) = Elc(hs 2) | S = Elc(hs,2)].

This setting seems less natural since, if samples are dependent, futyreinésimust also depend
on the training points, even if that dependence is relatively weak due to thentieneal after which
test points are drawn. Nevertheless, it is this somewhat less realistic settiifgathbeen studied
by all previous machine learning studies that we are aware of Yu (188),(2000), Vidyasagar
(2003) and Lozano et al. (2006), even when examining specifically a gnesgprediction prob-
lem (Meir, 2000). Thus, the bounds derived in these studies canrubitdazly applied to the more
general setting. We will consider instead the most general setting with thétidefiof the general-
ization error based on Equation 1. Clearly, our analysis also applies tosthgdaeral setting just
discussed as well.

Let us also briefly discuss the more general scenanmofstationarymixing sequences, that is
one where the distribution may change over time. Within that general caggerbealization error
of a hypothesi$is, defined straightforwardly by

Rihs,t) = E [c(hs,z) |9,

t

% ~0y

would depend on the timeand it may be the case thRfhs,t) # R(hs,t’) for t #t/, making the
definition of the generalization error a more subtle issue. To remove thedepee on time, one
could define a weaker notion of the generalization error based on actexidoss over all time:

R(hs) = E[R(hs;t)].

It is not clear however whether this term could be easily computed anddfal.usA stronger
condition would be to minimize the generalization error for any particular taimget Studies of
this type have been conducted for smoothly changing distributions, sunohZzasu et al. (2008),
however, to the best of our knowledge, the scenario of a both notigdeand non-independent
sequences has not yet been studied.

3. -Mixing Generalization Bounds and Applications

This section gives generalization bounds ﬁastable algorithms over a mixing stationary distri-
bution? The first two sections present our supporting lemmas which hold for etneixing or
¢-mixing stationary distributions. In the third section, we will briefly discusscemtration in-
equalities that apply t@-mixing processes only. Then, in the final section, we will present our
main results.

2. The standard variable used for the stability coefficieft i¥o avoid the confusion with thg-mixing coefficient, we
will use 3 instead.
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The condition ofﬁ—stability is an algorithm-dependent property first introduced by Devroye
and Wagner (1979) and Kearns and Ron (1997). It has been ladrsuscessfully by Bousquet
and Elisseeff (2001, 2002) to show algorithm-specific stability boundsifdr samples. Roughly
speaking, a learning algorithm is said togiableif small changes to the training set do not cause
large deviations in its output. The following gives the precise technicalitefin

Definition 4 A learning algorithm is said to be (uniforml@}stableif the hypotheses it returns for
any two training samples S andt8at differ by removing a single point satisfy

vze X xY, |c(hs,2) —c(hg,2)| <B.

We note that aﬁ-stable algorithm is also stable with respectdplacinga single point. LeSand
S be two sequences differing in tith coordinate, an&;; be equivalent t&andS but with theith

point removed. Then forﬁ-stable algorithm we have,

c(hs, 2) —c(hs, 2)| = |c(hs,2) — C(hs/i> + C(hS/i) —c(hg,2)|
< le(hs,2) —c(hs; )| +[c(hs;) — c(hs,2)]
< 2.

The use of stability in conjunction with McDiarmid’s inequality will allow us to dergeneral-
ization bounds. McDiarmid’s inequality is an exponential concentration dhofithe form
me2
Pijo - E10] > o <exp( -5 ).
where the probability is over a sample of sin@nd where’. is the Lipschitz parameter @, with
T a function ofm. Unfortunately, this inequality cannot be applied when the sample pointare n
distributed in an i.i.d. fashion. We will use instead a result of KontorovichRenttanan (2008) that

extends McDiarmid’s inequality td-mixing distributions (Theorem 8). To obtain a stability-based
generalization bound, we will apply this theorem to

~

®(S) = R(hs) — R(hs) .

To do so, we need to show, as with the standard McDiarmid’s inequality,dthata Lipschitz
function and, to make it useful, bound®. The next two sections describe how we achieve both
of these in this non-i.i.d. scenario.

Let us first take a brief look at the problem faced when attempting to gibdigtdbounds for
dependent sequences and give some idea of our solution for thégmprobhe stability proofs given
by Bousquet and Elisseeff (2001) assume the i.i.d. property, thus ikpkat element in a sequence
with another does not affect the expected value of a random variatihedever that sequence. In
other words, the following equality holds,

EV(Zy,...Zy . Z) :ngz/[V(zl,...,z’,...,zm)], )

for a random variabl®/ that is a function of the sequence of random varialfles(Z,...,Zm).
However, clearly, if the points in that sequer®are dependent, this equality may not hold anymore.
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(a) (b)

Figure 1: lllustration of dependent (a) and independent (b) blockbBoAgh there is no dependence
between blocks of points in (b), the distribution within each block remains the sa in
(a) and thus points within a block remain dependent.

The main technique to cope with this problem is based on the so-called “irdiemelnlock
sequence” originally introduced by Bernstein (1927). This consistirofrating from the original
dependent sequence several blocks of contiguous points, leavrighusome remaining blocks of
points. Instead of these dependent blocks, we then consider indayidaoicks of points, each with
the same size and the same distribution (within each block) as the dependsntBynLemma 3,
for a B-mixing distribution, the expected value of a random variable defined oeedependent
blocks is close to the one based on these independent blocks. Workinghest independent
blocks brings us back to a situation similar to the i.i.d. case, with i.i.d. blocks reglacah points.
Figure 1 illustrates the two types of blocks just discussed.

