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RATES OF CONVERGENCE FOR EMPIRICAL PROCESSES
OF STATIONARY MIXING SEQUENCES!

By Bin Yu
University of Wisconsin—Madison

Classical empirical process theory for Vapnik-éervonenkis classes deals
mainly with sequences of independent variables. This paper extends the
theory to stationary sequences of dependent variables. It establishes rates
of convergence for B-mixing and ¢-mixing empirical processes indexed by
classes of functions. The method of proof depends on a coupling of the
dependent sequence with sequences of independent blocks, to which the
classical theory can be applied. A uniform O(n =5/ +9) rate of convergence
over V-C classes is established for sequences whose mixing coefficients
decay slightly faster than O(n~*).

1. Introduction. There has been a great deal of research work on empiri-
cal processes indexed by classes of functions. It was Vapnik and Cveronenkis
(1971) who showed the uniform convergence of the empirical processes in-
dexed by Vapnik-Cervonenkis (V-C) classes in the iid case. Many papers
followed; for example, Dudley (1978), Dudley and Philipp (1983), Giné and
Zinn (1984), Le Cam (1984) and Pollard (1982). Most of this work, however,
concentrates on the independent case.

In this paper, we extend some of the previous results in the iid case to the
dependent case, that is, we obtain uniform convergence and rates of conver-
gence for empirical processes of B-mixing (completely regular) or ¢-mixing
sequences for which the CLT does not hold. Conditions on the mixing rate of
the sequence and the metric entropy of the index class are imposed. The
entropy condition is in terms of the L' random semimetric. The main tech-
nique used is the construction of an independent block (IB) sequence which
enables us to employ the symmetrization technique and an exponential in-
equality available in the iid case. Note that the blocking technique can be
traced back to Bernstein (1927).

In the case of V-C index classes, Nobel and Dembo (1993) obtained the
uniform convergence result under weaker B-mixing conditions than in this
paper. Philipp (1984), Yukich (1986) and Massart (1988) considered the depen-
dent case for general index classes, but under bracketing conditions. In
particular, Yukich (1986) derived rates of convergence results for ¢-mixing
sequences, while Philipp (1984) and Massart (1988) obtained invariance princi-
ple results on top of the rates of convergence for ¢- and a-mixing sequences,
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and we note that a-mixing conditions are weaker than the corresponding
B-mixing ones. More recently Andrews and Pollard (1993) gave a nice exposi-
tion of CLTSs for dependent sequences. Their work is closely related to Massart
(1988) and Philipp (1984). Other related works are Levental (1988, 1989) on
Harris recurrent Markov chains and martingale difference sequences. Levental
(1988) took advantage of the independent regenerative block structure of
Harris recurrent Markov chains and used iid techniques on those blocks,
similar in spirit to our approach here. Note that Nobel and Dembo (1993) and
the work presented here might be viewed as an extension of
Vapnik-Cveronenkis—type theory to weakly dependent (mixing) sequences. In
this context we note the remark of Massart (1988), who stated that ‘“we don’t
know whether the above weakly dependent framework [as in Massart (1988)]
could support a general ‘Vapnik—Cveronenkis type theory’ or not.”

The rest of the paper is organized as follows. Section 2 gives preliminaries
on mixing sequences and metric entropies. Section 3 includes the main results,
that is, rates of convergence of empirical processes for bounded index classes
(Theorem 3.1) and uniform convergence (Theorem 3.4) for general index
classes. Section 4 contains the proofs, starting with a construction of an
independent block sequence which is the cornerstone of the proofs.

The measurability issues will be dealt with in the appendix in a way similar
to Pollard [(1984), Appendix C] although the construction of the independent
block sequence does complicate the issue. We assume the index class to be
permissible to ensure that the necessary measurability requirements are satis-
fied. The definition of a permissible class can be found in the appendix.

The original version of the paper when submitted also contained a CLT [ef.
Yu (19904, b)] which has since been improved by Arcones and Yu (1994) using
the same blocking technique. Interested readers are referred to that paper for
details.

2. Preliminaries. This section contains the preliminary material on mix-
ing sequences and metric entropies. The size of the index class of the empirical
process can be regulated through metric entropy conditions related to the
empirical L' norm. The algebraic decay condition of the covering number of
an index class is also introduced.

Let X = (X;),., be a strictly stationary real-valued sequence with distribu-
tion P, which implies X, i > 1, all have the same distribution P. For the
sequence X, let

o=0(X,X,,..., X))
and
Ol = O'(Xl+ka Xivhetroo )

Many kinds of mixing conditions exist in the literature. The weakest among
those most commonly used is called strong mixing or a-mixing.
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2.1 DeFiNITION. For any sequence X, the a-mixing coefficient «, is de-
fined as follows:

ay(X) = 3sup{EIP(Blo) - P(B)l: B € o, 1= 1}.
Other mixings are the following.

2.2 DerFINITION. For any sequence X, the B-mixing (or completely regular)
coefficient B, is defined as follows:

1 J
Bi(X) = gsup{ X Y IP(A, N B;) — P(A;)P(B))l:

i=1j=1

{A;} any finite partition in oy,

{B;} any finite partition in o7, ,,7 > 1}.

Note that this definition [cf. Bradley (1983)] is more convenient when
dealing with the measureability issues than the following equivalent one:

By(X) = sup E sup{|P(Blo,) — P(B)|: B € 0}_,}.
I>1

2.3 DEFINITION. For any sequence X, the ¢-mixing coefficient ¢, is de-
fined as follows:

¢,(X) = sup{[P(BIA) — P(B)|: A€o, BE 0,1 > 1}.

