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Abstract

We estimate the mean function and the conditional variance (the volatility function) of a nonlinear "rst-order auto-
regressive model nonparametrically. Minimax rates of convergence are established over a scale of Besov bodies Bspq and
a range of global Lp′ error measurements, for 16p′ ¡∞. We propose an estimating procedure based on a martingale
regression approximation scheme. This enables us to implement wavelet thresholding and obtain adaptation results with
respect to an unknown degree of smoothness. c© 1999 Published by Elsevier Science B.V. All rights reserved
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1. Introduction

1.1. Motivation

A vast literature is devoted to the study of nonlinear time series models, especially for "nancial economics
purposes. From a statistical point of view, a nonparametric approach seems appropriate for estimating the
conditional mean and variance (the volatility function) of nonlinear AR(1) models. This allows to consider
a wide range of models, speci"ed by smoothness properties on the coe#cients only. Several authors dealts
with the estimation of the mean function using Nadaraya–Watson estimators (Robinson, 1983; TjHstheim,
1994; Masry and TjHstheim, 1995). In H$ardle and Tsybakov (1995), the pointwise estimation of the volatility
function was proposed by local polynomial "ts. The method they proposed consider the case when both the
mean and the variance belong to the same smoothness class.
On the other side, nonparametric estimation in signal analysis has known over the last few years a signi"cant

development in the so-called adaptive estimation (among many others: Efromovitch, 1985; Lepski, 1990). The
introduction of wavelet thresholding in the work of Donoho et al. (1995, 1996) – DJKP for abbreviation –
has provided with computationaly fast adaptive procedures in density estimation and nonparametric regression.
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In this paper, we study the global estimation of the mean and the variance function, when both parameters
are subject to di!erent functional constraints, within a range of Besov smoothness classes. Our study is taken
from a theoretical angle, and we compute the minimax rates of convergence for Lp′ losses (16p′ ¡∞),
when the unknown parameter has a smoothness s measured in Lp norm (without assuming p = p′). This
naturally leads to the use of nonlinear procedures (see DJKP 1995, 1996). By thresholding the empirical
wavelets coe#cients, we investigate adaptive estimation, in the sense that our estimators achieve the optimal
rates of convergence (to within a logarithmic term in some cases) without the need to specify s or p. Thus,
the smoothness properties of the unknown parameter can be unknown, which is more realistic if practical
considerations are taken into account.
To our knowledge, our study provides with the "rst adaptation results in this area (in the sense de"ned

above), in parallel to a recent work of Barraud et al. (1997) for the case of the mean function via a model
selection approach. See also Dahlhaus et al. (1995) for time-varying autoregressive processes.
We make use of a systematic time evolving signal plus noise analogy. This emphasises the closeness of

AR(1) models to more tractable models such as nonparametric regression (see also Neumann, 1996; Neumann
and Kreiss, 1996).

1.2. Outline

We consider the observation X (n) = (X1; : : : ; Xn) de"ned by the one-dimensional "rst-order autoregressive
process

Xt+1 = m(Xt) + !(Xt)"t+1; X0 = x0; t = 0; : : : ; n− 1; (1.1)

where the mean function m(·) and the variance !2(·) are unknown parameters belonging to some Besov
smoothness class (see Assumption A1 in Section 2 below). The innovation terms ("t ; t = 1; : : : ; n) are i.i.d.
variables, with a common (unknown) density g such that

E("t) = 0 and E("2t ) = 1:

We assume that X is ergodic in a strong sense (Assumption A2 below). Note that the initial condition
X0 = x0 is not restrictive, and can be replaced by an arbitrary initial law with some additional technical
assumptions.
Let f = m or !2 be the unknown parameter of interest. Consider a compactly supported pair (’;  ) of

scaling function and wavelet. For a function h and integers ( j; k), de"ne hjk(x)=2j=2h(2jx− k). The classical
wavelet threshold estimator f̂n of f has the form

f̂n(x) =
∑

k

#̂j0k’j0k(x) +
j1
∑

j=j0

$̂jk1|$̂jk |¿%j  jk(x); (1.2)

where %j = %j(n) is the threshold level and #̂j0k = #̂j0k(X
(n)) and $̂jk = $̂jk(X

(n)) are estimates of the wavelet
coe#cients #j0k = 〈f;’j0k〉 and $jk = 〈f;  jk〉 for the usual L2 inner product. Thus, by specifying j0 = j0(n)
and j1(n), we estimate f by a low-frequency approximation at level j0 (in a dyadic scale) and add relevant
details $̂jk for j= j0 to j0 only if they exceed the threshold level %j. The theoretical and practical advantages
of the multiscale structure along with thresholding has been extensively discussed in the literature (e.g. DJKP,
1995). Going back to time series, our statistical problems reduce to the estimation of the integrals #j0k and
$jk . For this, we use a martingale regression approach, in which we embed the two estimation problems (i.e.
f = m and !2). For the mean function m, we consider the model

Yt = m(Xt) + & t ; t = 0; : : : ; n− 1; (1.3)

where Yt =Xt+1, and & t = !(Xt)"t+1 can be viewed as a noise term. Considering the process (Xt) subsampled
at proper stopping times enables us to get rid of the spatial inhomogeneity of the design process (Xt),

we

unto
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while preserving the martingale structure of the noise (& t). For the variance function !2, we apply a similar
algorithm to