Our use of this method somewhat differs from previous ones (see %4, Meir, 2000) where
many blocks of equal size are considered. We will be dealing with foukblaad with typically
unequal sizes. More specifically, note that for Equation 2 to hold, we ey that the variable
Z; be independent of the other points in the sequence. To achieve thibly@pgaking, we will
be “discarding” some of the points in the sequence surroundingThis results in a sequence
of three blocks of contiguous points. If our algorithm is stable and we daliscard too many
points, the hypothesis returned should not be greatly affected by thiat@mpe In the next step,
we apply the independent block lemma, which then allows us to assume eadsefitlocks as
independent modulo the addition of a mixing term. In particufamecomes independent of all
other points. Clearly, the number of points discarded is subject to a tfademoving too many
points could excessively modify the hypothesis returned; removing toosMewd maintain the
dependency betweedy and the remaining points, thereby inducing a larger penalty when applying
Lemma 3. This trade-off is made explicit in the following section where an optiwlatien is
sought.

3.1 Lipschitz Bound

As discussed in Section 2.2, in the most general scenario, test pointsddepdhe training sam-

ple. We first present a lemma that relates the expected value of the geateralierror in that
scenario and the same expectation in the scenario where the test poinfieriddet of the train-

ing sample. We denote bRR(hs) = E;[c(hs,z)|] the expectation in the dependent case and by
R(hs,) = Ez[c(hs,, 2)] the expectation where the test points are assumed independent of thetrainin
with S, denoting a sequence similar 8but with the lasb points removed. Figure 2(a) illustrates
that sequence. The blo& is assumed to have exactly the same distribution as the corresponding
block of the same size i&
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Lemma 5 Assume that the learning algorithmﬁsstable and that the cost function c is bounded
by M. Then, for any sample S of size m drawn frodrmixing stationary distribution and for any
b e {0,...,m}, the following holds:

[R(hs) —R(hs,)| < bB+M¢(b)
Proof Theﬁ—stability of the learning algorithm implies that
[R(hs) = R(hs,)| = | E[c(hs.2)|S — Elc(hs, 2)|Sp]| < bB. 3)

Now, in order to remove the dependenceSynve bound the following difference

[Elcths, 2)|S] ~ Elc(hs, 2)]
= | 3, clhs, 2 (Prziss) - Piz)|

zc

=| 3 clhs, 2(PrS) ~PriZ) + 3 clhs, 2)(PzS:] - Pri)|

zel* zel”
= > c(hso,z)‘Pr[z]Sb]—Pr[z]’— > c(hso,z)‘Pr[z]Sb]—Pr[z]
zel* el
SZG{nz]?z(ﬂze c(hso,z)‘Pr[z|So]—Pr[z]‘ 4)
< max M Pr[z|SD]—Pr[z]‘
ze{z-zvy £
=, max M ; PriZS)] Pr[z]‘
=, max_M|Przis] Pz <Mo(b).

where the sum has been separated over the setof for which the difference Bz|S;] — PrZ]
is non-negative, and its complemetit. Using (3) and (4) and the triangle inequality yields the
statement of the lemma. [ ]

Note that we assume thatimmediately follows the sampl8, which is the strongest dependent
scenario. The following bounds can be improved in a straightforward emdhthe test pointz is
assumed to be observed daynits of time after the sampl& The bound would then contain the
mixing term¢ (k+ b) instead ofp (b).

We can now prove a Lipschitz bound for the function

Lemma6 Let S= (z,...,%,...,Zn) and $= (z,...,Z,...,zy) be two sequences drawn from a
$-mixing stationary process that differ only in poinfar some ie {1,...,m}, and let s and hy be

the hypotheses returned b)ﬁastable algorithm when trained on each of these samples. Then, for
any i€ {1,...,m}, the following inequality holds:

(S~ 0(S)] < (b+2)2B+2p(BM + =
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Sh

Figure 2: lllustration of the sequences derived friSthat are considered in the proofs.

Proof To prove this inequality, we first bound the difference of the empiricalrsras in Bousquet
and Elisseeff (2002), then the difference of the generalization erosinding the difference of
costs on agreeing points wifhand the one that disagrees withgives

Rihe) ~Rifs)) < ;; (s 2) —clhg, 2))| + [c(hs,2) — c(hs. 2)
<2t ©)

Since bothR(hs) andR(hg) are defined with respect to a (different) dependent point, we can ap-

ply Lemma 5 to both generalization error terms and ﬁﬁability. Using this and the triangle
inequality, we can write

IR(hs) —R(hg)| < |R(hs) - R(hs,) + R(hs,) = R(hg ) + R(hg ) — R(hg)|
<|R(hs,) — R(hg )|+ 208+ 2 (b)M
= Ele(hs,,2) —c(hg . 2)] +2bB+ 20 (0)M
< 2B+ 2bB -+ 2 (b)M. (6)

The statement of the lemma is obtained by combining inequalities 5 and 6. |

3.2 Bound on Expectation

As mentioned earlier, to obtain an explicit bound after application of a gkreatavicDiarmid’s
inequality, we also need to bound[B(S)]. This is done by analyzing independent blocks using
Lemma 3.
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Lemma 7 Let hs be the hypothesis returned bﬁastable algorithm trained on a sample S drawn
from af3-mixing stationary distribution. Then, for allé [1,m], the following inequality holds:

E[|®(S)|] < (6b+2)B+3B(b)M.

