
7 Vapnik-C̆ervonenkis (VC) classes of sets/functions

Consider our canonical setting: X1, . . . , Xn are i.i.d. P on some space X . In this section we

study classes of functions F (on X ) that satisfy certain combinatorial restrictions. These

classes at first sight may seem have nothing to do with entropy numbers, but indeed will

be shown to imply bounds on the covering numbers of the type

sup
Q

N(✏kFkQ,2, F , L2(Q))  K

✓
1

✏

◆
V

, 0 < ✏ < 1, some number V > 0,

where F is the underlying function class with envelope F , and K is a universal constant.

Note that this has direct implications on the uniform entropy of such a class (see Defini-

tion 4.6) is of the order log(1/✏) and hence the uniform entropy integral converges, and is

of the order � log(1/�), as � # 0.

Classes of (indicator functions of) this type were first studied by Vapnik and C̆ervonenkis

in the 1970s, whence the name VC classes. There are many examples of VC classes, and

more examples can be constructed by operations as unions and sums. Furthermore, one can

combine VC classes in di↵erent sorts of ways (thereby, building larger classes of functions)

to ensure that the resulting larger classes also satisfy the uniform entropy condition (though

these larger classes may not necessarily be VC).

We first consider VC classes to sets. To motivate this study let us consider a boolean

class of functions F
55, i.e., every f 2 F takes values in {0, 1}. Thus,

F = {1C : C 2 C},

where C is a collection of subsets of X . This naturally leads to the study of C.

Definition 7.1. Let C be a collection of subsets of a set X . Let {x1, . . . , xn} ⇢ X be an

arbitrary set of n points. Say that C picks out a certain subset A of {x1, . . . , xn} if A can

be expressed as C \ {x1, . . . , xn} for some C 2 C.

The collection C is said to shatter {x1, . . . , xn} if each of its 2n subsets can be picked

out in this manner (note that an arbitrary set of n points possesses 2n subsets).

Definition 7.2. The VC dimension V (C) of the class C is the largest n such that some set

of size n is shattered by C.

Definition 7.3. The VC index �n(C; x1, . . . , xn) is defined as

�n(C; x1, . . . , xn) = |
�
C \ {x1, . . . , xn} : C 2 C

 
|,

where |A| denotes the cardinality of the set A. Thus,

V (C) := sup
�
n : max

x1,...,xn2X
�n(C; x1, . . . , xn) = 2n

 
.

55Boolean classes F arise in the problem of classification (where F can be taken to consist of all functions

f of the form I{g(X) 6= Y }). They are also important for historical reasons: empirical process theory has

its origins in the study of the function class F = {1(�1,t](·) : t 2 R}.
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Anand Bhaskar (ab394), Ilya Sukhar (is56) 4/28/08 (Part 1)

1 VC-dimension

A set system (x, S) consists of a set x along with a collection of subsets of x. A subset containing A ✓ x is
shattered by S if each subset of A can be expressed as the intersection of A with a subset in S.

VC-dimension of a set system is the cardinality of the largest subset of A that can be shattered.

1.1 Rectangles

Let’s try rectangles with horizontal and vertical edges. In order to show that the VC dimension is 4 (in this
case), we need to show two things:

1. There exist 4 points that can be shattered.

It’s clear that capturing just 1 point and all 4 points are both trivial. The figure below shows how we
can capture 2 points and 3 points.

So, yes, there exists an arrangement of 4 points that can be shattered.

2. No set of 5 points can be shattered.

Suppose we have 5 points. A shattering must allow us to select all 5 points and allow us to select 4
points without the 5th.

Our minimum enclosing rectangle that allows us to select all five points is defined by only four points
– one for each edge. So, it is clear that the fifth point must lie either on an edge or on the inside of
the rectangle. This prevents us from selecting four points without the fifth.
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Figure 1: The left panel illustrates how we can pick out 2 points and 3 points (it’s clear that capturing just

1 point and all 4 points are both trivial) thereby showing that there exist 4 points that can be shattered.