Yt = !2(Xt) + 't + & t ; t = 0; : : : ; n− 1; (1.4)

where Yt = {Xt+1 − m̂t(Xt)}2 and m̂t(x) is a preliminary estimator of m(x) constructed using only data up to
time t (see Section 3.2). The term 't = {Xt+1 − m̂t(Xt)}2 is a small-noise component. The martingale noise
term is now

& t = 2{m(Xt)− m̂t(Xt)}!(Xt)"t+1 + !2(Xt) ("2t+1 − 1):

Our method will prove to be optimal in the minimax sense w.r.t. rates of convergence (up to a logarithmic
factor in some cases). From a practical point of view however, it has the drawback of discarding data (via the
homogeneization subsampling procedure, see below). This can be healed by using a correction algorithm, and
the estimators proposed here should be viewed as pilot estimators in a "rst step procedure. Since we mainly
focus on asymptotical results here, we will no longer consider the problem of practical implementation.

1.3. Contents

In Section 2, we discuss our assumptions on the model. Section 3 is devoted to the construction of estimators.
We present a general framework of a time-evolving signal plus noise model which embodies AR(1) models.
The results and proofs are given in Sections 4 and 5, respectively.

2. Assumptions

We write Px0 for the law of the chain (Xt) with initial condition X0 = x0. Let D be a compact interval. We
denote by K a real-valued Lipschitz continuous function satisfying

∫

K(x) dx=1 and set Kh(x)=h−1K(h−1x).
Let Bspq denotes the Besov space Bspq(R) restricted to D, with norm ‖ · ‖spq (e.g. Meyer, 1990), for s¿ 0,
16p; q¡∞. Given M ¿ 0, put

Bspq(M) = {f ∈ Bspq : ‖f‖spq6M}:

We consider the statistical model de"ned by (1.1) and make the following assumptions:

A1. local assumptions on m(·) and !(·)

(m; !2) ∈ Bs1p1q1 (M1)× Bs2p2q2 (M2):

A2. global assumptions on m(·) and !(·). The process (Xt; t¿0) has a unique stationary measure with
density ( w.r.t. the Lebesgue measure on D, satisfying

∀x ∈ D : ((x)¿)¿ 0 (2.5)

for an explicitly computable )¿ 0. Moreover, the density ( can be estimated at some polynomial rate uni-
formly on D: there exists *¿ 0 s.t.

∀+¿1 : sup
x∈D

E{|(n(x)− ((x)|+}6M3(+)n−*+; (2.6)

where

(n(x) =
1

n+ 1

n
∑

t=0

Khn(Xt − x) (2.7)

for a suitable bandwidth hn.
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A3. assumptions on the innovation terms. For some constant M4 and for all + ∈ [1;∞)
∫ +∞

−∞
|x|+g(x) dx6M +

4+
+=2: (2.8)

Remarks.
1. The constant * needs not be known and can be arbitrarily small.
2. The moment condition A3 is satis"ed for bounded Gaussian-type errors. The exponential bound can actually
be relaxed to some polynomial moment growth, at the cost of a (signi"cantly more technical) improvement
of Lemma 7 below, thanks to Fuk and Nagaev inequality (Fuk and Nagaev, 1971).

3. The Besov indices need not be equal for m and !2. In particular, the smoothness of !2 may di!er from
that of m to within the range (1;∞).

4. Whereas A1 is classical in the minimax theory as well as A3 in the framework of time series, we need to
elaborate on assumption A2. It describes the minimal features needed to perform our estimating procedure.
Denote by ,(x; y) the transition density of the chain (Xt), given by

,(x; y) =
1

!(x)
g
(

y − m(x)
!(x)

)

and set, for any test function f

,f(x) =
∫

,(x; y)f(y) dy:

Consider the following assumptions:

B1. The function V (x) = |x| is (C0; C1)- Lyapunov for ,, with C0¡ 1, i.e. ,V (x)¿C0|x| + C1 for all
real x.

B2. |m(x)| ∨ |!(x)|6C2(1 + |x|) for all real x.
B3. inf x !(x)¿C3¿ 0:
B4. For all compact K : inf x∈K g(x)¿ 0.

Remarks.
1. Assumption B1 plays the role of a (the so-called) drift condition, enabling the strong ergodicity of the
process (Xt).

2. Assumption B4 is satis"ed for standard Gaussian errors.
3. Let us give classical examples of functions m and ! satisfying B1 and B2. Consider the space of Lipschitz
continuous functions

Lip(M) = {f : |f(x)− f(y)|6M |x − y|}:

Provided m ∈ Lip(M1) and ! ∈ Lip(M2), B1 holds if

M1 +M2

∫

|x|g(x) dx6C0

and B2 holds if |m(0)| ∨ |!(0)|6M3, with M1 ∨M2 ∨M36C1.

Lemma 1. Assumptions B1; B2; B3 and B4 imply A2.