Proof Let S be defined as in the proof of Lemma 5. To deal with independent bloclersegsa
defined with respect to the same hypothesis, we will consider the seg8enee5 N'S,, which is
illustrated by Figure 2(a-c). This can result in as many as four blockdefsre, we will consider

a sequencé,b with a similar set of blocks each with the same distribution as the corresponding
blocks inS p, but such that the blocks are independent as seen in Figure 2(d).

Since three blocks of at moBtpoints are removed from each hypothesis, byﬁkﬂiability of
the learning algorithm, the following holds:

E[®(S)] = E[R(hs) — R(hg)]

Il
m

£ % ic(hs,zi) —c(hs, z)]

<E [1 ic(hs‘b,zi)—c(hsab,z) +6bB.

" Spz|M i

The application of Lemma 3 to the difference of two cost functions also kexlibgM as in the
right-hand side leads to

E[@(9]= E !l ic(hgﬁb,Z)—c(hé‘b,“z) +6bB+ 3B(b)M.

Sez| M

Now, since the pointZ andz are independent and since the distribution is stationary, they have the
same distribution and we can replagavith Zin the empirical cost. Thus, we can write

+6bB -+ 3B(b)M < 2B+ 6bB + 3B(b)M,
S SbZ m

E[®(S)]< E llic(hib@ —c(hg,.2)

Where§,b is the sequence derived fro§1b by replacingz with Z The last inequality holds by

ﬁ-stability of the learning algorithm. The other side of the inequality in the statenfiéime éemma
can be shown following the same steps. [ |

3.3 ¢-Mixing Concentration Bound

We are now prepared to make use of a concentration inequality to provieleesiadization bound
in the ¢-mixing scenario. Several concentration inequalities have been showadnntiixing case,
for example, Marton (1998), Samson (2000), Chazottes et al. (20dM®@ntorovich and Ramanan
(2008). We will use that of Kontorovich and Ramanan (2008), which ry gémilar to that of
Chazottes et al. (2007), modulo the fact that the latter requires a finite sapgule.
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The following is a concentration inequality derived from that of Kontorbvémd Ramanan
(2008)3

Theorem 8 Let®: Z™— R be a measurable function that is c-Lipschitz with respect to the Ham-
ming metric for some & 0 and let 4,...,Z, be random variables distributed according tapa
mixing distribution. Then, for ang> 0O, the following inequality holds:

—2¢?

m
where||Ay|fe <142 Z o (k).
k=1

It should be pointed out that the statement of the theorem in this paper is iatbog\a factor of
4 in the exponent with respect to that of Kontorovich and Ramanan (2Z0@®rem 1.1). This can be
achieved straightforwardly by following the same steps as in the proofofdfovich and Ramanan
(2008), but by making use of the following general form of McDiarmid'squoality (Theorem 9)
instead of Azuma'’s inequality. In particular, Theorem 5.1 of Kontorovicd Ramanan (2008)
shows that for a-mixing distribution and a 1-Lipschitz function, the constazitsan be bounded

as follows in Theorem 9: ,
m—I1

G<1+2 Z o (k).
=1

Theorem 9 (McDiarmid, 1989, 6.10)Let Z,...,Zny, be arbitrary random variables taking values
inZ and let®: Z™— R be a measurable function satisfying for alizcZ, i=1, ..., m, the following
inequalities:

‘E[CD(Zl,...,Zm)\lezl,...,Zi :zi} —E[qa(zl,...,zm)|zl:zl,...,zi :4” <a,

where ¢>0,i=1,...,m, are constants. Then, for aay- 0, the following inequality holds :
—2¢?
Pr“d)(zl,...,zm) —E[®(Z,..., Zm)]| > s] <200 5w 5 ).
i=1Gi
In the i.i.d. case, McDiarmid’s theorem can be restated in the following simpler fioat we
shall use in Section 4.

Theorem 10 (McDiarmid, i.i.d. scenario) Let Z, ..., Zy be independent random variables taking
valuesin Z and le¢: Z™— R be a measurable function satisfying for allzc Z, i=1,...,m, the
following inequalities:

|P(z1,..,%, ... Zm) = P(21,...,7,...Zm)| < G,

where ¢>0,i=1,...,m, are constants. Then, for aay- 0, the following inequality holds:

3. We should note that original bound is expressed in term$-wiixing coefficients. To simplify presentation, we
are adapting it to the case of stationgAmixing sequences by using the following straightforward inequality for a
stationary process:¢Zj —i) > njj. Furthermore, the bound presented in Kontorovich and Ramanag)(Rolis
when the sample space is countable, it is extended to the continuous cas®adndiich (2007).
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3.4 ¢-Mixing Generalization Bounds
This section presents several theorems that constitute the main results af@isrpthep-mixing
case. The following theorem is constructed from the bounds shown irr¢h®ps three sections.

Theorem 11 (General Non-i.i.d. Stability Bound) Let hs denote the hypothesis returned bﬁa
stable algorithm trained on a sample S drawn fromp-anixing stationary distribution and let ¢ be
a measurable non-negative cost function upper bounded 0Mhen for any ke {0,...,m} and
anye >0, the following generalization bound holds:

PSrHR(hS) “R(hs)| > e+ (6b+2)ﬁ+6|v|¢(b)}

e 22300
- m((b+2)2B+2M (b) +M /m)?