Moreover, we assume throughout the paper that there are positive con-
stants r, (¢ standing for a-, B- and ¢-mixings) such that

¢, =0(k™).
The three mixing coefficients are ordered as follows [see Philipp (1986)]:
ap < By < @y
Note that the stationary sequence {f(X,): i = 1,2, ...} for a measurable
function f has its a-mixing or B-mixing or ¢-mixing rate bounded by the

corresponding rate of the original sequence, since for any measurable f the
o-field of f(X) is contained in the o-field of X, that is,

a, > a,(f), Br = Bi(f) and ¢k?¢k(f)~

Therefore, if the sequence {X,} satisfies an a- or 8- or ¢-mixing condition,
then so does the sequence { f(X,)}.

Eor examples of mixing sequences, see Athreya and Pantula (1986),
Ibragimov and Rozanov [(1978), IV.4], Mokkadem (1988), Pham and Tran
(1985) and Withers (1981). In particular, a Markov chain is ¢-mixing with
64 < 1 under some regularity conditions [cf. Section 5.5 in Doob (1953)].
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We take Pollard’s (1984) linear functional notation and use P instead of E
to denote expectations. Hence, Pf = [fdP = Ef(X,) = Ef(X,) for all n > 1.

It is known that if the mixing rate of sequence tends to zero fast, the
variance of the sum of function values over n successive observations is O(n).
This is necessary for the CLT to hold, but we have a general bound on the
variance even when the CLT does not hold.

2.4 LEMMA. Suppose that f is a bounded measurable function |f| < M, X a
strictly stationary B-mixing sequence and Pf = 0. Then the following hold:

@
(2.1) P(zn)f(x,.)) sn(1+2ofak)M2.
1 1

(i) For 0<ry<1land 85=1I,_y G.e, 8,=1ifrg=1,8,=0if 0<
rg < 1), there exists a constant C = C(M, rp) such that

(2:2) P( if(Xi)) < C2"s(logn)™.
1

Proor. Since f is bounded by M, (2.1) follows directly from Lemma 3.2 of
Dehling (1983). Relation (2.2) follows from (2.1) since the B-mixing coef-
ficient B, bounds the a-mixing coefficient «, from above and Yjk™ " =
O(n'~"s(log n)%). O

We may define the B-mixing and ¢-mixing coefficients for any probability
“ measure @ on a product measure space (2; X Q,, 3, X 3,) as follows.

2.5 DEFINITION. Suppose that @, and @, are the marginal probability
measures of @ on (Q,, %) and (Q,, 3,), respectively. Then we define

3(217 22, Q) =P Sup{lQ(BlEl) - Q2(B)l: B e 22},
$(31,32,Q) = sup{Q(BIA) — Qy(B)l: A€ 3, Be3,.
The following lemma is straightforward from our definition of the B-mixing

coefficient if we approximate a measurable function by a sequence of simple
functions, or it can be found in Volkonskii and Rozanov (1959) and Eberlein

(1984).

2.6 LEMMA. Suppose that h(x, y) is a measurable function with bound M,
and P is the product measure @, X Q,. Then we have

|Qh — Ph| < M, B(31,34,Q) < Myd(31,3,,Q).

By induction and Lemma 2.6, we have the following.
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2.7 COROLLARY. Let m > 1, and suppose thdat h is a bounded measurable
function on a product probability space (I1%,Q;, T17,3,). Let Q be a probabil-
ity measure on the product space with marginal measures @, on (Q0;,3,), and
let Q"1 be the marginal measure of @ on (IT:110, TTX215),i=1,...,m — 1.
Write

#(Q) = sup ¢( 1—1121', 2i+1,Qi+1),
j=

l<i<m-—1
and define B(Q) similarly and let P = I17".,Q;. Then
|Qh — Ph| < (m — 1) M, B(Q) < (m — 1) M, $(Q).

REMARK. Corollary 2.7 is the key to connecting the mixing sequence and
the independent block sequence (see Section 4 for details).

Before we introduce the definitions of metric entropy, we need some nota-
tion.

For any mixing sequence X;, X,,... and Borel-measurable function f,
denote by P, the empirical measure of the first n observations:

1n
Pnf'__ ;;f(XJ)

For any family F of measurable functions, we call F' an envelope function of
Fif |l <F forall finF.

Since we are interested in the uniform performance of the empirical mea-
sure, intuition suggests that we might have to regulate the size of F. One
measure of the size of F is the covering number or metric entropy. Along the
lines of Pollard (1984), we define the covering number as follows.

2.8 DErFINITION (Covering number). The covering number N(e, d,F) re-
lated to a semimetric d on F is defined as

N(e,d,F) = min {there are g,, ..., &, in L( P), such that

min d(f,g;) <& forany fin F}
l<j<m

The quantity log N(e, d,F) is called the metric entropy at e.'See Kolmogorov
and Tihomirov (1959).
If we take the following random L'-semimetric p, , as d:

pl,n(f’g) = Pn(lf_gl),

then the related covering number is random. Denote by p, the L!-semimetric

pi f,8) = PIf — gl.

The following algebraic decay conditions on covering numbers will be
imposed in the later theorems. They are known to be satisfied by V-C classes



RATES OF CONVERGENCE FOR MIXING SEQUENCES 99

[Dudley (1978)]:
(2.3) N(ep;,F)=0(e™™) forsomew > 0,as e — 0;
(2.4) N(&,p1,,,F) =0p(e7) forsome w > 0,as & — 0and n — c.

