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6 Rates of convergence of infinite dimensional parameters

AT

If © is an infinite-dimensional set, such as a function space, then maximization of a criterion

over the full space may not always be a good idea. For instance, consider fitting a function M ( 6 ) 7 M
- 0/7/ én)
1o d1d q
0 =S {Y; — 0(z))2. [t H) — 0O
- g{ (=00}
()7 () &Jn By,

6 :[0,1] — R to a set of observations (z1, Y1), ..., (zn, Ys) by least squares, i.e., we minimize

If © consists of all functions 6 : [0,1] — R, then obviously the minimum is 0, taken for any
function that interpolates the data points exactly: 0(z;) = Y; for every ¢ = 1,...,n. This
interpolation is typically not a good estimator, butmhe data: it follows the given
data exactly even though these probably contain error. The interpolation very likely gives

a poor representation of the true regression function.

One way to rectify this problem is to consider minimization over a restricted class
of functions. For example, the minimization can be carried out over all functions with 2
derivatives, which are bounded above by 10 throughout the interval; here the numbers 2
and (particularly) 10 are quite arbitrary. To prevent overfitting the size of the derivatives

should not be too large, but can grow as we obtain more samples.

The method of sieves is an attempt to implement this. Sieves are subsets 6, C O,
N/

typically increasing in n, that can approximate any given function 6y that is considered
likely to be “true”. Given n observations the maximization is restricted to ©,, and as n
increases this “sieve” is taken larger. In this section we extend the rate theorem in the
previous section to sieved M-estimators, which include maximum likelihood estimators and

least-squares estimators.

We also generalize the notation and other assumptions. In the next theorem the em-

pirical criterion 8 — P, my is replaced by a general stochastic process
0 — My (6).

It is then understood that each “estimator” én is a map defined on the same probability
Ve

space as M,,, with values in the index set which may be arbitrary set) of the process

M,,.

Corresponding to the criterion functions are centering functions 6 — M,y(0) and “true
parameters” 60, . These may be the mean functions of the processes M, and their point of

——

maximum, but this is not an assumption.

In this generality we also need not assume that ©,, is a metric space, but measure the
“discrepancy” or “distance” between # and the true “value” 6,0 by a map 6 — dy(6,6,0)
N ———

from ©,, to [0, 00). On

Theorem 6.1 (Rate of convergence). For eachn, letMn_gnd% be stochastic processes
indezed by a set ©, U{0, 0}, and let 6 — d,,(0,0,.0) be an arbitrary map from ©,, to [0, c0).
/_b T N~—

—_——
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Let 6, > 0 and suppose that, for every n and § > On, DY (U,

C’Q[ D/UV‘(U )
w [(0) ~ 3] < ot 52)

0€0,,:5/2<dn (0,0n.0)

for some ¢ >0 (for alln > 1) and

E [ sup Jn ‘ (M., — M,)(6) — (M., — M,
0€0,:dn (0,0,,0)<6 -

for increasing functions ¢p : [0n,00) = R such that § — ¢,(8)/0% is decreasing for some
0<a<?2. Letun and let ,, satisfy

If the sequence 0,, takes values in ©,, and satisfies Mn(én > M, (6,) — Op(62), then

Ay (B, 0 0) = Op(6,).
0O, 0n0) = Op(0n)
. —

Exercise (HW2): Complete the proof. Hint: The proof is similar to that of the previous
rate theorem. That all entities are now allowed to depend on n asks for notational changes

only, but the possible discrepancy between ¢,, and 8, ¢ requires some care.

