5 Rates of convergence of M-estimators

Let (©,d) be W‘criwm&. As usual, we are given i.i.d. observations X1, Xo, ..., X,
from a probability distribution P on X. Let {M,(#) : 6 € ©} denote a stochastic
process and let {M(0) : 0 € ©} denote a deterministic process. Suppose f,, maximizes

ML, () and suppose 0y maximizes M (0), i.e.,

~

0,, = argmax M, (), and 0y = argmax M (0).
90 =)

We assume that M, (6) gets close to M(0) as n increases and under this setting

want to know how close 6, is to 6. If the metric d is chosen appropriately we may

expect that the asymptotic criterion decreases quadrafically when 0 moves away from

- ‘Td 9\)*(_& (Y o S

M(0) — M(6) < —d*(0, 6)

for all 6 € ©. We want to find the rate 9,, of the convergence of On to 6y in the metric

die., d(0,,00). A rate of convergence® of 6, means that
(S;Id(én, 90) == O[p(l)

Consider the probability P(d(én, 0y) > 2M 5n) for a large M. We want to under-
stand for which 9,, this probability becomes small as M grows large. Write

P(d(én, 0) > 2M5n) -3 ]p(zjfl(sn < d(0,,0,) < 2]’5n>.

J>M
Let us define the “shells” S; := {0 € © : 22715, < d(6,6,) < 274, } so that

P(2j*15n < d(B,,00) < 2j(5n) _ P(én e sj).

As 9 maximizes M, (@), it is obvious that C L) c “ l

J(’ l"l 0 € S) < P(sgg(M 0) — M, (6y)) > 0).

32Recall that a sequence of random variables {Z,,} is said to be bounded in probability or Op(1) if

hm limsupP(|Z,| >T)=0.

T—oo posoo

In other words, Z,, = Op(1), if for any given € > 0, there exists T, N > 0 such that

P(|Z,| >T.) <e for all n > N.,.
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Now d(6,6y) > 27716, for 6 € S; which implies, by (35), that gw.
M(0) — M(6y) < —=d*(0,00) < —277252_  for 0 € S (36)
V———J’
or supyeq |[M(0) — M(0y)] < —2%7262. Thus, the event supy.q [M,(0) — M.,,(6y)] > 0
ves, N n 0es,
can only happen if M,, and M are not too close. Let

Un(0) :==M,(0) — M(0), for 6 € ©.
It follows from (36) that

P( sup[M,(6) ~ M, (60)] > 0) < B( sup[U,(9) — U,(00)] 2 25262 P(,%’*)

HESj 965]'

SIP’( sup [Un(9)—Un(90)]222”53> - &
0:4(0,00) <295, )
1 ( >>] Mbi'k’V -€

—_ sup U,(0)—U,(6
227267 9:d(9,90)§216n( ) ’
Fi

Suppose that there is a function ¢, (+) such that

E sup \/_( L (0) — (90))] < dn(u) for every u > (37)
0:d(0,00) <u "Ny G
W
We thus get

< $n(Z6n) i j’
22352
| L2 dny
for every j. As a consequence,

]P’(d(én, 0y) > 2M5n) Z ¢”2 23 (;;

The following assumption on ¢,(-) is usually made to simplify the expression above:
there exists o < 2 such that

(2] 15, < d(6,,00) < 275 )

On(cx) < *opn(T) for all ¢ > 1 and x > 0. (38)

Under this assumption, we get

]P’(d(én,eo) > 25, < Qi;%;) T 9o

noj>M

The quantit (@=2) converges to zero as M — oco. Observe that if we further

assume that

Dn(0,) < Vb2, as n varies, (39)
— M
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then

P(d(0,00) > 2"6,) < ¢ Y 2002,

j>M
for a constant ¢ > 0 (which does not depend on n, M). Let uy, denote the right side
of the last display. It follows therefore that, under assumptions (38) and (39), we get

d(én, 6y) < 2M56, with probability at least 1 @ for all n.
Further note that uy, — 0 as M — oo. This gives us the following non-asymptotic

rate of convergence theorem.
S

Theorem 5.1. Let (©,d) be a semi-metric space. Fizn > 1. Let {M,(0) : 0 € O}
be a stochastic process and {M(0) : 8 € O} be a deterministic process. Assume
condition (35) and that the function ¢, () satisfies (37) and (38). Then for every
M >0, we get d(6,,6y) < 2M5 with probability at least 1 — wup, provided (39) holds.
HereuM—>0 as M — oo.

