
6 Rates of convergence of infinite dimensional parameters

If ⇥ is an infinite-dimensional set, such as a function space, then maximization of a criterion

over the full space may not always be a good idea. For instance, consider fitting a function

✓ : [0, 1] ! R to a set of observations (z1, Y1), . . . , (zn, Yn) by least squares, i.e., we minimize

✓ 7!
1

n

nX

i=1

{Yi � ✓(zi)}
2.

If ⇥ consists of all functions ✓ : [0, 1] ! R, then obviously the minimum is 0, taken for any

function that interpolates the data points exactly: ✓(zi) = Yi for every i = 1, . . . , n. This

interpolation is typically not a good estimator, but overfits the data: it follows the given

data exactly even though these probably contain error. The interpolation very likely gives

a poor representation of the true regression function.

One way to rectify this problem is to consider minimization over a restricted class

of functions. For example, the minimization can be carried out over all functions with 2

derivatives, which are bounded above by 10 throughout the interval; here the numbers 2

and (particularly) 10 are quite arbitrary. To prevent overfitting the size of the derivatives

should not be too large, but can grow as we obtain more samples.

The method of sieves is an attempt to implement this. Sieves are subsets ⇥n ⇢ ⇥,

typically increasing in n, that can approximate any given function ✓0 that is considered

likely to be “true”. Given n observations the maximization is restricted to ⇥n, and as n

increases this “sieve” is taken larger. In this section we extend the rate theorem in the

previous section to sieved M -estimators, which include maximum likelihood estimators and

least-squares estimators.

We also generalize the notation and other assumptions. In the next theorem the em-

pirical criterion ✓ 7! Pnm✓ is replaced by a general stochastic process

✓ 7! Mn(✓).

It is then understood that each “estimator” ✓̂n is a map defined on the same probability

space as Mn, with values in the index set ⇥n (which may be arbitrary set) of the process

Mn.

Corresponding to the criterion functions are centering functions ✓ 7! Mn(✓) and “true

parameters” ✓n,0. These may be the mean functions of the processes Mn and their point of

maximum, but this is not an assumption.

In this generality we also need not assume that ⇥n is a metric space, but measure the

“discrepancy” or “distance” between ✓ and the true “value” ✓n,0 by a map ✓ 7! dn(✓, ✓n,0)

from ⇥n to [0, 1).

Theorem 6.1 (Rate of convergence). For each n, let Mn and Mn be stochastic processes

indexed by a set ⇥n [{✓n,0}, and let ✓ 7! dn(✓, ✓n,0) be an arbitrary map from ⇥n to [0, 1).
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Let �̃n � 0 and suppose that, for every n and � > �̃n,

sup
✓2⇥n:�/2<dn(✓,✓n,0)�

[Mn(✓) � Mn(✓n,0)]  �c�2, (52)

for some c > 0 (for all n � 1) and

E
"

sup
✓2⇥n:dn(✓,✓n,0)�

p
n
���(Mn � Mn)(✓) � (Mn � Mn)(✓n,0)

���

#
. �n(�),

for increasing functions �n : [�̃n, 1) ! R such that � 7! �n(�)/�↵ is decreasing for some

0 < ↵ < 2. Let ✓n 2 ⇥n and let �n satisfy

�n(�n) 
p

n�2n, �2n � Mn(✓n,0) � Mn(✓n), �n � �̃n.

If the sequence ✓̂n takes values in ⇥n and satisfies Mn(✓̂n) � Mn(✓n) � OP(�2n), then

dn(✓̂n, ✓n,0) = OP(�n).

Exercise (HW2): Complete the proof. Hint: The proof is similar to that of the previous

rate theorem. That all entities are now allowed to depend on n asks for notational changes

only, but the possible discrepancy between ✓n and ✓n,0 requires some care.

The theorem can be applied with ✓̂n and ✓n,0 equal to the maximizers of ✓ 7! Mn(✓)

over a sieve ⇥n and of ✓ 7! Mn(✓) over a full parameter set ⇥, respectively. Then (52)

requires that the centering functions fall o↵ quadratically in the “distance” dn(✓, ✓n,0) as ✓

moves away from the maximizing value ✓n,0. We use �̃n = 0, and the theorem shows that

the “distance” of ✓̂n to ✓n,0 satisfies

d2n(✓̂n, ✓n,0) = OP(�
2
n + Mn(✓n,0) � Mn(✓n)), (53)

for �n solving �n(�n) 
p

n�2n and for any ✓n 2 ⇥n. Thus the rate �n is determined by the

“modulus of continuity” � 7! �n(�) of the centered processes
p

n(Mn�Mn) over ⇥n and the

discrepancy Mn(✓n,0) � Mn(✓n). The latter vanishes if ✓n = ✓n,0 but this choice of ✓n may

not be admissible (as ✓n must be an element of the sieve and ✓n,0 need not). A natural choice

of ✓n is to take ✓n as the closest element to ✓n,0 in ⇥n, e.g., ✓n := argmin✓2⇥n
dn(✓, ✓n,0).