The theorem can be applied with 0,, and 0,0 equal to the maximizers of 6 — M, (0)
over a sievei\f"@/\ and of 6 — M, () over a full parameter set 6, respectively. Then (52)
requires that the centering fumw fall oﬂm “distance” dp(0,0,.0) as 6
moves away from the maximizing value 6,9. We use b6, = 0, and the theorem shows that

the “distance” of én to 6,0 satisfies
2 (0, 0n0) = Op(67 + Mp(On0) — Mn(6y,)), (53)

for 6, solving ¢, (6,) < /nd2 and for any 6,, € ©,,. Thus the rate J,, is determined by the
“modulus of continuity” § — ¢, (9) of the centered processes /n(M,, — M,,) over O,, and the
discrepancy My, (6p,0) — My (605,). The latter vanishes if 6,, = 6,, o but this choice of 6,, may
not be admissible (as 6, must be an element of the sieve and 6,, o need not). A natural choice

of 0,, is to take 6,, as the closest element to 6,9 in%e.g., Oy = argmingcg dn(6,050).
' = TE%n T

~

Typically, small sieves ©,, lead to a small modulus, hencéMer
hand, the discrepancy My, (65,0) — My, (6,) of a small sieve will be large. Thus, the two terms
in the right side of (53) may be loosely understood as a “variance” and a “squared bias”
term, which must be balanced to obtain a good rate of convergence. We note that in many
problems an un-sieved M-estimator actually performs well, so the trade-off should not be

understood too literally: it may work well to reduce the “bias” to zero.
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6.1 Least squares regression on sieves
Suppose that we have data
Y = 00(z) + €, fori=1,...,n, (54)

where Y; € R is the observed response variable, z; € Z is a covariate, and ¢; is the unobserved
error. The errors are assumed to be independent random variables with expectation Ee; = 0
and variance Var(e;) < 03 < oo, for i = 1,...,n. The covariates z1,..., z, are ﬁkm,
we consider tIMéd——deSign. The function 6y : Z — R is unknown, but we assume

that 69 € ©, where O is a given class of regression functions.
The unknown regression function can be estimated by the sieved-least squares estimator
(LSE) 0,,, which is defined (not necessarily uniquely) by

n

A 1
0,, = arg min ;(YQ —0(z))%,

where ©,, is a set of regression functions 6 : Z — R. Inserting the expression for Y; and

calculating the square, we see that 0,, maximizes Q@@Z(/ 7 &

2 —

== (0 —00)(zi)es — Pu(0 — 60)>, = Moz

—t

where P, is the empirical measure on the design points z1, ..., z,. This criterion function

3

is not observable but is of simpler character than the sum of squares. Note that the second

term is assumed non-random, the randomness solely residing in the error terms.

Under the assumption that the error variables have mean zero, the mean of M, (0) is

0) (0= 60)? and can be used as a centering function. It satisfies, for every 6,

M, (0) — M,(69) = —Pu (60 — 6p)*. L
(6) = Ma(bo) (=5 4B 02— %@))

Thus, Theorem 6.1 applies with/d,, (6, GO)Qqual to the/ Lo (Pn)—distance7bn the set of regres-

sion functions. The modulus of\mﬁfﬁﬁf condition takes the form

f/;zbn(é) >E sup

P, (60— 00)2<52 €O,

\FZ (0 — 0o)(2:)e (55)

Theorem 6.2. If Y1,...,Y, are independent random variables satisfying (16) for fixed

design points z1,..., 2, and errors €i,..., e, with mean 0, then the minimizer 0, over ©,
o

of the least squares criterion satisfies

16, — ollp,.2 = Op(s
_ ——————

for &, satisfying 8, > ||00 — Onllp,.2 and ¢n(6n) < /néZ for ¢, in (55) such that §
dn(0)/0% is decreasing for some 0 < o < 2.
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Since the design points are non-random, the modulus (55) involves relatively simple
multiplier processes, to which the abstract maximal inequalities may apply directly. In par-
ticular, if the error variables are sub-Gaussian, then the stochastic process {n=1/2 Yo (60—
90)(zi)& : 0 € O,} is sub-Gaussian with respect to the La(P,)- semimetric on the set of

regression functions. Thus, using (41), we may choose

0
:/ Vg N
— 0 -

Example 6.3 (Bounded isotonic regression). Let ©, = © = {f : [0,1] — [0, 1] : f is nondecreasing}.
— A
By Theorem 2.7.5 of [van der Vaart and Wellner, 1996] we see that

o =1
IOgN(€7®7L2(]P)n))§KE_1, [OJK E Clé /'}T]Zzﬁ do

where K > 0 is a universal constant. Thus, we can take M Z/[Q—’%%E = Q\ﬁ \f 7 2 JV\
— 1/

(.6,0 {0 P, (6 — 90)2<52} Lo(Py)) de.