Proof of Lemma 1. Under B1, B2, B3 and B4, the chain is geometrically ergodic, with exponentially fast
decay mixing coe#cients (Doukhan, 1995, pp. 105–106 and the references therein). This implies inequality
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(2.6) by classical density kernel estimation for weakly dependent variables (see for instances Neumann, 1996).
We now compute an explicit lower bound for ( on D. The invariant density satis"es

((x) =
∫

1
!(y)

g
(

x − m(y)
!(y)

)

((y) dy:

We assume, without loss of generality, that D = [−c0; c0] for some c0¿ 0. Let c1¿ 0. For any (x; y) ∈
[−c0; c0]× [−c1; c1], we have, from assumptions B1 and B3

∣

∣

∣

∣

x − m(y)
!(y)

∣

∣

∣

∣

6C−1
3 (c0 + C2(1 + c1)) = c2;

say. Hence

((x)¿ inf
|t|6c2

g(t)C−1
2 (1 + c1)−1

∫ c1

−c1
((y) dy:

Applying Chebyshev’s inequality yields
∫ c1

−c1
((y) dy¿1− c−11

∫

V (x)((y) dy¿1− c−11 C1=(1− C0):

The last inequality is obtained by assumption B1 (see for instance Du%o, 1990). Finally, we can take

)= inf
|t|6c2

g(t)C−1
2 (1 + c1)−1(1− c1C1=(1− C0)):

We check that )¿ 0 by taking c1 large enough. This proves Lemma 1.

In the following, we will denote by - = -(M) for M = (M3; M4) the functional constraint imposed by
assumptions A2 and A3. Note that -(M) can be replaced by -(C;M4), C = (C0; : : : ; C3) if one prefers to
consider the more familiar framework of assumptions B1–B4. We denote by

-0 = - ∩ Bs1p1q1 (M1)× Bs2p2q2 (M2); (2.9)

the global functional constraint on the parameter (m; !2).

3. The estimating procedure

3.1. General setting

For n¿0 let (Fn
i ; 06i6n) be a triangular array of sigma-"elds such that Fn

0⊆Fn
1⊆ · · ·⊆Fn

n. Suppose
one wants to recover the signal f de"ned on a compact interval D from data (Xi; Yi; i = 0; : : : ; n− 1) in the
model

Yi = f(Xi) + 'n
i + & i ; i = 0; : : : ; n− 1; (3.10)

where

• the random process (Xi; i = 0; : : : ; n− 1) is (Fn) adapted,
• the noise process

∑i−1
j=0 is a (F

n) martingale,
• the term 'n

i is a small noise component which is (F
n) adapted.

This model contains usual regression frameworks, including regression with random design. Note that we
do not assume that the design points (Xi) are independent nor independent from the noise terms (& i). Assume
that the empirical measure 1=n

∑

i6n .Xi weakly converges to a measure with density ( w.r.t. the Lebesgue
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measure on D and that ((x)¿)¿ 0 on D for an explicitly known ). The problem of estimating the mean
m and the variance !2 of the autoregression model de"ned by (1.1) is embedded in this framework via the
transformations (1.3) and (1.4) of Section 1.

3.2. Algorithm

Following (1.2) our problem reduces to estimate the wavelet coe#cients #j0k and $jk of f. Two speci"c
di#culties appear here

1. the limiting density ( has unknown smoothness. Even worse, its smoothness may di!er from that of f
due to the in%uence of nuisance parameters.

2. the estimation procedure should be adapted to the "ltration (Fn) so that the noise terms remain uncorrelated.

Assuming that ( is bounded below by )¿ 0, the convergence of the empirical sampling measure ensures
that ,nhn)- observation points (at least) lie in a neighbourhood of size hn of any given point in D with high
probability. We can then construct an estimator by subsampling ,n)- observation points as follows.
Assume (without loss of generality) that D = [0; 1]. Given hn ¿ 0, we divide D into ,h−1n - small intervals

of size hn each, denoted by C%, %= 1; : : : ; ,h−1n -. Put

N %
i =

(

∑

i¡j

1Xj∈C%

)

∧ ,nhn)-;

T1 = 0 and for i¿2 : Ti = inf

{

j¿Ti−1 :
∑

%

(N %
j − N %

Ti−1
)¿1

}

∧ n:

Note that the Ti are increasing stopping times of the "ltration (Fn). We extract from (X0; : : : ; Xn−1) the
subsampling (XT1 ; : : : ; XT#n)$) and compute the empirical wavelet coe#cients from data (xTi ; YTi ; i=1; : : : ; ,n)-)
on the coarse grid (xTi ; i = 1; : : : ; ,n)-) de"ned by

xTi = (%Ti − 1)hn + lTi =,n)-;

where %Ti is the index of the interval C% in which falls the observation XTi and lTi = #{XTj ∈ C%Tj ; j6i}.
Note that the xTi are a reordering of a regular grid at coarse scale ,1=n)- needed for technical reason (see the
proof of Theorem 2 below).

De!nition 1. The (subsampled) wavelet coe#cient estimates at accuracy level ) are

#̂j0k =
1

,n)-

%n)&
∑

i=1

YTi’j0k(xTi); $̂jk =
1

,n)-

%n)&
∑

i=1

YTi jk(xTi):

De!nition 2. The threshold wavelet estimator f̂n of f speci"ed by %j = %j(n); j0 = j0(n), j1 = j1(n) and ) is
given by the formula

f̂n(x) =
∑

k

#̂j0k’j0k(x) +
j1
∑

j=j0

∑

k

$̂jk1|$̂jk |¿%j  jk(x)

where the #̂j0k and $̂jk are given in De"nition 1.
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Remarks.
1. For sake of simplicity, we omit the boundary conditions on the edges of D, provided by wavelets on the
interval (Cohen et al., 1994).