Typically, small sieves ⇥n lead to a small modulus, hence fast �n in (53). On the other

hand, the discrepancy Mn(✓n,0)�Mn(✓n) of a small sieve will be large. Thus, the two terms

in the right side of (53) may be loosely understood as a “variance” and a “squared bias”

term, which must be balanced to obtain a good rate of convergence. We note that in many

problems an un-sieved M -estimator actually performs well, so the trade-o↵ should not be

understood too literally: it may work well to reduce the “bias” to zero.
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6.1 Least squares regression on sieves

Suppose that we have data

Yi = ✓0(zi) + ✏i, for i = 1, . . . , n, (54)

where Yi 2 R is the observed response variable, zi 2 Z is a covariate, and ✏i is the unobserved

error. The errors are assumed to be independent random variables with expectation E✏i = 0

and variance Var(✏i)  �2
0 < 1, for i = 1, . . . , n. The covariates z1, . . . , zn are fixed, i.e.,

we consider the case of fixed design. The function ✓0 : Z ! R is unknown, but we assume

that ✓0 2 ⇥, where ⇥ is a given class of regression functions.

The unknown regression function can be estimated by the sieved-least squares estimator

(LSE) ✓̂n, which is defined (not necessarily uniquely) by

✓̂n = arg min
✓2⇥n

1

n

nX

i=1

(Yi � ✓(zi))
2,

where ⇥n is a set of regression functions ✓ : Z ! R. Inserting the expression for Yi and

calculating the square, we see that ✓̂n maximizes

Mn(✓) =
2

n

nX

i=1

(✓ � ✓0)(zi)✏i � Pn(✓ � ✓0)
2,

where Pn is the empirical measure on the design points z1, . . . , zn. This criterion function

is not observable but is of simpler character than the sum of squares. Note that the second

term is assumed non-random, the randomness solely residing in the error terms.

Under the assumption that the error variables have mean zero, the mean of Mn(✓) is

Mn(✓) = �Pn(✓ � ✓0)2 and can be used as a centering function. It satisfies, for every ✓,

Mn(✓) � Mn(✓0) = �Pn(✓ � ✓0)
2.

Thus, Theorem 6.1 applies with dn(✓, ✓0) equal to the L2(Pn)-distance on the set of regres-

sion functions. The modulus of continuity condition takes the form

�n(�) � E sup
Pn(✓�✓0)2�2,✓2⇥n

�����
1

p
n

nX

i=1

(✓ � ✓0)(zi)✏i

����� . (55)

Theorem 6.2. If Y1, . . . , Yn are independent random variables satisfying (16) for fixed

design points z1, . . . , zn and errors ✏1, . . . , ✏n with mean 0, then the minimizer ✓̂n over ⇥n

of the least squares criterion satisfies

k✓̂n � ✓0kPn,2 = OP(�n)

for �n satisfying �n � k✓0 � ⇥nkPn,2 and �n(�n) 
p

n�2n for �n in (55) such that � 7!

�n(�)/�↵ is decreasing for some 0 < ↵ < 2.
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Since the design points are non-random, the modulus (55) involves relatively simple

multiplier processes, to which the abstract maximal inequalities may apply directly. In par-

ticular, if the error variables are sub-Gaussian, then the stochastic process {n�1/2Pn

i=1(✓�

✓0)(zi)✏i : ✓ 2 ⇥n} is sub-Gaussian with respect to the L2(Pn)- semimetric on the set of

regression functions. Thus, using (41), we may choose

�n(�) =

Z
�

0

p
log N(✏, ⇥n \ {✓ : Pn(✓ � ✓0)2  �2}, L2(Pn)) d✏.

Example 6.3 (Bounded isotonic regression). Let ⇥n = ⇥ = {f : [0, 1] ! [0, 1] : f is nondecreasing}.

By Theorem 2.7.5 of [van der Vaart and Wellner, 1996] we see that

log N(✏, ⇥, L2(Pn))  K✏�1,

where K > 0 is a universal constant. Thus, we can take �n(�) =
p

K
R
�

0 ✏�1/2d✏ = 2
p

K
p

�.

Thus we solve
p

�n = �2n
p

n to obtain the rate of convergence of �n = n�1/3.