~

Thus we solve /5, = 62+/n to obtain the rate of convergence of & ) gl 7/ 42 5 ny
Example 6.4 (Lipschitz regression). Let © = ©,, := {f : — [0,1] | f is 1-Lipschitz}. X] 7, bL
By Lemma 2.8, we see that ¢,,(0) can be taken” to be Vo whzch yzelds the rate Ofw.

N £ AT

Example 6.5 (WHS For a > 0, we consider the class of all functions
on a bounded set X C Rd that possess uniformly bounded partial derivatives up to |a] and
whose highest partial derivates are ‘Lipschitz’ (actually Hélder) of order&ij 18,

Let X = [0,1]% and let‘wﬂ). Then, log N (¢, ©, La(Py)), < log N(e,©, || -
loo) S €%, Thus, for a > d/2 this leads to ¢,(5) > w) and éence,‘fgﬁn(é) < 62/n

47No‘ce that a e-cover in the || - ||co-norm (as in Lemma 2.8) also yields a a cover in the Lz (PP, )-seminorm. '
®i.e., for any vector(k = (k1 ..., ka) of d integers the differential operator -0+ = Y
M 2, N &Y] %A > J/)
j/Dl; B o 2ol
-~ 8473}{1,-”3952"" En W 7/,}’}
Wheré;kj = ijl k;. Then for a function f : X — R, let Sﬂ 7 )/};/ZQS{H])
] - S — — —
e Pl
o = maXx su Dk \r‘x J + max su ‘ é
NL k\stoq_g \éﬁ k=la] :ng;) H@,:—,yllr—{ffﬂ '

where the supremum is taken over all z, y in the interior of X with x # y. Let C3;(X) be the set of all continu-
ous functions f : X — R with || f|lo« < M. The following lemma, proved in [van der Vaart and Wellner, 1996,
Chapter 7], bounds the entropy number of the class C; (X).

R N

Lemma 6.6. Let X be a bounded, convex subset of R? with nonempty interior. Then there exists a constant

K, depending only on o and d, and a constant K', depending only on o, diam(X) and d, such that

log N(&,CT(X), |- o) < KMX)e Ve,
log Njj(e,CY(X), Lo (Q)) < K'e ¥,

for every ¢ > 0, r > 1, where A\(X') is the Lebesque measure of the set {x : ||z — X|| < 1} and Q is any

probability measure on RY. Note that || - ||co denotes the supremum norm.
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20+d)

can be solved to obtain the rate of convergence 6, 2 n—o/( The rate relative to the

empirical Lo-norm is bounded above by /\/\/’—"/\_"

n=/Qetd) L6, — O, lp, .

For 6y € C$(]0,1]%) the second term vanishes; the first is known to be the minimax rate

over this set.

Exercise (HW2) (Convex regression): Suppose that 6y : C — R is known to be a convex
function over its domain C, some convex and open subset of R?. In this case, it is natural

to consider the LSE vi}‘ijch a convexity constraint — namely
N\

AN
0, € argmin — Z(E — f(z)% (56)
\\\f:C—HR “convex” T i—
As stated, this optimization proBlem is infinite-dimensional in nature. Fortunately, by
exploiting the structure of convex functions, it can be converted to an equivalent finite-

9

dimensional problem®’. Show that the éiboye LSE can be computed by solving the opti-

mization problem:

n
) 1

min

— Y; — u;)? s.t.\\“u-—i— T —2) <uw; Vi .
oot CR Lo en R TL = ( i z) }\ &i ( J z) > Uy # 7

1
Note that this is a convex program in N = n(d+1) Variabky\wllith a quadratic cost function

and a total of n(n — 1) linear constraints. Give the form of a LSE 6,,.