(/V‘ Sup ?se now that condition ( & hole on/ yf) (W ‘5‘ J (9’ %)

la-iicichharhood of ) and

£ Co

that (37) hol r small u. Then one can prove the following asymptotic result
é?( nder the additional condition that 6, is consistent (i.c., d(6,.06,) 5 0).
b

Theorem 5.2 (Rate theorem). Let © be a semi-metric space. Let {M,,(0) : 6 € O} be
a stochastic process and {M(0) : 0 € ©} be a deterministic process. Assume that (35)
is satisfied for every 0 in a meighborhood of 0y. Also, assume that for every n and
sufficiently small u condition (37) holds for some function ¢, satisfying (38), and
that (39) holds. If the sequence 0, satisfies M, (6,) > M, (0y) — Op(62) and if 6, is
consistent in estimating 6y, then d(8,,,60y) ="Op(0y).

Proof. The above result is Theorem 3.2.5 in [van der Vaart and Wellner, 1996] where
you can find its proof. The proof is very similar to the proof of Theorem 5.1. The
crucial observation is to realize that: for any n > 0,

— >0

P(d(én, 0y) > 2M5n> > P(zj—l(sn < d(,, @Eﬁ%'l + P(Qd(én, 0y) > n).

i>M,276,< -
P 2 2

The first term can be tackled as beforek%the second term goes to zero by the

consistency of 0. O

Remark 5.1. In the case of i.id, data and criterion functions of the form M., (0) =

P,.[mg] and M(0) = P[my], the centered and scaled process /n(M,, — M)(0) = G,,[m]
P 4
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equals the empirical process at my. Condition (37) involves the suprema of the em-
4
pirical process indexed by classes of functions
———N—

\D My = {mg — ma, : d(8,6) < u). C (9V(<

Thus, we need to find the ezistence of ¢, () such that E|G,||lm, S on(u
'w
Remark 5.2. The above theorem gives the correct rate in fair generality, the main

problem being to derive sharp bounds on the modulus of continuity of the empirical
process. A simple, but not necessarily efficient, method is to apply the mazximal in-
equalities (with and without bracketing). These yield bounds in terms of the uniform
entropy integral J(1, M., M,) or the bracketing integral Jp (|| M.| p2, Mu, L2(P)) of
the class M, gW — N

)6,./7\-- 6/‘\\ iG] 700 0P0R) T heigrne & 8

where
1 u, My) log N (|| M, My, La(Q)) d
J(1, M /Osup\/og | ||Q2/\/l 9 echdAa)
and
E[Gnllrm.] S Ji([[Mu]l, Mu, La(P)),
where

J1(0, My, Lo (P) / \/10gNH (€, Mu, Lo(P /hco\f"‘ q’i(

Here M, is the envelope function of the class M,. In this case, we can take ¢2(u) =

P[M?] and this leads to a rate of convergence 8, of at least the solution of

/\scul 45"’/"‘% o Thesimn (-

Observe that the rate of convergence in thz? case 18§ d’mven by the sizes of the envelope

functions as u | 0, and the size of the classes is important only to quarantee a finite

entropy integral.

Remark 5.3. In genuinely infinite-dimensional situations, this approach could be less
useful, as it is intuitively clear that the precise entropy must make a difference for

the rate of convergence. In this situation, the the mazimal inequalities obtained in

Section 4 may be used.

Remark 5.4. For a Fuclidean parameter space, the first condition of the theorem
15 satisfied if the map 0 — Pmy is twice continuously differentiable at the point of
mazximum 6y with a nonsingular second-derivative matriz.
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5.1 Some examples

5.1.1 Euclidean parameter

Let Xi,..., X, be iid. random elements on X with a common law P, and let {my :
6 € © C RY} be a class of measurable maps. Suppose that © C R¢, and that, for

every 61,05 € © (or just in a neighborhood of 6;), L 2
Culén
mo, () — me, ()] < F( )16y = b e (40)

for some measurable functig - X — R with PF? < 0o. Then the class of functions
===

M :={mg — my, : ||0 —Ao]| < I} has envelope function §F and bracketing number

(see Theorem 2.14) s

™

o\

Ny (2¢[FIIP$I M, Lo(PT) < N(eA0: 116 = boll <8}, [1- D < (— ) -
/

where the last inequality follows fromg Lemumass=sel coupled with the fact that the e-

covering number of §B (for any set B) is the €¢/d-covering number of B. In view of

sfying

Y

the maximal inequality with bracketing (see Theorem 11.4),

O F|lp,2
| E&[H(GnHMé] ,S/ - \/logN (e, Mg, Lo(P)) de < 0.

.