Proof The theorem follows directly the application of Lemma 6 and Lemma 7 to TheoremiiB.

The theorem gives a general stability bound demixing stationary sequences. If we further
assume that the sequence is algebraiagliyixing, that is for allk, ¢ (k) = ¢ok™" for somer > 1,
then we can solve for the value bto optimize the bound.

Theorem 12 (Non-i.i.d. Stability Bound for Algebraically Mixing Sequence) Let hs denote the
hypothesis returned by [&stable algorithm trained on a sample S drawn from an algebraiaglly
mixing stationary distributionp (k) =¢ok " with r>1, and let c be a measurable non-negative cost
function upper bounded by MO, then, for anye > 0, the following generalization bound holds:

PSrHR(hS) - ﬁ(hs)( > e+ 8B+ (r+ 1)6M¢(b)}

SZex( ~262(1-+ 200r/(r ~ 1)) 2 )
M(BB+(r +1)2M¢ (b) +M/m)*

- >—1/(r+1).

where b= (m%

Proof For an algebraically mixing sequence, the valué afinimizing the bound of Theorem 11
satisfies the equatiofb* = rM¢(b*). Sinceb must be an integer, we use the approximatica

o\ —1/(r+1)
Krcb%) W when applying Theorem 11. However, observing the inequalfties) > ¢(b)

and(b* +1) > b, allows us to write the statement of Theorem 12 in terms of the fractional choice
b*.
The term in the numerator can be bounded as

1+2_i¢(i) = 1—|—2_i¢oi‘r

m
< 1+2¢0<1+/ x"dx)
1

_ 1+2¢0<1+ mll_: 1).
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Using the assumption> 1, we can upper bouna*~" with 1 and obtain

m—"—1 1 20or
< — ) = /.
1+2¢o<1+ 1t )_1+2¢0<1+r_1) 1+r_1
Plugging in this value and the minimizing valuetwfn the bound of Theorem 11 yields the state-
ment of the theorem. |

In the case of a zero mixing coefficierit£ 0 andb=0), the bounds of Theorem 11 coincide
with the i.i.d. stability bound of Bousquet and Elisseeff (2002).

In the general case, in order for the right-hand side of these bourtdsterge, we must have
=o0(1/,/m) and¢(b)=0(1/,/m). The first condition holds for several families of algorithms with
<0O(1/m) (Bousquet and Elisseeff, 2002).

In the case of algebraically mixing sequences wittl, as assumed in Theorem &O(l/m)
implies ¢ (b) ~ do(B/(rdoM))/+1) < O(1//m). More specifically, for the scenario of algebraic
mixing with 1/m-stability, the following bound holds with probability at least B:

[Rths) ~ Rihg)| <0 ( log(1/ 5>> |

B
B

mi
This is obtained by setting the right-hand side of Theorem 12 equalaitd solving fore. Fur-

thermore, if we choose= \/% for a large enough consta@t> 0, the right-hand side of
m

Theorem 12 is summable ovarand thus, by the Borel-Cantelli lemma, the following inequality

holds almost surely:
N log(m
[Rihg) ~ Rihg)| <0 ( gfﬂ) -

Similar bounds can be given for the exponential mixing settik) = ¢oexp(—¢1k")). If we
chooséb = O(/log(m)3/m) and assum@ = O(1/m), then, with probability at least2 d,

‘R(hs) — ﬁ(hs)‘ <0 (\/Iog(l/5) |092(m)) .

m
If we instead set =C/ '093% for a large enough consta@t the right-hand side of Theorem 12 is

summable and again by the Borel-Cantelli lemma we have

Rihg)~Rihg)| <O ( '°93(m)> ,

m

almost surely.

3.5 Applications

We now present the application of our stability bounds for algebraigaityixing sequences to sev-
eral algorithms, including the family of kernel-based regularization algoritmasthat of relative
entropy-based regularization algorithms. The application of our learringds will benefit from
the previous analysis of the stability of these algorithms by Bousquet an@é&ifi$2002).
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3.5.1 KERNEL-BASED REGULARIZATION ALGORITHMS

We first apply our bounds to a family of algorithms minimizing a regularized obgdtinction
based on the norr- ||k in a reproducing kernel Hilbert space, whétés a positive definite sym-

metric kernel:
m

1
argmin= S c(h,z) +Al/h|Z. 7
gmin 3 c(h2)-+ Al (7)
The application of our bAound is possible, under some general condsions, kernel regularized al-
gorithms are stable witf < O(1/m) (Bousquet and Elisseeff, 2002). For the sake of completeness,
we briefly present the proof of thfstability.

We will assume that the cost functions o-admissiblethat is there exists € R such that for

any two hypotheses, i € H and for allz= (x,y) € X x Y,
lc(h,z) —c(W,2)| < alh(x) — W' (x)|.

This assumption holds for the quadratic cost and most other cost funetioeis the hypothesis
set and the set of output labels are bounded by skh@®R,: Vh € H,vx € X,|h(x)| <M and
vy eY,ly| <M. We will also assume thatis differentiable. This assumption is in fact not necessary
and all of our results hold without it, but it makes the presentation simpler.