The right panel illustrates that no set of 5 points can be shattered: the minimum enclosing rectangle that

allows us to select all 5 points is defined by only four points — one for each edge. So, it is clear that the

fifth point must lie either on an edge or on the inside of the rectangle thereby preventing us from selecting

four points without the fifth.

Clearly, the more refined C is, higher the VC index. The VC dimension is infinite if C

shatters sets of arbitrarily large size. It is immediate from the definition that V (C)  V if

and only if no set of size V + 156 is shattered.

Example 7.4. Let X = R and define the collection of sets C := {(�1, c] : c 2 R}. Consider

any two point set {x1, x2} ⇢ R, and assume without loss of generality, that x1 < x2. It is

easy to verify that C can pick out the null set {} and the sets {x1} and {x1, x2} but cannot

pick out {x2}. Hence its VC dimension equals 1.

The collection of all cells (a, b] 2 R shatters every two-point set but cannot pick out the

subset consisting of the smallest and largest points of any set of three points. Thus its VC

dimension equals 2.

Remark 7.1. With more e↵ort, it can be seen that the VC indices of the same type of sets

in Rd are d and 2d, respectively. For example, let X = R2 and define

C = {A ⇢ X : A = [a, b] ⇥ [c, d], for some a, b, c, d 2 R}.

Let us see what happens when n = 4. Draw a figure to see this when the points are not

co-linear. We can show that there exists 4 points such that all the possible subsets of these

four points are picked out by C; see the left panel of Figure 7.1.

Now if we have n = 5 points things change a bit; see the right panel of Figure 7.1.

If we have five points there is always one that stays “in the middle” of all the others, and

thus the complement set cannot be picked out by C. We immediately conclude that the VC

dimension of C is 4.

A collection of measurable sets C is called a VC class if its dimension is finite. The

main result of this section is the remarkable fact that the covering numbers of any VC class

grow polynomially in 1/✏ as ✏ ! 0, of order dependent on the dimension of the class.

56Some books define the VC index of the class C as the smallest n for which no set of size n is shattered

by C (i.e., V (C) + 1 in our notation).
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Example 7.5. Suppose that X = [0, 1], and let C be the class of all finite subsets of X .

Let P be the uniform (Lebesgue) distribution on [0, 1]. Clearly V (C) = 1 and C is not a

VC class. Note that for any possible value of Pn we have Pn(A) = 1 for A = {X1, . . . , Xn}

while P (A) = 0. Therefore kPn � PkC = 1 for all n, so C is not a Glivenko-Cantelli class

for P .

Exercise (HW3): Show that the class of all closed and convex sets in Rd does not have finite

VC dimension (Hint: Consider a set of n points on the boundary of the unit ball).

Sauer’s lemma57 (also known as Sauer-Shelah-Vapnik-C̆ervonenkis lemma), one of the

fundamental results on VC dimension, states that the number �n(C; x1, . . . , xn) of subsets

picked out by a VC class C, for n � 1, satisfies:

max
x1,...,xn

�n(C; x1, . . . , xn) 

V (C)X

j=0

✓
n

j

◆
, (73)

where we use the notation
�
n

j

�
= 0 if j > n. Observe that for n  V (C), the right-hand side

of the above display equals 2n, i.e., the growth is exponential. However, it is easy to show58

that for n � V (C),
V (C)X

j=0

✓
n

j

◆


✓
ne

V (C)

◆
V (C)

. (74)

Consequently, the numbers on the left side grow polynomially (of order at most O(nV (C)))

rather than an exponential number. Intuitively this means that a finite VC index implies

that C has an apparent simplistic structure.

7.1 VC classes of Boolean functions

The definition of VC dimension can be easily extended to a function class F in which every

function f is binary-valued, taking the values {0, 1} (say). In this case, we define, for every

57See [van der Vaart and Wellner, 1996, pages 135–136] for a complete proof of the result.
58In the following we just give a proof of the right-hand inequality of (74). Note that with Y ⇠

Binomial(n, 1/2),

V (C)X

j=0

 
n
j

!
= 2n

V (C)X

j=0

 
n
j

!✓
1
2

◆n

= 2nP(Y  V (C))

 2nE[rY �V (C)] for r  1
h
as 1{Y � V (C)  0}  rY �V (C) for r  1

i

= 2nr�V (C)