Thus Ihmne@_8~1 applies with ¢,,(8) =< 4, and the inequality ¢, (8,) < /nd? is solved
by 6, = 1/y/n. We conclude that the rate of convergence of 0, is n~Y/2 as soon as

P(mg —mg,) < —c||f — 6p||?, for every 8 € © in a neighborhood of 6.

Example 5.3 (Least absolute deviation regression). Given i.i.d. random vectors

iy 2y, and ey, ... e, in R and R, respectively, let

Y, =0, Z; +e;. 3
The least absolute-deviation estimator 0,‘ mzmm s the fs ign A e
%1

\\

where P, is the empirical measure of X; := (Z;,Y;), and mg(x) = |y — 07 2|.

0 = an—eT Mg,

Ezercise (HW2): Show that the parameter 0y is a point of minimum of the map
0 — P|Y — 0" Z| if the distribution of the error e; has median zero. Furthermore,
show that the maps 6 — my satisfies condition (40):

‘|y— 0 z| — |y—9;—Z|’ < [|61 = Oa|]| 2|

LHS & [[{-a2 Y +0.2] = (b -9,) 2 14 RHS

N



\!\/ > A(Q'f),)—ﬂ)

Argue the consistency of the least-absolute-deviation estimator from the convexity of
the map 0 — |y — 0" z|. Moreover, show that the map 0 — P|Y — 0" Z| is twice
differentiable at 0y if the distribution of the errors has a positive density at its median.

Furthermore, derive the rate of convergence of 0,, in this situation.
—

n

5.1.2 A non-standard example

Example 5.4 (Analysis of the shorth). Suppose that X,...,X, are i.i.d. P on
R with a differentiable density p with respect to the Lebesque measure. Let Fx be
the distribution function of X. Suppose that p is a unimodal (bounded) symmetric

density with mode 0y (with p/{z) > 0 for x < 6y and p'(x) < 0 for x > 6y). We want

to estimate 0. —

Ezxercise (HW2): Let

M(0) := Pmg =P(IX - 0] <1) = Fx(0+1) = Fx(0 = 1) ™=
Y- 9l¢|

where mg(x) = ly_1,041)(2). that Oy = argmaxy.g M(6). Thus, 0y is the center

\/ 0, := argmax M, (0) where M, (0) = P,,[myg]. . P I
feR
C Them :§ 1(Ma-M)P[|°.
Show that 6, ~ 607 The functwns mg( ) = Lp—1,041(x) are not Lipschitz in the { O‘j is

parameter § € © = R. Newvertheless, the classes of functions Mg satisfy the conditions
of Theorem 5.2. These classes have envelope function W W

——

sup  (lp-1041 — 1[9071,00+1}‘ < 1ygo-1-600-1+8 + L[go+1-660+1+6- % q i
|0—00]< v ’

The Lo(P)-norm of these functions is bounded above by a constant times Vo. Thus,
the conditions of the rate theorem are satisfied with ¢n(0) = /8 for some constant
¢, leading to a rate of convergence of n='/3. We will show later that n1/3(én — 0o)

converges in distribution to a non-normal limit as n — oo.

Example 5.5 (A toy change point problem). Suppose that we have i.i.d. data {X; =
(Z:,Y;) ri=1,...,n} where Z; ~ Unif(0,1) and

Y;:]-[O,Go](zi)_‘_eiv forizl,...,n

Here, €;’s are the unobserved errors assumed to be i.i.d. N(0,0?). Further, for sim-

plicity, we assume that €; is independent of Z;. The goal is to estimate the unknown
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m — 2
( JGe5 W - Teu5))

parameter 0y € (0,1). A natural procedure i@nsider the least squares estimator:

0, = argmin P,,[(Y — 1p,4(X))?.
o<l B . _ )‘ e
W'
Pt apet £

Erercise (HW2): Show that ,, = argmaxyeo 1) M, (6) where

‘.
ML(0) =B~ 12){10a(X) - Loa (X)L M L

Prove that ML,, converges uniformly toz Q C eﬂ & “t a/

M(0) := PI(Y = 1/2){10,0)(X) = L,0)(X) }]. ' :¢ UA s~

Show that M( ) =0 —6o|/2. As a consequence, show that 0, 5 6,.
_

To find the rate of convergence of 0,, we consider the metric d(6:,05) == /|01 — 02|
Show that the conditions needed to apply Theorem 5.2 hold with this choice of d(-, -
Using Theorem 5.2 derive that n(@ — 90 M ) w 1
iy (©)- M\( < =000, 0’)

5.1.3 Persistency in hlgh-d?;nensmnal regression - l% e > i

Let Z':= (Y*,X}],...,X}),i=1,...,n, beiid. random vectors, where Z' ~ P. It is
desired to predict Y by Z B;X;, where (f1,...,08,) € B, C RP, under a prediction
loss. We assume that p = n®, a > 0, that is, there could be many more explanatory
variables than observations. We consider sets B, restricted by the maximal number
of non-zero coefficients of their members, or by their [;-radius. We study the following
asymptotic question: how ‘large’ may the set B,, be, so that it is still possible to select
empirically a predictor whose risk under P is close to that of the best predictor in
the set?