Suppose now that C' = [0,1]¢, and instead of minimizing (56) over the class of all
convex functions, we minimize over the class of all L-Lipschitz convex functions. Find the

rate of convergence of the LSE (over all L-Lipschitz convex functions).

6.2 \gga\s/t\s_q»@ regression: a finite sample inequality

In the standard nonparametric regression model, we assume the noise variables in (54) are
drawn in an ii.d. manner from the N(0,02) distribution, where o > 0 is the unknown
standard deviation parameter. In this case, we can write ¢; = ow;, where w; ~ N(0,1)
are i.i.d. We change our notation slightly and assume tha—t\f* 1 Z = Ris mknown

regression function (i.e., f* =6y in (54)).
J =70

9 Any convex function f is subdifferentiable at each point in the (relative) interior of its domain C. More

precisely, at any interior point z € C, there exists at least one vector £ € R? such that
f)+€"(z—2) < fx), for allz € C.

Any such vector is known as a subgradient, and each point z € C' can be associated with the set 0f(z) of its
subgradients, which is known as the subdifferential of f at z. When f is actually differentiable at z, then the
above inequality holds if and only if £ = V f(z), so that we have 0f(z) = {Vf(z)}. See standard references

in convex analysis for more on this.
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Our main result in this section yields a finite sample inequality for the Lo(P,)-loss of
the constrained LSE

€ ar mln — Y — f(z)
i.e., we study the error ||f, — f*|12 := %Z?Zl{fn(zz) — f*(#)}?. This error is expressed in
terms of a localized form of Gaussian complezity: 1t measures the complexity of the function
class F, locally in a neighborhood around the true regression function f*. More precisely,

we define the set:
Fo=F—f'={f~f:feF) (57)

corresponding to an f*-shifted version of the original function class F. For a given radius

0 > 0, the local Gaussian complexity around f* at scale § is given by

1 n
sup ’* w;g(z;) ]
geEF*:||g|ln<s ' T Z

Gn(6; F*) :=E,

where the expectation is w.r.t. the variables {w;}? ; which are i.i.d. N(0,1).

A function class H is star-shaped if for any h € H and « € [0, 1], the rescaled function

ah also belongs to H. Recall the basic inequality for nonparametric least squares:

Sl £ < 23 wilf () - () (53)

A central object in our analysis is the set of § > 0 that satisfy the critical inequality

It can be shown that the star-shaped condition ensures existence of the critical radius®®

"Let H be a star-shaped class of functions.

Lemma 6.7. For any star-shaped function class H, the function § — G, (5, H)/d is nonincreasing on the
interval (0,00). Consequently, for any constant ¢ > 0, the inequality G, (6,H) < ¢6? has a smallest positive

solution.

Proof. For a pair 0 < & < t, it suffices to show that G, (t; 1) < Gn(8;H). Given any function h € H with
|All» < t, we may define the rescaled function b = 2h. By construction, we have |2]|» < &; moreover, since

0 < t, the star-shaped assumption on H guarantees that heH. Thus, write

%szh(zz) % Zwlﬁ(zz) szg Zz
i=1 i=1

Taking the supremum over the set H N {||hl|» < t} on the left-hand side followed by expectations yields
SGn(t;H) < Gn(6;H), which completes the proof of the first part. As G, (8;H)/§ is nonincreasing and cd

is nondecreasing (in &) on (0, 00), the inequality G (5, H) < cd? has a smallest positive solution. O

1
n gEH: Hgl\n<6
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Theorem 6.8. Suppose that the shifted function class F* is star-shaped, and let 6, be any
positive solution to the critical inequality (59). Then for any t > 6,, the LSE fn satisfies

the bound v A
5n —
(Lo = 51 2 1615,) < o5 fet

N < l
Exercise (HW2): By integrating this tail bound, show that the mean-squared error in they A<
Ls(PP,,)-semi-norm is upper bounded as O<7£ b