2. The above subsampling method has the major drawback that it discards data after the random time T%n)&.
The reason to introduce this subsampling procedure is mainly technical, and has no e!ect since only rates of
convergence are studied in this paper. The next level of accuracy should be to look for minimax e#ciency
(i.e. optimal asymptotic constants). Such a task is beyond the techniques used in this paper.

For f = m of !2, we consider f̂n of De"nition 2 at accuracy level &) = )=2 (this will be explained in the
proof of Theorem 2 below). For f = m, we use data

Yt = Xt+1; t = 0; : : : ; n− 1

and for f = !2, we use data

Yt = {Xt+1 − m̂t(Xt)}2; t = 0; : : : ; n− 1;

where m̂t is the Nadaraya–Watson estimator of m, given by

m̂t = (t(x)−1
1

t + 1

t
∑

i=0

K/t (Xi − x)

and (t is de"ned by (2.7) using the bandwith /t . The proper choice of /t will be speci"ed in Theorem 2
below.

4. Results

We prove upper and lower bounds for the following minimax risk:

De!nition 3. Let 16p′ ¡∞ and D be a compact interval of R. The Lp′ -minimax over D of an estimator
f̂n of f = m or !2 is

R(f̂n) = sup
(m;!2)∈-0

{

Ex0

(
∫

D
|f̂n(x)− f(x)|p

′
dx
)}1=p′

: (4.11)

For sake of clarity, we will denote by R1 the risk associated to m and R2 the risk associated to !2,
respectively.

4.1. Lower bounds

For i = 1 or 2, put

#i =
si

1 + 2si
∧ si − 1=pi + 1=p′

1 + 2si − 2=pi
and "i = sipi −

p′ − pi

2
:

Theorem 1. For i=1 or 2; let si ¿ 1; 16pi6p′ ¡∞; 16qi6∞. Assume the innovation terms are Gaussian;
i.e. g(x) = 1=

√
2, exp(−x2=2). (In particular; A3 is satis$ed.) Under Assumptions A1 and A2; there exists
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an explicitly computable Ki
1 = Ki

1(M; si; pi; qi; p′) or Ki
1(C;M4; si; pi; qi; p′) such that

inf
f̃ n

Ri(f̃ n)¿Ki
1

(

log n
n

)#i

; "i60;

inf
f̃ n

Ri(f̃ n)¿Ki
1n

−#i ; "i ¿ 0; (4.12)

where the in$mum is taken over all estimators.

Remark. Under assumption A3 Theorem 1 can be extended to the case of nonGaussian innovation terms,
under additional technical conditions on the smoothness of g.

4.2. Upper bounds

De"ne

0n(s; p; q; p′) = (log n)(1−"=sp)#n−#; "¿ 0;

0n(s; p; q; p′) = (log n)(1=2−p=qp′)+(log n=n)#; "= 0;

0n(s; p; q; p′) = (log n=n)#; "¡ 0;

where x+ = max(x; 0). In the following, for two real-valued sequences un and vn, we will write un 0 vn if
there exists C ¿ 0 independent of n such that C−1un6vn6Cun.

Theorem 2. Assume A1; A2 and A3. For i = 1 or 2; let si ¿ 1 + 1=pi, 16pi ¡∞, 16qi6∞. If the
parameters of the threshold wavelet estimator f̂n are speci$ed by

hn 0 n−s0=(1+2s0); si6s0¡∞; %j(n) = K0
√

j=n;

2j0(n) 0 (n(log n)(p
′−pi)=(pi)1"i60 )12#i ; 2j1(n) 0 (n=log n)#i =si−1=pi ;

and for the case f = !2;

/t 0 t−1=3;

then; there exist explicitly computable constants K0 and Ki
2 = Ki

2(M; si; pi; qi; p′) or Ki
2(C;M4; si; pi; qi; p′)

such that

Ri(f̂n)6Ki
20n(si; pi; qi; p′): (4.13)

Remarks.
1. The rates obtained are the same as in density estimation or nonparametric regression, with "xed design
(see DJKP, 1995, 1996), and, in view of Theorem 1, are sharp up to a logarithmic factor in some cases.

2. The rates of convergence for m do not depend on the characteristics of !2 an vice versa. Note that the
considered smoothness classes contain at least the Lipschitz class (since si ¿ 1+1=pi, see assumption A2).
This avoids the e!ect of estimating the mean for recovering the variance (see Hall and Caroll, 1989, for
the speci"c case of nonparametric regression).

