
5 Rates of convergence of M-estimators

Let (⇥, d) be a semimetric space. As usual, we are given i.i.d. observationsX1, X2, . . . , Xn

from a probability distribution P on X . Let {Mn(✓) : ✓ 2 ⇥} denote a stochastic

process and let {M(✓) : ✓ 2 ⇥} denote a deterministic process. Suppose ✓̂n maximizes

Mn(✓) and suppose ✓0 maximizes M(✓), i.e.,

✓̂n = argmax
✓2⇥

Mn(✓), and ✓0 = argmax
✓2⇥

M(✓).

We assume that Mn(✓) gets close to M(✓) as n increases and under this setting

want to know how close ✓̂n is to ✓0. If the metric d is chosen appropriately we may

expect that the asymptotic criterion decreases quadratically when ✓ moves away from

✓0:

M(✓)�M(✓0) . �d2(✓, ✓0) (35)

for all ✓ 2 ⇥. We want to find the rate �n of the convergence of ✓̂n to ✓0 in the metric

d i.e., d(✓̂n, ✓0). A rate of convergence32 of �n means that

��1
n
d(✓̂n, ✓0) = OP(1).

Consider the probability P
�
d(✓̂n, ✓0) > 2M�n

�
for a large M . We want to under-

stand for which �n this probability becomes small as M grows large. Write

P
⇣
d(✓̂n, ✓0) > 2M�n

⌘
=
X

j>M

P
⇣
2j�1�n < d(✓̂n, ✓0)  2j�n

⌘
.

Let us define the “shells” Sj := {✓ 2 ⇥ : 2j�1�n < d(✓, ✓0)  2j�n} so that

P
⇣
2j�1�n < d(✓̂n, ✓0)  2j�n

⌘
= P

⇣
✓̂n 2 Sj

⌘
.

As ✓̂n maximizes Mn(✓), it is obvious that

P
⇣
✓̂n 2 Sj

⌘
 P

⇣
sup
✓2Sj

(Mn(✓)�Mn(✓0)) � 0
⌘
.

32
Recall that a sequence of random variables {Zn} is said to be bounded in probability or OP(1) if

lim
T!1

lim sup
n!1

P(|Zn| > T ) = 0.

In other words, Zn = OP(1), if for any given ✏ > 0, there exists T✏, N✏ > 0 such that

P(|Zn| > T✏) < ✏ for all n � N✏.
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Now d(✓, ✓0) > 2j�1�n for ✓ 2 Sj which implies, by (35), that

M(✓)�M(✓0) . �d2(✓, ✓0) . �22j�2�2
n

for ✓ 2 Sj (36)

or sup
✓2Sj

[M(✓)�M(✓0)] . �22j�2�2
n
. Thus, the event sup

✓2Sj
[Mn(✓)�Mn(✓0)] � 0

can only happen if Mn and M are not too close. Let

Un(✓) := Mn(✓)�M(✓), for ✓ 2 ⇥.

It follows from (36) that

P
⇣
sup
✓2Sj

[Mn(✓)�Mn(✓0)] � 0
⌘
 P

⇣
sup
✓2Sj

[Un(✓)� Un(✓0)] & 22j�2�2
n

⌘

 P
 

sup
✓:d(✓,✓0)2j�n

[Un(✓)� Un(✓0)] & 22j�2�2
n

!

. 1

22j�2�2
n

E
"

sup
✓:d(✓,✓0)2j�n

(Un(✓)� Un(✓0))

#
.

Suppose that there is a function �n(·) such that

E
"

sup
✓:d(✓,✓0)u

p
n(Un(✓)� Un(✓0))

#
. �n(u) for every u > 0. (37)

We thus get

P
⇣
2j�1�n < d(✓̂n, ✓0)  2j�n

⌘
. �n(2j�n)

p
n22j�2

n

for every j. As a consequence,

P
⇣
d(✓̂n, ✓0) > 2M�n

⌘
. 1

p
n

X

j>M

�n(2j�n)

22j�2
n

.

The following assumption on �n(·) is usually made to simplify the expression above:

there exists ↵ < 2 such that

�n(cx)  c↵�n(x) for all c > 1 and x > 0. (38)

Under this assumption, we get

P
⇣
d(✓̂n, ✓0) > 2M�n

⌘
. �n(�n)

p
n�2

n

X

j>M

2j(↵�2).