3. Limit theorems: The main results. This section contains the state-
ments of the main results, that is, the rates of convergence and uniform
convergence for the empirical process of a stationary mixing sequence indexed
by a class of functions. The main results are Theorem 3.1 (the rates of
convergence) and Theorem 3.3 (uniform convergence). We concentrate on the
case where 0 <7, < 1 because when r; > 1 a CLT holds [cf. Arcones and Yu
(1994)]. Since ¢-mixing is a stronger condition, all the results in this section
hold under corresponding ¢-mixing conditions. The proofs are left to Sec-
tion 4.

For the uniform convergence theorem, we first restrict ourselves to bounded
index classes. We then find proper conditions to ensure that the law of large
numbers holds for the envelope function, which is in turn the condition
necessary to generalize the uniform convergence result to classes having
nonconstant envelope functions. Moreover, we use P to denote a probability
measure on a (sometimes unspecified) measurable space whose precise defini-
tion can be found in the Appendix.

3.1 THEOREM (Rates of convergence). Let X be a stationary B-mixing
sequence and let F,; be a permissible index class with a constant envelope
function M. Assume 0 <rg < 1. For any given 0 <s <rz and h, > © as
n-owleta,=[n""9Nand u, =[n/(2a,)] =[n/1* /2. Then if, for all

c>0,

(3.1) log N(cn_s/(”s)hn,pl,n,FM) =op(h,),
we have
P{ sup |P, f — Pf| > sn‘s/(“s)hn} -0 asn —> x,

feFy
that is,

sup |P, f — Pfl = op(n™*/"*®h ) asn — =.

feFy

3.2 COROLLARY. Suppose that F,, is a bounded permissible index class
satisfying (2.4), that is, .
N(e,py,,, Fy) =O0p(e™) forsomew >0,ase >0 andn — «.

If 0 <ry <1, then for any given‘O <s <rg,

P{ sup |P, f — Pf| > sn‘s/(”f)} -0 asn —
feFy
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that is,

sup |IP, f — Pfl = op(n™5/0%9) asn — =,
feFy

3.3 TueorEM (Uniform convergence for bounded families). Suppose that X
is a stationary B-mixing sequence. Assume that ¥y, is a bounded permissible
index class, 0 < ry < 1, and for some 0 < ay <rg/(1 + rp),

(3.2) log N(&,p1 ,,Fy) =op(n®) fore>0 asn — .

Then for any given & > 0, we have

P{ supanf—Pfl>s} -0 asn — o«
feFy
that is,

sup [P, f — Pfl = 0p(1l) asn — .
feFy

REMARKS. (i) Arcones and Yu (1994) contains results on CLT’s. In particu-
lar, they show that, when r; > 1, a CLT holds for the empirical process if the
index class is a V-C class.

(ii) As a straightforward consequence of Corollary 3.2 and Theorem 3.3, for
a bounded permissible class F,, satisfying (2.4), especially a V-C class, one has

P{ sup |P, f — Pf| > sn“s/(”s)} >0 asn—> o
feFy

for 0 <s <ry <1and
P{ supanf—Pf|>s} -0 asn — o,
feFy
provided that r; > 0.

3.4 TuroreM (Uniform convergence for general families). Assume that F
is a permissible index class of functions with an L'(P) envelope function F. If
0 <rg <1 and for some 0 < ay <r1g/(1 + 1p), and for & > 0,

(3'3) IOg N(E’ pl,n’F) = OP(nao)’
then for any given ¢ > 0, we have
P{supIPnf—PfI > s} -0 asn — o,
feF
that is,
sup|P, f — Pfl =0p(1) asn — .
feF .

4. Proofs. This section contains the proofs for Theorems 3.1-3.4. First,
we explain how a blocking technique enables us to get the exponential inequal-
ity, which is the key step in proving our results. Then the rigorous proofs are
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given in the form of a few lemmas after constructing an independent block (IB)
sequence. Some useful inequalities relating the original sequence to the IB
sequence are also presented (Lemma 4.2).

After observing that all the results we want are either in terms of distribu-
tion, or can be interpreted in terms of probabilities, we construct an IB
sequence from the original stationary mixing sequence such that the IB
sequence is very close in distribution to the mixing sequence. We then transfer
the problem to the IB sequence to which the standard techniques of the
independent case can be applied. Symmetrization and Hoeffding’s inequality
are used for the IB sequence in the proof of Theorem 3.1.

We divide the n-sequence X, = (X,, X,,..., X,) into blocks of length a,,
one after the other. We eliminate every other block and work with the
remaining odd-numbered blocks. Depending on the mixing and metric entropy
conditions to be assumed, we choose a, large enough so that the odd-
numbered a,-blocks are ‘“almost” independent, but at the same time choose
a, small enough so that the odd-numbered a,-blocks together behave simi-
larly te the original mixing sequence. Then we construct an independent
sequence of blocks where each block has the same distribution as one of the
a ,-blocks of the original sequence.

