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@ Dudley’s entropy bound for finite T
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Theorem 4.1 (Dudley’s entropy bound for finite T)

Suppose that {X; : t € T} is a mean zero stochastic process such that for every
s,t € T and u >0,

U2
IP’{|Xt*Xs|Z”}§2eXp (26/2(&1')> (1)

Also, assume that (T, d) is a finite metric space. Then, we have

Esup X; < C/ V0og N(e, T, d)de (2)
0

teT

where C > 0 is a constant.
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Proposition 4.2

Let T be a finite set and let X;,t € T be a stochastic process. Suppose that for
every t € T and u > 0, the inequality

02
P(|X:| >u)<2 — 3
(%1 2 ) < 2000 (375 ) ©

holds. Then, for a universal positive constant C, we have

<
Erpea%(|Xt| < Co+/log(2|T|) (4)
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Proof of Proposition 4.2

First,

Emax |X:| = / P <maxXt| > u) du
teT o teT

we can write

u2
P (fggxlxtI > u) =P (Urer {I1X:| 2 u}) < ;Puxtl > u) < 2| T|exp (—F>

This bound is good for u > wug for some wug to be specified later. This gives

Uo o0
Emax |X:| = / P <max|Xt| > u) dqu/ P <maxXt| > u) du
teT o teT o teT

') u2
2| T ——— | d
Uo+/uo | |exp( 202) i

0 u u? 2|T| , u3
uo—l—/uD 2|T|u—0exp <_Tf2> du:uo—f—u—oa exp (—F)
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Proof of Proposition 4.2 (continued)

Here, we can set
o = V20/1og(2| T|)

that is,
ug
exp (§> =2|T|
This gives
o2
Erpea%(\Xﬁ < V20+/log(2| T|) + m < Co+/log(2|TY)

which proves the result.
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Theorem 4.3

Suppose (T,d) is a finite metric space and {X;,t € T} is a stochastic process
such that (1) hold. Then, for a universal positive constant C, the following
inequality holds for every tq € T:

o0 o0
E max | X, — Xe| < c/ /g D(e, T, d)deg/ JIogN(e, T, d)de  (5)
te 0 0

Here D(e, T, d) denotes the e-packing number of the space (T, d).
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Remark 4.1

Let D denote the diameter of the metric space T. Then D(e, T, d) clearly equals
1 for € > D. Therefore,

00 b
/ Vlog D(e, T,d)de = / V0og D(e, T, d)de
0 0
Moreover,
B 62 6
/ Vlog D(e, T,d)de = / Vlog D(e, T, d)de +/ Vlog D(e, T, d)de
0 0 D/2
b2 b/2 =
Y lCEID N, d)de+/ \/log D(e + (B/2), T, d)de
0
D/2
<2 \log D(e, T, d)de
0

because D(e 4 (D/2), T,d) < D(e, T, d) for every e.

0
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Remark 4.1 (continued)

We can thus state Dudley's bound as

D/2
E max | X; — Xp,| < C \/log D(e, T, d)de
teT 0

Similarly, again by splitting the above integral in two parts, we can also state
Dudley’'s bound as

D/4
Emax | X; — Xp,| < C \log D(e, T, d)de
teT 0
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Proof of Theorem 4.3

For n>1, let T, be a maximal D2~ "-separated subset of T and T, be a maximal
cardinality subject to the separation restriction. The cardinality of T, is given by
the packing number D (D2f", T, d). Because of the maximality,

i < D27"
max min d(s,t) < (6)

Because T is finite and d(s, t) > O for all s # t, the set T, will equal T when n is

large. Let
N:=min{n>1:T,=T}

Foreach n>1, let 7, : T — T, denote the function which maps each point t € T
to the point in T, that is closest to T. In other words, 7,(t) is chosen so that

d(t,mn(t)) = snenTn d(t,s)
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Proof of Theorem 4.3 (continued)

From (6), we have
d(t,ma(t)) < D27"  forallte Tand n>1 (7)

Note that mo(t) = to and my(t) =t for all t € T. Now

N
Xe — Xgy = Z (Xen(t) = Xro_a(0) forevery t € T (8)

n=1
By (8), we obtain
N

N
max X, — Xy | < rpeagzl | Xty = Xraa(t)| < Zl max | X () = Xz, (9
n= =

so that
N

E T |Xe — Xio| < ZlE e | Xty = Xena(0)| (9)
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Proof of Theorem 4.3 (continued)

For the elementary bound given by Proposition 4.2, note first that by (1), we have

2

—u
P{|Xwn(t) - Xwn,l(t)’ > u} < 2exp <2d2 (Wn(t),ﬂn—l(t)))

Now
d (mn(t), mn_1(t)) < d (ma(t), t) + d (mp_1(t), t) < D277 + D2~ (1) = 352"

Thus Proposition 4.2 can be applied with o := 302" so that we obtain

3D
E e Xoea(t) = Xﬂ'n—l(t)| < C? Viog (2| Tl | To-1l)
< CH27"\/log(2| T, )
CD2”\/Iog (2D (szn, T d))
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Proof of Theorem 4.3 (continued)

