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Theorem 4.1 (Dudley’s entropy bound for finite T )

Suppose that {Xt : t ∈ T} is a mean zero stochastic process such that for every
s, t ∈ T and u ≥ 0,

P {|Xt − Xs | ≥ u} ≤ 2 exp
!
− u2

2d2(s, t)

"
(1)

Also, assume that (T , d) is a finite metric space. Then, we have

E sup
t∈T

Xt ≤ C

# ∞

0

$
logN(ε,T , d)dε (2)

where C > 0 is a constant.
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Proposition 4.2

Let T be a finite set and let Xt , t ∈ T be a stochastic process. Suppose that for
every t ∈ T and u ≥ 0, the inequality

P (|Xt | ≥ u) ≤ 2 exp
!
− u2

2σ2

"
(3)

holds. Then, for a universal positive constant C , we have

Emax
t∈T

|Xt | ≤ Cσ
$
log(2|T |) (4)
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Proof of Proposition 4.2

First,

Emax
t∈T

|Xt | =
# ∞

0
P
!
max
t∈T

|Xt | ≥ u

"
du

we can write

P
!
max
t∈T

|Xt | ≥ u

"
= P (∪t∈T {|Xt | ≥ u}) ≤

%

t∈T

P (|Xt | ≥ u) ≤ 2|T | exp
!
− u2

2σ2

"

This bound is good for u ≥ u0 for some u0 to be specified later. This gives

Emax
t∈T

|Xt | =
# u0

0
P
!
max
t∈T

|Xt | ≥ u

"
du +

# ∞

u0

P
!
max
t∈T

|Xt | ≥ u

"
du

≤ u0 +

# ∞

u0

2|T | exp
!
− u2

2σ2

"
du

≤ u0 +

# ∞

u0

2|T | u
u0

exp

!
− u2

2σ2

"
du = u0 +

2|T |
u0

σ2 exp

!
− u2

0

2σ2

"
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Proof of Proposition 4.2 (continued)

Here, we can set
u0 =

√
2σ

$
log(2|T |)

that is,

exp

!
u2

0

2σ2

"
= 2|T |

This gives

Emax
t∈T

|Xt | ≤
√

2σ
$
log(2|T |) + σ2

$
2σ2 log(2|T |)

≤ Cσ
$
log(2|T |)

which proves the result.

Qiangqiang Zhu Empirical Process April 29, 2022 7 / 24



Theorem 4.3

Suppose (T , d) is a finite metric space and {Xt , t ∈ T} is a stochastic process
such that (1) hold. Then, for a universal positive constant C , the following
inequality holds for every t0 ∈ T :

Emax
t∈T

|Xt − Xt0 | ≤ C

# ∞

0

$
logD(ε,T , d)dε ≲

# ∞

0

$
logN(ε,T , d)dε (5)

Here D(ε,T , d) denotes the ε-packing number of the space (T , d).
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Remark 4.1

Let D̃ denote the diameter of the metric space T . Then D(ε,T , d) clearly equals
1 for ε ≥ D̃. Therefore,

# ∞

0

$
logD(ε,T , d)dε =

# D̃

0

$
logD(ε,T , d)dε

Moreover,
! D̃

0

"
logD(!,T , d)d! =

! D̃/2

0

"
logD(!,T , d)d!+

! D̃

D̃/2

"
logD(!,T , d)d!

=

! D̃/2

0

"
logD(!,T , d)d!+

! D̃/2

0

#
logD(!+ (D̃/2),T , d)d!

≤ 2
! D̃/2

0

"
logD(!,T , d)d!

because D(ε+ (D̃/2),T , d) ≤ D(ε,T , d) for every ε.
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Remark 4.1 (continued)

We can thus state Dudley’s bound as

Emax
t∈T

|Xt − Xt0 | ≤ C

# D̃/2

0

$
logD(ε,T , d)dε

Similarly, again by splitting the above integral in two parts, we can also state
Dudley’s bound as

Emax
t∈T

|Xt − Xt0 | ≤ C

# D̃/4

0

$
logD(ε,T , d)dε
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Proof of Theorem 4.3

For n ≥ 1, let Tn be a maximal D̃2−n-separated subset of T and Tn be a maximal
cardinality subject to the separation restriction. The cardinality of Tn is given by
the packing number D