2
E|llfu— £12) Sc{éi+f} ?\

Proof. Recall the basic inequality (58). In terms of the shorthand notation A= fn —fr it
can be written as 5 A2 < ¢ ) w;A(z;). By definition, the error function A = f, — f*
Lai=1 Vi<

for some universal constant c.

n —n

belongs to the shifted function class F*. We will need the followin

J@Letﬂ be an arbitrary star-shaped function class, and let §, > 0 satisfy the
‘ inequality G (8;H) < 62/(20). For a given scalar u > &,, define the event

At = {a gefhen: hll=u}: |23 wigl=)| > 2ngnu} . (60)
— i=1

Then, for all u > 0, we have

We will prove the main theorem using the lemma for the time being7 we take H = F*
2

and u = /td,, for some t > 5n, so that we can write P(A°(v/%6,)) > 1 — e 2. . Note that

’\\

o=

P(|A|Z < 16t5,) = IP’( A ton, | All < 6, ) + P (A7 < 16t5,, Al
_ ]P’(HAHn <t ) +P£@\_<LAH2</__1@§%
P
P

H

> 19,)

INH <t5>+]P’ 16, < A|2 < 16t6,, A(\/10 ))

AN < 26, ) + B (16, <A, A(V7B)) (61)
/—\

nté%
> P(AW,)) > 1— e 5P,

where the only nontrivial step is (61), which we explain next. Note that if [|A[|2 >(t,) and
A¢(\/tdy,) holds, then

- LS wihe

< 2/|A v/t

- ) lo
Consequently, the basic inequality (58) implies that ||A||2 < 4[[Afl.+/10,, or equivalently,
|A||2 < 16t6,. Thus, (61) holds, thereby completing the proof.

—

o
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Proof of Lemma 6.9: Our first step is to reduce the problem to controlling a supremum
over a subset of functions satisfying the upper bound |||, < u. Suppose that there exists

some g € H with ||g||, > u such that

n
o
2> wig(=)| = 2l (62)
i=1
Defining the function § := ||9H g, we observe that ||g||, = u. Since g € H and Hgll € (0,1],

the star-shaped assumption on H implies that ¢ € H. Consequently, we have shown that if
there exists a function g satisfying inequality (62), which occurs whenever the event A(u)

is true, then there exists a function g € H with ||g||, = u such that

o n
- wig(z;)| = wig(zi)| > 2u?.
> Tl Z
We thus conclude that
P(A(u)) < P (Zn(u) > 2u?), where Z,(u):=  sup g Zw,@(zi) .

geH:||glln<u ' S

Since the noise variables w; ~ N(0,1) areii.d., the variable £ >~ | w;§(z;) is zero-mean and
Gaussian for each fixed g. Therefore, the variable Z,,(u) corresponds to the supremum of a
Gaussian process. If we view this supremum as a function of the standard Gaussian vector
(wy,...,wy), then it can be verified that the associated Lipschitz constant® is at most

ou/+/n. Consequently, by the concentration of Lipschitz functions of Gaussian variables™,

! The following lemma illustrates the Lipschitz nature of Gaussian complexity.

Lemma 6.10. Let {Wi}i_, be an i.i.d. sequence of N(0,1) wariables. Given a collection of wvectors

A C R", define the random variable Z := sup,¢ 4 | ZZ:I/akWM Viewing Z as a function (wi,...,wn) —
flwi,...,wn), we can wverify that f 4s Lipschitz (with respect to Euclidean norm) with parameter
e

SUPacAu(-4) llall2.

To see this, let w = (w1, ..., w,),w = (wi,...,w),) € R™. Suppose that there exists a* = (aj,...,a})
such that f(w) = sup,ca | D opey GkWr| = Yy agwr (or > p_, (—ak)wk, which case can also be handled
similarly). Then,

n n
flw) = fF(w') < akwr =Y ajwy, < fla*||z]lw —w'[|2 < sup llall2llw — w'|l2.
acAU(—

The same argument holds with the roles of w and w’ switched which leads to the desired result:

|f(w) = fFw)] < sup lafl2flw —w'[|2.
a€AU(—A)

2(Classical result on the concentration properties of Lipschitz functions of Gaussian variables:
Recall that a function f : R™ — R is L-Lipschitz with respect to the Euclidean norm || - ||2 if

|f(x) = f(y)l < Lllz —yll2,  forall z,y e R".