More precisely, for any integer pair (a,,u,) with w, = [n/2a ], we divide
the strictly stationary n-sequence X, = (X, X,,..., X,) into 2u, blocks of
length a, and the remainder block of length n — 2u,a,. Denote the indices in
the blocks alternately by H’s and T’s, and denote the indices in the remainder
block by R,. These indices depend on n, but for simplicity we suppress n. That
is,

H ={i:l<i<a,},
T,={ita,+1<i<2a,}.
Generally, for 1 <j < pu,,
H ={i:2(j—1a,+1<i<(2j- a,},
T,={i:(2j - Da,+1<i<(2j)a,}.
Denote the random variables that correspond to the H  and T indices as
X(H;)={X;,,ieH}, X(T;))={X,,i e T}}.

Further, let the whole sequence of H-blocks be denoted by X, ={X(H)):
J=12,...,u,}

Now we take a sequence of identically distributed independent blocks
{B(H): j=1,...,n,}, where E(H,) = {£;: i € H}}, such that the sequence is
1ndependent of X, and each block has the same dlstrlbutlon as a block from
the original sequence:

Z(E(H;)) =Z(X(H))) = £(X(H,)).

We call this constructed sequence the 1ndependent block a,-sequence (IB
sequence). Denote the IB sequence as ,_,a (Note that a proper measurable
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space can be found to host both sequences and on this space measurability
issues can be addressed; see the Appendix.) Because of the mixing condition,
we can relate X, and E, in the following way.

4.1 LEMMA. Let the distributions of X, and B B,, be @and Q, respectively.
For any measurable function h on R#»%n wzth bound M,

(4.1) |Qh(X.,) — Qh(E.,)| < M(u, — 1),

Proor. This is a direct application of Corollary 2.7. In the corollary, take
@ = the probability distribution of the a,-sequence with Q; = R% ¥, =
product Borel o-field on R*» and m = u,. Then P in the corollary equals the
probablhty distribution of the IB e ,-sequence, that is, Q. Notice that B(Q) <

Ba, O

ReEMARKS. (i) This is the key lemma that is used throughout the subse-
quent proofs. Different functions A are used in the application of this lemma;
in particular, & is often taken to be an indicator function. ) '

(ii)) The B-mixing (or ¢-mixing) condition is required for the uniform
convergence result because in our approach this lemma is crucial in connecting
the original sequence with the IB sequence. We are unable to obtain this
lemma under a-mixing conditions and doubt that it is true.

Recall that an index class with an envelope function F is denoted by F. For
simplicity, we assume Pf = 0 for all f in F. Then the empirical measure on
{f(X,):i=1,2,...,n}is

For the original sequence X, we write

Y, /(X,)= L F(X) and Y, (X,,)= ¥ F(X).

i€H; ieT,

For the constructed IB sequence =, define
. 1 Mn
Z; ;(B,,) = L f(&) and P..f=~ Z

i€H,

Associated with this empirical measure (note that it is not a probability
measure if @, > 0) are two random semimetrics,

1 “n
pl,/.d,,,( f’g) = ; Z|Y1, f—gl
1
and

1F'n
ol 18) =2 12,
1
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We shall compare these two semimetrics with the L' empirical metric

pl,n(f’g) = Pnlf_gl
The L' random covering numbers corresponding to P14, P1,., and py , are
denoted by

N(E’pl,p,n,F)’ N(E’ﬁl,;un’F) and N(E’pl,n’F)’

respectively.

For simplicity, from now on assume that (u,, @,) is always an integer pair
satisfying n/2 —a, <u,a, <n/2, and p, - », a, = . Thus, a, = o(n),
and u,a, = O(n). Moreover, the IB sequence is assumed to be defined in
terms of a pair of integers (u,, @,,) implicitly.

The following lemma allows us to replace P, by P with only an error of
order u, B, .

4.2 LEMMa. Suppose that F,, is a permissible bounded class, and b, =
O, asn — . If pu,b, = «, then

(4.2) P( sup|P, f| > sbn) < 2P( suplP, , fl> ibn + 21, B, -
feF feF * 4 "

Proor. Note that the sum of f over the remainder block R, is uniformly
bounded by M(2a,)n~* = O(u,; '), which tends to zero faster than b, since
w,b, = «, and X has the same distribution as X; , ={X;: i€ 7T, for
l<j=<upu,) Therefore for n sufficiently large, we have

P( sup|P, f| > a)

1 Hn Mn
<P|sup|— ), f(X,,)"' f(Xla)>_)
feF | j=1 J_
1 /~Ln
<Plsup|= XY, (X,) >—
feF n]=1
1 En €
+Plsup|— XY, ; f(X1,) >
feF 1
Moy
(4.3) =2P(sup|— Y Y, (X, )| > 1
feF|T j=1

Taking for k the indicator function of the event

{?:1; ;B Y% >—}

Lemma 4.1 gives the followmg bound on the left-hand side of (4.3):

. r(Xa,)

2P sup > —

+ 2Mnﬁan X u
feF
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Since the IB sequence consists of iid blocks, we can use the standard
symmetrization technique in the independent case to get the uniform conver-
gence (rates of convergence) for the pseudoempirical measure 151, u, Of the IB
sequence. The entropy conditions needed will be in terms of the IB sequence.
Therefore, we need to relate the entropy conditions on the original sequence to
those on the IB sequence. Because the entropy conditions are random, that is,
they can be stated in terms of probabilities, we can easily transfer the entropy
condition about the original sequence to the IB sequence by Lemma 4.1.

4.3 LEMMA. Assume that F is a permissible index class and F = M.
@) Forb, = 0Q), if u,B,, = o(1) and log N(e, p; ,,F) = op(b,), then
(4.4) log N(E’ﬁl,un’F) =o0p(b,).