Example 6.4 (Lipschitz regression). Let ⇥ = ⇥n := {f : [0, 1] ! [0, 1] | f is 1-Lipschitz}.

By Lemma 2.8, we see that �n(�) can be taken47 to be
p

� which yields the rate of �n = n�1/3.

Example 6.5 (Hölder smooth functions). For ↵ > 0, we consider the class of all functions

on a bounded set X ⇢ Rd that possess uniformly bounded partial derivatives up to b↵c and

whose highest partial derivates are ‘Lipschitz’ (actually Hölder) of order ↵ � b↵c
48.

Let X = [0, 1]d and let ⇥n = C↵

1 ([0, 1]d). Then, log N(✏, ⇥, L2(Pn))  log N(✏, ⇥, k ·

k1) . ✏�d/↵. Thus, for ↵ > d/2 this leads to �n(�) � �1�d/(2↵) and hence, �n(�)  �2n
p

n

47Note that a ✏-cover in the k · k1-norm (as in Lemma 2.8) also yields a a cover in the L2(Pn)-seminorm.
48i.e., for any vector k = (k1, . . . , kd) of d integers the di↵erential operator

Dk =
@k.

@xk1
1 · · · @xkd

d

,

where k. =
Pd

i=1 ki. Then for a function f : X ! R, let

kfk↵ := max
k.b↵c

sup
x

���Dkf(x)
���+ max

k.=b↵c

sup
x,y

���Dkf(x)�Dkf(y)
���

kx� yk↵�b↵c
,

where the supremum is taken over all x, y in the interior of X with x 6= y. Let C↵
M (X ) be the set of all continu-

ous functions f : X ! R with kfk↵  M . The following lemma, proved in [van der Vaart and Wellner, 1996,

Chapter 7], bounds the entropy number of the class C↵
M (X ).

Lemma 6.6. Let X be a bounded, convex subset of Rd with nonempty interior. Then there exists a constant

K, depending only on ↵ and d, and a constant K0, depending only on ↵, diam(X ) and d, such that

logN(✏, C↵
1 (X ), k · k1)  K�(X 1)✏�d/↵,

logN[ ](✏, C
↵
1 (X ), Lr(Q))  K0✏�d/↵,

for every ✏ > 0, r � 1, where �(X 1) is the Lebesgue measure of the set {x : kx � Xk  1} and Q is any

probability measure on Rd. Note that k · k1 denotes the supremum norm.
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can be solved to obtain the rate of convergence �n & n�↵/(2↵+d). The rate relative to the

empirical L2-norm is bounded above by

n�↵/(2↵+d) + k✓0 � ⇥nkPn,2 .

For ✓0 2 C↵

1 ([0, 1]d) the second term vanishes; the first is known to be the minimax rate

over this set.

Exercise (HW2) (Convex regression): Suppose that ✓0 : C ! R is known to be a convex

function over its domain C, some convex and open subset of Rd. In this case, it is natural

to consider the LSE with a convexity constraint — namely

✓̂n 2 argmin
f :C!R “convex”

1

n

nX

i=1

(Yi � f(zi))
2. (56)

As stated, this optimization problem is infinite-dimensional in nature. Fortunately, by

exploiting the structure of convex functions, it can be converted to an equivalent finite-

dimensional problem49. Show that the above LSE can be computed by solving the opti-

mization problem:

min
u1,...,un2R;⇠1,...,⇠n2Rd

1

n

nX

i=1

(Yi � ui)
2 s.t. ui + ⇠>i (zj � zi)  uj 8i 6= j.

Note that this is a convex program in N = n(d+1) variables, with a quadratic cost function

and a total of n(n � 1) linear constraints. Give the form of a LSE ✓̂n.

Suppose now that C = [0, 1]d, and instead of minimizing (56) over the class of all

convex functions, we minimize over the class of all L-Lipschitz convex functions. Find the

rate of convergence of the LSE (over all L-Lipschitz convex functions).

6.2 Least squares regression: a finite sample inequality

In the standard nonparametric regression model, we assume the noise variables in (54) are

drawn in an i.i.d. manner from the N(0, �2) distribution, where � > 0 is the unknown

standard deviation parameter. In this case, we can write ✏i = �wi, where wi ⇠ N(0, 1)

are i.i.d. We change our notation slightly and assume that f⇤ : Z ! R is the unknown

regression function (i.e., f⇤
⌘ ✓0 in (54)).

49Any convex function f is subdi↵erentiable at each point in the (relative) interior of its domain C. More

precisely, at any interior point z 2 C, there exists at least one vector ⇠ 2 Rd such that

f(z) + ⇠>(x� z)  f(x), for allx 2 C.