We now show how a slight modi"cation of f̂n makes it adaptive w.r.t. an unknown degree of smoothness,
in the sense that the rates of Theorem 2 are achieved (possibly to within a logarithmic term in some cases)
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without the requirement to specify (si; pi; qi). In particular, the smoothness of the estimated function can be
unknown. Fix an integer r0¿1 and de"ne

S= {(s; p; q) : 1 + 1=p¡s6r0; 16p¡∞; 16q6∞}:

De!nition 4. Let D be a given compact interval of R. Let -0 = -0(s; p; q) be the smoothness class de"ned
in Section 2. The estimator f̂∗n of f = m or !2 is called adaptive w.r.t. S is there exists K3 such that

∀(s; p; q) ∈ S : sup
(m;!2)∈-0

{

Ex0

(
∫

D
|f̂∗n (x)− f(x)|p

′
dx
)}1=p′

6K30n(s; p; q):

For f = m or !2, we construct an estimator f̂∗n from the threshold wavelet estimator by specifying the
following parameters: the pair (’;  ) generates a r0-regular and compactly supported multiresolution analysis
and

%j(n) = K0
√

j=n; 2j0(n) 0 n1=(1+2r0); 2j1(n) 0 n=log n; hn 0 n−s0=(1+2s0) and s0¿ 2r0 + 1
2 :

Theorem 3. Assume that f = m or !2 belongs to some class -0; as speci$ed in Section 2. Then f̂∗n is
adaptive over S; up to logarithmic terms.

5. Proofs

5.1. Proof of Theorem 1

We go along a classical route, following classical ideas (Bretagnolle and Huber, 1979; Keryacharian and
Picard, 1992; Neumann and Spokoiny, 1995). For a review of the likelihood method we use here, see Ko-
rostelev and Tsybakov (1993). We break the proof in two parts, the so-called sparse case ("i ¡ 0) and the
dense case ("i¿0). In the following, Pm;!2 will denote the law on Rn of the vector X (n) = (X1; : : : ; Xn) driven
by the parameters (m; !2), with initial condition x0.

5.1.1. The dense case "i¿0
For the mean function m, we evaluate a minimax lower bound over -1 =Cjn × {!20}, where !20(x) = 1 for

all x ∈ R and

Cjn =







f(x) = +n
∑

k∈Kjn

vk jnk(x); vk =±1







: (5.14)

The function  is a wavelet of regularity r ¿ s1 ∨ s2, with compact support in [−A; A], where A is an integer
(for instance a Daubechies wavelet), and

Kjn = {−(2−jn − 1)A+ 2lA; l= 0; : : : ; 2jn − 1};

so that #Cjn=2
2jn and the functions  jnk and  jnk′ have disjoint support for k 2= k ′. We impose 2jn 0 n1=(1+2s1)

and +n 0 1=
√
n so that -1⊂-0.

For the variance function !2, we evaluate a lower bound over -2 = {m0}× Cjn , where m0 = 0 and Cjn is
de"ned following (5.14). The choice 2jn 0 n1=(1+2s2) and +n 0 1=

√
n ensures that -2⊂-0.

Lemma 2. For given k ∈ Kjn ; denote by f+ =f+(k) and f−=f−(k) any pair of functions in Cjn such that

f+(x)− f−(x) = 2+n jnk(x):
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Under the assumptions of Theorem 1; there exist %i ¿ 0 and zi ¿ 0, i=1; 2; independent of n such that for
large enough n

Pf− ;!20
(11(f+; f−; X (n))¿e−%1 )¿z1¿ 0 and Pm0 ;f−(12(f+; f−; X (n))¿e−%2 )¿z2¿ 0;

where

11(f+; f−; X (n)) =
dPf+ ;!20

dPf− ;!20

(X (n)) and 12(f+; f−; X (n)) =
dPm0 ;f+

dPm0 ;f−
(X (n)):

Proof of Theorem 1, dense case. The lower bound is a consequence of Lemma 2, as follows from Korostelev
and Tsybakov (1993, Ch. 2).

5.1.2. The sparse case "i ¡ 0
For the mean function m, we now consider the parametric family -1 =Pjn × {!20}, where

Pjn = {f0(x); fjnk(x) = f0(x) + +n jnk(x); k ∈ Kjn} (5.15)

with the same notation as for the dense case. Here, f0 = !20 and we choose 2
jn 0 (n=log n)1=(1+2s1−2=p1) and

+n 0 (log n=n)1=2 so that -1⊂-0.
For the variance function !2, we consider the subfamily -2 = {m0}×Pjn with Pjn de"ned by (5.15), with

now f0 = m0 = 0. Again, we choose 2jn 0 (n=log n)1=(1+2s2−2=p2) and +n 0 (log n=n)1=2 so that -2⊂-0.

Lemma 3. With the notation of Lemma 2; for any k ∈ Kjn ; the following representation holds:

1i(f0; fjnk ; X
(x)) = exp(2(i)k − %(i)k log 2

jn) (5.16)

where %(i)k 6%(i)∗ ¡ 1 and (2(i)k ; k ∈ Kjn) are random variables such that for large enough n

Pfjnk ;!
2
0
(2(1)k ¿− %(1))¿z(1)¿ 0 and Pm0 ;fjnk

(2(2)k ¿− %(2))¿z(2)¿ 0

for some %(i) and z(i)¿ 0 independent of n.

Proof of Theorem 1, sparse case. The lower bound follows from Lemma 3, as it follows from Korostelev
and Tsybakov (1993, Ch. 2).