(i) Forany 0 <s<rgandh, > ©asn -, letb, =n"*/"*9h , a, =

[nY/+9] and w, = [n¥/1+9 /2]. Then for n large there exists a 5(¢) > 0 for
which we have

P( supIIE’Mn fl= sbn) < 10exp(—0O(h,))
(4.5) feF
+ 16P(h, < O(log N(5n /4 **),,, Pro F))).

(iii) Under the assumptions in (ii) and the further assumption that, for all
c>0,

(4.6) log N(cn_s/(”s)hn,ﬁl,ﬂn,F) =op(h,),

then, for any € > 0 and n large,

P( sup|15” fl = ebn) <e.
feF "

Proor. (i) By the triangle inequality, we have
1 H» 1 r
pl,p.n( f’g) =< ; ZY‘,|f—g| =< ; Z | f(Xl) - g(Xz)l < pl,n( f’g)
1 i=1
Thus,
N(E’ pl,p.n’F) < N(S:pl,n:F)'
This together with the assumption in (i) implies
IOg N(€, pl,p.”: F) = OP(bn)'
Then taking % in Lemma 4.1 to be the indicator function of the event

log N(e, P1,u,s F)
5 >¢€,

n

we obtain the conclusion of (i).
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(i) This can be obtained by the standard symmetrization technique for the
iid case, for the Z’s are iid for any fixed f in F,;, and by (2.2) in Lemma 2.4,
P(Z};) < Ca%e(loga,)™,

which implies, if a’fu,b2 > © as n — «,

i 4 . . 1
P(|P“n fl> Ebn) < m#ncai B(log an) P = 0( ) <1l-b= 5

r 2
alfu,b;

Since Z; /’s are iid blocks we may use arguments from the iid case.
Let {77- f: f € F} be the (¢b,/2)-net of F in terms of g, u,- Then, for any
fePF,
pp,nlf_ 7Tn fl S Ebn/z‘
Denote
e%nb?

64v, ’

¢b,
An={ logN( ,PI,L" F)S
°8 (16M Prn ) = 16M%, |’

. 1 H»
Pul =~ F oz,
Jj=1

Hn

Zzﬁf =

Jj=1

B =

n

E,,: sup
feF

for some v, to be chosen later. Let

for an iid sequence oy, ..., 0, such that P(s; = £1) = 1/2. We have

P( supllsﬂn fl= abn)
supl fl>eb )

o £ =D+ 53| B, (7, 1) 2 e, )

b
ol 1= Ezn)

=2
=2
2P(supP If—m, 1+ sup|PM (T )| b, )

b
> 82"} NA, mBn) + 2P(A%) + 2P(B°).
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Note that conditioning on E, € B, by Hoeffding’s inequality,

_ b, | 1 2g2p2
P IP,Lma.’anlZ _/:’.an < exp SF—J”—f
1 n%?%b2
< exp -3 on
e2nb?
< - .
=S¥\ "3,
Thus,
b,
sup|P (m )] = —mA NB,
Pl suplB, (m, )l = 22|z, | P(az, )
= su > = =
{EaneAnan} feg 120 7Tn 2 a, n
= [ N( s 1 ) F) (lP (’7T f)l ” Ean)P(dEan)
B, €A,NB,)
e2nb?
< N , F P(dE
<) E.,€4,0B,) ( P )e ( 32v, ) (9..)
£ nb2 _
< ex P(d/:an)
(EaneAnﬂBn}

£2nb? P(qE )
< exp| — =
(2, €A,NB,) P 64v, (

e2nb?
< - .
< exp 61r.
Let @, (f =@ /uIEZ; /(a, M)P. Since the summation in Q, is over
iid blocks and \Z; ¢/(a,M )I <1, we can follow the same arguments as in
the proof of Lemma 33 in Pollard [(1984), page 31] and obtain, for 62 >
PZ? /(a,M)?

(4.7) P( sup|Q#n( f2)| > 862) < 4P max[N(S, Pa, ,F)exp(—/.bnﬁz), 1],
e .
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where

1 bn 72
0y, (f8)=Q.((f-8)°)=— ¥ L=t

2 172
By =1 @M

Hp

1 2
= w a2 M? _Zl(zj,f_zj,g)
n="n J=

Hpn

2
wha, M Ellz"f ~Zi4

IA

41/4'11

= Z ji | gl

4
= Mﬁl,un(f’g)‘

Take v, such that 86% = v,n/(n,a M?) > Ca;"(log a,)’ >
P(Z; ;/(a,M))? thatis, 8% = n/(4M2a )and v, > Ca1 ’ﬁ(loga )%, One has

En
P(B;) =P|sup| 2 Z? ;| > v,n
feF|j=1
2
= P| sup 2y “n
feF | Mn j=1 ahM?|” alp,M?
1 H» 9
=P > 86
)y £ i

< 4P max

—_ 5 F -—— 1,1 by (4.7
N( Toda,* Pruw )exp( 8M2an)’ ] [by (4.7)]

v, w,
4 51 F P P(AS
= f(aaneA,,)N( 16 Ma,, ' PLun )eXp( M2 ) (dE, ) +P(A47)

KnVy .
4 P(dE. ) + P( A
= /<a ear (16M2 )e"p( it )( e.) T P(47)
4 _EnPn 2P( A©
< exp(— 16M2an) + (AS).

To summarize, we have
e2nb?

64v,

5 MnVp
- -+ A°
P(§:¥|Pﬂnf]> sbn) s2exp( ) +8exp( 16M2an) 8P(A3),

provided that u,b2a’s — «, and o, "(loga,)% < v, as n — o.