The quantity
P

j>M
2j(↵�2) converges to zero as M ! 1. Observe that if we further

assume that

�n(�n) .
p
n�2

n
, as n varies, (39)
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then

P
⇣
d(✓̂n, ✓0) > 2M�n

⌘
 c

X

j>M

2j(↵�2),

for a constant c > 0 (which does not depend on n,M). Let uM denote the right side

of the last display. It follows therefore that, under assumptions (38) and (39), we get

d(✓̂n, ✓0)  2M�n with probability at least 1� uM , for all n.

Further note that uM ! 0 as M ! 1. This gives us the following non-asymptotic

rate of convergence theorem.

Theorem 5.1. Let (⇥, d) be a semi-metric space. Fix n � 1. Let {Mn(✓) : ✓ 2 ⇥}

be a stochastic process and {M(✓) : ✓ 2 ⇥} be a deterministic process. Assume

condition (35) and that the function �n(·) satisfies (37) and (38). Then for every

M > 0, we get d(✓̂n, ✓0)  2M�n with probability at least 1� uM provided (39) holds.

Here uM ! 0 as M ! 1.

Suppose now that condition (35) holds only for ✓ in a neighborhood of ✓0 and

that (37) holds only for small u. Then one can prove the following asymptotic result

under the additional condition that ✓̂n is consistent (i.e., d(✓̂n, ✓0)
P
! 0).

Theorem 5.2 (Rate theorem). Let ⇥ be a semi-metric space. Let {Mn(✓) : ✓ 2 ⇥} be

a stochastic process and {M(✓) : ✓ 2 ⇥} be a deterministic process. Assume that (35)

is satisfied for every ✓ in a neighborhood of ✓0. Also, assume that for every n and

su�ciently small u condition (37) holds for some function �n satisfying (38), and

that (39) holds. If the sequence ✓̂n satisfies Mn(✓̂n) � Mn(✓0) � OP(�2n) and if ✓̂n is

consistent in estimating ✓0, then d(✓̂n, ✓0) = OP(�n).

Proof. The above result is Theorem 3.2.5 in [van der Vaart and Wellner, 1996] where

you can find its proof. The proof is very similar to the proof of Theorem 5.1. The

crucial observation is to realize that: for any ⌘ > 0,

P
⇣
d(✓̂n, ✓0) > 2M�n

⌘
=

X

j>M,2j�n⌘

P
⇣
2j�1�n < d(✓̂n, ✓0)  2j�n

⌘
+ P

⇣
2d(✓̂n, ✓0) > ⌘

⌘
.

The first term can be tackled as before while the second term goes to zero by the

consistency of ✓̂n.

Remark 5.1. In the case of i.i.d. data and criterion functions of the form Mn(✓) =

Pn[m✓] and M(✓) = P [m✓], the centered and scaled process
p
n(Mn�M)(✓) = Gn[m✓]
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equals the empirical process at m✓. Condition (37) involves the suprema of the em-

pirical process indexed by classes of functions

Mu := {m✓ �m✓0 : d(✓, ✓0)  u}.

Thus, we need to find the existence of �n(·) such that EkGnkMu . �n(u).

Remark 5.2. The above theorem gives the correct rate in fair generality, the main

problem being to derive sharp bounds on the modulus of continuity of the empirical

process. A simple, but not necessarily e�cient, method is to apply the maximal in-

equalities (with and without bracketing). These yield bounds in terms of the uniform

entropy integral J(1,Mu,Mu) or the bracketing integral J[ ](kMukP,2,Mu, L2(P )) of

the class Mu given by

E
⇥
kGnkMu

⇤
. J(1,Mu,Mu)[P (M2

u
)]1/2

where

J(1,Mu,Mu) =

Z 1

0

sup
Q

q
logN(✏kMukQ,2,Mu, L2(Q)) d✏

and

E
⇥
kGnkMu

⇤
. J[ ](kMuk,Mu, L2(P )),

where

J[ ](�,Mu, L2(P )) =

Z
�

0

q
logN[ ](✏,Mu, L2(P )) d✏.