✓
1
2
+

r
2

◆n

= r�V (C)(1 + r)n
"
as E[rY ] =

nX

j=0

rj
 
n
j

!✓
1
2

◆n

=

✓
1
2
+

r
2

◆n
#

=

✓
n

V (C)

◆V (C) ✓
1 +

V (C)
n

◆n

by choosing r = V (C)/n



✓
n

V (C)

◆V (C)

eV (C).
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x1, . . . , xn 2 X ,

F(x1, . . . , xn) := {(f(x1), . . . , f(xn)) : f 2 F}. (75)

As functions in F are Boolean, F(x1, . . . , xn) is a subset of {0, 1}
n.

Definition 7.6. Given such a function class F we say that the set {x1, . . . , xn} is shattered

by F if

�n(F ; x1, . . . , xn) := |F(x1, . . . , xn)| = 2n.

The VC dimension V (F) of F is defined as the largest integer n for which there is some

collection x1, . . . , xn of n points that can be shattered by F .

When V (F) is finite, then F is said to be a VC class.

Example 7.7. Let us revisit the Glivenko-Cantelli (GC) theorem (Theorem 3.5) when we

have a binary-valued function class F . In particular, suppose that X1, . . . , Xn are i.i.d. P

on X . A natural question is how does one verify condition (8) in practice? We need an

upper bound on N(✏, F , L1(Pn)). Recall that under L1(Pn) the distance between f and g is

measured by

kf � gkL1(Pn) :=
1

n

nX

i=1

|f(Xi) � g(Xi)|.

This notion of distance clearly only depends on the values of f and g at the data points

X1, . . . , Xn. Therefore, the covering number of F in the L1(Pn)-norm should be bounded

from above by the corresponding covering number of {(f(X1), . . . , f(Xn)) : f 2 F}. It should

be obvious that N(✏, F , L1(Pn)) is bounded from above by the cardinality of F(X1, . . . , Xn),

i.e.,

N(✏, F , L1(Pn))  |F(X1, . . . , Xn)| for every ✏ > 0.

This is in fact a very crude upper bound although it can be quite useful in practice. For

example, in the classical GC theorem F := {1(�1,t](·) : t 2 R}, and we can see that

|F(X1, . . . , Xn)|  (n + 1).

Since F(X1, . . . , Xn) is a subset of {0, 1}
n, its maximum cardinality is 2n. But if

�n(F ; X1, . . . , Xn) is at the most a polynomial in n for every possible realization of X1, . . . , Xn,

then
1

n
log �n(F ; X1, . . . , Xn) ! 0 as n ! 1 a.s. (76)

which implies, by Theorem 3.5, that F is GC. Thus, if F is a boolean function class such

that (76) holds, then F is P -GC.

Exercise (HW3): Consider the class of all two-sided intervals over the real line, i.e., F :=

{1(a,b](·) : a < b 2 R}. Show that �n(F ; X1, . . . , Xn)  (n + 1)2 a.s.

Exercise (HW3): For a scalar t 2 R, consider the function ft(x) := 1{sin(tx) � 0}, x 2

[�1, 1]. Prove that the function class {ft : [�1, 1] ! R : t 2 R} has infinite VC dimension

(Note that this shows that VC dimension is not equivalent to the number of parameters in

a function class).
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7.2 Covering number bound for VC classes of sets

Theorem 7.8. There exists a universal constant K such that for any VC class C of sets,

any probability measure Q, any r � 1, and 0 < ✏ < 1,

N(✏, C, Lr(Q))  K V (C)(4e)V (C)

✓
1

✏

◆
rV (C)

. (77)

Proof. See [van der Vaart and Wellner, 1996, Theorem 2.6.4].

In the following we will prove a slightly weaker version of the above result.

Theorem 7.9. For any VC class C of sets, any r � 1, and 0 < ✏ < 1,59

sup
Q

N(✏, C, Lr(Q)) 

⇣c1
✏

⌘
rc2V (C)

(78)

Here c1 and c2 are universal positive constants and the supremum is over all probability

measures Q on X .