The following result guarantees that any such function is sub-Gaussian with parameter at most L.
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we obtain the tail bound

2

P (Zy(u) > E[Zn(u)] + ) < ¢ 227,

valid for any s > 0. Setting, s = u? yields,

nu2

P (Zn(u) > E[Z,(u)] +u?) < e 207, (63)

Finally, by definition of Z,(u) and G,,(u; H), we have E[Z,,(u)] = 0Gy(u; H). By Lemma 6.7,

the function v — G, (v;H)/v is nonincreasing, and since u > d,, by assumption, we have

Gn(w; H) < aGn(ém/H) < 6771 < 6,
u - On -2~
)

g

where the 2nd inequality used the critical condition (59). Putting together the pieces, we
have shown that E[Z,,(u)] < ud,,. Combined with the tail bound (63), we obtain

nu2

P(Zn(u) > 2u?) < P(Zy(u) > udy, + u®) <P (Zy(u) > E[Z,(u)] +u?) < e 207,

where we have used the fact that u? > ud,,. O

Exercise (HW2): Suppose that F* is star-shaped. Show that for any ¢ € (0, o] such that

52
Viog N(t, F* N {h: [[hlln < 8}, - ln)dt < = (64)

16
V1 J52)(40)

satisfies the critical inequality (59) and hence the conclusion of of Theorem 6.8 holds.

Exercise (HW2) [Linear regression]: Consider the standard linear regression model Y; =
(0%, z;) + w;, where 6* € R?, and fixed x; are d-dimensional covariates. Although this
example can be studied using direct linear algebraic arguments, we will use our general
theory in analysis this model. The usual LSE corresponds to optimizing over the class of
all linear functions

Fin = {fo = (0,-) : 0 € RY}. (65)

Let X € R™ 4 denote the design matrix with z; € R? as its i-th row. Let 6 be the LSE.

Show that ) 2
1~ gt = IXC G ¢ jorank(X)

n

Theorem 6.11. Let X = (X1,...,Xn) be a vector of i.i.d. standard Gaussian variables, and let f : R™ — R
be L-Lipschitz with respect to the Euclidean norm. Then the variable f(X) — E[f(X)] is sub-Gaussian with
parameter at most L, and hence

P(If(X) = E[f(X)]| > ¢) §Qe_% for all ¢ > 0.

Note that this result is truly remarkable: it guarantees that any L-Lipschitz function of a standard
Gaussian random vector, regardless of the dimension, exhibits concentration like a scalar Gaussian variable

with variance L2. See Section 13.4 for more details about this result and a proof.
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with high probability.

Hint: First note that the shifted class Fj; = F, for any choice of fp« € F,. Moreover,

Fii, is convex and hence star-shaped around any point. To use (64) to find d, so that

Theorem 6.8 applies in this setting, we have to find N (¢, Ff N{h : ||h]n <}, - ||n). Show
29

that the required covering number can be bounded by (1 4 )" where 7 := rank(X).

6.3 Oracle inequalities

In our analysis thus far, we have assumed that the true regression function f* belongs to
the function class F over which the constrained LSE is defined. In practice, this assumption
might be violated. In such settings, we expect the performance of the LSE to involve both
the estimation error that arises in Theorem 6.8, and some additional form of approximation
error, arising from the fact that f* ¢ F. A natural way in which to measure approximation
error is in terms of the best approximation to f* using functions from F — the error in this
best approximation is given by inf ez || f — f*||2. Note that this error can only be achieved
by an “oracle” that has direct access to the samples {f*(x;)}/~,. For this reason, results
that involve this form of approximation error are referred to as oracle inequalities. With

this setup, we have the following generalization of Theorem 6.8. We define

OF ={f—g:f,g€F}
Theorem 6.12. Assume that OF is star-shaped. Let 8, > 0 be any solution to

2
G(8;0F) < ;ia (66)

Then for any t > oy, the LSE f satisfies the bound

If = 12 <2inf ||f — f*)|2 +86td, (67)
feF

pa——

ntdn-

with probability greater than 1 —e™ 202 .