Plugging the above bound into (9), we deduce

Emax|X; — X < CXN: 2—[5”\/|og (2D (Dz—n, T d))

Dj2"

< 2CZ/ log(2D(e, T, d))de

/2n+1

b/a
< 2c/ log(2D(e, T, d))de
0

Note that for € < D/4, the packing number D(e, T, d) > 2 so that
log(2D(e, T,d)) =log2 +log D(e, T, d) < 2log D(¢, T, d)

We have thus proved that

D/4
E max X, — Xi,| < 2V2C Vlog D(e, T, d)de
S 0
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© Dudley’s entropy bound for infinite T
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Definition 4.4 (Separable stochastic process)

Let (T, d) be a metric space. The stochastic process {X;,t € T} indexed by T is
said to be separable if there exists a null set N and a countable subset T of T
such that for all w ¢ N and t € N, there exists a sequence {t,} in T with
liMmp—oo d (tn, t) = 0 and lim,_ 00 Xe, (W) = Xi(w).

If {X;,t € T} is a separable stochastic process, then

sup | Xy — Xio| = sup [ Xe — Xy | almost surely (10)
teT teT

for every to € T. Here T is a countable subset of T which appears in the
definition of separability of X;,t € T.
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Theorem 4.5

Let (T, d) be a separable metric space and let (X, t € T) be a separable
stochastic process. Suppose that for every s,t € T and u > 0, we have

22
P{|Xs = X¢| = u} < 2exp <2dz(st)>

Then for every ty € T, we have

D/4
Esup | X; — X;,| < C V0og D(e, T, d)de (11)
T 0

te

where D is the diameter of the metric space (T, d).
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Proof of Theorem 4.5

Let T be a countable subset of T. We may assume that T contains to (otherwise
simply add tg to 7~'). For each k > 1, let T be the finite set obtained by taking
the first k elements of T.

Applying Theorem 4.3 to {X;,t € 7~'k} we obtain
diam(T%)/4 — D/4
E max [ X; — X | < C/ \/log D(e, Ty,d)de < C \/log D(e, T, d)de
te Ty 0 0

Letting k — oo, we obtain

D/a
Esup |[X: — Xi| < C V0og D(e, T, d)de
7 0

teT
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© Maximum inequality with uniform entropy
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Definition 4.6 (Uniform entropy bound)

A class F of measurable functions with measurable envelope F satifies the
uniform entropy bound if and only if J(1,F, F) < oo where

)
45, F, F) ;:/0 sgp\/IogN(e||F||Q,2,J-"U{0},L2(Q))de, 550 (12)

Fitness of the integral will be referred to as the uniform entropy condition.

Theorem 4.7

If F is a class of measuable functions with measurable envelop function F, then
E[|Gnll 2] SE[J(0n, F, F)IFlla] S J(1,F, F)IIFllp2 (13)

where 0, 1= supsc 2 |||/l Flln and Gn(F) = v/n (P, — P) (F).
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Proof of Theorem 4.7

Recall that

Lemma 3.12 (Hoeffding’s inequality for Rademacher variables)

Let a = (a1,...,a,) € R" be a vector of constants and 1,...,&, be rademacher
random variables. Then

(|

n
E aj€j
i=1

> X> < 2€_X2/(2H3H2)

where ||a|| denotes the Euclidean norm of a.

Theorem 3.17 (Symmetrisation)

Fro any class of measurable function F,

E|P, - P 5 < 2F

1 n
;;gif(X;)

f
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Proof of Theorem 4.7 (continued)

It suffices to bound E ||Gg|| £; recall that G¢(f) = % Son &if (Xi) where g/'s are
i.i.d. Rademacher (by Theorem 3.17). Given Xi, ..., X,, the process G is
sub-Gaussian for the Ly(IP,)-seminorm || - ||, (by Lemma 3.12), i.e.,

X a X;
P(Z&,’ E/ﬁ) —iz;é‘;g\(/ﬁ)

i=1
The value 07, := supse z Pnf? = supsc 7 || f]|7 is an upper bound for the squared
radius of 7 U {0} with respect to this norm. We add the function f =0 to F, so
that the symmetrised process is zero at some parameter.

>u | )(17 . ,X,,) < 267”2/(2|‘f*gH§)

Vf,g € F,Yu>0

Theorem 4.3 (with X;, = 0) gives

EEHngfg/o " flog N (e, F U {0}, Lo (B,))de

where [E. is the expectation with respect to the Rademacher variables.
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Proof of Theorem 4.7 (continued)

The right side can be bounded by

ona/|IFl,
/0 V1og N (€[[Flln, F U {0}, Lz (Bn))de||Flln < J (6, F. F) [|F |l

Since 0, < 1, we have that J(0,,F,F) < J(1,F, F). Furthermore, by Jensen's
inequality applied to the root function,

E[[Fla < \IE

This gives the inequality on the right side of the theorem.

1 n
- > F2(X)| =Flp2
i=1
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Thank you!
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