Proof. Fix 0 < ✏ < 1. Let X1, . . . , Xn be i.i.d. Q. Let m := D(✏, C, L1(Q)) be the ✏-packing

number for the collection C in the norm L1(Q). Thus, there exists C1, . . . , Cm 2 C which

satisfy

Q|1Ci � 1Cj | = Q(Ci4Cj) > ✏, i 6= j.

Let F := {1C : C 2 C}. We consider this function class view point as it is sometimes more

natural than working with the collection of sets C. Note that, {fi ⌘ 1Ci}
m

i=1 is a set of m

✏-separated functions in F in the L1(Q)-metric, as, for i 6= j,

✏ <

Z
|fi � fj |dQ = Q{fi 6= fj} = Q(Ci4Cj) = P[X1 2 Ci4Cj ].

By the above, we have

P[fi(X1) = fj(X1)] = 1 � P[fi(X1) 6= fj(X1)] = 1 � P[X1 2 Ci4Cj ] < 1 � ✏  e�✏.

By the independence of X1, . . . , Xn we deduce then that for every k � 1,

P[fi(X1) = fj(X1), . . . , fi(Xk) = fj(Xk)]  e�k✏.

In words, this means that the probability that fi and fj agree on every X1, . . . , Xk is at

most e�k✏. By the union bound, we have

P [(fi(X1), . . . , fi(Xk)) = (fj(X1), . . . , fj(Xk)) for some 1  i < j  m] 

✓
m

2

◆
e�k✏


m2

2
e�k✏.

Recalling that F(x1, . . . , xk) = {(f(x1), . . . , f(xk)) : f 2 F}, this immediately gives

P[|F(X1, . . . , Xk)| � m] � 1 �
m2

2
e�k✏.

59Note that N(✏, C, Lr(Q)) = 1 for all ✏ � 1.
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Thus if we take k :=
l
2 logm

✏

m
�

2 logm
✏

, then, P[|F(X1, . . . , Xk)| � m] � 1/2. Thus

for the choice of k above, there exists a subset {z1, . . . , zk} of cardinality k such that

|F(z1, . . . , zk)| � m. We now apply the Sauer-Shelah-VC lemma and deduce that

m  |F(z1, . . . , zk)|  max
x1,...,xk

�k(C; x1, . . . , xk) 

V (C)X

j=1

✓
k

j

◆
. (79)

We now split into two cases depending on whether k  V (C) or k � V (C).

Case 1: k  V (C). Here (79) gives

N(✏, C, L1(Q))  D(✏, C, L1(Q)) = m  2V (C)


✓
2

✏

◆
V (C)

,

which proves (78).

Case 2: k � V (C). Here (79) gives

N(✏, C, L1(Q)) = m 

✓
ke

V (C)

◆
V (C)

,

so that using the choice of k which satisfies k 
4 logm

✏
,

m1/V (C)


ke

V (C)


4e

V (C)✏
log m =

8e

✏
log m1/(2V (C))


8e

✏
m1/(2V (C)),

where we have used log x  x. This immediately gives

N(✏, C, L1(Q))  D(✏, C, L1(Q)) = m 

✓
8e

✏

◆2V (C)

,

which completes the proof of the result for r = 1.

For Lr(Q) with r > 1, note that

k1C � 1DkL1(Q) = Q(C4D) = k1C � 1Dk
r

Lr(Q),

so that

N(✏, C, Lr(Q)) = N(✏r, C, L1(Q)) 
�
c1✏

�r
�c2V (C)

.

This completes the proof.

Exercise (HW3): Suppose F is a Boolean class of functions with VC dimension V (F). Then,

for some constant C > 0,

E
"
sup
f2F

|(Pn � P )f |

#
 C

r
V (F)

n
.

Suppose X1, . . . , Xn are i.i.d. real-valued observations having a common cdf F . Apply this

result to obtain a high probability upper bound on supx2R |Fn(x) � F (x)|, i.e., show that

sup
x2R

|Fn(x) � F (x)| 
C
p

n
+

r
2

n
log

1

↵

with probability at least 1 � ↵ (for ↵ 2 (0, 1)).
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