We denote byr the Bregman divergence associated to a convex funetidi (f||g) =F(f) —
F(g) — (f —g,0F(g)). In what follows, it will be helpful to defin€& as the objective function of a
general regularization based algorithm,

Fs(h) = Rs(h) +AN(h),

whereRsis the empirical error as measured on the sarBphe: H — R is a regularization function
andA > 0 is the familiar trade-off parameter. Finally, we shall use the shorthard Y — h.

Lemma 13 (Bousquet and Elisseeff, 2002)\ kernel-based regularizatign algorithm of the form
(7), with bounded kernel ,x) < k < 0 ando-admissible cost function, [&stable with coefficient

02K

N

N 2
B<

Proof Lethandh be the minimizers ofs andF{ respectively wher& and S differ in the first
coordinate (choice of coordinate is without loss of generality), then,

B (1[0 + Bu(h[I) < 2 supian(o)|. ®)

XeS

To see this, we notice that sinBg = Bz + ABy, and since a Bregman divergence is non-negative,
A(Bn([lh) +Bn(hi[l)) < Brg(H[[h) + By (hiH).
By the definition ofh andh as the minimizers ofs andFs,
Brs([[) + Bry ([[) = Reg() — Reg(h) + Reg (h) — Rey ().
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Finally, by theo-admissibility of the cost function and the definition o§andS,
A(Br(H'[[h) +Bn(hi[)) < Res(h) = Res(h) + Reg (h) — Reg ()
olt.zs) ez +ch) (. 2)

R 3k

< Loianixy) +orAh<xa>r]

20
< — Ah
< supiah(x),

XeS

which establishes (8).
Now, if we consideN(-) = ||-||Z, we haveBy (I ||h) = || — h||Z, thusBy (I ||h) + By (h||F) =
2||Ah||Z and by (8) and the reproducing kernel property,

20
2lahlik < {7 SUpAh(Y)|
X

20
< —K||Ahl|k.
< kol

Thus [|Ahflk < . And using theg-admissibility ofc and the kernel reproducing property we
obtain

vVze X xY,|c(h',2) — c(h,2)| < o|Ah(x)| < ko]|Ah||k.

Therefore,
Vze X xY,|c(h',2) —c(h,z)| <
which completes the proof. |

Three specific instances of kernel regularization algorithms are SVR/hich the cost function
is based on the-insensitive cost:

ch,2) = ° if [h(x) —y| <€,
"7l Ih(x)—y|—¢ otherwise.

Kernel Ridge Regression (Saunders et al., 1998), for which
c(h,2) = (h(x) - y)?,
and finally Support Vector Machines with the hinge-loss,

hg) — 0 if 1 —yh(x) <0,
M2 =1y if yhix) < 1

For kernel regularization algorithms, as pointed out in Bousquet anceEff§2002, Lemma 23),
a bound on the labels immediately implies a bound on the output of the hypothesiseceby the
algorithm. We formally state this lemma below.
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Lemma 14 Let h* be the solution of the optimization problem (7), let ¢ be a cost function and let
B(-) be a real-valued function such that for alkhH, xe X,andyeY,

c(h(x),y) < B(h(x)).
Then, the output ofhis bounded as follows,
vx e X, |h*(x)| <k 8;0)7

whereA is the regularization parameter, and > K(x,x) for all x € X.

Proof LetF(h)=25M,c(h,z)+A|h||Z and let0 be the zero hypothesis, then by definitionFof
andh*,
Allh*[[g < F(h*) <F(0) <B(0).

Then, using the reproducing kernel property and the Cauchy-Szhmequality we note,

vxe X, [ ()] = (h*, K(x,-)) < [[h*[lk v/K(x,%) <k][h*]k.

Combining the two inequalities proves the lemma. [ |

We note that in Bousquet and Elisseeff (2002), the following bound isstgted:c(h*(x),y) <
B(k+/B(0)/A). However, when later applied, it seems that the authors use an inagppEtbound
functionB(-), which we remedy in the following.

Corollary 15 Assume a bounded output=Y[0,B], for some B> 0, and assume that (&, x) < k2

for all x for somex > 0. Let hs denote the hypothesis returned by the algorithm when trained on a
sample S drawn from an algebraicalymixing stationary distribution. Let & r/(r + 1) € [3,1],

M’ =2(r+1)¢oM/(rdpoM)", anddg = (1+2¢or /(r — 1)). Then, with probability at least— 5, the
following generalization bounds hold for

a. Support Vector Machines (SVM, with hinge-loss)

~ 82 /2x2\"3m’ 3,2 2xkA\" W 2log(2/3)
< - - ) = / - -
R(hs)_R(hS)+)\m+( A ) m +¢°(M+ A +( A ) rn“1> m

where M= K\/%—{— B.

b. Support Vector Regression (SVR):

A

N 82 [/2k2\"3w’
< -
R(hs) < R(hg) + 3+ ( ) o

where M=K/ 2 + B.

, 3>  2k2\" M 2log(2/3)
+¢°(M+)\+ N ) m

)
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c. Kernel Ridge Regression (KRR):

32@B?+ 8@52”§ML+¢ M+j2@82+ 8k2B2\ " M’ 2log(2/3)
AM A mt 70 A ) mu-1 m

)

R(hs) < R(hs) +

where M= 2«x?B?/\ 4 B2,

Proof For SVM, the hinge-loss is 1-admissible giviﬁg k?/(Am). Using Lemma 14, witlB(0) =
1, the loss can be bounded € X,y € Y, 1+ |h*(x)| < K\/%+ B.