Here Mu is the envelope function of the class Mu. In this case, we can take �2
n
(u) =

P [M2
u
] and this leads to a rate of convergence �n of at least the solution of

P [M2
�n
] ⇠ n�4

n
.

Observe that the rate of convergence in this case is driven by the sizes of the envelope

functions as u # 0, and the size of the classes is important only to guarantee a finite

entropy integral.

Remark 5.3. In genuinely infinite-dimensional situations, this approach could be less

useful, as it is intuitively clear that the precise entropy must make a di↵erence for

the rate of convergence. In this situation, the the maximal inequalities obtained in

Section 4 may be used.

Remark 5.4. For a Euclidean parameter space, the first condition of the theorem

is satisfied if the map ✓ 7! Pm✓ is twice continuously di↵erentiable at the point of

maximum ✓0 with a nonsingular second-derivative matrix.
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5.1 Some examples

5.1.1 Euclidean parameter

Let X1, . . . , Xn be i.i.d. random elements on X with a common law P , and let {m✓ :

✓ 2 ⇥ ⇢ Rd
} be a class of measurable maps. Suppose that ⇥ ⇢ Rd, and that, for

every ✓1, ✓2 2 ⇥ (or just in a neighborhood of ✓0),

|m✓1(x)�m✓2(x)|  F (x)k✓1 � ✓2k (40)

for some measurable function F : X ! R with PF 2 < 1. Then the class of functions

M� := {m✓ �m✓0 : k✓ � ✓0k  �} has envelope function �F and bracketing number

(see Theorem 2.14) satisfying

N[ ](2✏kFkP,2,M�, L2(P ))  N(✏, {✓ : k✓ � ✓0k  �}, k · k) 

✓
C�

✏

◆d

,

where the last inequality follows from Lemma 2.7 coupled with the fact that the ✏-

covering number of �B (for any set B) is the ✏/�-covering number of B. In view of

the maximal inequality with bracketing (see Theorem 11.4),

EP

⇥
kGnkM�

⇤
.
Z

�kFkP,2

0

q
logN[ ](✏,M�, L2(P )) d✏ . �.

Thus Theorem 8.1 applies with �n(�) ⇣ �, and the inequality �n(�n) 
p
n�2

n
is solved

by �n = 1/
p
n. We conclude that the rate of convergence of ✓̂n is n�1/2 as soon as

P (m✓ �m✓0)  �ck✓ � ✓0k2, for every ✓ 2 ⇥ in a neighborhood of ✓0.

Example 5.3 (Least absolute deviation regression). Given i.i.d. random vectors

Z1, . . . , Zn, and e1, . . . , en in Rd and R, respectively, let

Yi = ✓>0 Zi + ei.

The least absolute-deviation estimator ✓̂n minimizes the function

✓ 7!
1

n

nX

i=1

|Yi � ✓>Zi| = Pnm✓,

where Pn is the empirical measure of Xi := (Zi, Yi), and m✓(x) = |y � ✓>z|.

Exercise (HW2): Show that the parameter ✓0 is a point of minimum of the map

✓ 7! P |Y � ✓>Z| if the distribution of the error e1 has median zero. Furthermore,

show that the maps ✓ 7! m✓ satisfies condition (40):
���|y � ✓>1 z|� |y � ✓>2 z|

���  k✓1 � ✓2kkzk.
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Argue the consistency of the least-absolute-deviation estimator from the convexity of

the map ✓ 7! |y � ✓>z|. Moreover, show that the map ✓ 7! P |Y � ✓>Z| is twice

di↵erentiable at ✓0 if the distribution of the errors has a positive density at its median.

Furthermore, derive the rate of convergence of ✓̂n in this situation.

5.1.2 A non-standard example

Example 5.4 (Analysis of the shorth). Suppose that X1, . . . , Xn are i.i.d. P on

R with a di↵erentiable density p with respect to the Lebesgue measure. Let FX be

the distribution function of X. Suppose that p is a unimodal (bounded) symmetric

density with mode ✓0 (with p0(x) > 0 for x < ✓0 and p0(x) < 0 for x > ✓0). We want

to estimate ✓0.