Proof. Recall the definition of A(u) in (60). We apply Lemma 6.9 with u = /td, and
ntdn
H = OF to conclude that P (A°(v/%,)) > 1 —e 2s2 . We will assume below that the event

A°(3/td,,) holds.
Given an arbitrary f € F, since f is feasible and f is optimal, we have

n

oo S fP < 5 Y - P,
=1

=1

Using the relation Y; = f*(2;) 4+ ow;, some algebra yields

1. Loz O %
SIAIR < SIF = FIE+ |2 > widz)| (68)
=1
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where A := f — f*and A := f — f . It remains to analyze the term on the right-hand side

involving A. We break our analysis into two cases.

Case 1: First suppose that ||Al],, < v/%3,. Then,
IAIR =1 = f*I5 = 17— F)+ Al
— 9
{Hf - f Hn + v tén}

< 2|f = fI1? +2t6, (taking 8 =1)

IN

where in the first inequality above we have used the triangle inequality, and the second
inequality follows from the fact that (a + b)? < 2(a? + b?) (for a,b € R).

Case 2: Suppose now that ||Al,, > v/#5,. Note that A € OF and as the event A°(v/%5,,)
holds, we get

< 2/ 10| Al| .

o n
‘* E ZUZA(ZZ)
n “
=1
ntdn

Combining with the basic inequality (68), we find that, with probability at least 1 —e™ 202 ,

the squared error is bounded as

IAIS = IF = F¥II7 + 4/ t8nl| Al

< F = £IE 4V NA L+ 1 - £l
r3 671 A 571 r3 *
< NF- s+ 2[5+ BIAR] + 25+ 817 - 112

S Q-2)AR < (1+2B)Hf—f*Hi+4tg"

where the second step follows from the triangle inequality and the next step follows from

multiple usage of the fact that 2ab < Ba® +b?/3 (for a,b € R and 3 > 0). Taking 3 = 1/6,

we have gfggg = 2, and thus we get

A% < 2(1f = 717 + 363,

Combining the pieces we get that, under the event A°(\/td,,), the above inequality holds for
any f € F. Thus, (67) holds. O

Remark 6.1. We can, in fact, have a slightly more general form of (67) where the ‘oracle’
approzimation term 2||f — f*||2 can be replaced by i—j{”f— f*N? for any v € (0,1) (with

appropriate adjustments to the ‘estimation’ error term 36tdy, ).

Note that the guarantee (67) is actually a family of bounds, one for each f € F.
When f* € F, then we can set f = f*, so that the bound (67) reduces to asserting that
|f — f*||2 < ¢4, with high probability, where 6, satisfies the critical inequality (66). Thus,
up to constant factors, we recover Theorem 6.8 as a special case of Theorem 6.12. By
integrating the tail bound, we are guaranteed that

2
? * . « o
EIF = IR) < i f = £+ 0+ (69)
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The bound (69) guarantees that the LSE f has prediction error that is at most a constant
multiple of the oracle error, plus a term proportional to 62. The term infrer || f — f*|2
can be viewed a form of approximation error that decreases as the function class F grows,

whereas the term §2 is the estimation error that increases as F becomes more complex.