Similarly, SVR has a loss function that is 1-admissible, thus, applying LemmavE3 gis
ﬁg k2/(Am). Using Lemma 14, wittB(0) = B, we can bound the loss as followsx € X,y €
Y, |h*(x) —y| < K\/%‘l- B.

Finally for KRR, we have a loss function that i8-2dmissible and again using Lemma 13
B < 4k2B2?/(Am). Again, applying Lemma 14 witB(0) = B2 andV¥x € X,y € Y, (h*(x) —y)2 <

K?B2/\ + B2.
Plugging these values into the bound of Theorem 12 and setting the rigthisitEntod yields
the statement of the corollary. |

3.5.2 RELATIVE ENTROPY-BASED REGULARIZATION ALGORITHMS

In this section, we apply the results of Theorem 12 to a family of learning itthges based on
relative entropy-regularization. These algorithms learn hypothe#est are mixtures of base hy-
potheses ifhg: 6 € ©}, where® is measurable set. The output of these algorithms is a mixture
g: © — R, that is a distribution ove®. Let G denote the set of all such distributions andgget G

be a fixed distribution. Relative entropy based-regularization algorithrsibthe solution of a
minimization problem of the following form:

m

1
argmin— Y c¢(g,z)+AD , 9
gm mi; (9:2) +AD(gl/90) 9)

where the cost functioo: G x Z — R is defined in terms of a second internal cost functiarH x
Z— R:

(9.2 = [ ¢(ha,2)g(6)de.
and whereD(g||go) is the relative entropy betwegrandgp:

D(gl/go) = /@ 9(6)log S’Cf(%))de.

As shown by Bousquet and Elisseeff (2002, Theorem 24), a relatitrepy-based regularization
algorithm defined by (9) with bounded los'$-) < M, is B-stable with the following bound on the

stability coefficient:
~ M?2

< —.

B= Am

Theorem 12 combined with this inequality immediately yields the following generalizhband.
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Corollary 16 Let hs be the hypothesis solution of the optimization (9) trained on a sample S drawn
from an algebraicallyp-mixing stationary distribution with the internal cost functidrbounded by
M. Then, with probability at least — 9, the following holds:
8M? 3w’ 3M2 yal Vi 2log(2/8)
+éo(M

s
Rihs) < R(hs) + 50+ S TN T amt m

where u=r/(r+1) € [3,1], M’ = 2(r + 1)$poM"“*1/(rdo)", anddy = (1+ 2¢or /(r — 1)).

)

3.6 Discussion

The results presented here are, to the best of our knowledge, tredibgity-based generalization
bounds for the class of algorithms just studied in a non-i.i.d. scenario. eTh&snds are non-
trivial when the condition on the regularization parameter 1/mY2-1/" parameter holds for all
large values ofn. This condition coincides with the one obtained in the i.i.d. setting by Bousquet
and Elisseeff (2002), in the limit, astends to infinity. The next section gives stability-based
generalization bounds that hold even in the scenar@mixing sequences.

4. 3-Mixing Generalization Bounds

In this section, we prove a stability-based generalization bound that amlyres the training se-
guence to be drawn from gmixing stationary distribution. The bound is thus more general and
covers thep-mixing case analyzed in the previous section. However, unlikepth@xing case,
the B-mixing bound presented here is not a purely exponential bound. faicsnan additive term,
which depends on the mixing coefficient.

As in the previous sectiorh(S) is defined byd(S) =R(hs)—R(hs). To simplify the presenta-
tion, here, we define the generalization errohgby R(hs) = E;[c(hs, z)]. Thus, test samples are
assumed independent 8f Note that for any block of point& = z . ..z, drawn independently of
S, the following equality holds:

k

1 1k
[\er 2] = k2, Elelhs )l = 5 Ele(hs 2)] = Ele(hs.2)

since, by stationarity, Hc(hs, z )] = E [c(hs, zj)] for all 1<i, j <k. Thus, for any such block, we
can writeR(hg) =Ez [‘71| 5 2z ¢(hs,2)]. For convenience, we extend the cost functida blocks as

follows: 1
Z)=— > c(h 2.
)=z 2,5

With this notationR(hs) = Ez[c(hs,Z)] for any block drawn independently &f regardless of the
size ofZ.

To derive a generalization bound for tBemixing scenario, we apply McDiarmid’s inequality
(Theorem 10) tab defined over a sequence of independent blocks. The independeks bve
consider are non-symmetric and thus more general than those condiggeslious authors (Yu,
1994; Meir, 2000).

4. In theB-mixing scenario, a result similar to that of Lemma 5 can be shown to holdpectation with respect the
sampleS. Using Markov’s inequality, the inequality can be shown to hold with high @billy. Thus, the results

that follow can all be be extended to the case where the test points depénel toaining sample, at the expense of
an an additional confidence term.
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S, Sh
B b b a a a

Figure 3: lllustration of the sequenc8&sandS, derived fromS that are considered in the proofs.
The darkened regions are considered as being removed from trensequ

From a samples made of a sequence af points, we construct two sequences of blo&s
and$S,, each containingt blocks. Each block its, containsa points and each block i, contains
b points (see Figure 3)S; and S, form a partitioning ofS; for any a,b € {0,...,m} such that
(a+b)u=m, they are defined precisely as follows:

S= (Zia), .. Zl(l ), with Z = Zi_1)(atb)+1s- - - &i—1)(at+b)+a
S = (Zib)a . Z( )) with Z = Zi_1)(atb)+a+1s- - -1 Li—1)(a+b)+a+b

foralli e {1,...,u}. We shall consider similarly sequences of i.i.d. blogRandZP,i € {1,...,u},
such that the points within each block are drawn according to the same bfgimaing distribution
and shall denote bg, the block sequenc@?, ..., Z).