Any such vector is known as a subgradient, and each point z 2 C can be associated with the set @f(z) of its

subgradients, which is known as the subdi↵erential of f at z. When f is actually di↵erentiable at z, then the

above inequality holds if and only if ⇠ = rf(z), so that we have @f(z) = {rf(z)}. See standard references

in convex analysis for more on this.
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Our main result in this section yields a finite sample inequality for the L2(Pn)-loss of

the constrained LSE

f̂n 2 argmin
f2F

1

n

nX

i=1

{Yi � f(zi)}
2;

i.e., we study the error kf̂n � f⇤
k
2
n := 1

n

P
n

i=1{f̂n(zi) � f⇤(zi)}2. This error is expressed in

terms of a localized form of Gaussian complexity: it measures the complexity of the function

class F , locally in a neighborhood around the true regression function f⇤. More precisely,

we define the set:

F
⇤ := F � f⇤ = {f � f⇤ : f 2 F} (57)

corresponding to an f⇤-shifted version of the original function class F . For a given radius

� > 0, the local Gaussian complexity around f⇤ at scale � is given by

Gn(�; F⇤) := Ew

"
sup

g2F⇤:kgkn�

���
1

n

nX

i=1

wig(zi)
���

#

where the expectation is w.r.t. the variables {wi}
n

i=1 which are i.i.d. N(0, 1).

A function class H is star-shaped if for any h 2 H and ↵ 2 [0, 1], the rescaled function

↵h also belongs to H. Recall the basic inequality for nonparametric least squares:

1

2
kf̂n � f⇤

k
2
n 

�

n

nX

i=1

wi{f(zi) � f⇤(zi)}. (58)

A central object in our analysis is the set of � > 0 that satisfy the critical inequality

Gn(�; F⇤) 
�2

2�
. (59)

It can be shown that the star-shaped condition ensures existence of the critical radius50.

50Let H be a star-shaped class of functions.

Lemma 6.7. For any star-shaped function class H, the function � 7! Gn(�,H)/� is nonincreasing on the

interval (0,1). Consequently, for any constant c > 0, the inequality Gn(�,H)  c�2 has a smallest positive

solution.

Proof. For a pair 0 < �  t, it su�ces to show that �
tGn(t;H)  Gn(�;H). Given any function h 2 H with

khkn  t, we may define the rescaled function h̃ = �
th. By construction, we have kh̃kn  �; moreover, since

�  t, the star-shaped assumption on H guarantees that h̃ 2 H. Thus, write

1
n

�����
�
t

nX

i=1

wih(zi)

����� =
1
n

�����

nX

i=1

wih̃(zi)

�����  sup
g2H:kgkn�

1
n

�����

nX

i=1

wig(zi)

����� .

Taking the supremum over the set H \ {khkn  t} on the left-hand side followed by expectations yields
�
tGn(t;H)  Gn(�;H), which completes the proof of the first part. As Gn(�;H)/� is nonincreasing and c�

is nondecreasing (in �) on (0,1), the inequality Gn(�,H)  c�2 has a smallest positive solution.
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Theorem 6.8. Suppose that the shifted function class F
⇤ is star-shaped, and let �n be any

positive solution to the critical inequality (59). Then for any t � �n, the LSE f̂n satisfies

the bound

P
⇣
kf̂n � f⇤

k
2
n � 16t�n

⌘
 e�

nt�n
2�2 .

Exercise (HW2): By integrating this tail bound, show that the mean-squared error in the

L2(Pn)-semi-norm is upper bounded as

E
h
kf̂n � f⇤

k
2
n

i
 c

⇢
�2n +

�2

n

�

for some universal constant c.

Proof. Recall the basic inequality (58). In terms of the shorthand notation �̂ := f̂n � f⇤, it

can be written as 1
2k�̂k

2
n 

�

n

P
n

i=1 wi�̂(zi). By definition, the error function �̂ = f̂n � f⇤

belongs to the shifted function class F
⇤. We will need the following lemma.

Lemma 6.9. Let H be an arbitrary star-shaped function class, and let �n > 0 satisfy the

inequality Gn(�; H)  �2/(2�). For a given scalar u � �n, define the event

A(u) :=

(
9 g 2 {h 2 H : khkn � u} :

���
�

n

nX

i=1

wig(zi)
��� � 2kgknu

)
. (60)

Then, for all u � �n, we have

P(A(u))  e�
nu2

2�2 .