6.3.1 Best sparse linear regression

Consider the standard linear model Y fo(zi) + ow;, where fy(z) := (6, z) is an unknown

linear regression function, and wj YN (0,1) is an i.i.d. noise sequence. Here 6* € R? is
——

the unknown parameter. For some sparsity index s € {1,2,...,d}, consider the class of all

linear regression functions based on s-sparse vectors — namely, the class

| Fopar(s) = {fo : 0 € R ||6]o < s},
where /6] := 26‘121 I(8; # 0) counts the number of non-zero coefficients in the vector
6 € RZ. Disregarding computational considerations, a natural estimator of #* is given by

O=lycamg min 3 {¥i—foz)}" (70)
u

corresponding to performing least squares over the set of all regression vectors with at most
s non-zero coefficients. As a corollary of Theorem 6.12, we claim that the Lo(IP,)-error of

this estimator is upper bounded as

(71)

with high probability; here 52 QSIL(%) 3Consequently, up to constant factors, its error
is as good as the best s- spmlds the ‘estimation’ error term 62. Note that this
‘estimation’ error term grows linearly with the sparsity s, but only logarithmically in the
dimension d, so that it can be very small even when the dimension is exponentially larger
than the sample size n. In essence, this result guarantees that we pay a relatively small

price for not knowing in advance the best s-sized subset of coefficients to use.

In order to derive this result as a consequence of Theorem 6.12, we need to compute
the local Gaussian complex1ty G (5 QM{) Making note of the inclusion 0Fgpar(s) C
Fespar(28), we have G,(0; OF, a(s)) T GM Now let S C {1,...,d} be an
——— -~
arbitrary 2s-sized subset of indices, and let Xg € t X € R™25 denote the submatrix with columns

indexed by S. We can then write

Gn(6; Fspar(25)) =

Zw,g (zi)]

Eu [max Zn (S)]

|S]=2s RO

gef@ <5 ™ ‘

Zn(S) = sup ‘wTXSHS‘
S s. IXg0sll .
s ER2 %Q NS,

where
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as, for g € Fopar(2s), 9(2) = go(2) = (0, 2) = (03, 2s), if 6 has nonzero entries in the subset
S c {1,...,d}, and [|g||2 = 37 (0,2)* = L[| Xs0s|3 (here | - |2 denotes the usual

Euclidean norm).

Viewed as a function of the standard Gaussian vector w € R", the variable Z,(S) is
Lipschitz with parameter at most 6 / [ (by Lemma 6. 10) from which Theorem 6.11 implies
the tail bound T

242 _

P(Zn(S) > B[ Z(8)] +t0) <e®*/m =3, forallt > 0. (72)

We now upper bound the expectation. Consider the singular value decomposition Xg =

——

UDV', where U € R"*% and V € R%*2 are matrices of left and right singular vectors,
respectively, and D € R?$*25 is a diagonal matrix of the singular values. Noting that

|Xsfs|l2 = |[DV 852, we arrive at the upper bound

1 ﬁ& \\ cii/
E[Zu(S) <E[  sup (UTw,p)]] < =E[IUTwls] | 755
o BER25:|| 8|2 <5 \f‘ | Vn T
where we have taken 3 = DYFQ?J Since w ~ N(0, 1) and the matrix U has orthogonal
columns, we have! UTw ~ N(0, IQS)\‘“ and therefore E [HUTwH ] < v/2s. Combining this
upper bound with Mund (72), an application of the union bound yields, for

all ¢ > 0,

By integrating this tail bound, we find that

G(8; Fapar(25)) _ Eu [maxisi_a, Za(S)] _ [ Vm(
5 - 5 5\/;+

Qslog( d)

, as claimed.

so that the critical inequality (66) is satisfied for 52 ~q

-
-

6.4 Density estimation via maximum likelihood

Let X1,...,X, be an i.i.d. sample from a density py that belongs to a set P of densities
with respect to a measure 1 on some measurable space. In this subsection the parameter

is the density pg itself (and we denoted a generic density by p instead of 6).

The sieved maximum likelihood estimator (MLE) p, based on Xj,..., X, maximizes

the log-likelihood p +— P, log p over a sieve Py, i.e.,

Pn, = argmax Py, [log p].
PEPn

Although it is natural to take the objective (criterion) function we optimize (i.e., M, (-) in
our previous notation) as P, log p, for some technical reasons (explained below) we consider

a slightly modified function.
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