In preparation for the application of McDiarmid'’s inequality, we give a liban the expectation
of ®(S,). Since the expectation is taken over a sequence of i.i.d. blocks, this bengsusituation
similar to the i.i.d. scenario analyzed by Bousquet and Elisseeff (2002)thdtaxception that we
are dealing with i.i.d. blocks instead of i.i.d. points.

Lemma 17 Let S, be an independent block sequence as defined above, then the follawing b
holds for the expectation 0®(S,)|:

Ello(Sy)[] < 2ap.
S

Proof Since the block&® are independent, we can replace any one of them with any otherBlock
drawn from the same distribution. However, changing the training set atswges the hypothesis,
in a limited way. This is shown precisely below:

~E[|¢<§a>u=g[\fll c(hg.Z¥) - [c(hga,zﬂ)]

S —
1e (@
< E || clhg. 2 —elng, 2)
1 [
- ‘ui_ c(hg . 2) —c(hg, Z)‘]
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where§a corresponds to the block sequer@eobtained by replacing thigh block withZ. The
[-stability of the learning algorithm gives

c(hg ,2) ells 2ap| < 2ap.
Zl Z Ui;
|

We now relate the non-i.i.d. event[®(S) > €] to an independent block sequence event to which
we can apply McDiarmid’s inequality.

&Z

Lemma 18 Assume eﬁ—stable algorithm. Then, for a sample S drawn fror3-mixing stationary
distribution, the following bound holds:

Rrf] & )|>8]<PFU¢( )| —El|l®(S)]] > €] + (- 1)B(b),

wheregy =& — ¥ 23— E¢ AEIEI

Proof The proof consists of first rewriting the event in termsSpfand S, and bounding the error
on the points irg, in a trivial manner. This can be afforded sirtzevill be eventually chosen to be
small. Sincd Ez[c(hs,Z")] —c(hs,Z)| < M for anyZ € S,, we can write

PrlP(S)] > €] = PrR(hs) - Rhs)| > ¢

—pr ; 3 Elcths ) ~clns 2| > s]
<Pr ; ZGZBIZE[c(hS, 7)) - c(hs, 2) ‘ ; Elc(hs,Z' —c(hg,z’)‘ zs]
< F;r ; Z;IZE[C(hS, Z)] —c(hs, z)‘ + ub?M > e} :

By ﬁ—stability andpa/m < 1, this last term can be bounded as follows

2|

bM
c(hs, ))+“m28}§

1 ubM
— - >€l.
I;r |:ua zng E[C(h&a Z)] C(hSaa Z) + m + ZUbB = €:|

The right-hand side can be rewritten in termstoadnd bounded in terms off&mixing coefficient:

1 pubM ~
il _ Landad >
I;ar[ua 2 Elc(hs,, 2)] C(hsa,Z)’Jr - +2ubB_€}
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by applying Lemma 3 to the indicator function of the ev{m@(sa)] + “%M +2ubf3 > s}. Since

E§a[]d>(§d)ﬂ is a constant, the probability in this last term can be rewritten as

Pr[0(S) + ¥+ 20t > ¢
S

Pr|10(80)1 - E0(%) )+ 2 2uth > e 0() )
S $
Pr|[0(8)1 - El0(S))> 5

S

which ends the proof of the lemma. |

The last two lemmas will help us prove the main result of this section formulated foltbeing
theorem.

Theorem 19 Assume @-stable algorithm and let’ denotee — “bTM — 2ub§ - 2a§ asin Lemma 18.
Then, for any sample S of size m drawn according fleraixing stationary distribution, any choice
of the parameters &, 1 > 0 such that(a+ b)u = m, ande > 0 such thate’ > 0, the following
generalization bound holds:

—2¢”m

(«$m+m+m )

Pr|IR(hs) ~R(hs)| > s} < exp( ) +(H=1)B(b).

Proof To prove the statement of theorem, it suffices to bound the probability tepeeapg in the
right-hand side of Equation 18, grﬂ¢(~ E[|®(S)]] > €], Which is expressed only in terms
of independent blocks. We can therefore apply McDiarmid’s inequalityieying the blocks as
i.i.d. “points”.

To do so, we must bound the quantjfyp( SHIEIEN )|| where the sequenc® and$, differ
in the ith block. We will bound separately the difference between the generalizatiors and
empirical errors. The difference in empirical errors can be bounded as follows usingatinecbon
the cost functiorc:

Rihg) - Rihg)| = \i[;e(hsa,zn —o(hg.Z)) +ﬁ[c<hsa,zi>—c<hsd,zi'>]
JA

~ M ~ (a+b)M
< _— = B ——
<2aB+ T 2aB3+

The difference in generalization error can be straightforwardly bedmntinqg-stability:

Rths) —R(hg)| = [Ele(hs, 2)] ~ Ele(hg, 2)]| = [Ele(hs, ) — olhg, 2)]| < 2a.