We will prove the main theorem using the lemma for the time being; we take H = F
⇤

and u =
p

t�n for some t � �n, so that we can write P(Ac(
p

t�n)) � 1 � e�
nt�2n
2�2 . Note that

P(k�̂k
2
n  16t�n) = P

⇣
k�̂k

2
n  16t�n, k�̂k

2
n < t�n

⌘
+ P

⇣
k�̂k

2
n  16t�n, k�̂k

2
n � t�n

⌘

= P
⇣
k�̂k

2
n < t�n

⌘
+ P

⇣
t�n  k�̂k

2
n  16t�n

⌘

� P
⇣
k�̂k

2
n < t�n

⌘
+ P

⇣
t�n  k�̂k

2
n  16t�n, Ac(

p
t�n)

⌘

= P
⇣
k�̂k

2
n < t�n

⌘
+ P

⇣
t�n  k�̂k

2
n, Ac(

p
t�n)

⌘
(61)

� P
⇣
A

c(
p

t�n)
⌘

� 1 � e�
nt�2n
2�2 ,

where the only nontrivial step is (61), which we explain next. Note that if k�̂k
2
n � t�n and

A
c(

p
t�n) holds, then

���
1

n

nX

i=1

wi�̂(zi)
���  2k�̂kn

p
t�n.

Consequently, the basic inequality (58) implies that k�̂k
2
n  4k�̂kn

p
t�n, or equivalently,

k�̂k
2
n  16t�n. Thus, (61) holds, thereby completing the proof.
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Proof of Lemma 6.9: Our first step is to reduce the problem to controlling a supremum

over a subset of functions satisfying the upper bound kg̃kn  u. Suppose that there exists

some g 2 H with kgkn � u such that

���
�

n

nX

i=1

wig(zi)
��� � 2kgknu. (62)

Defining the function g̃ := u

kgkn
g, we observe that kg̃kn = u. Since g 2 H and u

kgkn
2 (0, 1],

the star-shaped assumption on H implies that g̃ 2 H. Consequently, we have shown that if

there exists a function g satisfying inequality (62), which occurs whenever the event A(u)

is true, then there exists a function g̃ 2 H with kg̃kn = u such that

���
�

n

nX

i=1

wig̃(zi)
��� =

u

kgkn

���
�

n

nX

i=1

wig(zi)
��� � 2u2.

We thus conclude that

P(A(u))  P
�
Zn(u) � 2u2

�
, where Zn(u) := sup

g̃2H:kg̃knu

���
�

n

nX

i=1

wig̃(zi)
���.

Since the noise variables wi ⇠ N(0, 1) are i.i.d., the variable �

n

P
n

i=1 wig̃(zi) is zero-mean and

Gaussian for each fixed g̃. Therefore, the variable Zn(u) corresponds to the supremum of a

Gaussian process. If we view this supremum as a function of the standard Gaussian vector

(w1, . . . , wn), then it can be verified that the associated Lipschitz constant51 is at most

�u/
p

n. Consequently, by the concentration of Lipschitz functions of Gaussian variables52,

51The following lemma illustrates the Lipschitz nature of Gaussian complexity.

Lemma 6.10. Let {Wk}
n
k=1 be an i.i.d. sequence of N(0, 1) variables. Given a collection of vectors

A ⇢ Rn, define the random variable Z := supa2A |
Pn

k=1 akWk|. Viewing Z as a function (w1, . . . , wn) 7!

f(w1, . . . , wn), we can verify that f is Lipschitz (with respect to Euclidean norm) with parameter

supa2A[(�A) kak2.

To see this, let w = (w1, . . . , wn), w
0 = (w0

1, . . . , w
0

n) 2 Rn. Suppose that there exists a⇤ = (a⇤

1, . . . , a
⇤

n)

such that f(w) = supa2A |
Pn

k=1 akwk| =
Pn

k=1 a
⇤

kwk (or
Pn

k=1(�a⇤

k)wk, which case can also be handled

similarly). Then,

f(w)� f(w0) 
nX

k=1

a⇤

kwk �

nX

k=1

a⇤

kw
0

k  ka⇤
k2kw � w0

k2  sup
a2A[(�A)

kak2kw � w0
k2.

The same argument holds with the roles of w and w0 switched which leads to the desired result:

|f(w)� f(w0)|  sup
a2A[(�A)

kak2kw � w0
k2.

52Classical result on the concentration properties of Lipschitz functions of Gaussian variables:

Recall that a function f : Rn
! R is L-Lipschitz with respect to the Euclidean norm k · k2 if

|f(x)� f(y)|  Lkx� yk2, for all x, y 2 Rn.