We formulate this problem using a triangular array setup, i.e., we model the

observations Z! ... Z" as ii.d. random vectors in RP"*! having distribution P,
(that depends on n). In the following we will hide the dependence on n and just of
write Z1, ..., Z". We will consider B,, of the form M- %ej\i (&2

Buy = {B€R™ : 8]y < b}, fet (41)

where || - ||; denotes the [;-norm. For any Z := (Y, X,...,X,) ~ P, we will denote

the expected prediction error by

Lp(B) = Ep|(Y ; 2] = e (v = 57x)?]

o

V >



where X = (Xji,...,X,). The best linear predictor, where Z ~ P, is given by

Br = argﬁmin Lp, (B),

n,bn

for some sequence of {b,},>1. We estimate the best linear predictor 3} from the

X 1 & me

= L — - Yl_ TXZ'Z
i arg i, L () = ave gin, 50 (V"= 67X

sample by

- ]
e

—_

where P, is the empirical measure of the Z%’s. We say that Bn is persistent (relative
to By, and P,) ([Greenshtein and Ritov, 2004]) if and only if

A~ * IP)
Lp (Bn) — Lp (B) 20
This is certainly a weak notion of “risk-consistency” — we are only trying to con-
—

51stently estimate the expected predictor error. However, note that this notion does

not require any modeling assumptions on the (JOlnt) distribution of Z (in particular,
we are not assuming that there is a ‘true’ linear model). The following theorem is a

version of Theorem 3 in [Greenshtein and Ritov, 2004].

Theorem 5.6. Suppose that p, = n®, where a > 0. Let

F(Z") := max |X Xk Epn(XZXk” where we take X, =YY", fori=1,....,n

0<5<P g

—

Suppose that Ep, [F2(Z')] < M < oo, for all n. Then for b, = o((n/logn)*), B, is

persistent relative to By, .
Proof. From the definition of 8} and Bn it follows that

Lp,(Bn) — Lp,(B2) >0, and Le, (8n) — Le,(B5) <0.

0 < Lp, () — Lp,(BY) <7

S
(Lru(Bo) = Lo, (5)) + (L, (5u) = Lo (52)) + (Lea(52) = L, (5)
2 sup |Lg,(8) = Lp,(B)],

Thus,

IN

E n,bn
-
j-“"“"v ’;j:ere we have used the fact that Lp, n) Lp, (B) < 0. To simply our notation,

(
let v = (—1.J) € RPn+1. Then Lp, (8 "Yp v and Lp, (8) = v ¥p,v where
— —_ (1 n 84
Sp, = (Epn (X] X;))MM” and Sy, = (1 Zizl Xij) _ Thus,

0<j,k<pn

|Le, (8) = Le, (B)] < |v" (Ze, — e )] < 126, — T llool V17,
N

P, 54
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Therefore,

where ||Xp, — Xp, [|oc = SUDPo<,k<p, %Z?:l X;X/i — Ep, (X;Xli) .

P(Lr,(5) ~ Lr(5) > ) < P(2 sup |Le,(8) = L, ()] > )

(fBEBnb
M ra C\,;) —) = P(2050 + 121Ss, ~Znle > <) . MaRoV
‘vﬂ < 2(bn + 1)2E[||2P —2p, |l ] J (42) ¢(1’

Let F = {fix : 0 < j,k < po} where fii(2) = zja — Ep,(Xj X)) and 2z =
(o, 1, ...,%p,). Observe that |Xp, — Xp,[lec = [|Pn — Pullz. We will now use

S Fadr

where F), is an envelope of F. Note that F,, can be taken as F' (defined in the <J
statement of the theorem). We can obviously cover F with the e-brackets [f;, —

€/2, fir+e€/2], for every € > 0, and thLé (e, F, Ly(P,)) < 2log(p, +1). Therefore,

using (42) and the maximal 1nequahty£(2ve,

P(Lp,(Ba) - Lo, (8) > €) < 2ot 1) \/m\/—< ,/7\0;%09;”_}0,

J;g,a N, (4 )¢ E}a))\(

)

)]

the following maximal inequality with bracketing entropy

Bl AP, — Pl $ (L 7, (P >

2

as n — 00, by the assumption on b,.
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