5. We drop the superscripts @® since we will not be considering the sequeSgén what follows.
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Using these bounds in conjunction with McDiarmid’s inequality yields

i N / —2eZm
Prlo() Hfb(%)]zso]SeXp<(4aﬁm+<a+b>M)2>

—2¢”m
< exp - 5 |-
((4a[3m+(a+b)M) )

Note that to show the second inequality we make use of Lemma 17 to establishtttieafa

bM bM
gh=e— M0 outf - Ello(S)]] > e MM g 2ap -
Finally, we make use of Lemma 18 to establish the proof,

Prij® ()I>€]<PFU¢( )| —E[|0(S)]] = £5] + (- 1)B(b)

—2¢”m
< exp<(4aﬁm+(a+ b)M)2> + (L= 1)B(b).

This concludes the proof of the theorem. [ |

In order to make use of this bound, we must determine the values of paramatelu (ais then
equal toy/m— u). There is a trade-off between selecting a large enough valuetoensure that
the mixing term decreases and choosing a large enough vaju® ofiinimize the remaining terms
of the bound. The exact choice of parameters will depend on the type aigrtixat is assumed
(e.g., algebraic or exponential). In order to choose optimal parametetif,be useful to view the
bound as it holds with high probability, in the following corollary.

Corollary 20 Assume @-stable algorithm and led’ denoted — (n— 1)B(b). Then, for any sample
S of size m drawn according tof&mixing stationary distribution, any choice of the parameters
a,b,p > 0 such that(a+ b)u=m, andd > 0 such thaty’ > 0, the following generalization bound
holds with probability at leastl — d):

log(1/%)
2m

[R(hs) — Rhs)| < ub( +2f3> 2o <4aﬁm+MrS>

In the case of a fast mixing distribution, it is possible to select the values gfatameters to
retrieve a bound as in the i.i.d. case, that/Rhs) — R(hs)| = O(m*% log 1/6). In particular,
for B(b) = 0, we can choosa =0, b= 1, andu = mto retrieve the i.i.d. bound of Bousquet and
Elisseeff (2001).

In the following, we examine slower mixing algebrglemixing distributions, which are thus
not close to the i.i.d. scenario. For algebraic mixing, the mixing parameter iedefg(b) =b™".

In that case, we wish to minimize the following function in termsu@ndb:

/28 mb/2 1
s(u,b):b—urJr HB m +ub<m+|3>. (10)
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The first term of the function captures the condit®n (pu+1)B(b) ~ p/b" and the remaining terms
capture the shape of the bound in Corollary 20.

Setting the derivative with respect to each variabdedb to zero and solving for each parameter
results in the following expressions:

/4y

Vo)

wherey = (m*1+ﬁ) andC; = r#1 is a constant defined by the parameter

Now, assuminqAB = O(m~%) for some 0< a < 1, we analyze the convergence behavior of
Corollary 20. First, we observe that the terbnandp have the following asymptotic behavior,

b:Cryi'r%1

b:O<mr%1> u:O(m‘%*ﬁ).

Next, we consider the conditia¥ > 0 which is equivalent to,

5> (u—1)B(b) :o<m3—“(1—z<rl+l>)>. (11)
In order for the right-hand side of the inequality to converge, it must bedke thatr > f{{—ig. In

particular, ifa = 1, as is the case for several algorithms in Section 3.5, then it suffices tHat

Finally, in order to see how the bound itself converges, we study the asyjoipebhavior of the
terms of Equation 10 (without the first term, which corresponds to the quattigdy analyzed in
Equation 11):

m/2 -~ mY2 b < R CE——
+pbB+——+— =0

m HbB Tt

(a (b)

This expression can be further simplified by noticing ttigt< (a) for all 0 < a < 1 (with equality
ata = 1). Thus, both the bound and the condition®decrease asymptotically as the ternfay,
resulting in the following corollary.

Corollary 21 Assume £-stable algorithm witrﬁ =0O(m™1) and letd =5 — mﬁ*%. Then, for
any sample S of size m drawn according to a algebamixing stationary distribution, and > 0
such tha®' > 0, the following generalization bound holds with probability at legist- 8):

IR(hs) — R(hs)| < o<mz<rini \/Iog(l/é’))

As in previous bounds > 1 is required for convergence. Furthermore, as expected, a largeigmix
parameter leads to a more favorable bound.
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5. Conclusion

We presented stability bounds for bajihmixing and-mixing stationary sequences. Our bounds
apply to large classes of algorithms, including common algorithms such as SR, &d SVMs,
and extend to non-i.i.d. scenarios existing i.i.d. stability bounds. Since thegmethm-specific,
these bounds can often be tighter than other generalization boundsdrageteral complexity
measures for families of hypotheses. As in the i.i.d. case, weaker notistebilfty might help fur-
ther improve and refine these bounds. These stability bounds complemenalgtata-dependent
learning bounds we have shown elsewhere for statiofianyxing sequences using the notion of
Rademacher complexity (Mohri and Rostamizadeh, 2009).

The stability bounds we presented can be used to analyze the propersiablef algorithms
when used in the non-i.i.d settings studied. But, more importantly, they can agragool for
the design of novel and accurate learning algorithms. Of course, somegnpsaperties of the
distributions need to be known to take advantage of the information suppliedrigeneralization
bounds. In some problems, it is possible to estimate the shape of the mixingieoesfi This
should help devising such algorithms.
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