The following result guarantees that any such function is sub-Gaussian with parameter at most L.
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we obtain the tail bound

P (Zn(u) � E[Zn(u)] + s)  e�
ns2

2u2�2 ,

valid for any s > 0. Setting, s = u2 yields,

P
�
Zn(u) � E[Zn(u)] + u2

�
 e�

nu2

2�2 . (63)

Finally, by definition of Zn(u) and Gn(u; H), we have E[Zn(u)] = �Gn(u; H). By Lemma 6.7,

the function v 7! Gn(v; H)/v is nonincreasing, and since u � �n by assumption, we have

�
Gn(u; H)

u
 �

Gn(�n; H)

�n


�n
2

 �n,

where the 2nd inequality used the critical condition (59). Putting together the pieces, we

have shown that E[Zn(u)]  u�n. Combined with the tail bound (63), we obtain

P(Zn(u) � 2u2)  P(Zn(u) � u�n + u2)  P
�
Zn(u) � E[Zn(u)] + u2

�
 e�

nu2

2�2 ,

where we have used the fact that u2
� u�n.

Exercise (HW2): Suppose that F
⇤ is star-shaped. Show that for any � 2 (0, �] such that

16
p

n

Z

�2/(4�)

p
log N(t, F⇤ \ {h : khkn  �}, k · kn)dt 

�2

4�
(64)

satisfies the critical inequality (59) and hence the conclusion of of Theorem 6.8 holds.

Exercise (HW2) [Linear regression]: Consider the standard linear regression model Yi =

h✓⇤, zii + wi, where ✓⇤ 2 Rd, and fixed xi are d-dimensional covariates. Although this

example can be studied using direct linear algebraic arguments, we will use our general

theory in analysis this model. The usual LSE corresponds to optimizing over the class of

all linear functions

Flin := {f✓ = h✓, ·i : ✓ 2 Rd
}. (65)

Let X 2 Rn⇥d denote the design matrix with zi 2 Rd as its i-th row. Let ✓̂ be the LSE.

Show that

kf
✓̂
� f✓⇤k

2
n =

kX(✓̂ � ✓⇤)k22
n

. �2 rank(X)

n

Theorem 6.11. Let X = (X1, . . . , Xn) be a vector of i.i.d. standard Gaussian variables, and let f : Rn
! R

be L-Lipschitz with respect to the Euclidean norm. Then the variable f(X)� E[f(X)] is sub-Gaussian with

parameter at most L, and hence

P
�
|f(X)� E[f(X)]| � t

�
 2e�

t2

2L2 for all t � 0.

Note that this result is truly remarkable: it guarantees that any L-Lipschitz function of a standard

Gaussian random vector, regardless of the dimension, exhibits concentration like a scalar Gaussian variable

with variance L2. See Section 13.4 for more details about this result and a proof.
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with high probability.

Hint: First note that the shifted class F
⇤

lin = Flin for any choice of f✓⇤ 2 Flin. Moreover,

F
⇤

lin is convex and hence star-shaped around any point. To use (64) to find �n so that

Theorem 6.8 applies in this setting, we have to find N(t, F⇤

lin \ {h : khkn  �}, k · kn). Show

that the required covering number can be bounded by (1 + 2�
t
)r where r := rank(X).

6.3 Oracle inequalities

In our analysis thus far, we have assumed that the true regression function f⇤ belongs to

the function class F over which the constrained LSE is defined. In practice, this assumption

might be violated. In such settings, we expect the performance of the LSE to involve both

the estimation error that arises in Theorem 6.8, and some additional form of approximation

error, arising from the fact that f⇤ /2 F . A natural way in which to measure approximation

error is in terms of the best approximation to f⇤ using functions from F — the error in this

best approximation is given by inff2F kf � f⇤
k
2
n. Note that this error can only be achieved

by an “oracle” that has direct access to the samples {f⇤(xi)}ni=1. For this reason, results

that involve this form of approximation error are referred to as oracle inequalities. With

this setup, we have the following generalization of Theorem 6.8. We define

@F := {f � g : f, g 2 F}.

Theorem 6.12. Assume that @F is star-shaped. Let �n > 0 be any solution to

Gn(�; @F) 
�2

2�
. (66)

Then for any t � �n, the LSE f̂ satisfies the bound

kf̂ � f⇤
k
2
n  2 inf

f2F

kf � f⇤
k
2
n + 36t�n (67)

with probability greater than 1 � e�
nt�n
2�2 .

Proof. Recall the definition of A(u) in (60). We apply Lemma 6.9 with u =
p

t�n and

H = @F to conclude that P
�
A

c(
p

t�n)
�

� 1 � e�
nt�n
2�2 . We will assume below that the event

A
c(

p
t�n) holds.