&
D̃2−n,T , d

'
. Because of the maximality,

max
t∈T

min
s∈Tn

d(s, t) ≤ D̃2−n (6)

Because T is finite and d(s, t) > 0 for all s ∕= t, the set Tn will equal T when n is
large. Let

N := min {n ≥ 1 : Tn = T}

For each n ≥ 1, let πn : T → Tn denote the function which maps each point t ∈ T

to the point in Tn that is closest to T . In other words, πn(t) is chosen so that

d (t,πn(t)) = min
s∈Tn

d(t, s)
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Proof of Theorem 4.3 (continued)

From (6), we have

d (t,πn(t)) ≤ D̃2−n for all t ∈ T and n ≥ 1 (7)

Note that π0(t) = t0 and πN(t) = t for all t ∈ T . Now

Xt − Xt0 =
N%

n=1

(
Xπn(t) − Xπn−1(t)

)
for every t ∈ T (8)

By (8), we obtain

max
t∈T

|Xt − Xt0 | ≤ max
t∈T

N%

n=1

**Xπn(t) − Xπn−1(t)

** ≤
N%

n=1

max
t∈T

**Xπn(t) − Xπn−1(t)

**

so that

Emax
t∈T

|Xt − Xt0 | ≤
N%

n=1

Emax
t∈T

**Xπn(t) − Xπn−1(t)

** (9)
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Proof of Theorem 4.3 (continued)

For the elementary bound given by Proposition 4.2, note first that by (1), we have

P
+**Xπn(t) − Xπn−1(t)

** ≥ u
,
≤ 2 exp

!
−u2

2d2 (πn(t),πn−1(t))

"

Now

d (πn(t),πn−1(t)) ≤ d (πn(t), t) + d (πn−1(t), t) ≤ D̃2−n + D̃2−(n−1) = 3D̃2−n

Thus Proposition 4.2 can be applied with σ := 3D̃2−n so that we obtain

Emax
t∈T

**Xπn(t) − Xπn−1(t)

** ≤ C
3D̃
2n

$
log (2 |Tn| |Tn−1|)

≤ CD̃2−n

-
log(2 |Tn|2)

≤ CD̃2−n

.
log

&
2D

&
D̃2−n,T , d

''
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Proof of Theorem 4.3 (continued)

Plugging the above bound into (9), we deduce

Emax
t∈T

|Xt − Xt0 | ≤ C
N%

n=1

D̃

2n

.
log

&
2D

&
D̃2−n,T , d

''

≤ 2C
N%

n=1

# D̃/2n

D̃/2n+1

$
log(2D(ε,T , d))dε

≤ 2C
# D̃/4

0

$
log(2D(ε,T , d))dε

Note that for ε ≤ D̃/4, the packing number D(ε,T , d) ≥ 2 so that

log(2D(ε,T , d)) = log 2 + logD(ε,T , d) ≤ 2 logD(ε,T , d)

We have thus proved that

Emax
t∈T

|Xt − Xt0 | ≤ 2
√

2C
# D̃/4

0

$
logD(ε,T , d)dε
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Definition 4.4 (Separable stochastic process)

Let (T , d) be a metric space. The stochastic process {Xt , t ∈ T} indexed by T is
said to be separable if there exists a null set N and a countable subset T̃ of T
such that for all ω /∈ N and t ∈ N, there exists a sequence {tn} in T̃ with
limn→∞ d (tn, t) = 0 and limn→∞ Xtn(ω) = Xt(ω).

If {Xt , t ∈ T} is a separable stochastic process, then

sup
t∈T

|Xt − Xt0 | = sup
t∈T̃

|Xt − Xt0 | almost surely (10)

for every t0 ∈ T . Here T̃ is a countable subset of T which appears in the
definition of separability of Xt , t ∈ T .
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Theorem 4.5

Let (T , d) be a separable metric space and let (Xt , t ∈ T ) be a separable
stochastic process. Suppose that for every s, t ∈ T and u ≥ 0, we have

P {|Xs − Xt | ≥ u} ≤ 2 exp
!
− u2

2d2(s, t)

"

Then for every t0 ∈ T , we have

E sup
t∈T

|Xt − Xt0 | ≤ C

# D̃/4

0

$
logD(ε,T , d)dε (11)

where D̃ is the diameter of the metric space (T , d).
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Proof of Theorem 4.5

Let T̃ be a countable subset of T . We may assume that T̃ contains t0 (otherwise
simply add t0 to T̃ ). For each k ≥ 1, let T̃k be the finite set obtained by taking
the first k elements of T̃ .