5.1.3. Proof of Lemma 2
The mean function m. For clarity, we abbreviate Pm− ;!20

by Pm− and we substitute f± by m±. For m±,
the transition density of the chain is given by

!±(x; y) =
1√
2!
exp[− 1

2 (y − m±(x))2]:

Under Pm− , direct computation shows that

11(m+; m−; X (n)) = exp

(

2
n
∑

i=0

{+n jnk(Xi)"i+1 − +2n 
2
jnk(Xi)}

)

:

Assuming +n = 1=
√
n without any loss of generality, we obtain the following inclusion:

(11(m+; m−; X (n))¿e−%1 )⊇
(
∣

∣

∣

∣

∣

1√
n

n
∑

i=0

 jnk(Xi)"i+1 −
1
n

n
∑

i=0

 2jnk(Xi)

∣

∣

∣

∣

∣

6%1

)

:
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Using Chebyshev and Schwarz inequalities together with the fact that the  jnk(Xi)"i+1 are zero-mean uncorre-
lated, we derive that the probability (under Pm−) of the last event is greater than

1− 1
%1

(

Em−

{
∣

∣

∣

∣

∣

1√
n

n
∑

i=0

 jnk(Xi)"i+1

∣

∣

∣

∣

∣

}

+ Em−

{

1
n

n
∑

i=0

 2jnk(Xi)

})

¿1− 2
%1
max

(

1; Em−

{

1
n

n
∑

i=0

 2jnk(Xi)

})

:

It remains to show that the term within the expectation is bounded, and the conclusion follows by taking %1
large enough. Clearly, for i¿1

Em− [ 
2
jnk(Xi)]

=
∫

Ri−1
!−(x0; x1) · · · !−(xi−2; xi−1)

(
∫

!−(xi−1; xi) 2jnk(xi) dxi
)

dx1 · · · dxi−16
1√
2!

;

since  is orthonormal in L2 and supx;y !−(x; y)61=
√
2!. For i=0, we simply use the fact that n−1 2jnk(x0)6

supx| 2(x)|2jnn−1, which converges to 0 as n → ∞. The proof for the mean function is complete.

The variance function !2. For clarity, we abbreviate Pm0 ;!2−
by P!2−

and substitute f± by !2±. For !2±, the
transition density of the chain over -1 is now given by

!±(x; y) =
1√
2!

1
!2±(x)

exp− 1
2

y2

!2±(x)
:

Straightforward computation shows that, under P!2−

12(!2+; !
2
−; X (n)) =

∏ !−
!+
(Xi)exp−

1
2

n
∑

i=0

(

!2−
!2+
(Xi)− 1

)

"2i+1:

Assuming +n=1=
√
n with no loss of generality, taking logarithm and using a second-order Taylor expansion,

it is easily checked that

log12(!2+; !
2
−; X (n)) =

1√
n

n
∑

i=0

 jnk(Xi)("2i+1 − 1)−
1
n

n
∑

i=0

 2jnk(Xi)"i+1 + Rn;

where Rn is a remainder term, uniformly bounded thanks to the fact that 23jn=2=
√
n is bounded (from the

choice of jn). To complete the proof, we use similar arguments as for the mean function, using now that
"2i+1 − 1 is zero-mean. The proof of Lemma 2 is complete.

5.1.4. Proof of Lemma 3
The mean function m. We abbreviate Pmjn;!20

by Pjnk . By elementary computation, we have, under Pjnk

11(m0; mjnk ; X
(n)) = exp

(

+n
n
∑

i=0

 jnk(Xi)"i+1 −
1
2
+2n

n
∑

i=0

 2jnk(Xi)

)

:

Set, for L0¿ 0

2̃(1)k = L0
log n√

n

n
∑

i=0

 jnk(Xi)"i+1; Zn =
∫

 2jnk(x)((x) dx −
1
n

n
∑

i=0

 2jnk(Xi)
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and

2(1)k = 2̃(1)k +
L20
2
(log n)2Zn:

Assume for simplicity that +n = L0 log n=
√
n. Denote by rn a real-valued sequence converging to 0. We write

log 2jn = $ log n(1 + rn), for some $¿ 0, say. De"ne

%(1)k = (1 + rn)
L0
2
$−1

∫

 2jnk(x)((x) dx:

Thus we formally obtain the decomposition required by (5.16). Since the choice of L0 is free and |
∫

 2jnk(x)
((x) dx|6supx∈D|((x)|, it su#ces to take n large enough so that

(1 + rn)
L0
2
$−1

∫

 2jnk(x)((x) dx¡ 1;

to have the condition on the %(1)k ful"lled. It remains to prove that Pjnk(2
(1)
k ¿− %(1))¿z(1)0 ¿ 0. From Cheby-

shev’s inequality

Pjnk(2
(1)
k ¿− %(1))¿Pjnk(2̃

(1)
k ¿0)−

L20
2%(1)

(log n)2Ejnk(|Zn|):

The function  2 satis"es the kernel condition of assumption A2. It follows from the choice of jn that

(log n)2Ejnk(|Zn|)6L1(log n)2n−*

for some constant L1 and is asymptotically negligible. Therefore, it is enough to prove that Pjnk(2̃
(1)
k ¿0)¿z(1),

or, equivalently

Pjnk

{

1√
n

n
∑

i=0

 jnk(Xi)"i+1¿0

}

¿z(1)¿ 0 (5.17)

for some z(1) which does not depend on n. For this, we use the following elementary lemma (proof of which
we omit).