Given an arbitrary f̃ 2 F , since f̃ is feasible and f̂ is optimal, we have

1

2n

nX

i=1

{Yi � f̂(zi)}
2


1

2n

nX

i=1

{Yi � f̃(zi)}
2.

Using the relation Yi = f⇤(zi) + �wi, some algebra yields

1

2
k�̂k

2
n 

1

2
kf̃ � f⇤

k
2
n +

���
�

n

nX

i=1

wi�̃(zi)
���, (68)
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where �̂ := f̂ � f⇤ and �̃ := f̂ � f̃ . It remains to analyze the term on the right-hand side

involving �̃. We break our analysis into two cases.

Case 1: First suppose that k�̃kn 
p

t�n. Then,

k�̂k
2
n = kf̂ � f⇤

k
2
n = k(f̃ � f⇤) + �̃k

2
n


�
kf̃ � f⇤

kn +
p

t�n
 2

 2kf̃ � f⇤
k
2
n + 2t�n (taking � = 1)

where in the first inequality above we have used the triangle inequality, and the second

inequality follows from the fact that (a + b)2  2(a2 + b2) (for a, b 2 R).

Case 2: Suppose now that k�̃kn >
p

t�n. Note that �̃ 2 @F and as the event A
c(

p
t�n)

holds, we get
���
�

n

nX

i=1

wi�̃(zi)
���  2

p
t�nk�̃kn.

Combining with the basic inequality (68), we find that, with probability at least 1�e�
nt�n
2�2 ,

the squared error is bounded as

k�̂k
2
n = kf̃ � f⇤

k
2
n + 4

p
t�nk�̃kn

 kf̃ � f⇤
k
2
n + 4

p
t�n

�
k�̂kn + kf̃ � f⇤

kn

 

 kf̃ � f⇤
k
2
n + 2

h t�n
�

+ �k�̂k
2
n

i
+ 2

h t�n
�

+ �kf̃ � f⇤
k
2
n

i

) (1 � 2�)k�̂k
2
n  (1 + 2�)kf̃ � f⇤

k
2
n + 4

t�n
�

where the second step follows from the triangle inequality and the next step follows from

multiple usage of the fact that 2ab  �a2 + b2/� (for a, b 2 R and � > 0). Taking � = 1/6,

we have (1+2�)
(1�2�) = 2, and thus we get

k�̂k
2
n  2kf̃ � f⇤

k
2
n + 36t�n.

Combining the pieces we get that, under the event A
c(

p
t�n), the above inequality holds for

any f̃ 2 F . Thus, (67) holds.

Remark 6.1. We can, in fact, have a slightly more general form of (67) where the ‘oracle’

approximation term 2kf̃ � f⇤
k
2
n can be replaced by 1+�

1��
kf̃ � f⇤

k
2
n for any � 2 (0, 1) (with

appropriate adjustments to the ‘estimation’ error term 36t�n).

Note that the guarantee (67) is actually a family of bounds, one for each f 2 F .

When f⇤
2 F , then we can set f = f⇤, so that the bound (67) reduces to asserting that

kf̂ � f⇤
k
2
n . t�n with high probability, where �n satisfies the critical inequality (66). Thus,

up to constant factors, we recover Theorem 6.8 as a special case of Theorem 6.12. By

integrating the tail bound, we are guaranteed that

E
h
kf̂ � f⇤

k
2
n

i
. inf

f2F

kf � f⇤
k
2
n + �2n +

�2

n
. (69)
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The bound (69) guarantees that the LSE f̂ has prediction error that is at most a constant

multiple of the oracle error, plus a term proportional to �2n. The term inff2F kf � f⇤
k
2
n

can be viewed a form of approximation error that decreases as the function class F grows,

whereas the term �2n is the estimation error that increases as F becomes more complex.

6.3.1 Best sparse linear regression

Consider the standard linear model Yi = f✓⇤(zi)+ �wi, where f✓(z) := h✓, zi is an unknown

linear regression function, and wi

iid
⇠ N(0, 1) is an i.i.d. noise sequence. Here ✓⇤ 2 Rd is

the unknown parameter. For some sparsity index s 2 {1, 2, . . . , d}, consider the class of all

linear regression functions based on s-sparse vectors — namely, the class

Fspar(s) := {f✓ : ✓ 2 Rd, k✓k0  s},

where k✓k0 :=
P

d

j=1 I(✓j 6= 0) counts the number of non-zero coe�cients in the vector

✓ 2 Rd. Disregarding computational considerations, a natural estimator of ✓⇤ is given by