108 B.YU

For any 0 <s <7, let us take a, = [n/0*9), u, =[n*/0+9)/2] » =
n=/0*9h  and b, = \/(v,/n)h, = n=3/C*9h  for some k, > 1. Then, as

n — 00,
BnBa, = 02/ 0y 20T = O(nCem/A+9) S oo
at "s(log an)% = O(na—rb)/ms)(log n)ﬁa) < pA=9/A+s) <)
and
e2h

64

R
+ 8exp(— 16M2) + 8P(A%)

(4.8) P( supl]s#nfl > sbn) < 2exp(—
feF
which goes to zero if h, — © and P(A°) - 0.
Note that

64 8n—s/(l+s)hn
An = {Han:max(?log N(.—_g—’ﬁltﬂn’ F),

—s/(1+s)h
16M?2 lOgN(—EW_n)’ﬁlmn’F) < hn}’

SO
c 64 -s/(1+s8) =
P(4;) <P|—log N(en 61, F) 2 b,

y n—s/(1+s) 3
+P{16M~“log N W’pl’#"’F Zhn ,

which, together with (4.8), implies (4.5).
(iii) This is straightforward from (ii) and the assumption (4.6). O

REMARK. The measurability issue arising from the symmetrization is taken
care of in the Appendix under ‘“Measurable Cross Sections.”

Proor or THEOREM 3.1 (Rates of convergence). For the choices of [T
and b, in Lemma 4.3 and Theorem 3.1, u,b, = h, — ® and KrBg, = 0(1) as
n — «. Hence if we combine Lemmas 4.2, 4.3(i) and 4.3(iii), we obtain Theo-
rem 3.1. O

Proor oF CoroLLARY 3.2. Note that, for any s > 0 and h,>1, from
assumption (2.4)

log Ny(cn™>/"*9h,, p; ,,F) < log Ny(cn=2/A* p F) = Op(log n).

We can take %, = (log 7)? in Theorem 3.1 and note that for any 0 < s < T
we can find s’ such that s <s' <rg and n=*/0+p <« p=/0+9)
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Proor oF THEOREM 3.3 (Uniform convergence for bounded families). For
any 0 < a, <rg/(1 + rp), there is an s such that ¢y =s/(1 +s)and 0 <s <
rg. Take h,; = n®/* in Theorem 3.1. We have

P(sup |P, f— Pf|> en‘s/(”s)hn) = P(

sup | P, f - Pf|> &) - 0
feF

feF
provided that
log Ny(cn=°/*9h ,p, , F) =log Ni(c,p; ,,F) =0p(h,) = 0p(n/0+9),

which is our hypothesis (3.3) O

Before we prove the uniform convergence theorem for an index class with
nonconstant envelope function, we first recall a result from Doob [(1953), page
465] on the law of large numbers for strictly stationary sequences.

4.4 DEFINITION. A strictly stationary sequence Y = (Y},...) is called met-
rically transitive if all invariant sets of its shift transformation T C(.e.,
TY, =Y, ) have probability 0 or 1.

4.5 PROPOSITION. Suppose that X is strictly stationary with the stationary
distribution P. If X is metrically transitive and F € L'(P), we have

M=

~ F(X,) - PF in probability.
i=1

Proor oF THEOREM 3.4 (Uniform convergence for general families)
(a) Assume F = M. This case is covered by Theorem 3.3.
(b) For any given M, take Fy, = {fyy = fL iz yy: f € G}. Then,

|P, f— PfI <|P, fyy — Pfyl + P(FLips ppy) + P(Flips py)-
This implies

sup|P, f — Pf| < suplP, fyr — Pfyl + P.(Flips ppy) + P(Flips p))-
F

Fy

For any fixed ¢ > 0, take M such that P(FI ;. j) <e. Since {X,} is mixing,
so is {(FIp, ,,)(X,)}; hence it is metrically transitive by Corollary 17.1.1 of
Ibragimov and Linnik (1971). Thus Proposition 4.5 gives the law of large
numbers for FI.,, with this M. Therefore, both P(FIy. ,,) and
P,(FIp 1) can be bounded by 3P(FI f. ) in probability when n is suffi-
ciently large. Note that for this fixed M the supremum over F;, tends to 0 in
probability by part (a) and the fact that the covering number of F,, is bounded
by that of F. O
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APPENDIX

Measurability. In this Appendix we deal with the measurability issues
raised in earlier sections and for completeness we also deal with the measura-
bility issues related to the CLT [cf. Arcones and Yu (1994)]. We follow the
order of Pollard [(1984), Appendix C], and refer to it when necessary to avoid
repetition. Moreover, let DM denote Dellacherie and Meyer (1978), and DM
I1.32 means Dellacherie and Meyer [(1978), Chapter II, Section 32], for
example.

Assume that X = (X, X,,..., X,,,...) is a measurable map from (Q, E, P)
to (R*, B”).

It is noted that the original space (Q, E) might not be rich enough to
support the independent block sequences E,. We can, however, always regard
X as a measurable map from (R*, B®) to itself, and on (R~, B*) the indepen-
dent block sequence exists. Note that the probabilities of events of interest
regarding the original sequence take the same values regardless of which space
[(Q,E) or (R*, B*)] we view as the domain of the measurable map X. There-
fore, we can work with (R*, B) to construct the block sequence Z,,, connect it
with the orlglnal sequence X and bound the probabilities regarding X by
those regarding &, [dependlng on (u,, a,)]. For clarity, let ((, E) = (R°° B”).
Then X may be regarded as a measurable map from (), E) to (R*, B*). For
simplicity, we will use the same X to denote either the map from the original
(Q, E) or from the new (Q, E).