Lemma 4. Let Un be a sequence of random variables such that E(Un)=0; E(Un)2¿z0¿ 0 for large enough
n and such that U 2

n is uniformly integrable. Then; there exists z1¿ 0 such that for large enough n

P(Un¿0)¿z1¿ 0: (5.18)

We turn to (5.18). We apply Lemma 4 to Un = 1=
√
n
∑n

i=0  jnk(Xi)"i+1. Clearly, Ejnk(Un) = 0. To prove
that Ejnk(U

2
n ) is bounded from below, we use assumption A2 and the fact that inf x∈D((x)¿)¿ 0. Likewise,

one easily checks the uniform integrability of U 2
n . This completes the case of the mean function m.

The variance function !2. We abbreviate P2m0 ;!nk
by Pjnk . Routine computation yields, under Pjnk

12(!20 ; !
2
jnk ; X

(n)) =
n
∏

i=0

√

1 + +n jnk(Xi)exp−
1
2

n
∑

i=0

+n jnk(Xi)"i+1:

Taking the logarithm and using a Taylor expansion, we derive

log12(!20 ; !
2
jnk ; X

(n)) =
+n
2

n
∑

i=0

 jnk(Xi)(1− "2i+1)−
+2n
4

n
∑

i=0

 2jnk(Xi) + Rn;

where Rn is a remainder term. We procede analogously as for the mean function and we obtain the same
conclusion. We omit the details of the computations, which are similar to the case of m. The proof of Lemma 2
is complete.
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5.2. Proof of Theorems 2 and 3

Theorems 2 and 3 follow from moment bounds and moderate deviation inequalities. Let g ∈ Lm(R) be
continuous, bounded, compactly supported, and such that

∫

g2(x) dx = 1. For f = m or !2, de"ne

+jk =
∫

f(x)gjk(x) dx and +̂jk =
1

,n &)-

%n &)&
∑

i=0

gjk(xTi)YTi :

The YTi are the transformations on the observation scheme (Xt; t = 1; : : : ; n), following the regression approx-
imation de"ned by (1.3) for m and (1.4) for !2.

Lemma 5 (moment bounds). Let 2j6n. Under the assumptions of Theorem 2; for all r¿2; there exists an
explicitly computable K4(r) such that

Ex0{|+̂jk − +jk |r}6K4(r)n−r=2: (5.19)

Lemma 6 (moderate deviations). Let 2j6n. Under the assumptions of Theorem 2; for all r¿2; there exist
explicitly computable K5(r) and K0(r) such that

Px0{|$̂jk − $jk |¿K0(r)
√

j=n}6K5(r)2−jr : (5.20)

Proof of Theorems 2 and 3. Using Lemmas 5 and 6, we readily follow the proof of Theorems 3 and 4 in
DJKP (1996).

5.3. Proof of Lemma 5

We will follow the method we previously used in Ho!mann (1999). We recall however all the technical
steps in order to give a self-containing exposition. Without loss of generality, we assume that D= [0; 1]. We
will denote by C a generic constant, possibly varying from line to line. We will not distinguish between m
and !2, taking advantage of the general framework de"ned in Section 3.1, with

f = m; 'i = 0; & i = !(Xi)"i+1

or

f = !2; 'i = {m(Xi)− m̂i(Xi)}2; & i = 2{m(Xi)− m̂i(Xi)}!(Xi)"i+1 + !2(Xi)("2i+1 − 1):

We use the following decomposition:

+̂jk − +jk = Q1 + Q2 + Q3

with

Q1 =
1

,n &)-

%n &)&
∑

i=j

f(XTi)gjk(xTi)−
∫

f(x)gjk(x) dx;

Q2 =
1

,n &)-

%n &)&
∑

i=j

'Tigjk(xTi);

Q3 =
1

,n &)-

%n &)&
∑

i=j

& Tigjk(xTi):
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Clearly, it is enough to prove moment bounds for each term Qi, i = 1; 2; 3. Let us "rst study Q1. For u¿ 0,
we introduce the following penalty event:

Ajk =
∏

%∈Cjk

1(n(x%)¿u;

where Cjk={% : C%∩[k2−j); (k+1)2−j 2=} and x% is the midpoint of the interval C%. Recall that the empirical
sampling measure de"ned in Assumption A2 depends on a kernel K . In the following, we will choose K such
that

K(x) = K̃(x)(1=K̃(v) dv) with 06K̃(x)61[−1=2;1=2](x) and
∫

K̃(x) dx;

a choice which is obviously possible. First, remark that |Q1|6C supx∈D |f(x)g(x)|2−j=2. Therefore,

Ex0 (|Q1|r)6C[Ex0 (|Q1|r ;Ajk) + C2−jr=2Px0 (A
c
jk)]: (5.21)

Next,

Px0 (A
c
jk)6

∑

%∈Cjk

Px0 ((n(x%)¡u)6Ch−1n 2−j sup
x∈D

Px0 ((n(x)¡u):

The choice of u= )=(2
∫

K̃) together with the properties of K entails

Ex0 (|Q1|r)6C

[

Ex0 (|Q1|r ;Ajk) + Ch−1n 2−j sup
x∈D

Px0

(

|(n(x)− ((x)|¿ )

(

1− 1
2
∫

K̃

))]

:

The choice of K̃ ensures that 1−1=(2
∫

K̃)¿ 0. By Assumption A2 and Chebyshev’s inequality, the last term
in the previous inequality is arbitrary small in power of n hence asymptotically negligible. In order to bound
the "rst term in the right-hand side, we use the following decomposition:

Q1 = Q11 + Q12

with

Q11 =
1

,n &)-

%n &)&
∑

i=j

[f(XTi)− f(xTi ]gjk(xTi) (5.22)

and

Q12 =
1

,n &)-

%n &)&
∑

i=j

f(xTi)gjk(xTi)−
∫

f(x)gjk(x) dx: (5.23)

For u= )=(2
∫

K̃), we have the following inclusion:

((n(x)¿u) =

(

1
n+ 1

n
∑

i=0

K̃(h−1n (Xi − x))¿)=2

)

6

(

n
∑

i=0

1|Xi−x|6hn¿,(n+ 1)hn &)-
)

:

The condition si ¿ 1+1=pi implies that f is Lipschitz continuous (by classical Sobolev embeddings in Besov
spaces), therefore

|f(XTi)− f(xTi)|6C|XTi − xTi |: (5.24)

Moreover, the Ti are all distinct on the event Ajk . It follows from the construction of the Ti and the xTi that

|XTi − xTi |6Chn: (5.25)
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Likewise, on Ajk

Q12 =
1

,n &)-

%n &)&
∑

i=j

f(i=,n &)-)gjk(i=,n &)-)−
∫

f(x)gjk(x) dx:

Using again that the number of term involved in the sums in (5.22) is O(n2−j) and using (5.24) and(5.25),
we derive

Ex0 (|Q11|r ;Ajk)6C2−jr=2hr
n (5.26)

and for Q12, by Riemann’s approximation

Ex0 (|Q12|r ;Ajk)6C(2−j=2=n)r : (5.27)

From the choice of hn and 2j, these terms have the right order. We now turn to the term Q2, which only
appears in the case of the estimation of the variance function. We will use the following bound, for 16i6n

sup
x∈D

|m(x)− m̂i(x)|26C̃=
√
i; a:s: (5.28)

which is valid since m is Lipschitz continuous, for a random constant C̃ such that Ex0 (|C̃|r) is "nite for all
r¿1. This bound is a classical result for Nadaraya–Watson estimators in nonparametric regression with random
design. The extension for estimating the mean function in a AR(1) model in our context is straightforward.
In fact, the rate in (5.28) can be improved, but is su#cient for our purpose. Using successively that Ti¿i,
inequality (5.28) and the same arguments on j as for Q1, we obtain

Ex0 (|Q2|r)6Cn−r=2: (5.29)

To bound Q3, we use Rosenthal inequality for martingales (Hall and Heyde, 1980, p. 23). Indeed, the process
(
∑

j6i gjk(xTi)& Ti ; i = 1; : : : ; ,n &)-) is a (Fn
Ti
)-martingale. By Assumption A3, straightforward computation

shows that Ex0 (|& Ti |r) is bounded, therefore

Ex0 (|Q3|r)6Cn−r=2 (5.30)

and the conclusion follows. The proof of Lemma 5 is complete.

5.4. Proof of Lemma 6

We use the decomposition

$̂jk − $jk = Q1 + Q2 + Q3

as in Lemma 5, replacing g by  . Clearly,

Px0 (|$̂jk − $jk |¿K0
√

j=n)6
3
∑

i=2

Px0

(

|Qi|¿
K0
2
(1− | &Q1|)

√

j=n
)

;

where &Q1 = (K0
√
jn)−1Q1. Recall that on the event (T% &n)& ¡n− 1), we have

|Q1|6C2−j=2(hn + n−1):

Hence, using the same penalty argument as for the moment bounds, we derive

Px0 (|$̂jk − $jk |¿K0
√

j=n)6C
3
∑

i=2

Px0

(

|Qi|¿
K0
4

√

j=n
)

; (5.31)
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plus a negligible term coming from the probability of the event Ac
jk , which we can insert in the constant C.

For the "rst term in the right-hand side of (5.31), using Chebyshev’s inequality and similar arguments as for
Lemma 5 yield

Px0

(

|Q2|¿
K0
4

√

j=n
)

6C2−jr=2: (5.32)

For Q3, we use a Bernstein-type inequality for unbounded martingales.

Lemma 7. Let (Sn =
∑n

i=0 di; n¿0) be a (Fn)-martingale such that

∀r¿1 : E(|di|r|Fi−1)6C0Cr
1r

r

for two constants C0 and C1. Then

∀t¿0 : P(|Sn|¿t)62exp
[

− t2

2( &C0C21n+ &C1t)

]

with &C0 = 4eC0 and &C1 = 2eC1.

The proof is obtained in the same lines as the classical Bernstein inequality, so we omit it. By Assumption
A3, the term & Ti satis"es the moment condition of Lemma 7 in both cases (m and !2). The veri"cation is
straightforward. We then apply Lemma 7 to the (Fn

Ti
)-martingale

Q3(k) =
1

,n &)-

k
∑

i=0

di

with

di =  jk(xTi)& Ti :

Hence, for any t¿0

Px0 (|Q3|¿t)6exp
(

− nt2

C(1 + 2j=2t)

)

:

Since j2j6n for j0(n)6j62j1(n), the choice of the threshold K0
√

j=n entails, for su#ciently large K0 =K0(r)

Px0 (|Q3|¿K0(r)
√

j=n)62−jr : (5.33)

Putting together (5.32) and (5.33), we obtain (5.29). The proof of Lemma 6 is complete.
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