✓̂ ⌘ f
✓̂

2 arg min
f✓2Fspar(s)

nX

i=1

{Yi � f✓(zi)i}
2, (70)

corresponding to performing least squares over the set of all regression vectors with at most

s non-zero coe�cients. As a corollary of Theorem 6.12, we claim that the L2(Pn)-error of

this estimator is upper bounded as

kf
✓̂
� f✓⇤k

2
n . inf

✓2Fspar(s)

kf
✓̂
� f✓⇤k

2
n + �2 s log( ed

s
)

n
, (71)

with high probability; here �2n = �2 s log(
ed
s )

n
. Consequently, up to constant factors, its error

is as good as the best s-sparse predictor plus the ‘estimation’ error term �2n. Note that this

‘estimation’ error term grows linearly with the sparsity s, but only logarithmically in the

dimension d, so that it can be very small even when the dimension is exponentially larger

than the sample size n. In essence, this result guarantees that we pay a relatively small

price for not knowing in advance the best s-sized subset of coe�cients to use.

In order to derive this result as a consequence of Theorem 6.12, we need to compute

the local Gaussian complexity Gn(�; @Fspar(s)). Making note of the inclusion @Fspar(s) ⇢

Fspar(2s), we have Gn(�; @Fspar(s)) ⇢ Gn(�; Fspar(2s)). Now let S ⇢ {1, . . . , d} be an

arbitrary 2s-sized subset of indices, and let XS 2 Rn⇥2s denote the submatrix with columns

indexed by S. We can then write

Gn(�; Fspar(2s)) = Ew

"
sup

g2Fspar(2s):kgkn�

���
1

n

nX

i=1

wig(zi)
���

#
= Ew


max
|S|=2s

Zn(S)

�
,

where

Zn(S) := sup
✓S2R2s:

kXS✓Sk2p
n

�

1

n

���w>
XS✓S

���
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as, for g 2 Fspar(2s), g(z) ⌘ g✓(z) = h✓, zi = h✓S , zSi, if ✓ has nonzero entries in the subset

S ⇢ {1, . . . , d}, and kgk
2
n = 1

n

P
n

i=1h✓, zii
2 = 1

n
kXS✓Sk

2
2 (here k · k2 denotes the usual

Euclidean norm).

Viewed as a function of the standard Gaussian vector w 2 Rn, the variable Zn(S) is

Lipschitz with parameter at most �/
p

n (by Lemma 6.10), from which Theorem 6.11 implies

the tail bound

P(Zn(S) � E[Zn(S)] + t�)  e
�t2�2

(2�2/n) = e
�nt2

2 , for all t > 0. (72)

We now upper bound the expectation. Consider the singular value decomposition XS =

UDV
>, where U 2 Rn⇥2s and V 2 Rd⇥2s are matrices of left and right singular vectors,

respectively, and D 2 R2s⇥2s is a diagonal matrix of the singular values. Noting that

kXS✓Sk2 = kDV
>✓Sk2, we arrive at the upper bound

E[Zn(S)]  E
h

sup
�2R2s:k�k2�

1
p

n

��hU>w, �i
��
i


�

p
n
E
h
kU

>wk2

i

where we have taken � = DV>
✓Sp

n
. Since w ⇠ N(0, In) and the matrix U has orthogonal

columns, we have U
>w ⇠ N(0, I2s), and therefore E

⇥
kU

>wk2
⇤


p

2s. Combining this

upper bound with the earlier tail bound (72), an application of the union bound yields, for

all t > 0,

P
"

max
|S|=2s

Zn(S) �
�
p

2s
p

n
+ t�

#


✓
d

2s

◆
e

�nt2

2 .

By integrating this tail bound, we find that

Gn(�; Fspar(2s))

�
=

Ew

⇥
max|S|=2s Zn(S)

⇤

�
.
r

s

n
+

s
log

�
d

2s

�

n
.

s
log ed

s

n
,

so that the critical inequality (66) is satisfied for �2n ' �2 s log(
ed
s )

n
, as claimed.

6.4 Density estimation via maximum likelihood

Let X1, . . . , Xn be an i.i.d. sample from a density p0 that belongs to a set P of densities

with respect to a measure µ on some measurable space. In this subsection the parameter

is the density p0 itself (and we denoted a generic density by p instead of ✓).

The sieved maximum likelihood estimator (MLE) p̂n based on X1, . . . , Xn maximizes

the log-likelihood p 7! Pn log p over a sieve Pn, i.e.,

p̂n = argmax
p2Pn

Pn[log p].

Although it is natural to take the objective (criterion) function we optimize (i.e., Mn(·) in

our previous notation) as Pn log p, for some technical reasons (explained below) we consider

a slightly modified function.
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