Applying Theorem 4.3 to {Xt , t ∈ T̃k}, we obtain

Emax
t∈T̃k

|Xt − Xt0 | ≤ C

# diam(T̃k )/4

0

-
logD(ε, T̃k , d)dε ≤ C

# D̃/4

0

$
logD(ε,T , d)dε

Letting k → ∞, we obtain

E sup
t∈T̃

|Xt − Xt0 | ≤ C

# D̃/4

0

$
logD(ε,T , d)dε
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Definition 4.6 (Uniform entropy bound)

A class F of measurable functions with measurable envelope F satifies the
uniform entropy bound if and only if J(1,F ,F ) < ∞ where

J(δ,F ,F ) :=

# δ

0
sup
Q

-
logN (ε‖F‖Q,2,F ∪ {0}, L2(Q))dε, δ > 0 (12)

Fitness of the integral will be referred to as the uniform entropy condition.

Theorem 4.7

If F is a class of measuable functions with measurable envelop function F , then

E [‖Gn‖F ] ≲ E [J (θn,F ,F ) ‖F‖n] ≲ J(1,F ,F )‖F‖P,2 (13)

where θn := supf∈F ‖f ‖n/‖F‖n and Gn(f ) =
√
n (Pn − P) (f ).
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Proof of Theorem 4.7

Recall that

Lemma 3.12 (Hoeffding’s inequality for Rademacher variables)

Let a = (a1, . . . , an) ∈ Rn be a vector of constants and ε1, . . . , εn be rademacher
random variables. Then

P

/*****

n%

i=1

aiεi

***** ≥ x

0
≤ 2e−x2/(2‖a‖2)

where ‖a‖ denotes the Euclidean norm of a.

Theorem 3.17 (Symmetrisation)

Fro any class of measurable function F ,

E ‖Pn − P‖F ≤ 2E

11111
1
n

n%

i=1

εi f (Xi )

11111
F
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Proof of Theorem 4.7 (continued)

It suffices to bound E ‖Go
n‖F ; recall that Go

n(f ) =
1√
n

2n
i=1 εi f (Xi ) where εi ’s are

i.i.d. Rademacher (by Theorem 3.17). Given X1, . . . ,Xn, the process Go
n is

sub-Gaussian for the L2(Pn)-seminorm ‖ · ‖n (by Lemma 3.12), i.e.,

P

/*****

n%

i=1

εi
f (Xi )√

n
−

n%

i=1

εi
g(Xi )√

n

***** ≥ u | X1, . . . ,Xn

0
≤ 2e−u2/(2‖f−g‖2

n )

∀f , g ∈ F , ∀u ≥ 0

The value σ2
n,2 := supf∈F Pnf

2 = supf∈F ‖f ‖2
n is an upper bound for the squared

radius of F ∪ {0} with respect to this norm. We add the function f ≡ 0 to F , so
that the symmetrised process is zero at some parameter.

Theorem 4.3 (with Xt0 = 0) gives

Eε ‖Go
n‖F ≲

# σn,2

0

$
logN (ε,F ∪ {0}, L2 (Pn))dε

where Eε is the expectation with respect to the Rademacher variables.
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Proof of Theorem 4.7 (continued)

The right side can be bounded by

# σn,2/‖F‖n

0

$
logN (ε‖F‖n,F ∪ {0}, L2 (Pn))dε‖F‖n ≤ J (θn,F ,F ) ‖F‖n

Since θn ≤ 1, we have that J (θn,F ,F ) ≤ J(1,F ,F ). Furthermore, by Jensen’s
inequality applied to the root function,

E‖F‖n ≤

3445E

6
1
n

n%

i=1

F 2 (Xi )

7
= ‖F‖P,2

This gives the inequality on the right side of the theorem.
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Thank you!
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