Exercise (HW2): Let

M(✓) := Pm✓ = P(|X � ✓|  1) = FX(✓ + 1)� FX(✓ � 1)

where m✓(x) = 1[✓�1,✓+1](x). Show that ✓0 = argmax
✓2R M(✓). Thus, ✓0 is the center

of an interval of length 2 that contains the largest possible (population) fraction of

data points. We can estimate ✓0 by

✓̂n := argmax
✓2R

Mn(✓), where Mn(✓) = Pn[m✓].

Show that ✓̂n
P
! ✓0? The functions m✓(x) = 1[✓�1,✓+1](x) are not Lipschitz in the

parameter ✓ 2 ⇥ ⌘ R. Nevertheless, the classes of functions M� satisfy the conditions

of Theorem 5.2. These classes have envelope function

sup
|✓�✓0|�

���1[✓�1,✓+1] � 1[✓0�1,✓0+1]

���  1[✓0�1��,✓0�1+�] + 1[✓0+1��,✓0+1+�].

The L2(P )-norm of these functions is bounded above by a constant times
p
�. Thus,

the conditions of the rate theorem are satisfied with �n(�) = c
p
� for some constant

c, leading to a rate of convergence of n�1/3. We will show later that n1/3(✓̂n � ✓0)

converges in distribution to a non-normal limit as n ! 1.

Example 5.5 (A toy change point problem). Suppose that we have i.i.d. data {Xi =

(Zi, Yi) : i = 1, . . . , n} where Zi ⇠ Unif(0, 1) and

Yi = 1[0,✓0](Zi) + ✏i, for i = 1, . . . , n.

Here, ✏i’s are the unobserved errors assumed to be i.i.d. N(0, �2). Further, for sim-

plicity, we assume that ✏i is independent of Zi. The goal is to estimate the unknown
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parameter ✓0 2 (0, 1). A natural procedure is to consider the least squares estimator:

✓̂n := argmin
✓2[0,1]

Pn[(Y � 1[0,✓](X))2].

Exercise (HW2): Show that ✓̂n := argmax
✓2[0,1] Mn(✓) where

Mn(✓) := Pn[(Y � 1/2){1[0,✓](X)� 1[0,✓0](X)}].

Prove that Mn converges uniformly to

M(✓) := P [(Y � 1/2){1[0,✓](X)� 1[0,✓0](X)}].

Show that M(✓) = |✓ � ✓0|/2. As a consequence, show that ✓̂n
P
! ✓0.

To find the rate of convergence of ✓̂n we consider the metric d(✓1, ✓2) :=
p

|✓1 � ✓2|.

Show that the conditions needed to apply Theorem 5.2 hold with this choice of d(·, ·).

Using Theorem 5.2 derive that n(✓̂n � ✓0) = OP(1).

5.1.3 Persistency in high-dimensional regression

Let Zi := (Y i, X i

1, . . . , X
i

p
), i = 1, . . . , n, be i.i.d. random vectors, where Zi

⇠ P . It is

desired to predict Y by
P

j
�jXj, where (�1, . . . , �p) 2 Bn ⇢ Rp, under a prediction

loss. We assume that p = n↵, ↵ > 0, that is, there could be many more explanatory

variables than observations. We consider sets Bn restricted by the maximal number

of non-zero coe�cients of their members, or by their l1-radius. We study the following

asymptotic question: how ‘large’ may the set Bn be, so that it is still possible to select

empirically a predictor whose risk under P is close to that of the best predictor in

the set?

We formulate this problem using a triangular array setup, i.e., we model the

observations Z1
n
, . . . , Zn

n
as i.i.d. random vectors in Rpn+1, having distribution Pn

(that depends on n). In the following we will hide the dependence on n and just

write Z1, . . . , Zn. We will consider Bn of the form

Bn,b := {� 2 Rpn : k�k1  b}, (41)

where k · k1 denotes the l1-norm. For any Z := (Y,X1, . . . , Xp) ⇠ P , we will denote

the expected prediction error by

LP (�) := EP

h
(Y �

pX

j=1

�jXj)
2
i
= EP

h
(Y � �>X)2

i
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where X = (X1, . . . , Xp). The best linear predictor, where Z ⇠ Pn, is given by

�⇤

n
:= arg min

�2Bn,bn

LPn(�),

for some sequence of {bn}n�1. We estimate the best linear predictor �⇤

n
from the

sample by

�̂n := arg min
�2Bn,bn

LPn(�) = arg min
�2Bn,bn

1

n

nX

i=1

(Y i
� �>X i)2,

where Pn is the empirical measure of the Zi’s. We say that �̂n is persistent (relative

to Bn,bn and Pn) ([Greenshtein and Ritov, 2004]) if and only if

LPn(�̂n)� LPn(�
⇤

n
)

P
! 0.