Pollard’s measurability treatment involves the probability measure of the
iid sequence under consideration so he requires the probability space (Q, E, P)
to be complete. In our case, however, we have more than one measure: the
measure of the original sequence plus the measures of the independent block
sequences. So we prefer to take a different approach in which the measurabil-
ity problem is handled independently of any particular probability measure.

For any measure space (), E), denote by A(E) the class of E-analytic sets of
Q, and by (Q, E¥*) the universal completion of (Q,E) (DM I1.32). Then the
following hold:

(a) A(E) c E* (straightforward from DM II1.33 and the definition of uni-
versal completion);

(b) every probability measure A on E can be uniquely extended to a proba-
bility measure A* on E¥, and the mapping A — A* is a bijection of the set of
probability measures on E onto the set of probability measures on E*
(DM 11.32),

(0 if (O, E) is a probability space and X is a measurable mapping of
(Q,E) into (', E), then X is a measurable mapping of (2, E*) into (), E'®)
(DM 11.32).

Observe that the probability P used in previous sections can now be taken
as the unique extension, from E to E“ (or E to E%), of the probability of the
original sequence X; or the unique extension, from E to E*, of the constructed
independent block sequence E,. Thus when F is suitably restricted as below,
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the convergence rate theorem and the CLT hold on (Q, E*). As also will be
seen below, the suprema of interest are E* (or E*)-measurable. Hence by (b)
and (c) the probabilities based on these suprema concerning the original
sequence X have the same value (as numbers) no matter which space, (Q, E)
or ((, E), we put X on.

Now we are ready to show that arguments similar to Pollard’s will give
E“-measurability of suprema from the original sequence or the independent
block sequence; in addition, cross sections needed for the symmetrization of
the independent block sequence will be shown to be E“-measurable. We will
also show that the empirical process E, is E*/B? -measurable. Moreover,
since X is a measurable map from (Q, E*) to (Q, E“), by (c), the E*-measura-
bility of functions of the original sequence guarantees their E*-measurability.

Permissible Class. Suppose that the class F is indexed by a parameter ¢
that ranges over some set T'. That is, F = {f(-,¢):¢ € T'}. We may take T = F
as a subset of L'(P). Assume that T is a separable metric space with the Borel
o-field B(T).

A.1 DeFiNiTiON.  The class F is permissible if it can be indexed by a T in
such a way that the following hold:

(i) the function f(-,-)is B X B(T)-measurable as a function from R! X T
into the real line;

(ii) T is isomorphic to an analytic subset of a compact metrizable space T
[or, equivalently, T' is a Souslin measurable space (DM II1.16)].

Note that (i) is needed for the measurability of suprema, but (ii) is needed
for symmetrization.

Measurable Suprema. Assume that F is permissible and that Pf, < » for
each ¢. For any s € R, let

g(s,t) =n"! i [ f(s;,t) — Pf,].
i=1

Since Pf, < and f(:,-) is B X B(T)-measurable, then Pf, = n~'L?_,Pf, is
B(T)-measurable by Fubini’s theorem. Moreover, by (ii) of the definition of a
permissible class, n 'L, f(s;, t) is B” X B(T)-measurable. Thus g(s,t)is a
B" X B(T)-measurable real function on R" X T. Write G(s) = sup, g(s, ¢).
For any @ € R', let H, = {s,#): g(s,¢) > a}. Since g is B" X B(T') measur-
able,

H,eB" x B(T) c A(B" x B(T)).

Thus {G(s) > a} as the projection of H, onto R" is also analytic, that is,
{G(s) > a} € AB") c A(B”) c (B”)* = E*. Moreover, X, is measurable from
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(Q,E“) to (R™, (B™)*) by (c¢) and hence
{w: G(X,(0)) >a} =X, ({G(s) >a)}) € E“,

that is, o —» G(X,(0)) is E“-measurable, hence E*-measurable, and similarly
for G(E,(w)) and the suprema from the even blocks, the odd blocks and the
remaindqr block. Note that the suprema over [8] in the equicontinuity lemma
are also E*- (or E“-) measurable and this is needed in Arcones and Yu (1994).
Here we will only demonstrate that the supremum related to the empirical
process E, = Vn (P, — P) is E“measurable. Let

g(s, t,t')y=n"12 i [F(s;,t) — Pf, —f(s;,t") + Pf,].
i=1

This is B™ X B(T) X B(T)-measurable. Thus V; ={(¢,¢):p(f,, f,) <&} is
B(T') X B(T )-measurable by Fubini’s theorem. If we define

H,={(s,t,t):8(s,t,t)>a},

G(s) = sup  g(s,t,t),
t,t":pi(fy, fr)<8

then {G > a} is the projection onto R" of H, N V; which is B” X B(T) X
B(T')-measurable, therefore analytic. Thus {G > a} is A(b™)-analytic, so it is
E*“-measurable, and hence E“-measurable by (c).

_ It should be clear that extending the probability measure of X from E (or
E) to E* (or E“) does not change the a-, 8-, or ¢-mixing coefficients, because
for any A € E there is an o' € E* such that P(A) = P(A'), and all three
mixing coefficients are defined in terms of probabilities.