This is certainly a weak notion of “risk-consistency” — we are only trying to con-

sistently estimate the expected predictor error. However, note that this notion does

not require any modeling assumptions on the (joint) distribution of Z (in particular,

we are not assuming that there is a ‘true’ linear model). The following theorem is a

version of Theorem 3 in [Greenshtein and Ritov, 2004].

Theorem 5.6. Suppose that pn = n↵, where ↵ > 0. Let

F (Zi) := max
0jp

|X i

j
X i

k
� EPn(X

i

j
X i

k
)|, where we take X i

0 = Y i, for i = 1, . . . , n.

Suppose that EPn [F
2(Z1)]  M < 1, for all n. Then for bn = o((n/ log n)1/4), �̂n is

persistent relative to Bn,bn.

Proof. From the definition of �⇤

n
and �̂n it follows that

LPn(�̂n)� LPn(�
⇤

n
) � 0, and LPn(�̂n)� LPn(�

⇤

n
)  0.

Thus,

0  LPn(�̂n)� LPn(�
⇤

n
)

=
⇣
LPn(�̂n)� LPn(�̂n)

⌘
+
⇣
LPn(�̂n)� LPn(�

⇤

n
)
⌘
+
⇣
LPn(�

⇤

n
)� LPn(�

⇤

n
)
⌘

 2 sup
�2Bn,bn

|LPn(�)� LPn(�)|,

where we have used the fact that LPn(�̂n) � LPn(�
⇤

n
)  0. To simply our notation,

let � = (�1, �) 2 Rpn+1. Then LPn(�) = �>⌃Pn� and LPn(�) = �>⌃Pn� where

⌃Pn =
⇣
EPn(X

1
j
X1

k
)
⌘

0j,kpn

and ⌃Pn =
⇣

1
n

P
n

i=1 X
i

j
X i

k

⌘

0j,kpn

. Thus,

|LPn(�)� LPn(�)|  |�>(⌃Pn � ⌃Pn)�|  k⌃Pn � ⌃Pnk1k�k21,
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where k⌃Pn � ⌃Pnk1 = sup0j,kpn

��� 1
n

P
n

i=1 X
i

j
X i

k
� EPn(X

1
j
X1

k
)
���. Therefore,

P
�
LPn(�̂n)� LPn(�

⇤

n
) > ✏

�
 P

⇣
2 sup
�2Bn,bn

|LPn(�)� LPn(�)| > ✏
⌘

 P
⇣
2(bn + 1)2k⌃Pn � ⌃Pnk1 > ✏

⌘


2(bn + 1)2

✏
E
h
k⌃Pn � ⌃Pnk1

i
. (42)

Let F = {fj,k : 0  j, k  pn} where fj,k(z) := xjxk � EPn(X
1
j
X1

k
) and z =

(x0, x1, . . . , xpn). Observe that k⌃Pn � ⌃Pnk1 = kPn � PnkF . We will now use

the following maximal inequality with bracketing entropy:

Ek
p
n(Pn � P )kF . J[ ](1,F , L2(Pn))kFnkPn,2,

where Fn is an envelope of F . Note that Fn can be taken as F (defined in the

statement of the theorem). We can obviously cover F with the ✏-brackets [fj,k �

✏/2, fj,k+ ✏/2], for every ✏ > 0, and thus, N[ ](✏,F , L2(Pn))  2 log(pn+1). Therefore,

using (42) and the maximal inequality above,

P
�
LPn(�̂n)� LPn(�

⇤

n
) > ✏

�
. 2(bn + 1)2

✏

p
2 log(pn + 1)

p
n

p

M . b2
n

p
↵ log n
p
n

! 0,

as n ! 1, by the assumption on bn.
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