Measurable Cross Sections. In the symmetrization of the empirical process
from the independent block sequence, we needed the following assertion:

If F is a permissible class, then for a stochastic process
Z(w,t) on (Q,E), there exists a E“/B(T)-measurable
(T-valued) 7 such that Z(w, 7(w)) > ¢ whenever
sup,|z(w, t)| > &.

When Definition 1(ii) is satisfied and since both T and () = R® are metriz-
able, by DM 1II1.19, every Borel [or B(T') X B®-analytic] subset of T X R” is
Souslin (because T and R' are both Souslin and a countable product of
Souslin spaces in Souslin). So from a theorem in DM (Appendix II1.81) and
Remark (a) we have the following:

(d) if H is a B(T) X B™-analytic subset of T' X Q = T X R*, there exists an
E*/B(T)-measurable mapping 7 of Q into T such that, for all  in the
projection of H onto Q, (7(w), w) belongs to H (r is a complete cross
section of H).

Then our assertion can be proved similarly to Pollard (1984), except that we
use our (d) above instead the (d) stated there.
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For any given ¢ > 0, let
A= {w: suplZ(w,t)| < s},
t

B ={(w,t):1Z(w,t)| > ¢}.

The set A belongs to E¥, and the set B belongs to E x B(T) = B* x B(T).
Hence by (d), we can choose an E*-measurable cross section 7,. Set 7 equal to
7o on A, and outside A set it equal to ¢, for a fixed element ¢, of T'. Since A is
E“-measurable, 7 is E*-measurable. Moreover,

A= {w: SI:pIZ(w,t)I > e}

and on A (w, 7(w)) belongs to B; that is,
Z(w,7(w)) > ¢
as required. So the assertion is proved.

Now symmetrization can be carried out by taking two independent copies Z
and Z' on a product space () X () with the product measure P X P’ on
E* x (E)*,

Z(w,w',t) =Z(w,t),
Z'(w,0',t) =2Z'(v',1).
The 7 constructed above depends only on w. For all w,
P{w':|Z' (o', 1(w))l < a} = B.

The rest of the proof goes through as in Pollard [(1984), page 14, Symmetriza-
tion Lemma 8], with Fubini’s theorem formalizing the conditioning argument.

Covering Numbers. We may interpret a condition like
log N(8,P,,F) =0,(b,) asn >

to mean that P{Z, > b,¢} —» 0 and n — o for some E- (or E*) measurable
random variable Z, greater than log N(§, P,,F). Alternatively, we may use
packing numbers instead of covering numbers as in Pollard [(1984), Appendix
Cl: Define M(§, P,,F) as the smallest m for which there exist functions
fis--o» f in F with P,|f; — f,| > & for j # k. This is an E- (therefore E*-)
measurable function of w since the set

{w: M(8, P(w,"),F) = m}

equals the projection on () of the E x B(¢)-measurable set
(0,00 minn™ £ 7(X0),8) = F(X(), 1)1 > o).
J i=1

The packing numbers are closely related to covering numbers:
M(25, P,,F) <N(5, P,,F) < M(5, P, F).
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Similarly, we can use the corresponding packing numbers for P, and 15#".

They are E-measurable, hence E*measurable (or E*-measurable). "

The Function Space 2. This session deals with the measurability issue
related to the weak convergence of the empirical process E, to its limit
process. Let us first introduce the space C(F, P) € £ of real bounded func-
tionals on F, equipped with the uniform norm |x|| = supglx(f)| [cf. Pollard
(1984)].

DerFiNiTION. C(F, P) is the set of all functionals x(-) of F which are
uniformly continuous with respect to the L'(P) seminorm p; on F. That is,
for each functional x(-) and & > 0, there should exist a § > 0 such that
lx(f) — x(g)| < &€ whenever p,(f — g) < 8. Define B” as the smallest o-field on
2" which contains all the closed balls in terms of | - || with centers in C(F, P)
and makes all the finite-dimensional projections measurable.

Denote by Ep the limiting P-bridge process indexed by F, which is a tight,
Gaussian random element of 2" whose sample paths all belong to C(F, P) and
has a covariance structure as follows:

Cov(E,(f),E,(g)) = Pf(X,)g(X,) + 2§P[ F(X1)8(Xp11)]
1

forall f,g €F.

Assume that F is permissible and separable under the p, seminorm. Using
essentially the same arguments as in Pollard (1984), we can prove that E, is
E*“/BP-measurable. This is needed to make sense of the weak convergence of
E, to E, as random elements of (2,BY). To be self-contained again, we
repeat Pollard’s arguments:

Recall that C(F, P) is the set of functions in £° that are uniformly
continuous with respect to the p, seminorm on F and that the o-field B is
the smallest for which the following hold:

1. all the closed balls (for ||x|| = supglx(f)D belong to B?;
2. all the finite-dimensional projections are Bf-measurable.

Because each E, (-, f) is a real random variable, the finite-dimensional
projections create no difficulty for E*/Bf-measurability. So we only need to
show that {w: [|E, (@, ) — x()I| < r} belongs to E*. Introduce T as in Defini-
tion 1. Since F is separable under p,, Problem 1 of Pollard [(1984), page 200]
establishes the B(T')-measurability of x(f,). So for s € R" the function

8(5,0) =|n™ & [£(500) = £(£)

is B” X B(T')-measurable. The argument in ‘“Measurable Suprema’ estab-
lishes E*-measurability of sup, g(X(w), ), which equals [|E, (w, ) — x(-)Il.
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